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Abstract. Modular and mock modular forms possess many striking p-adic prop-
erties, as studied by Bringmann, Guerzhoy, Kane, Kent, Ono, and others. Can-
delori developed a geometric theory of harmonic Maass forms arising from the de
Rham cohomology. In the setting of over-convergent p-adic modular forms, Can-
dellori and Castella showed this leads to p-adic analogs of harmonic Maass forms.

In this paper we take an analytic approach to construct p-adic analogs of har-
monic Maass forms of weight 0 with square free level. Although our approaches
differ, the two theories intersect. In these cases the forms constructed are the same,
except that our analytic construction gives an extension to the full modular curve,
including the super singular locus.

As with classical harmonici Maass forms, these p-analogs are connected to weight
2 cusp forms and their modular derivatives are weight 2 weakly holomorphic modu-
lar forms. Traces of their CM values also interpolate the coefficients of half integer
weight modular and mock modular forms. We demonstrate this through the con-
struction of p-adic analogs of two families of theta lifts for these forms.

1. Introduction and statement of results

Serre [31] introduced the notion of a p-adic modular form as the limit of a sequence
of modular forms with p-adically convergent q-expansions. This theory has been
expanded by Dwork [21], Katz [28], Hida [25] and many others, filling out a beautiful
picture in terms of the analysis and geometry of the modular curve and the Hecke
algebra.

The p-adic properties of mock modular forms are less well-studied. However Bring-
mann, Guerzhoy, Kane, Kent, Ono, and others (see for instance [5, 6, 23, 24]) have
demonstrated a number of striking examples. In his masters thesis, Candelori [15]
defined a p-harmonic differential for over-convergent p-adic modular forms, and by
means of the de Rham cohomology defined p-adic analogs of p-harmonic Maass forms
of weight 0. In [16], Candelori presented a geometric theory of harmonic Maass forms.
Later Candelori and Castella [17] considered certain p-adic modular forms studied
by Bringmann–Guerzhoy–Kane [5] associated to certain mock modular forms. They
showed that these are over-convergent p-adic modular forms arising from the de Rham
cohomology in the same way as do harmonic Maass forms. From this geometric per-
spective, Candellori and Castella also reproduced results of Guerzhoy-Kent–Ono [24]
on the p-adic coupling of mock modular forms with their shadow.

Similar p-adic properties are exhibited by both integer and half-integer weight
mock modular forms. In fact, some evidence suggests many of theses properties carry
through certain lifts from integer weight forms to half integer weight forms, including
for instance the lifts studied by Zagier in [35], which give the Fourier coefficients of
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half-integer weight forms as twisted “traces” over CM points of fixed discriminants.
Unfortunately, we cannot simply apply these traces to general p-adic modular forms
or over-convergent p-adic modular forms, since for sufficiently large discriminants
these traces will eventually involve points with super singular j-invariants.

Here we construct p-adic analogs of weight 0 harmonic Maass forms from an an-
alytic perspective, from sequences of classical modular functions. These functions
converge on the full modular curve, including the super-singular locus. When the
forms constructed have shadows which are ordinary for p (see Section 5), then these
functions align with those studied by Candelori and Castella. In other cases, the
p-adic harmonic Maass forms we construct are not standard p-adic modular forms,
as witnessed by the presence of unbounded denominators in the q-series expansions.

If K is a field over Q, we will use the notation Mk(N ;K) and M !
k(N ;K) respec-

tively to denote the space of weight k holomorphic and weakly holomorphic modular
forms on the modular curve Y0(N)(K) (see Section 2). We also consider classical
weight 0 harmonic Maass forms as functions on Y0(N)(C) ' Γ0(N)\H. Here and
throughout, if K is a number field we will use σ to denote an infinite place of K,
and p to denote a finite place lying over a rational prime p. We also denote the
completion of K at any place ν by Kν . With this notation we have the following.

Theorem 1.1. Suppose N is a square free positive integer, K a number field, and
p a prime of K over a rational prime p, not dividing N . There exists a Kp vector
space H0(N ;Kp) of p-adically continuous functions F p : Y0(N)(Kp)→ Kp, satisfying
the following properties:

(1) We have that M !
0(N ;Kp) ⊂ H0(N ;Kp).

(2) Hecke operators and Atkin–Lehner involutions have well defined actions on
H0(N ;Kp) and are endomorphisms.

(3) Each function in H0(N ;Kp) has a well-defined q-expansion in Kp((q)).
(4) The usual modular differential operator D acts on H0(N ;Kp), and the follow-

ing sequence is exact:

0→ Kp ↪→ H0(N ;Kp)
D−−→M !

2(N ;Kp)→M2(N ;Kp)→ 0.

Each function in this space is then defined using two of sequences of modular
functions which converge on overlapping regions which cover Y0(N)(Kp). We con-
struct these sequences using the Hecke algebra. The action of the Hecke opera-
tors, Atkin–Lehner operators and the differential operator D are obtained by acting
component-wise on the defining sequences.

A correspondence exists between certain functions in H0(N ;Kp) and in H0(N ;C).
If µ is any embedding of fields µ : K ↪→ L, then µ extends naturally and uniquely
to an embedding

µ : M !
0(N ;K) ↪→M !

0(N ;L),

so that F µ|Y0(K) = F. Similarly, if L1 and L2 are two fields containing K, then there
is a natural equivalence relation 'K between forms Fi ∈M !

k(N ;Li) which satisfy

F1|Y0(N)(K) = F2|Y0(N)(K) ∈M !
0(N ;K).
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For instance, suppose K is a number field. If F σ ∈ M !
k(N ;C) has a q-expansion

in Q((q)), then there is a unique corresponding form F p ∈M !
k(N ;Kp) so that

F σ 'Q F
p.

We will establish a similar correspondence between a certain dense subspace of
H0(N ;C) and H0(N ;Kp) respectively. This aim is complicated by the generally
expected transcendence of the q-series coefficients and values at algebraic points of
these functions. However, this transcendence can be controlled in some key settings.

For instance, suppose g ∈ S2(N ;K) is a level N newform with q-expansion given
by
∑

n≥1 ag(n)qn. Then there is a subspace Hg
0 (N ;K, σ) ⊂ H0(N ;Kσ) of harmonic

Maass forms F satisfying the following properties:

(1) The differential operator ξ0 defined in (3.1) acts on F with

ξ0F ∈ K ·
gσ

‖gσ‖
,

where ‖gσ‖ is the usual Petersson norm of gσ.
(2) The holomorphic part F+ of F (see section 3.1) at each cusp has a q-expansion

in Kσ((q)).
(3) The principal parts of F+ at each cusp is in K[q−1].

Of course we could have written C instead of Kσ in part (2), but this notation
suggests the direction in which we will generalize these properties for H0(N ;Kp).

Suppose F ∈ Hg
0 (N ;K, σ), with the q-expansion of F+ at ∞ given by

F+ =
∑
n∈Z

aF (n)qn.

The Z-module containing the coefficients aF (n) has rank at most 2: there is some
ασ ∈ Kσ so that

(1.1) aF (n)− ασ ag(n)

n
∈ K

In particular, if ag(n) = 0, then aF (n) ∈ K. The algebraicity over K of aF (n) in this
case was shown by Bruinier–Ono–Rhoades[13]; Candelori [15] showed it is in K.

This method of controlling the transcendental part using the coefficients of the
cusp form underlies the p-adic coupling of mock-modular forms with their shadow
as demonstrated by Guerzhoy–Kent–Ono [24, Theorem 1.2].

Similarly, in general we expect the values of F at algebraic points to be transcen-
dental, but there are important exceptions. The CM values of the j function, known
as singular moduli, are algebraic. Zagier [35] showed that the twisted traces of these
singular moduli are coefficients of certain weight 1/2 and weight 3/2 modular forms.
These results have been studied and generalized in several directions, including for
other modular functions of higher level, and for harmonic Maass forms. Bruinier–
Funke [9, 10] and Alfes [1] have realized these trace maps as theta lifts obtained by
taking the inner product of modular functions against certain non-holomorphic theta
kernels. In many cases it is not hard to see that certain p-adic properties of q-series
are propagated through the lifts. Some of these properties have been explored by
Bringmann–Guerzhoy–Kane [6].
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Suppose D and ∆ are fundamental discriminants, both squares modulo 4N, with
D∆ < 0. Let h be chosen so that h2 ≡ ∆D (mod 4N). We define a twisted modular

trace t̃N(∆, D, h)(F ) of values of F at CM points of discriminant D∆ in equation
(8.2). If F is weakly holomorphic with rational coefficients, then this trace is literally

a trace over Galois conjugates of CM values ofD−
1
2F . If F is not weakly holomorphic,

the algebraicity is connected to the twisted L-function

(1.2) L(gσ,∆, s) =
∑
n≥1

(
∆
n

)
ag(n)

ns
.

By L′(gσ,∆, s), we denote the derivative in the s variable. Results of Bruinier–Ono
and Alfes can be used to control the transcendence of the traces. We package these
results in the following proposition.

Proposition 1.2. For all D,∆, and h satisfying the conditions above and
F ∈ Hg

0 (N ;K, σ), we have that

(1.3) t̃N(∆, D, h)(F ) ∈ K ⇐⇒ L(ξ0F,∆, 1)L′(ξ0F,D, 1) = 0.

More generally, there exist constants bg(∆) ∈ K (dependent on g, but independent
of the choice of F ), and some ασ

D ∈ Kσ (independent of ∆) so that

(1.4) t̃N(∆, D, h)(F )−ασ
Dbg(∆) ∈ K.

In particular, when F is weakly holomorphic, we can take ασ
D = 0. The bg(∆) in

the equation are coefficients of a certain weight 3/2 modular form which corresponds

to g under the Shimura correspondence. The traces t̃N(∆, D, h)(F ) themselves can
be given in terms of coefficients of a weight 3/2 harmonic Maass forms, and so (1.4)
strongly parallels (1.1). Equations (1.3) and (1.4) are tied together by Waldspurger’s
theorem which shows that

bg(∆) = 0 ⇐⇒ L(gσ,∆, 1) = 0.

If N is square free, and not divisible by the prime p, we define a space Hg
0 (N ;K, p)

of p-adic harmonic Maass forms which satisfy these same properties discussed above
for q-expansions and CM values, with σ replaced with p. Additionally, these forms
satisfy a natural correspondence with the space Hg

0 (N ;K, σ), given by matching
forms with the same principal parts at cusps.

Theorem 1.3. Assume the notation above, with σ any infinite place of K, and p any
finite prime of K not dividing N . There exists a subspace Hg

0 (N ;K, p) ⊂ H0(N ;Kp)
satisfying a one-to-one correspondence with Hg

0 (N ;K, σ). This correspondence maps
each function F σ ∈ Hg

0 (N ;K, σ) to a corresponding F p ∈ Hg
0 (N ;K, p), satisfying the

following properties.

(1) The principal parts of the q-expansions of F σ+ and F p at all cusps are equal.

(2) If aFσ and aF p denote the n-th coefficients of F σ+ and F p respectively, then
there exist ασ ∈ Kσ and αp ∈ Kp, so that(

aσF (n)− ασ ag(n)

n

)
=

(
apF (n)− αpag(n)

n

)
∈ K.
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(3) If L(ξ0F
σ,∆, 1)L′(ξ0F

σ, D, 1) = 0, then

t̃N(∆, D, h)(F σ) = t̃N(∆, D, h)(F p) ∈ K.

More generally, there exist ασ
D ∈ Kσ and αp

D ∈ Kp so that(
t̃N(∆, D, h)(F σ)−ασ

Dbg(∆)
)

=
(
t̃N(∆, D, h)(F p)−αp

Dbg(∆)
)
∈ K,

where bg(∆) is as above.
(4) The above correspondence is equivariant with respect to the Hecke algebra and

Atkin–Lehner involutions.

Remark 1. By transitivity, the correspondence given in Theorem 1.3 extends to any
two places µ and ν of K finite or infinite which do not divide N . Building on the
earlier notation, we write F µ 'K F ν for functions which correspond in this manner.

Remark 2. Part 3 of Theorem 1.3 follows from Theorem 9.1 which shows that the
traces interpolate p-adic properties of half-integer weight harmonic Maass forms.

In section 5 we will outline various structural results about the space H0(N ;Kp).
We will show that this space can be generated by the action of the Hecke algebra
and Atkin–Lehner involutions acting on a single element. We describe the image
of the space under the modular derivative D, which is a distinguished subspace of
M !

2(N ;Kp), orthogonal to the weight 2 cusp forms under a natural p-adic analog
of the Petersson inner product. This space is distinguished by the p-adic slopes of
the forms (see (5.1)). When the slope is not negative, these align with the over
convergent p-adic modular forms of Candelori and Castella’s theory.

We can also define a similar space H0(N ;Kp) for primes p dividing N which nearly
satisfies Theorem 1.1, and a subspace Hg

0 (N ;Kp) which satisfies Theorem 1.3 parts
(1),(2), and (4). However these functions are not well defined on the supersingular
locus, apart from the subspace of weakly holomorphic modular functions. Away
from the supersingular locus, the results are p-adic modular forms. The construction
also converges on the supersingular locus, but the results seem to be incomplete.
The limits branch depending on the cusp at which the expansion is taken, and the
construction might be termed at best mock modular. We will primarily focus on the
case p does not divide N , with a few exceptions in Theorem 1.4 below.

The correspondence described in Theorem 1.3 and Remark 1 between places of K
raises the natural question if there is an adelic theory connecting these forms. This
question requires bounds on the denominators that can arise.

Theorem 1.4. Let (F ν)ν be a family of functions F ν ∈ H0(N ;K, ν) which are
equivalent under 'K, and such that the principal part of each F ν at each cusp is
defined over the ring of integers of K. Denote the q-expansion of F ν at a cusp ρ
by
∑

n∈Z a
ν
ρ(n)qn. Then there are integers MN , RN , and BN,p explicitly defined in

section 6, all independent of the family (F ν)ν so that the following are true.
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(1) Suppose ν = p is a finite place of K. Given any cusp ρ and a positive integer
n = s2t with t square free, we have

vp

(
stMN

√
RN · apρ(s2t)

)
≥ 0.

In particular, for fixed n ∈ Z and cusp ρ, the vector (aνρ(n))ν is an adele.
(2) Suppose z ∈ Y0(N)(K), with vp(j(z)) ≥ 0, not supersingular at p if p divides

N . Then MNRNBN,p · F p(z) is p-integral.

The bound on the denominators for evaluations is not sharp when F p is weakly
holomorphic, and may not be sharp in general. Improvements in this bound could
be used to improve bounds for denominators appearing in algebraic coefficients of
weight 1/2 harmonic Maass forms.

Example. Let N = 43, K = Q, and p = (3), and let g be the unique newform for
Γ0(43) with rational coefficients,

g = q − 2q2 − 2q3 + 2q4 − 4q5 + 4q6 + q9 +O(q10)

There is a unique weight 0 harmonic Maass form for Γ0(43) with the q-expansion at
∞ given by

F+(τ) = q−1 + 1.707216 . . . q + 1.792783 . . . q2 + 3.195188 . . . q3 + . . . ,

which is invariant under the Fricke involution. Then DF = FQ + αCg where

FQ = −q−1 + 2q + 3q2 + 9q3 + 16q4 + 27q5 + 42q6 +O(q7) ∈M !
2(43,Q),

and αC = −0.292783419 . . . . The form F p has the q-expansion

F p = q−1 + · · · 2120123q + · · · 1221103q
2 + · · · 1022013q

3 +O(q4),

and satisfies DF p = FQ + αpg, where αp = . . . 212010.13. Here we have represented
each 3-adic number in base 3 format so that, for instance,

αp = . . . 2120103 = 0 · 30 + 1 · 31 + 0 · 32 + 2 · 33 + 1 · 34 + 2 · 35 + . . . .

Now let ∆ = r = 1. For D and h chosen as in Proposition 1.2, the traces
t̃N(∆, D, h)(F ) are the coefficients of a weight 3/2 vector valued harmonic Maass
form ϑ∆,r(F ), as seen in Theorem 8.1. However for simplicity in this example

we will consider a projection ϑ̂∆,r(F ) of this vector valued form to a scalar-valued
form obtained by summing the vector components and multiplying by −1

2
. Then

ϑ̂∆,r(F ) ∈M !
3/2(4 · 43;C), and lies in the Kohnen plus space. The newform

ĝ = q3 + q7 − q8 − q12 + 2q19 − q20 − 2q27 − 3q28 +O(q30) ∈ S3/2(4 · 43;Q)

maps to f under the Shimura correspondence. We have ϑ̂∆,r(F ) = ĜQ + aC ĝ, where

GQ = q−1 − 1 + q7 + q8 + q12 + q19 + q20 + 2q27 + q28 +O(q30) ∈M !
3/2(4 · 43;Q),

and aC = 0.0663160686 . . . .
The p-adic traces t̃N(∆, D, h)(F p) are the coefficients of a p-adic q-series ϑ∆,r(F

p)

as seen in Theorem 9.1. If ϑ̂∆,r(F
p) is the image under the same projection as above,

we find ϑ̂∆,r(F
p) = ĜQ + ap ĝ, where ap = . . . 00002.13. Notice in this case we have a
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denominator of 3. The constants in Theorem 1.4 areMN = 8, RN = 2 and BN,p = 3,
however since F p ∈ Hg

0 (43;Q, p), only BN,p contributes to the denominators.

The remainder of this paper will be organized as follows. In Section 2 we review
basic results about modular functions used throughout this paper. In Section 3 we
review the theory of harmonic Maass forms. Section 4 contains the construction of
the p-adic harmonic Maass forms and the proofs of Theorem 1.1 and Theorem 1.3
parts (1),(2), and (4). Section 5 contains additional results about the structure of
the spaces of p-adic harmonic Mass forms that we will find useful later. In Section
6 we prove the integrality results for the q-series and values given in theorem 1.4.
In Section 7 we will review the theory of half-integer weight vector-valued modular
forms and Hecke operators. In Section 8 we will review the lifts connecting integral
weight and half-integral weight forms and prove Proposition 1.2. In Section 9 we
extend the lifts studied in the previous section to the p-adic harmonic Maass forms.
Part (3) of Theorem 1.3 will follow as a corollary to Theorem 9.1.
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2. Modular functions

Throughout this paper, we will treat modular forms interchangeably as functions
on elliptic curves, line bundles over the modular curve, as formal q-series, and in the
complex case as functions in the complex variable τ in the upper half plane. We will
treat harmonic Maass forms similarly.

Given a model of an elliptic curve E/C, let ω1 and ω2 be periods which generate
the associated lattice, ordered so that τE := ω1/ω2 ∈ H. If F is modular of weight k
and level 1, then we have that

F (E) = F (ω1, ω2) =

(
2π i

ω2

)k
F (τE).

If F has level N > 0, then different choices of generators of the lattice may give
different evaluations. A choice of level N structure is a choice among the Γ0(N)-
equivalence classes of periods ω1, ω2 which generate the lattice.
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As usual any 2× 2 rational matrix with positive determinant γ = ( a bc d ) ∈ GL+
2 (Q)

acts on modular forms over C by

F |kγ (ω1, ω2) := det(γ)k/2f (aω1 + bω2, cω1 + dω2) ,

F |kγ(τ) := (cτ + d)−k det(γ)k/2f

(
aτ + b

cτ + d

)
.(2.1)

Regardless of the field of definition of the forms under consideration, the matrix
group GL+

2 (Q)/ (Q · I2) acts as an algebra of linear operators on modular forms,
where the image of Γ0(N) acts trivially on level N modular forms. This algebra
contains both the Hecke algebra and the group of Atkin–Lehner involutions.

Equivalently, we may consider the evaluation of modular forms algebraically. Let
E(N ;K) be the set of Weierstraas models of elliptic curves over K with a specified
level N structure. If E ∈ E(N ;K), the evaluations of the Eisenstein series E4(E)
and E6(E) can be read from the Weierstrass model. This suffices to evaluate any
level 1 meromorphic modular form. If F is a modular function of level N > 1, then
it is related to the j-function by a polynomial ΦF (X, Y ) ∈ KF (Y )[X] for some field
KF , defined by

(2.2) ΦF (X, j) :=
∏

γ∈SL2(Z)\Γ0(N)

(X − F |0γ) .

Here the matrices γ ∈ SL2(Z)\Γ0(N) act by permuting the level N structure of the
input. Because the action by any matrix in SL2(Z) simply permutes the cosets, the
coefficient functions must all be level 1, and hence rational functions in j. More-
over, ΦF (X, Y ) must be a perfect power of an irreducible polynomial. The level N
structure of E then specifies an evaluation of F (E) among the roots of ΦF (X, j(E)).

The geometry of the modular curve gives a more uniform characterization of the
level N structure. The modular curve Y0(N) is a smooth affine curve over Q, which
satisfies E(N ;K) ' K × Y0(N)(K), and Y0(N)(C) ' Γ0(N)\H [32, Theorem 13.1].

We may fix a model

Y0(N) ' V (Ψ) , with Ψ =
⋃
i

{Ψi(ϕ0, ϕ1, . . . , ϕn)},

So that the projection (ϕ0, ϕ1, . . . , ϕn)→ (ϕ0), gives the standard projection to Y0(1),
each Ψi(ϕ0, ϕ1, . . . , ϕn) ∈ Z[ϕ0, ϕ1, . . . , ϕn], and each ϕi satisfies a monic polynomial
Φϕi ∈ Q[ϕ0][X]. Modular functions are on the curve are can be given as rational
functions in the coordinates, and weakly holomorphic forms are polynomials,

M !
0(N ;K) ' K[ϕ0, ϕ1, . . . ϕn]/(Ψ).

Each coordinate ϕi gives the value of an associated modular function ϕ̃i ∈M !
0(N ;K).

Up to a linear change of variable we may take ϕ̃0 = j.
If K is a field with ring of integers O, we define the integral modular functions

M !
0(N ;O) := {F ∈M !

0(N ;K) : ΦF (X, j) ∈ O[j][X]}.
It will be useful to fix a complete integral model of Y0(N), so that

M !
0(N ;Z) ' Z[ϕ0, ϕ1, . . . , ϕn]/(Ψ).
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More generally, ifR is any fractional ideal ofK then define the submoduleM !
0(N ;R) ⊂

M !
0(N ;K) by M !

0(N ;R) := R ·M !
0(N ;Z).

The modular curve Y0(N)(K) has certain important regions. If p is a prime of K,
then the p-integral locus is the region {z ∈ Y0(N)(K) : |j(z)|p < 1}. The p-integral
locus splits into two distinguished subregions: the supersingular locus

SSp := {z ∈ Y0(N)(K) : j(z) (mod p) is supersingular } ,

and the complement, the p-ordinary locus.

2.1. q-series and the Tate curve. The q-expansion of a weakly holomorphic mod-
ular form F corresponds to the evaluation of F on a model of the Tate curve. The
various level N models of the Tate curve correspond to the action of a matrix in
SL2(Z) on a level N modular form, and is related to the q-expansions of F at the
various cusps.

The inequivalent cusps of Γ0(N) with N square-free can be indexed by the divisors
of N , with cusp {a

b
} indexed by δ = N

gcd(b,N)
. The cusp∞ then has index 1, while the

cusp 0 has index N . The Atkin–Lehner involutions Wδ permute these cusps. Here,
Wδ can be represented by any integer matrix ( δa b

Nc δd ) with determinant δ. Then Wδ

swaps the cusp of index D with that of index Dδ
(D,δ)2 .

We denote the standard q series of a modular form F at the cusp∞ by F (q). This
corresponds to the model of the Tate curve Tate∞(q) which satisfies

jN(q) = jN (Tate∞(q)) = j(qN),

where jN := j|0WN is the image of j under the Fricke involution WN := ( 0 −1
N 0 ) . In

the complex case, this model corresponds to the usual Fourier expansion at∞. More
generally, each Γ0(N)-model of the Tate curve Tate(q) corresponds to the action
of some right-coset representative [γ] ∈ Γ0(N)\SL2(Z). The resulting action on the
q-expansion of a modular form can be found by factoring

(2.3) γ =

(
a b
c d

)
= Wδ

(
1 j
0 δ

)
for some Atkin–Lehner involution Wδ with δ = N

(N,c)
, and j ≡ dc−1 (mod δ). Since

N is square-free in our case, c and δ are co-prime, the factorization is well defined.
The action of an upper triangular matrix ( a b0 d ) on a q-series is simply q → ζbdq

a/d

with ζd a fixed primitive d-th root of 1. Therefore

(2.4) F (Tateγ(q)) = F |0Wδ(Tate∞(ζjδq
1/δ)).

The q-expansion principle allows us to use the various models of the Tate curve
to evaluate a modular form when |j(E)|ν > 1 for some place ν of K. Given such a
curve E ∈ E(N ;Kν) and any model T(q) of the Tate curve, there are parameters qE
and ωE in Kν with |qE|ν < 1 so that for every form F ∈M !

k(N ;K) we have

F (E) = ωkEF (T(qE)).

Evaluating at the Tate curve easily shows that the the integral forms M0(N ;O)
are exactly those level N modular functions whose coefficients at all cusps are in O.
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2.2. The Hecke algebra. For our construction we will need an extension of the
Hecke algebra

T∗k(N ;K) ⊂ EndK(M !
k(N ;K)),

generated by the standard Hecke operators Tn for (n,N) = 1, the Atkin Um-operators
for m divisible only by primes dividing N , and the Atkin–Lehner involutions Wδ

for δ | N . For N > 1 this is a non-commutative algebra. While operators with
coprime index commute, the U`n and W` operators for primes ` | N have non-trivial
commutativity relations which can be worked out in terms of the action of matrices.

The U` operator satisfies

F |k`1−k/2U` = F |k
`−1∑
j=0

(
1 j
0 `

)
.

The operators (`1−k/2U`W`) and (W``
1−k/2U`) both satisfy the polynomial relation

x2 − (`− 1)x− ` = 0.

The action of (`1−k/2U`W`) on a q-expansion is that of

(2.5) `U`V` + `k/2W`V` − 1,

where as usual V` sends q → q`.
We will find it useful to define the operators

T̂n :=

{
Tn′ WδUDWδ if k ≥ 2

n1−kTn′ WδUDWδ if k ≤ 0

where δ = (n,N), n′ is the greatest divisor of n with (n′, N) = 1, and Dn′ = n. A
short exercise then shows that the weight k and weight 2 − k operators satisfy the
same multiplicative relation

(2.6) T̂nT̂m =
∑
d|(m,n)
(d,N)=1

d|k−1|T̂mn
d2
.

In particular we have an isomorphism

ϕk : T∗k(N ;K)
∼−→ T∗2−k(N ;K).

The normalizations for the non-positive weight operators also preserve integrality
of q-expansions. If (n,N) = 1, this follows easily from the formula in terms of the U
and V operators,

(2.7) F |kT̂n = F |k
∑
d|n

D|k−1|UdVn
d
.

where D = d or n
d

depending on whether k ≤ 0 or ≥ 2 respectively. If ` | N , then

the action on q-expansions of T̂` can be worked out using (2.5). We find

(2.8) F |kW``
1−k/2U`W` = F |k

(
`W`U`V` −W` + `k/2V`

)
.

The normalizations also allow simpler commutativity relations with the modular
differential operators Dk−1 and ξ2−k defined in the next section.
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3. Harmonic Maass forms

In this section we define harmonic Maass forms and lay out certain key properties
that will be used later. We begin by recalling the definition of harmonic Maass forms
of weight k ∈ 2Z. Here we set τ = x + i y with x and y real, and q = e2π i τ . The
weight k hyperbolic Laplacian is defined by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ i ky

(
∂

∂x
+ i

∂

∂y

)
.

Definition 3.1. Let Γ = Γ0(N) for some N , and let k ∈ 2Z. Then a real analytic
function F (τ) : H→ C is a harmonic Maass form of weight k for Γ if:

(1) The function F (τ) is invariant under the slash operator so that

F |kγ = F

for every matrix γ ∈ Γ.
(2) The function F is harmonic so that ∆kF = 0;
(3) The function F has a meromorphic principal part at each cusp. That is, if

Fρ is the expansion of F at ρ, then there is some polynomial Pρ(q
−1)C[q−1]

and constant Cρ > 0 so that Fρ − Pρ(q−1) = O(e−Cρy) as y →∞.

We denote the C vector space of weight k harmonic Maass forms for Γ0(N) by
Hk(N ;C). The differential equation given by ∆kF = 0 implies that harmonic Maass
forms have Fourier expansions which split into two components: one part which is a
holomorphic q-series, and one part which is non-holomorphic.

Lemma 3.1 ([9, Proposition 3.2]). Let F (τ) be a harmonic Maass form of weight
2− k < 1 for Γ0(N) as defined above. Then we have that

F (τ) = F+(τ) + F−(τ)

where F+ is the holomorphic part of F or mock modular form, given by

F+(τ) :=
∑

n�−∞

c+
F (n)qn,

and F− is the non-holomorphic part given by

F−(τ) :=
∑
n≥1

c−F (n)Γ(k − 1, 4πyn)q−n.

3.1. Differential operators and the Petersson inner product. Differential op-
erators yield some important relations between spaces of harmonic Maass forms and
weakly holomorphic modular forms of dual weight. Let k ≥ 2 be an even and define
the operators

Dk−1 :=

(
1

2πi

∂

∂τ

)k−1

and ξk := 2iyk
∂

∂τ
.(3.1)
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These maps yield the exact sequences

0→M2−k(N ;C) ↪→H2−k(N ;C)
Dk−1

−−−→ S⊥k (N ;C)→ 0,

0→M !
2−k(N ;C) ↪→H2−k(N ;C)

ξ2−k−−−→ Sk(N ;C)→ 0.

Here, the space S⊥k (N ;C) is a distinguished subspace of M !
k(N ;C) consisting of

those forms with vanishing constant term at all cusps and which are orthogonal to
the cusp forms Sk(N ;C) with respect to the regularized Petersson inner product
described below.

The Dk−1 operator preserves inegrality of coefficients, and so extends to a map

Dk−1 : M !
2−k(N ;K)

Dk−1

−−−→M !
k(N ;K).

As noted before, the operators T̂n commute with these differential operators. If k ≥ 2
and F ∈ H !

2−k(N), then

(3.2) Dk−1
(
F |2−kT̂n

)
=
(
Dk−1F

)∣∣
k
T̂n and ξ2−k

(
F |2−kT̂n

)
= (ξ2−kF )|k T̂n.

The same relations hold for the Atkin-Lehner involutions Wδ.
The Petersson inner product 〈·, ·〉k : M !

k(N ;C)×Mk(N ;C)→ C is defined by the
regularized integral

(3.3) 〈f, g〉k := [SL2(Z) : Γ0(N)]−1

∫ Reg

Γ0(N)\H
f(τ)g(τ)yk

dxdy

y2
.

Borcherds’ regularization of the inner product (see [4]) allows the inner product to
make sense if we have growth towards the cusps. The normalization by the group
index ensures that the inner product is independent of the level.

Bruinier–Funke define a pairing {·, ·} : Sk(N ;C)×H2−k(N ;C)→ C connected to
the inner product, defined by

(3.4) {g, F} := 〈g, ξ2−kF 〉k.
This pairing, and therefore the resulting inner product, can be computed in terms
of the coefficients of harmonic Maass forms.

Theorem 3.2 (Bruinier–Funke[9]). Let F ∈ H !
2−k(N ;C) and g ∈ Sk(N ;C), with

q-expansions at cusps given by F |kWD(τ) =
∑

n a
+
D(n)qn + F−D and g|kWD(τ) =∑

n bD(n)qn. Then

{g, F} = [SL2(Z) : Γ0(N)]−1
∑
D|N

∑
n∈Z

a+
D(−n) · bD(n).

The pairing is a sum of the constant terms at cusps of the non-holomorphic weight
2 modular form F · g. The formula presented here differs slightly from Bruinier
and Funke’s original statement which is given in terms of vector valued forms. The
formula for the pairing is more easily recognized as a sum over cosets,

{g, F} = [SL2(Z) : Γ0(N)]−1
∑

γ∈Γ0(N)\SL2(Z)

∑
n∈Z

a+
γ (−n) · bγ(n).
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Where a+
γ (n) and bγ(n) are coefficients of F |2−kγ and g|kγ respectively. The two

definitions are equivalent, as can be seen by factoring the coset representatives as in
equation (2.3).

An easy corollary of this theorem is that if F ∈ H !
2−k(N ;C) with ξ2−kF 6= 0, then

F has a singularity at some cusp since 〈ξ2−kF, ξ2−kF 〉k 6= 0. Bruinier and Funke
also show that given a Hecke eigenform g ∈ Sk(N ;C) with coefficients in a field K,
then there exists a harmonic Maass form G ∈ H !

2−k(N ;C) with ξ2−kG = g
〈g,g〉k

whose

principal parts at all cusps are defined over K.

Proposition 3.3. Let k ≥ 2. The space of harmonic Maass forms H2−k(N ;C) is
generated by the extended Hecke algebra T∗2−k(N ;C) acting on a single element.

Proof. There exists a harmonic Maass form in H2−k(N ;C) with a simple pole with
leading coefficient 1 at infinity, and with no other singularities. Call this form P∗.
This form can be constructed by means of Maass Poincaré series [30, 7] or abstractly
using the surjection D : H0(N ;C) � S⊥2 (N ;C), noting that S⊥2 (N ;C) contains a
form with such a principal part.

As shown in section 2.2, the operator T̂n acts on a q-series so that

P∗|2−kT̂n = q−n +O(1)

and will introduce no other poles. In particular, suppose F ∈ H2−k(N ;C) and has a
q-expansion at each cusp given given by

F |2−kWδ(τ) =
∑
n<0

aδ(n)qn +O(1).

Then the form

F ′ := P∗|2−k
∑
n<0
δ|N

aδ(n)T̂nWδ

will have the same singularities. Then F − F ′ is a harmonic Maass form which is
bounded at all cusps, and whose non-holomorphic part is 0. Thus, by the remark
following Theorem 3.2, F − F ′ is a holomorphic modular form of weight 2− k.

All that remains is to show that we can obtain the constant functions if 2−k = 0.
Pick ` a prime divisor of N . We have two trace operators Tr` and Tr′` defined by

Tr` :=
∑

γ∈Γ0(N)\Γ0(N
`

)

γ = 1 + `1−k/2W`U`(3.5)

Tr′` := W` Tr` = W` + `1−k/2U`.(3.6)

If F is modular on Γ0(N`), then the image under either of these trace operators
is modular on Γ0(N). Considering the q-expansion, we find that P∗|0 Tr′`WD(q)
has no singularities, and must be a constant. If it is non-zero, we are finished.
Otherwise, replace P∗ with P∗+ 1. A short exercise shows that Tr` acts on constants
by multiplication by `+ 1. �
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3.2. More General harmonic Maass forms. Recall that condition (3) of 3.1
allows only meromorphic singularities at cusps. In their original definition, Bruinier
and Funke use a broader condition:

(3*) The function F exhibits at most linear exponential growth at each cusp, so
that if Fρ is the expansion of F at ρ, then there is some constant Cρ ∈ R
satisfying Fρ = O(eCρy) as y →∞.

This broader definition allows for harmonic Maass forms with non-holomorphic prin-
cipal parts. We denote this larger space by Hk(N ;C), however unless otherwise
specified, by harmonic Maass form we mean a form in Hk(N ;C).

The operators Dk−1 and ξ2−k both map H2−k(N ;C) on to the full space M !
k(N ;C).

In particular, H2−k(N ;C) contains forms whose holomorphic parts are cuspidal mock
modular forms, in that their images under Dk−1 are cusp forms. We will come back
to this point briefly in the next section.

4. p-adic harmonic Maass forms

As we have seen in the previous section, the non-holomorphic parts of complex
harmonic Maass forms are intimately connected to the differential operators Dk−1

and ξ2−k. In particular, the derivative D annihilates the non-holomorphic part of
weight 0 harmonic Maass functions. On the p-adic integers, the Teichmüller character
ωp given by the limit of p-th powers

(4.1) ωp(x) := lim
n→∞

xp
n!

has a similar property. It converges p-adically for |x|p ≤ 1 to a function which is
locally constant (and hence has derivative 0), but which is not globally constant.
The function ωp(j) is an example of a p-adic function, defined on at least part of
the modular curve which is not holomorphic and which has vanishing derivative. It
also has a q-expansion of sorts. Although not convergent in Q((q)), the sequence of
q-series j(q)p

n
converges coefficient-wise to a constant term (≡ 744 (mod p)). This

convergence of the q-expansion hints at a way to use the Tate curve to extend the
function ωp(j) towards the cusps. Such an extension, of course does not make sense
without some kind of regularization. This idea will be in the background of our
constructions of p-adic harmonic Maass forms. We will, however, make use of the

Hecke operators T̂p rather than explicit polynomials of modular functions.

Lemma 4.1. Suppose p is a prime of K not dividing N , and f ∈M !
0(N ;Op).

fn = f |0T̂pn ,
then the following are true:

(1) For each divisor δ | N we have the q-series congruences

Dfn|0Wδ(q) ≡ 0 (mod pn).

In particular, the q-expansions of fn at each cusp converge coefficient-wise
to constant terms. If Cδ is the constant term of f |0Wδ(q), then the constant
term of fn|0Wδ(q) is congruent to Cδ

1−p (mod pn).



ON p-ADIC HARMONIC MAASS FUNCTIONS 15

(2) Suppose the completion Kp of K at p is a finite Galois extension of Qp with
ramification degree e and residue field Fpd , and let ce be the constant given
in (4.11). Fix a complete integral model for Y0(N)(K) as in section 2. Then

there are locally constant functions f̂n defined on the p-integral locus which
satisfy

vp(fn(z)− f̂n(z)) ≥ n+ ce,

whose indices depend only on the congruence class n (mod d), and whose
values depend only on the residues of the coordinates of z (mod p).

The lemma extends naturally to the algebraic closure Qp or to Cp. To extend part
(2) we need only note that modulo a fixed p-adic valuation, the curve E and the
form f must both be defined over a common finite extension of Qp.

We will use this lemma repeatedly throughout our constructions, but will post-
pone its proof until section 4.4. The construction uses two regularizations for the
convergence of sequences of modular forms. The regularizations used basically allows
us to say that a sequence of modular forms whose values converge on the p-integral
locus and whose q-expansions at cusps converge to a form with finite principal parts
should extend to some kind of form defined everywhere, even if the orders of the
poles at cusps increase without bound. The first regularization in weight 2 is fairly
straightforward. The second regularization for weight 0 relies on the Lemma and is
more delicate as we work with sequences of forms whose q-expansions converge only
coefficients wise.

The construction of the space H0(N ;K, p) will begin with the construction of
corresponding forms F p for forms F σ ∈ Hg

0 (N ;K, σ), as in Theorem 1.3. After the
constructions, we will prove the properties listed in Theorems 1.1 and 1.3, however
many of these follow immediately from the construction. The construction is uniform
for each F σ ∈ Hg

0 (N ;K, σ), but does depend importantly on the newform g. It
consists of sequences of operators An in the Hecke algebra so that

(1) The forms F σ|0An are weakly holomorphic and have coefficients in K.
(2) The sequence of derivatives (DF σ|0An)pn converges under the first regulariza-

tion discussed in the next subsection to a form in M !
2(N ;Kp) with the same

principal part at all cusp as DF σ.
(3) The sequence of forms (F σ|0An)p converges under the second regularization.
(4) If F σ is weakly holomorphic, then the sequence of forms (F σ|0An)p converges

to F p.

The action of Hecke operators, Atkin–Lehner involutions and the derivative D com-
mute with the operators An without affecting convergence.

It turns out that not only do such sequences of operators exists, but assuming their
convergence properties arise from Lemma 4.1, the limits are almost unique. If the
p-th coefficient of g is divisible by p, then differences between limits may fall into a 1
dimensional space spanned by a form whose derivative under D is a multiple of the
newform g. Among these functions there is a natural choice for F p ∈ Hg

0 (N ;Kp). The
cuspidal form can be viewed as an analog of a more general harmonic Maass form
of the type discussed in section 3.2. This form can be obtained from F p by means
of another limit of Hecke operators. This realizes the p-adic coupling between mock
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modular forms and their shadow as studied by Guerzhoy–Kent–Ono as an operation
on p-adic harmonic Maass forms, albeit using the Tp-Hecke operators rather than
the Up-operators.

The construction for the cuspidal forms in general have worse convergence prop-
erties than do the forms in the space H0(N ;Kp). In particular, the limit fails to
converge when the p-th coefficient is not divisible by p–at least not by means of the
regularizations considered here. The q-series do converge coefficient-wise, but we do
not have convergence as functions on E(N ;Kp).

4.1. Regularized convergence for p-adic limits of modular forms.

4.1.1. First regularization. The first regularization for sequences of modular forms
that we need is given below. The regularization also holds for a larger space of
forms which may have poles in the supersingular locus, which we will use later. In
this case, however, we will only concern ourselves with sequences which converge to
weakly holomorphic functions. We defineMp

k(N ;Kp) to be the space of meromorphic
modular forms of level N over the field Kp with poles allowed at cusps and in the
supersingular locus.

In the following lemma, we say a sequence of q-series, fm =
∑

n∈Z am(n)qn con-
verges uniformly p-adically if the p-adic limit

lim
m1,m2→∞

(
inf
n∈Z

vp (am1(n)− am2(n))

)
→∞.

Lemma 4.2 (First regularized convergence). Suppose (Fn)n∈N is a sequence of mod-
ular forms of M !

k(N ;Kp) with k ≥ 2 whose q-series at each cusp converge uniformly
p-adically to a q-series with a bounded orders of poles. Then the limit

F∞(q) := lim
n→∞

Fn(q)

is the q-expansion for some F∞ ∈ M !
k(N ;Kp). Restricted to the p-integral locus, we

have uniform convergence as functions

lim
n→∞

Fn(E)→ F∞(E).

Moreover, there exists a sequence (Gn)n∈N ⊂M !
k(N ;Kp) of modular functions which

satisfies the following properties:

(1) The maximum order of the poles at all cusps of the sequence (Fn − Gn)n is
bounded as n increases.

(2) The sequence of q-series (Gn(q))n∈N converges uniformly to 0, and so the
sequence (Fn(q)−Gn(q))n∈N converges uniformly to F∞(q).

(3) The sequence (Fn(E)−Gn(E))n∈N converges to F∞(E) uniformly on compact
regions of E ∈ E(N ;K), not including any cusp.

Given such a sequence (Fn)n∈N, we say that the sequence converges to F∞.

A similar result also holds for a sequence (Fn)n∈N ⊂ Mp
k(N ;Kp), with a few

modifications. First, for our purposes we will take it as a hypothesis that F∞(q)
is the q-expansion of a form in M !

k(N ;Kp). Secondly, the forms (Fn − Gn)n∈N will
generally only converge outside the supersingular locus.
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Proof. We begin in the case (Fn)n∈N ⊂M !
k(N ;Kp). If k ≥ 2, then M !

k(N ;Kp) has an
integral basis including forms fd,m for m > 0 with q-expansions at cusps of the shape

(fδ,m|kWD) (q) =

{
q−m +O(1) if D = δ

O(1) otherwise.

Let B be the order of the pole of F∞. Due to the existence of the integral basis, we
may construct forms Gn so that each term in the sequence (Fn−Gn) has poles with
orders no greater than B. Moreover, we can do so using the basis elements fδ,m with
m strictly larger than B. The convergence of the functions Fn(q) imply that the
principal parts of the Gm go to 0 and so the full q-expansions of the Gm(q) functions
converge to zero. Thus the sequence (Fn(q)−Gn(q))n∈N converges to the same limit
F∞(q). Since we have bounded the order of poles, the forms converge in M !

k(N ;Kp),
uniformly on compact regions not containing the cusps.

For (Fn)n∈N ⊂ Mp
k(N ;Kp) we proceed similarly. Using the integral basis we may

construct forms Gn so that (Fn − Gn) converges to zero outside the supersingular
locus. The space Mp

k(N ;Kp) is not closed under this regularized convergence as
the weakly holomorphic forms are. The closure of this space includes all weakly
holomorphic p-adic modular forms. We will only need the lemma for sequences
which converge to something weakly holomorphic.

Note that we can act on F∞ by the Hecke operators and Atkin–Lehner involutions
by acting on (Fn)n∈N term-wise without affecting convergence. �

4.1.2. Second regularization. The second regularization for sequences of modular
forms we need is given below.

Lemma 4.3 (Second regularized convergence). Suppose (Fn)n∈N is a sequence of
modular functions of M !

0(N ;K) which converges on the p-integral locus, has a conver-
gent constant term in the q-expansion at each cusp, and whose derivatives (DFn)n∈N
converge under the first regularized convergence to some function in M !

2(N ;Kp).
Moreover, suppose there exists a sequence (Gn)n∈N of modular functions ofMp

0(N ;Kp)
which regularize convergence towards the cusps, satisfying the following properties:

(1) The sequence (Gn)n∈N converges uniformly to 0 on the p-ordinary locus.
(2) The maximum order of the poles at all cusps of (Fn − Gn)n∈N is bounded as

n goes to infinity.
(3) The sequence of derivative forms (DGn)n∈N converges to 0 outside the super-

singular locus under the first regularized convergence.
(4) The constant terms of the q-expansions of Gn at all cusps converge to 0.

Then the function

F∞(E) :=

 lim
n→∞

Fn(E) if E is within the integral locus,

lim
n→∞

(Fn −Gn) (E) if E is outside the supersingular locus,

is well defined on all of E(N ;K), and is independent of the possible choices of se-
quences (Gn)n∈N satisfying the properties above. Moreover F∞(E) has a well-defined
q-expansion at each cusp.
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As in the first regularization, we can act on F∞ by the Hecke operators and Atkin–
Lehner involutions by acting on (Fn)n∈N term-wise without affecting convergence.

If the sequence (Fn)n∈N satisfies the theorem then we say it converges to F∞. Notice
in this case the existence of the sequence (Gn)n∈N is a hypothesis of the lemma rather
than a result as in the first regularization. It is not hard to show that a sequence
(Gn)n∈N must exist which satisfies conditions (2), (3), and (4). That such a sequence
also satisfies condition (1) implies certain constraints on the initial sequence (Fn)n∈N.

Proof. The q-expansion of F∞ at any cusp can be found, up to the constant term,
by finding an anti-derivative of the limit of

lim
n→∞

DFn(q) = lim
n→∞

D(Fn −Gn)(q).

Coefficient-wise, we have convergence without the derivatives,

lim
n→∞

Fn(q) = lim
n→∞

(Fn −Gn)(q).

Given the q-expansion, we may use the Tate curve to extend F∞ towards the cusps.
The coefficients of (Fn −Gn) may not have denominators bounded uniformly for all
n, however the condition that DFn converges restricts the denominators sufficiently
that the value using the Tate curve will converge for any q with |q|p < 1. If (Gn)n∈N
and (G′n)n∈N are any two such sequences satisfying the conditions, then conditions (2)
and (3) imply that their sequence of differences (Gn−G′n)n has bounded order poles
and the q-series at each cusp converges coefficient-wise to 0. Hence the sequence
converges to 0 on every model of the Tate-curve. Similarly, condition (1) implies
that the differences must converge to 0 on the ordinary locus. �

4.2. Construction of H0(N ;Kp). We begin with the assumptions of Theorem 1.3.
That is, let g be a newform of level N in S2(N ;K) with q-expansion given by g(q) =∑

n≥1 ag(n)qn, and suppose p be a prime of K not dividing N . Moreover, let σ an
Archimedean place of K, and F σ ∈ Hg

0 (N ;K, σ). Without loss of generality, assume
that the principal parts of F σ at all cusps are p-integral.

Let β = βg and β = βg be the roots of the polynomial

(4.2) x2 − ag(p)x+ p.

Here we distinguish the roots so that vp(β) ≤ vp(β). Since the coefficients of g
are eigenvalues for Hecke operators, the Hecke relations imply that the p-th power
coefficients of g satisfy

ag(p
n) =

βn+1 − βn+1

β − β
.

Note that so long as vp(β) < vp(β), we have that β ∈ Kp. Otherwise, if the valuations
are equal, much of the work of this section must take place over the field extension
Kp(β). In this case, we will need a few extra steps at the end of the construction to
assure everything is defined over Kp rather than the extension.

Consider the functions

F σ|0

(
1− T̂pn

ag(pn)

)
.
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These functions are all weakly holomorphic since the corresponding weight 2 oper-
ators annihilate g (applying, for instance (2.6)). Since the principal parts of these
functions are in K, all the coefficients are, and so these correspond to a family of
functions in M !

0(N ;Kp). By Lemma 4.1, the q-series of these functions converge p-
adically coefficient-wise. If F σ is holomorphic, then the lemma shows that coefficients
converge p-adically to those of F σ–except for possibly the constant terms. Similarly,
their values on the p-integral locus do not generally converge, but instead oscillate
near multiple limit points. This family of functions serves as a prototype for our
purposes, but we must modify it to get solid convergence rather than oscillation.

Let Hσ := F σ|0(ag(p) − T̂p) which is weakly holomorphic, and whose coefficients
are in K and are p-integral since this is true on for the principal parts. This being
the case, it corresponds to a function Hp ∈ M !

0(N ;Kp). As in Lemma 4.1, let e be
the ramification degree of Kp, and d be the degree of the residue field.

We will construct the p-adic function F p using limits of Hecke operators. For
n ≥ 0, let Bn to be the operator in T∗0(N ;K(β)) defined by

(4.3) Bn :=
n−1∑
j=0

β−j−1T̂pj +
d−1∑
j=0

β−n−j−1T̂pn+j

1− β−d
.

Proposition 4.4. Assuming the notation above, the functions Fn := Hp|0Bn con-
verge under the second regularization. Moreover, if F σ is weakly holomorphic, the
limit is the corresponding p-adic function F σ.

Proof. The multiplication rule (2.6) implies

T̂pnT̂p = T̂pn+1 + pT̂pn−1 .

Using this and telescoping the resulting sums, we find

An := (ag(p)− T̂p)Bn

= 1 +
β−n−d

1− β−d
(
−β(T̂pn−1 − T̂pn+d−1) + (T̂pn − T̂pn+d)

)
.

(4.4)

The difference between sequential Bn is

(4.5) Bn+1 −Bn = β−n−d−1 T̂pn+d − T̂pn
1− β−d

.

Applying Lemma 4.1, we see that the q-series Fn(q) = Hp|0Bn(q) at each cusp

converges coefficient-wise, except possibly the constant term. The action of T̂ np on a

constant terms is simply multiplication by 1−pn+1

1−p ≡
1

1−p (mod pn+1), so the difference

of constant terms must go to zero as well. If Cρ is the constant term of F σ at the
cusp ρ, then the constant term of Fn at ρ can be found using (4.4);

Cρ

(
1 +

β−n−d

1− β−d

(
−β−p

n + pn+d

1− p
+
−pn+1 + pn+d+1

1− p

))
≡ Cρ (mod (p/β)n+1).

If F σ is weakly holomorphic, then (4.4) and Lemma 4.1 tells us that the coefficients
of Fn at any cusp eventually converge to those of F σ.
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Let Ĥi be the locally constant functions from part (2) of Lemma 4.1, so that

Ĥj(E) ≡ Hp|0T̂ jp (E) (mod pj+cd) for any curve E in the p-integral locus. Then
given such a curve E, we have

(Fn+1 − Fn) (E) ≡ β−n−d−1 Ĥn+d − Ĥn

1− β−d
≡ 0 (mod pn+ce−bββ−n−1)(4.6)

where bβ = vp(1− βd). Thus the functions converge. Notice since β is not a root of
unity, bβ can be bounded independent of d. Similarly, d may be replaced with any
positive multiple without altering the result modulo pn+ce−bββ−n−1. In particular,
expanding the field of definition does not alter the limit.

We are nearly ready to show the sequence of functions (Fn)n converge under the
second regularization. However we still need suitable functions Gn ∈ Mp

0(N ;K).
The construction is not difficult, but the functions must satisfy several properties so
there are several short steps involved.

Choose some constants λ and P so that

P := pλ−1(p− 1) > 2

and let A := EP ∈ MP (1;Kσ) be the standard Eisenstein series of weight P , which
satisfies EP (q) ≡ 1 (mod pλ). The function A12/∆P forms a polynomial in j whose
roots (mod p) are exactly the supersingular j-invariants. The space M !

P (N ;Kp)
contains forms with any given order of pole, and so it contains a form f1 with
the same principal part as F σ · A. The space also contains Eisenstein series with a
constant term at any single fixed cusp, and so we may modify the constant terms
of f1 to obtain a function f2 so that f2/A has vanishing constant terms at every
cusp. Finally, if the coefficients of f2 are not p-integral, then modulo the p-integers,
they reduce to the coefficients of some cusp form in SP (N ;K). By subtracting this
cusp form, we obtain a function, f3, which has p-integral coefficients. Then let
F ∗ = f3/A ∈ Mp

0(N ;K). By construction, this form has p-integral coefficients and
has the same principal parts as those of F σ at all cusps, except for the constant
terms which are all 0.

We can now define

Gn := F ∗|0
(

(ag(p)− T̂p)Bn − 1
)
.

Notice the principal part of Fn − Gn is always the same as that of F σ
g , apart from

the constant term. The constant terms of all the Gn are 0, and we have already seen
that the constant terms of Fn at cusps converge to those of F σ

g . Using Lemma 4.1 for
Mp

0(N ;K) and (4.4), we see that the Gn converge to 0 on the p-ordinary locus, and
the derivatives DGn(q) converge to 0 under the first regularization. This last piece is
required to show that the sequence (Fn)n converges under the second regularization,
with the sequence (Gn)n regularizing the convergence near the cusps. �

As noted in the proposition, if F σ is weakly holomorphic, then the regularized
limit of the sequence (Fn)n is F p, the corresponding form in M!

0(N ;K, p). If F σ is
not weakly holomorophic and vp(β) < 1/2, then we define F p to be this limit.
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When vp(β) = vp(β) = 1/2, the distinction between β and β is arbitrary. Moreover,
in the previous case, Hensel’s lemma applied to the polynomial x2− x+ p

ag(p)2 shows

that β ∈ Kp. If vp(β) = 1/2, then β may not lift to an element in Kp, and so we want
to respect this restriction. Given Bn defined as above, define the operator Bn by
swapping β and β in the definition. Using this operator we may construct functions
F n, and Gn analogous to the Fn and Gn described above. So long as vp(β) = vp(β),
this construction does not alter the convergence properties observed for the Bn at
all. In this case we define F p to be the regularized limit

(4.7) F p
g := lim

n→∞

1

2
(Fn + F n)

which converges under the second regularization with the functions 1
2
(Gn + Gn)

regularizing convergence near the cusps.
The operators Bn and An and the corresponding functions F n and Gn can be

defined when vp(β) < 1/2 as well. As long as vp(β) > 0, the functions F n will
converge under the second regularization, though more slowly than will the Fn, as

seen by swapping β for β in the modulus of (4.6). The sequence of differences (Fn−Fn)

β−β
converges to a function which has no principal part. If our initial form is weakly
holomorphic, the difference is identically 0. Otherwise, its derivative is a weight 2
cusp form. Using the Hecke relations for g, it is easy to see that the derivative must
be a multiple of g, since these same relations send F σ to a weakly holomorphic form,
and commute with the operators Bn. In particular, we may view the limit of the

sequence
(

(Fn−Fn)

β−β

)
n

as an analog of a cuspidal mock modular form related to g, as

described in Section 3.2.
This cuspidal form, when it exists, can be recovered from the function F p which

has singularities. For instance

(Fn − F n) = lim
n→∞

F p|0(An − An)

since F p|0(ag(p)− T̂p) = H. This operation realizes a modified version of the p-adic
coupling of between mock modular forms and their shadows as studied by Guerzhoy–
Kent–Ono (using the Tp Hecke operators rather than the Up operators) as an opera-
tion on p-adic harmonic Maass forms.

The construction of the cuspidal form fails when vp(β) = 0. In that case the
functions F n converge coefficient-wise as q-series at any cusp, but not by means of
the regularizations considered here as functions on E(N ;Kp).

If K contains the coefficients of every newform g of level dividing N and ν = σ is
any infinite place of K, then the full space H0(N ;Kν) can be decomposed as

(4.8) H0(N ;Kν) =
⊕
g∈SM
δ | N/M

Hg
0 (M ;Kν)|Wδ.

Here, we use SM to denote the set of primitive newforms of level M , where M is
a divisor of N . We define H0(N ;Kp) by 4.8, taking ν = p. Since the g|2Wδ are
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all linearly independent, the intersection of any of these spaces must consist only of
weakly holomorphic modular forms.

4.3. A construction when p | N . If g is as above, but p divides the level, the
situation is somewhat less straightforward. In this case, the supersingular locus
divides E(N ;Kp) into two regions, one near the cusps with denominators divisible
by p, and one near the cusps with denominators coprime to p. The two regions can
be distinguished by, for instance, whether or not

lim
n→∞

j|0(pUp)
n(E) = 0.

The cusp form g must satisfy g|2Wp = λpg with λp = −a(p) = ±1. As before, we
may construct functions

Hσ
1,n := F σ|0 (1− (pUp)

n)

Hσ
2,n := F σ|0 (1−Wp(pUp)

nWp)

which are weakly holomorphic, and whose coefficients at each cusp are in K and
are p-integral. The corresponding functions Hp

1,n and Hp
2,n in M !

0(N ;Kp) converge as
p-adic modular forms defined respectively on each of the two regions of E(N ;Kp).
It turns out that the two sequences of functions also converge on the supersingular
locus, but they necessarily disagree at some point unless F σ

g is weakly holomorphic.
For our purposes, we will define the function F p

g for E ∈ E(N ;Kp) not supersin-
gular by the piecewise limit

F p
g (E) =

{
limn→∞H

(1)
n (E) if lim

n→∞
j|0(pUp)

n(E) = 0

limn→∞H
(2)
n (E) otherwise.

The q-expansions for F p are defined by

F p
g |WD(q) =

{
limn→∞H

(1)
n |WD(q) if (p,D) = 1

limn→∞H
(2)
n |WD(q) otherwise.

4.4. Some Proofs. Here we prove Lemma 4.1, Theorem 1.1, and Theorem 1.3 parts
(1),(2), and (4)

Proof of Lemma 4.1. Since p does not divide N, the action of the Hecke operator T̂pn
on q-series is given by

n∑
i=0

(pUp)
n−iVpi .

This acts on constants by multiplication by 1−pn+1

1−p . Moreover, we see

(4.9) f |0T̂pn(q) ≡ f |0T̂pn−1(qp) (mod pn).

An induction argument proves the claim about the derivative.
The second part again follows from the congruence (4.9). As in Section 2, fix an

integral model of Y0(N) with coordinates corresponding to functions ϕ̂i, . . . , ϕM ∈
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M !
0(N ;Op) so that M !

0(N ;Op) = Op[j, ϕ̃1, . . . , ϕ̃M ], and note the each of these func-
tions takes on values in Op for z ∈ O . Then

f = r0(j, ϕ̃1, . . . , ϕ̃M)

for some polynomial r0 with coefficients in Op.The congruence (4.9) implies that

f |0T̂p(q) ≡ r0(jp, ϕ̃p1, . . . , ϕ̃
p
M) (mod p),

or more generally, there are polynomial ri with p-integral coefficients so that

f |0T̂p =r0(jp, ϕ̃p1, . . . , ϕ̃
p
M) + p · r1(j, ϕ̃1, . . . , ϕ̃M)

f |0T̂p2 =r0(jp
2

, ϕ̃p
2

1 , . . . , ϕ̃
p2

M) + p · r1(jp, ϕ̃p1, . . . , ϕ̃
p
M) + p2 · r2(j, ϕ̃1, . . . , ϕ̃M)

...

f |0T̂pn =
n∑
i=0

pi · ri(jp
n−i
, ϕ̃p

n−i

1 , . . . , ϕ̃p
n−i

M ).(4.10)

The locally constant limit functions f̂n are given by

f̂n(E) :=
∞∑
i=0

pi · rp
n−i

i (ωp
n−i

p (j(z)), ωp
n−i

p (ϕ̃1(z)), . . . , ωp
n−i

p (ϕ̃M(z))).

Here ωp(x) is the character defined in (4.1) which depends only on the residue

x (mod p). Note that the residue field has order pd so the f̂n are periodic in n
with order d.

In order to see how closely f̂n(z) approximates fn, notice that any t ∈ Op can be

written as t = ζ + b where ζ = ωp(t) satisfies the polynomial equation ζp
d − ζ = 0,

and vp(b) > 0. We must find a lower bound for the valuation of

tp
s − ζps =

ps∑
i=1

(
ps

i

)
ζp

s−ibi.

Assuming ζ 6= 0, this valuation can be bounded below by minimizing the valuation

vp

((
pn

i

)
ζp

n−ibj
)

= vp

(
pn

i
bi
)
≥ n− vp(i) + i/e

for 1 ≤ i ≤ pn. We may assume i is a power of p, say i = p` with ` between 0 and n.
If we treat ` as a continuous variable on the interval 0 ≤ ` ≤ n, we find the valuation
is bounded below by n+ ce where

(4.11) ce =

{
1/e if e ≤ log(p)
− log(e)+1+log log(p)

log(p)
if log(p) ≤ e.

If e is large and n small (e ≥ pn log(p)), then the valuation minimizes at ` = s, so
replacing ce with −n+ pn/e improves the bound. However, in the interest of giving
a bound which is uniform in n we ignore this potential improvement for small n. �

Since we define H0(N ;Kp) in terms of the isotypical components H ′0(N ;Kp) we
will prove Theorem 1.3 (1),(2), and (4) before Theorem 1.1.
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Proof of Theorem 1.3 (1),(2), and (4). Part (1) follows immediately from the con-
struction.

For part (2), suppose F p ∈ Hg
0 (N ;K, p). We have that

DF p ⊆M !
2(N ;Kp)

by the second regularized convergence. Since M !
2(N ;Kp) has a rational basis and the

principal parts of F p at cusps are defined over K, we may decompose DF p = f p +hp

where f p has coefficients in K and hp is a cusp form. Part (5) is equivalent to the
assertion that we may take hp to be a multiple of gp. This follows by noting that

for any positive integer n, we have that F p|0(T̂n− ag(n)) is weakly holomorphic, and

so (DF p)|2(T̂n − ag(n)) has coefficients in K. In particular, if we decompose hp into
Hecke eigenforms, only the component corresponding to gp can be transcendental.

Part 4 follows immediately from the second regularized convergence, since the
operators An used in the construction commute with the Hecke algebra and Atkin–
Lehner involutions. �

Proof of Theorem 1.1. Parts (1)-(3) follow from the construction as explicit conse-
quences of the second regularized convergence, and from the parts of Theorem 1.3
proven above. Similarly, the existence and modularity of the derivative in part (4)
is an explicit consequence of the second regularization. That the co-kernel is the the
space of holomorphic modular forms follows as in the Archimedean case. �

5. Structure of the space H0(N ;Kp)

In this section we will discuss certain implications about the structure ofH0(N ;Kp),
paralleling the known structure of H0(N ;C). The main theorem of this section relate
the Hecke algebra, notions of orthogonality and inner products, and the p-adic slopes
of modular forms.

We have established that for both Archimedean and non-Archimedean places ν,

M !
2(N ;Kν) = M2(N ;Kν)⊕DH0(N ;Kν).

In the Archimedean case, the image DH0(N ;C) is a distinguished subspace S⊥2 (N ;C)
ofM !

2(N ;C) of forms with vanishing constant terms which are orthogonal to the space
of holomorphic cusp forms with respect to the regularized Petersson inner product.

Using Theorem 3.2, the Bruinier–Funke pairing defined in equation (3.4) extends
in an obvious way to our p-adic harmonic Maass forms. If F p ∈ H0(N ;Kp) and
g ∈ Sk(N ;Kp) have q-expansions at cusps given by

F |kWD(q) =
∑
n

aD(n)qn and g|kWD(q) =
∑
n

bD(n)qn

respectively, then define

{g, F}p = [SL2(Z) : Γ0(N)]−1
∑
D|N

∑
n∈Z

aD(−n) · bD(n).

Using the p-adic correspondence of Theorem 1.3, this gives a natural way to define
an algebraic analog of the Petersson inner product 〈, 〉p for each newform, up to a
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choice of non-zero square norm for each newform. By linearity we may define

〈·, ·〉p : M !
2(N ;Kp)× S2(N ;Kp)→ Kp,

where for simplicity, we may take the square-norm 〈g, g〉p of any newform to be 1.
For questions of orthogonality, the explicit choice of norms is irrelevant. For the sake
of generality we will generally choose not to specify when the choice of square-norms
matters. For instance, we can define the shadow of a p-adic harmonic Maass form
in a way that depends on the p-adic Petersson inner product.

Definition 5.1. Let 〈·, ·〉p be a choice of p-adic Petersson inner product, let F ∈
H0(N ;Kp), and let B be an orthogonal basis for S2(N ;Kp). Then define the shadow
of F , denoted by ξF , in terms of 〈·, ·〉p by

ξF :=
∑
g∈B

{g, F}p
〈g, g〉p

g.

Interestingly, we can nearly characterize the orthogonal subspace in terms of the
p-adic slopes of the q-expansions. Suppose F ∈M !

2(N ;K) has a q-expansion at each

cusp ρ given by
∑
n∈Z

aρ(n)qn. Then the p-slope of F at the cusp ρ is defined by the

limit of the q-series congruences

(5.1) lim inf
n→∞

vp(F |2WpUpn(q))

n
.

For instance if g ∈ S2(N ;Q) and (p,N) = 1, then the Weil bound implies its slope
is either 0 or 1/2. In the latter case, if p ≥ 5 then a(pn) must vanish for n odd and
a(p2n) = (−p)n.

The orthogonality of the spaces S⊥2 (N ;Kp) and the holomorphic cusp forms S2(N ;Kp)
follows directly from a duality relation between the coefficients of forms in a canon-
ical basis for each of the spaces S⊥2 (N ;Kp) and H0(N ;Kp). This duality is similar
to dualities studied by Zagier[35] and Duke–Jenkins[20], and is closely tied to the
action of the Hecke algebra on these spaces.

For δ | N and m ≥ 0, we find that there exist functions F p
0,N ;δ,m ∈ H0(N ;Kp)

defined uniquely by their principal parts

F p
0,N ;δ,m|0WD(q) =

{
q−m +O(q) if D = δ

O(1) otherwise.

For m 6= 0, let F p
2,N ;δ,m := − 1

m
DF p

0,N ;δ,m, and let the q-expansions at cusps of these
functions be given by

F p
0,N ;δ,m|0WD(q) =

∑
n∈Z

Ap
0,N(m,n; δ,D)qn,

F p
2,N ;δ,m|2WD(q) =

∑
n∈Z

Ap
2,N(m,n; δ,D)qn.

Then we have the following theorem relating the Hecke algebra, duality, orthogonal-
ity, and slopes.
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Theorem 5.1. Assume the notation above. Then the following are true.

(1) The space H0(N ;Kp) is generated by the action of T∗2−k(Kp;N) acting on a
single element.

(2) The forms F p
0,N ;D,m ∈ H0(N ;Kp) and F p

2,N ;D,m ∈ M !
2(N ;Kp) with principal

parts described above exist. Moreover, their coefficients are dual: if m,n > 0,
then they satisfy the relations

nAp
0,N(m,n; δ,D) = −mAp

2,N(m,n; δ,D)

and
Ap

0,N(m,n; δ,D) = −Ap
2,N(n,m;D, δ).

(3) The space S⊥2 (N ;Kp) := DH0(N ;Kp) ⊂ M !
2(N ;Kp) is the unique maximal

subspace consisting of forms with vanishing constant terms which are orthog-
onal to the holomorphic cusp forms S2(N ;Kp) with respect to any normaliza-
tion of the inner product 〈, 〉p described above.

(4) Let f ∈M !
2(N ;Kp). If f ∈ S⊥2 (N ;Kp), then it has slope at least 1/2 at every

cusp. Otherwise there is some cusp at which it has slope no greater than 1/2.

The description given in the theorem for S⊥2 (N ;Kp) in terms of slopes is useful
because it tells us when forms in H0(N ;Kp) can or cannot be standard p-adic modular
forms. If f ∈ S⊥2 (N ;Kp) has slope at least 1 at every cusp, then it has an anti-
derivative F ∈ H0(N ;Kp) with f = DF. Then F has non-negative slope. It is a
p-adic modular form of a type studied by Bringmann–Guerzhoy–Kane [5] and Kane–
Waldherr [27]. Moreover, F is p-harmonic under Candelori’s definition [15]. As
we will see, this occurs if and only if the shadow of F consists of only p-ordinary
eigenforms. Candelori explicitly restricts his attention to this situation, although he
phrases the condition in terms of the de Rham cohomology rather than the pairing.
The statements are equivalent.

In the alternative case, when {g, F} 6= 0 for some non p-ordinary eigenform, then it
has negative slope. This violates the usual q-expansion principle for p-adic modular
forms, and therefore F is not a p-adic modular form in the usual sense.

Proof of (1). The proof follows as in the proof of Proposition 3.3. We need only prove
the existence of a form P p

∗ with the required principal part as in that proposition. If
σ is any Archimedean place of K, then the original complex function P∗ ∈ H0(N ;C)
can be decomposed as

P∗ = F +
∑
g∈SM
δ|N/M

Fg,δ,

where Fg,δ ∈ Hg(N ;K;σ), and F is weakly holomorphic with coefficients in K. We
simply replace each form with its corresponding p-adic form to obtain

P p
∗ := F p +

∑
g∈SM
M |N
δ|N/M

F p
g,δ.
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�

Proof of (2). Given P p
∗ defined above, have F p

0,N ;1,1 = P p
∗ − c for some c. In general

(5.2) F p
0,N ;δ,m = F p

0,N ;1,1|0T̂mWδ.

The first relation for the coefficients follows immediately from the definition of
F p

2,N ;δ,m. Combined with the first, the second identity is equivalent to

nAp
0,N(m,n; δ,D) = mAp

0,N(n,m;D, δ).

We prove this identity in parts. Let D̃ = δD
(δ,D)2 . Factor n = n1n2n3, where n1 is

the largest factor of n with (n1, N) = 1, and n2 is the largest factor of n
n1

with

(n2, D̃) = 1. Factor m = m1m2m3 defined similarly.

Using (5.2), we find Ap
0,N(m,n; δ,D) = Ap

0,N(m,n; 1, D̃). Formula (2.7) allows us

to work out the action of the operators T̂m1 and T̂n1 on F p
0,N ;1, m

m1

. Noting that

(m1, n) = (n1,m1n2n3), we find

nAp
0,N(m,n; 1, D̃) =

∑
r|(m1,n)

nm1

r
Ap

0,N

(
m

m1

,
nm1

r2
; 1, D̃

)
= m1n2n3 A

p
0,N(n1m2m3,m1 n2n3; 1, D̃).

We also have that T̂m3WD̃ = WD̃m3Um3 , which gives

m1n2n3A
p
0,N(n1m2m3,m1n2n3; 1, D̃) = m1n2n3m3A

p
0,N(n1m2,m1n2n3m3; 1, D̃)

= m1n2m3A
p
0,N(n1m2n3,m1n2m3; 1, D̃).

At this point we have successfully exchanged m1 and m3 with n1 and n3 respec-
tively. For n2 and m2 we consider prime factors individually. Suppose ` is a prime

dividing N/D̃ and m′ and n′ are positive integers coprime to `. Then using equation

(2.8) for the action of the operators T̂`a , we find that

`bAp
0,N(m′`a, n′`b; 1, D̃)

=

min(a,b)∑
i=0

`bAp
0,N(m′, n′`a+b−2i; 1, D̃)`a−i −

min(a,b)∑
i=1

`bAp
0,N(m′, n′`a+b+2−2i; 1, D̃)`a+2−i

= `aAp
0,N(m′`b, n′`a; 1, D̃).

Applying this calculation for each prime ` | mnn2, we find that

nAp
0,N(m,n; 1, D̃) = mAp

0,N(n,m; 1, D̃),

or equivalently

nAp
0,N(m,n; δ,D) = mAp

0,N(n,m;D, δ).

�
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Proof of (3). The forms F p
2,N ;D,m give an obvious basis in terms of principal parts

which uniquely identify forms in the space.
Orthogonality is an easy consequence of the duality relations. The paring is clearly

bilinear. Since the functions F p
0,N ;D,m and F p

2,N ;D,m span H0(N ;Kp) and S⊥0 (N ;Kp)
respectively, the statement follows from the equation

{F p
2,N ;D,n, F

p
0,N ;δ,m} = Ap

0,N(m,n; δ,D) + Ap
2,N(n,m;D, δ) = 0.

for all positive integers m,n and divisors δ,D of N . �

Proof of part (4). The space of holomorphic modular forms M2(N ;Kp) has a basis
of forms which are eigenforms for the Hecke operators Tn for (n,N) = 1 and for the
U` operators for ` | N . The sum of two forms with different slopes takes on the lesser
of the two slopes. Similarly, the non-zero sum of eigenforms with the same slope
must keep that same slope.

The newforms of level divisible by p have eigenvalue ±1 with respect to the Up
operator and hence slope 0. If g is new of level M with (M, p) = 1, then the

regularized forms g|2Wδ − β
−1
g|2Wpδ and g|2Wδ − β−1g|2Wpδ for δ | N

pM
all have

eigenvalues β and β respectively. Although the latter has slope greater than 1/2 at
infinity, a short calculation shows it has the same slope as g, i.e. vp(β) ≤ 1/2 at the
cusp 0. Similarly, every non-zero Eisenstein series has at least one cusp with slope
0. Thus, every holomorphic modular form of weight 2 has slope no greater than 1/2
at some cusp.

The elements of H0(n;K) have slope at least −1/2, so their derivatives all have
slope at least 1/2. Suppose F p ∈ Hg

0 (N ;K, p), and without loss of generality, assume
F p has p-integral principal parts at all cusps. If p divides N , then F p is constructed
as in 4.3 as the limit of forms with p-integral coefficient at all cusps. Thus F p and
DF p have slopes at least 0 and 1 respectively.

If p does not divide N, let Hp and Fn be the functions defined as in section 4. Recall
Hp has p-integral coefficients at all cusps. Since the coefficients of the functions Fn
converge p-adically to those of F p, we can use (4.3) to write the coefficients of Fn, and
therefore the coefficients of F p, in terms of those of Hp. Suppose the q-expansions of
these functions are given by

Hp(q) =
∑
m

c(m)qm

Fn(q) =
∑
m

bn(m)qm

F p(q) =
∑
m

b∞(m)qm.

Note that the contribution of the second sum in (4.3) to any given coefficient
becomes increasingly insignificant. If m is coprime to p and vp(β) < 1/2, then, using
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(2.7) we find that

b∞(mps) = lim
n→∞

bn(mps) =
∞∑
j=0

β−1−j
min(j,s)∑
i=0

pj−ic(mps+j−2i)

=
∞∑
h=0

c(mph)
s∑

i=max(s−h,0)

β−1−iβ
h−s+i

.

(5.3)

The minimum valuation from the inner sum comes from the (h, i) = (0, s) term,
so we have slope at least −vp(β) at infinity. An identical argument works at the
other cusps. When vp(β) = 1/2, we must add a second term similar to that above

swapping β and β, however both terms have a slope of at least −1/2.
If p is greater than 3 and is unramified in K, then the sum becomes more inter-

esting. In this case β = −β = ±
√
−p, and we have

b∞(Aps) =
∞∑
h=0

c(Aph)
s∑

i=max(s−h,0)

(β−1−iβ
h−s+i

+ β
−1−i

βh−s+i)

=
∞∑
h=0

c(Aph)(β−1β
h−s

+ β
−1
βh−s)

s∑
i=max(s−h,0)

(−1)i.

(5.4)

The outer sum vanishes if h and s have the same parity, but the inner sum vanishes
if h is odd and h ≤ s. Since denominators only arise from the terms with h ≤ s, the
coefficients b(Ap2n) are all integral. If p | 6 is unramified, then we have that β ≡ −β
(mod p) and so similarly the denominator vanishes. �

5.1. Slopes and p-adic modular forms. The q-expansions can also be studied
using techniques of Guerzhoy and Guerzhoy–Kent–Ono. Given a newform g, let

E(q) :=
∑
n≥1

ag(n)

n
qn

be the Eichler integral, or formal antiderivative, of g(q).
If F σ ∈ Hg

0 (N ;K, σ) so that the holomorphic part F σ+
g has q-expansion

∑
n b

σ(n)qn,
then as seen previously, if α ∈ K + b(1), we have that

Fα := F σ+(q)− αEσ(q) ∈ K((q)).

This can be improved to address p-denominators for any fixed prime p. Proposition
5 of [23] (see also [5, 24]) shows that if ασ is chosen as above, then for each prime p,
there are p-adic constants λp(α), µp ∈ Kp so that the q-series

F̃p(q) := Fα − λpE(q)− µpE(qp),

has bounded p-denominators, and is independent of the choice of α. These constants
are unique for a given α if g is not p-ordinary. Otherwise, E(q)− β

p
E(qp) has integral

coefficients, but there is a distinguished choice of F̃p(q) so that µp = 0.

The operator (ag(p) − T̂p) annihilates αE(q), and so we can write F p in terms

of F̃p(q), E(q), and E(qp). Equation (4.4) shows that in the limit, the operators
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(ag(p)− T̂p)Bn preserve F̃p(q), but will turn E(qp) into some combination of E(q) and
E(qp). If vp(β) < 1/2, then by considering the slope, we find that

F p
g (q) = F̃p(q) + C ·

(
E(q)− β

p
E(qp)

)
for some constant C ∈ Kp. When β = −β , then there is some C ∈ Kp so that

F p
g (q) = F̃p(q) + C · E(qp).

6. Integrality

Here we prove the bounds on denominators that may arise in the q-series and the
evaluations of the p-adic harmonic Maass forms. Throughout this section let (F ν)ν
be a family of functions as in Theorem 1.4, let KN be the smallest number field
containing the coefficients of every newform of level dividing N , and let Op be the
valuation ring of Kp. The constants MN , RN , and BN used in the theorem will be
defined explicitly in the course of the proofs.

Proof of Theorem 1.4 (1). The first question is similar to one considered by Guerzhoy
in [23]. Much of the work here, as in section 5.1, parallels work done in that paper.

For simplicity at first, suppose F ν ∈ Hg
0 (N ;K, ν) for some newform g of level N .

For each prime p of K, let the q-series F̃p(q) and E(q), and the p-adic constants λp
and µp be defined as in the previous section for some appropriate choice of αp. Then
Theorem 1 of [23] asserts that for all but at most finitely many primes p of K, the
numbers λp and pµp are p-integral. This is proven using a formula similar to equation
(5.4). In our case, the equation shows that if p does not divide N and (m, p) = 1,
then

βn+1 · apδ(mp
n) ∈ Op(β).

If p is not ramified in KN , then we cannot have fractional p-valuations and so

st · apδ(s
2t) ∈ Op.

Otherwise we may have

vp

(√
mRN · apδ(m)

)
≥ 0,

where RN is the radical of the norm of KN , which contains a single power of the
rational primes which ramify in KN .

If p divides the level of g, then the construction can be made taking the limit of
forms with p-integral coefficients, and so no denominators arise in this case.

There is an additional source of potential denominators when F ν 6∈ Hg
0 (N ;K; ν)

for any newform g. The additional possible denominators can be recovered by a
linear algebra argument as follows.

For each prime p of K, let F p
0,N ;1,1 be the function described in Section 5. with

principal part q−1 + O(q) at infinity and no other singularities. Then DF p
0,N ;1,1 ∈

M !
2(N ;Kp) and so it has a bound, say sp, on the p-valuation of its denomina-

tors. Since F p
1 generates the space (besides perhaps the constant functions) under

T∗0(N ;Kp), we have that this bound must hold for every form DF p with F p ∈ H !
0(N ;Kp)

and with principal parts defined over Op.
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For each newform g of level M dividing N and each divisor δ of N , we have the
pairing

{g|2Wδ, F
p
0,N ;1,1} =

{
λg,δI−1 if δ |M
0 if δ 6 |M,

where I := [SL2(Z) : Γ0(N)] and λg,δ = ±1 is the eigenvalue of g under Wδ.
For each such g, suppose we have a fixed function F p

g ∈ H !
0(M ;K, p) and non-zero

constant Cg ∈ Kp which satisfies

{h|2Wδ, F
p
g } =

{
λg,δI−1Cg if h = g and δ |M
0 otherwise

for each newform h of level dividing N , and each divisor δ of N. Without loss of
generality, we may assume each F p

g has integral principal parts at all cusps. In
this case, the formula for the pairing involves only integral coefficients so Cg ∈ OK .
Moreover, the function

G := F p
0,N ;1,1 −

∑
g∈SM
M |N

1

Cg
F p
g

is weakly holomorphic since its pairing with any cusp form is 0. Its principal part
has denominators at worst the least common multiple of the Cg, and so this true for
all its coefficients. Thus we would like to minimize the norm of Cg for each such form
g. In subsection 6.1 we show how to construct functions F ν

g satisfying the conditions
above and then compute the minimum boundMN . This number is closely connected
to congruences between orthogonal cusp forms. For instance, suppose g, fg and Cg
are as above, and suppose there is some form g′ ∈ S2(N ;K) with coefficients in
OK which is orthogonal to g, but satisfies g(q) ≡ g′(q) (mod M). Then using the
formula for the pairing, we must have that

Cg = I · {g, F p
g } ≡(M) I · {g′, F p

g } = 0.

Thus M | Cg which implies M |MN .
WithMN defined as claimed, then altogether we see that if F ν has principal parts

in OK at all cusps, then denominators of the coefficients aνd(n) can only arise from:

(1) The index, n, of the coefficient,
(2) Ramified primes,
(3) The congruence number MN .

In particular, we recover the statement of part (1) of theorem 1.4. �

Proof of Theorem 1.4 (2). As before, begin with the assumption that F ν ∈ Hg
0 (N ;K; ν)

for some newform g of level N . If p divides the level of g, then the function can be
taken as the limit of functions with p-integral coefficients, so no denominators arise.

Suppose p does not divide the level, and let Fn be the functions defined in section .
We begin in the case vp(β) > 0. Using equation (4.6), we see that unless p is severely
ramified in K, we have the congruence of values, Fn(E) ≡ F1(E) (mod 1). Thus we
need only work out denominators for F1. Using equation (4.4), we see that βF1(q) is
p-integral, and so βFn(E) must be.
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If p does not ramify but vp(β) > 0, then β = −β (or if p divides 6, we have β ≡ −β
(mod p)). In this case, using (4.7), we see the single power of β in the denominators
of F1 and F 1 must cancel to eliminate the fractional power of p, and we find that
F (E) is p-integral.

If p has high ramification degree, (i.e. e ≥ log p), it may turn out that 1 + ce < 0 .
However from the proof of Proposition 4.1, we see that at worst we can replace n+ce
with 0, and we have that β2Fn(E) ≡ β2F1(E) (mod 1). Since β2F1(q) has p-integral
coefficients, β2F1(E) (and hence β2Fn(E)) has positive p-adic valuation.

If p does not divide N and vp(β) = 0, we have potential denominators arising
from the 1 − β−d terms which appear in equation (4.3). These can be cleared by
multiplying by

(6.1) Bp,g := 1− βw−1
p (β).

If N ′ := N
gcd(N,p)

, then define BN,p = pr where

(6.2) r := max{vp(1− βhw−1
p (βh) : h ∈ Snew(N ′)}.

Then if j(E) is p-integral, we must have that

(6.3) vp (RNF
p(E))) ≥ −BN,p.

If we remove the extra assumption that F p ∈ Hg
0 (N ;K; p) for some newform g, then

as in the previous proof we allow additional denominators dividing MN .
�

6.1. Calculating MN . The calculation is a linear algebra problem. Since N is
square free, S2(N ;K) has a diagonalized basis forms hi whose coefficients are in Z.
That is, there exists forms hi(q) = qei + O(qei+1) with 1 = e1 < e2 < · · · < edimN

with dimN = dimS2(N ;K).
Let SN be the set of weight 2 cusp forms h|2WD where h is new of level M dividing

N and D divides N/M . This set forms a basis for S2(N ;K).
If C be a the dimN × dimN matrix whose rows are indexed by S and whose (h, i)-

th entry is the ei-th coefficient of h for h ∈ S, define MN to be the least integer
such that MNC−1 has no denominators. It is not hard to see that the modulus of
any congruences among forms in SN must divideMN . Similarly, the i-th row of C−1

gives the coefficients to write the form hi in terms of the forms in SN . Since the hi
have integer coefficients, the denominators of C−1 encode non-trivial congruences.

The columns of C−1 encode the principal parts at infinity for harmonic Mass forms
corresponding to each h ∈ SN . For each h ∈ SN , let Gh be the unique harmonic Maass
function whose principal part at infinity is given by

Gh(q) =

dimN∑
i=1

ch,iq
−ei +O(q)
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where ci,h is the i, h-th entry of C−1, and which is bounded at all other cusps.
Calculating the Bruinier–Funke pairing, we find that for g ∈ SN ,

{g,Gh} =

{
1 if g = h

0 otherwise.

Proceeding as above, we see that for a prime p of K, if Snew is the set of newforms
of levels dividing N , then the form

G∗ := P p
∗ −

∑
h∈Snew

Gp
h

is weakly holomorphic. Since all denominators in the expansions of G∗ and the G∗h
divide MN , the same is true for any denominators of P p

∗ .

7. Coefficients of half-integeral weight forms

The definition of harmonic Maass forms given in Section 3 can be generalized to
forms of half integral weight. Any such generalization requires that we allow a non-
trivial multiplier system, such as in the modularity of the Jacobi theta function in
order to maintain consistency.

Suppose ν : Γ→ C is a function on some subgroup Γ ⊂ GL2(R)+. We modify the
definition of the slash operator given in (2.1) with respect to ν so that

(f |k,νγ)(τ) = ν−1(γ) |Det(γ)|k/2 (cτ + d)−kf(γτ)

for every γ = ( a bc d ) ∈ Γ. Here, if k is a half-integer, then the resulting square roots
take the principal branch. Then ν is a weight k multiplier system for Γ if

(f |k,νγ)|k,νµ = f |k,ν(γµ) for all γ, µ ∈ Γ,

independent of the function f .
This definition extends naturally to vector-valued modular and harmonic Maass

forms. These satisfy a similar definition, but now we allow f to represent a vector
of functions and require the image of ν to be matrices whose determinants have
absolute value 1.

Definition 3.1 extends in the natural to include modularity involving multiplier
systems and vector valued functions. The remaining facts about harmonic Maass
forms still hold (component wise in the case of vector valued forms), except that
we may have fractional powers of q in the q-series expansions, depending on the
multiplier system.

We are interested in lifts from weight 0 forms to vector valued forms of weights
1/2 and 3/2, with certain explicit multiplier systems. These vector valued forms may
be projected down to obtain scalar valued half-integer weight forms. For instance,
the lifts considered implicitly by Zagier[35], and by Miller and Pixton [29] can be
obtained by summing the components of the lifts considered here.
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7.1. Vector valued modular forms and the Weil representation. We refer the
reader to [1, 2, 9] for a more thorough consideration of vector valued modular forms.
Here we will give a summary aimed at considering forms with multiplier systems
determined by the Weil representation.

The metaplectic group Mp2(Z) consists of pairs (γ, φ) where γ =

(
a b
c d

)
∈ SL2(Z)

and φ : H→ C is holomorphic and satisfies

φ2(τ) = cτ + d,

with the group action given by

(γ1, φ1)(γ2, φ2) = (γ1γ2, φ1(γ2τ)φ2(τ)) .

The metaplectic group is generated by the two elements

T :=

((
1 1
0 1

)
, 1

)
and S :=

((
0 −1
1 0

)
,
√
τ

)
.

Given a positive integer N , the Weil representation ρ of the metaplectic group acts
on a vector space indexed by Z/2NZ. This action is given for the generators T and

S so that ρ(T ) is the diagonal matrix with j-th entry e2π i j
2

4N , and ρ(S) is the square

matrix with (j, k)-th entry given by
√
− i√
2N
e−2π i j·k

2N for j, k ∈ Z/2NZ.
We then define the slash operator |k,ρ so that if f is a vector valued function of

appropriate dimension then

(7.1) f |k,ργ(τ) := φ−2k(τ)ρ−1(γ)f(γτ).

We say that f is modular with respect to ρ with weight k if f is invariant un-
der the action of the slash operator given above. We will also consider modularity
with respect to the conjugate representation ρ. We denote the spaces of harmonic
Maass forms of weight k, index N for the representations ρ and ρ by Hk,ρ(N ;K) and
Hk,ρ(N ;K) respectively.

These representations allow us to compute the transformation of such a form f
with respect to any matrix γ ∈ SL2(Z). If f is such a form, then the holomorphic
part of the j-th component, f+

j , will have a q-expansion of the form

f+
j =

∑
D≡j2 (mod 4N)

λD�−∞

a+
f (λD, j)qλ

D
4N ,

where λ = 1 or −1 depending on whether f is modular under ρ or ρ respectively.
Given such an expansion, we will refer to a+

f (D, j) as the (D, j)-th coefficient of f .

7.2. The Hecke algebra on half-integral weight modular forms. Half-integer
weight modular forms transforming under the Weil representation ρ or under ρ have
a theory of Hecke operators. As in the integer weight case, the Hecke operators may
be defined by taking a trace over the action of matrix coset representatives, so that
by construction they preserve modularity properties. However, for simplicity here
we will only define the operators Tn by their action on q-series. This action can be
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given in terms of operators Un, Vn and Sn which act on q-series as follows. For
further details on Hecke operators for vector valued modular forms of half integral
weight see [8, section 7], [14] or [33, §0 equation (5)]. Suppose λ = ±1 and f(q) is a
q-series vector with components fs indexed by s ∈ Z/(2NZ) which has the q-series
expansion

fs =
∑

D≡s2 (4N)
λD�−∞

a(λD, s)qλ
D
4N .

Then we define the operators Un, Sn, and Vn so that the s-th components of f |Un,
f |Sn, and f |Vn respectively are given by

(f |Un)s =
∑

D≡s2 (4N)

a(λDn2, sn)qλ
D
4N

(f |Sn)s =
∑

D≡s2 (4N)

(
D

n

)
a(λD, s)qλ

D
4N

(f |Vn)s =
∑

D≡r2 (4N)
rn≡s (2N)

a(λD, r)qλ
n2·D
4N .

For k ≥ 3/2 and n coprime to N , the Hecke operators Tn are defined by the action
on q-series given by

(7.2) Tn :=
∑
a,b,c≥1
a·b·c=n

bk−3/2c2k−2UaSbVc.

If k ≤ 1/2 , define the normalized Hecke operators

(7.3) Tn :=
∑
a,b,c≥1
a·b·c=n

a2−2kb1/2−kUaSbVc.

The formula for unnormalized operators of prime index is given in [8, eq. (7.1)].
A short calculation shows that the weight 1/2 and 3/2 operators satisfy the same

multiplicative relations as do the T̂n operators of weight 0 or 2:

TnTm =
∑
d|(m,n)

dTmn
d2
.

We also have operators corresponding to the Atkin–Lehner involutions. Vector
valued modular forms under ρ or ρ must be symmetric in the indices, up to sign, so

fs = ±f−s,

where the sign depends on the representation. This is due to the fact that the
element

S2 =

((
−1 0
0 −1

)
, i

)
of the metaplectic group must act as the identity on the forms, but

ρ(S2) = − i ·Î2n = −ρ(S2)



36 MICHAEL J. GRIFFIN

where Î2n is the reflection of the identity matrix,

Î2n :=

 0 1
...

1 0

 .

Equation (7.1) then implies that weight 1/2 forms and weight 3/2 forms with the
same representation must have opposite signs. As we will see, this symmetry in
the indices is related to the Fricke involution (see (8.5)), and can be generalized to
Atkin–Lehner involutions. For each δ | N, let λδ be the unique number (mod 2N)
satisfying

(7.4) λδ ≡ −1 (mod 2δ) and λδ ≡ 1 (mod 2N/δ).

We define the Atkin–Lehner involution Wδ for vector valued forms which acts by
permuting the component indices by multiplication by λδ, so that

(f |Wδ)s = fλδs.

It follows that forms which are modular with respect to ρ or ρ are necessarily eigen-
functions for the Fricke involution WN .

We conclude this section with a brief discussion about the field of definition and
denominators for coefficients of weight 1/2 forms.

Similar to the weight 0 case, the field of definition for the principal part of a form
f ∈ M !

1/2,ρ̃(N ;C) determines the field of definition for almost all the coefficients.
However there are possible exceptions for ρ̃ = ρ and coefficients of square index since
the Serre–Stark basis theorem implies that the space of holomorphic modular forms
M1/2,ρ(N ;C) is spanned by unary theta functions, whereas M1/2,ρ(N ;C) is trivial.
See [8, Lemma 6.4]. {look at paper jan, Markus, citing Yingkun}

Theorem 7.1 ([8, Lemmas 6.3,6.4,6.5]). Suppose f ∈ M !
1/2,ρ̃(N ;C) has coefficients

af (m, r) ∈ K for all m ≤ 0. Then af (n, s) ∈ K for all n ∈ Z, unless ρ̃ = ρ and n is
a square. If af (m, r) ∈ K for all m < 4N, then af (n, s) ∈ K for all n.

If f ∈M !
1/2,ρ̃ has algebraic coefficients, then its coefficients naturally have bounded

denominators. This fact will be important later on to show that differences of certain
Hecke operators vanish p-adically as in the integer weight case. It is less clear whether
the algebraic coefficients of f have a bound on denominators when f ∈ H1/2,ρ̃ is not
weakly holomorphic. This question is posed in remark 15 i) of [8]. While it appears
to still be open whether or not a uniform bound exists for all algebraic coefficients,
the following weaker lemma for a single square class suffices for our needs.

Lemma 7.2. Suppose f ∈ M !
1/2,ρ̃(N ;C) so that each component has principal part

defined over K, and f is orthogonal to all cusp forms in S1/2,ρ̃(N ;C). If D is a fixed
fundamental discriminant with s2 ≡ D (mod 4N) so that the coefficients af (Dn

2, sn)
are in K for all n ∈ Z, then the denominators of these coefficients are bounded.

The condition that f is orthogonal to S1/2,ρ̃(N ;C) is only of concern when D = 1
and ρ̃ = ρ. The proof of this lemma will require the use of the generalized Borcherds
lift which we will discuss in the next section.
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8. Lifts of half-integer weight forms

Harmonic Maass forms of half integral weight are strongly connected to harmonic
Maass forms of even integral weight. These connections include the Shimura corre-
spondence, trace lifts, and the Borcherds lifts.

The Shimura correspondence relates weight 2 Hecke eigenforms to weight 3/2
eigenforms for the Hecke operators and Atkin–Lehner involutions defined in Section
7.2 above, with the same eigenvalues as the weight 2 form.

Zagier [35] demonstrated that the coefficients of certain weight 1/2 and 3/2 modu-

lar forms can be given as sums of CM values of the j-function t̃1(∆, D, rs)(j). These
results have been studied and generalized in several directions. Miller–Pixton [29]
extended these results to harmonic Maass forms of higher level and negative weight
using formulas for coefficients of Maass–Poincaré series; Duke–Jenkins [20] demon-
strated integrality results for similar traces related to modular forms of negative
weight and level 1; and Bruinier–Funke [9, 10] and Alfes [1] have realized these trace
maps as theta lifts obtained by taking the inner product of modular functions against
certain non-holomorphic theta kernels. These and related theta lifts have been fur-
ther studied by Alfes [2, 3], Duke–Imamoḡlu–Tóth [18, 19] and others [11, 12, 26].
From Zagier’s work and the work of Duke–Jenkins, it is not hard to see that certain
p-adic properties of q-series are propagated through the lifts. Some of these prop-
erties have been explored by Bringmann–Guerzhoy–Kane [6]. In the case of weakly
holomorphic modular forms, the CM values which make up the traces are algebraic
numbers, making inherent p-adic properties much easier to explore. When the origi-
nal function is a harmonic Maass form, the traces are generally transcendental with
exceptions involving the vanishing of the associated central L-values or L-derivatives
(see [8]). Exploring the p-adic properties arising from these transcendental numbers
can be more problematic. However, the p-adic harmonic Maass forms give us a tool
to approach this question.

Thse Shimura correspondence and the three lifts we consider here all respect the
Hecke algebra. In the case of the trace-lifts, this allows us to extend the lifts to our
p-adic harmonic Maass forms by passing the respective operators and limits through
the lift. Each of these lifts can be described in terms of theta lifts obtained by
integrating a modular or harmonic Maass form against a two-variable theta kernel.
These theta kernels are indexed by a fundamental discriminant, and are usually
non-holomorphic but modular in each variable with different weights of modularity.
Two families of trace-lifts are defined by integrating against the Millson theta kernel
(see [2, 3]), and the Kudla-Millson theta kernel (see [1, 10]) respectively. The first
of these lifts weight 0 harmonic Maass forms to weight 1/2 harmonic Maass forms,
while the second lifts a weight 0 forms to weight 3/2 forms. In both cases, the lifts
give formulas for the coefficients of the holomorphic parts in terms of modular traces
over CM points of the original modular function. These two lifts are dual in that
coefficients obtained from one lift are negatives of the coefficients obtained from the
other, similar to the duality observed in part (2) of Theorem 5.1. The third lift we
need for the proof of Lemma 7.2 is the generalized Borcherds lift (see [8]) which gives
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the coefficients of a non-holomorphic modular function in terms of coefficients on a
single square class of a weight 1/2 form.

We refer the interested reader to the given references for a more detailed treatment
of theta lifts and theta kernels. Here we give only the necessary theorems needed to
use the lifts for our purposes. In section 9 we extend the two trace lifts to p-adic
harmonic Maass forms in terms of the trace formulas for the coefficients, but we will
not attempt to define a p-adic version of the theta kernels.

8.1. Two trace-lifts. Throughout this section we will use ∆ and D to denote dis-
criminants with ∆D < 0, along with indices r, s ∈ Z/(2NZ) satisfying

(r2, s2) ≡ (∆, D) (mod 4N).

The first two lifts require some background on quadratic forms. Let QN,∆,r denote
the set of positive integral binary quadratic forms Q = [A,B,C] = Ax2 +Bxy+Cy2

with discriminant ∆, N | A, and B ≡ r (mod 2N). The matrix group GL+
2 (Q) acts

on such quadratic forms by

Q(x, y)|
(
a b
c d

)
= (ad− bc)−1Q(ax+ by, cx+ dy).

Let ωQ denote the order of the stabilizer of Q in PSL2(Z), and τQ be the CM point
which is the root of Q(x, 1) in the upper half plane. We will also need the genus
character χ∆ defined by

χ∆([A,B,C]) =

{(
∆
n

)
if ∆ | B2 − 4AC and Q represents n with (n,∆) = 1,

0 otherwise.

If h2 ≡ ∆D (mod 2N), then we define the twisted modular trace

(8.1) tN(∆, D, h)(F ) =
∑

Q∈QN,∆D,h/Γ0(N)

χ∆(Q)

ωQ
F (τQ)

which is symmetric in ∆ and D if these discriminants are square free.
For the purposes of Proposition 1.2, we modify the notation to denote the expres-

sion appearing in the theorem below:

(8.2) t̃N(∆, D, h) :=
1√
D

(tN(∆, D, h)− sgn(∆)tN(∆, D,−h)) .

With this notation we have the following composite theorem.

Theorem 8.1. Assume the notation above. Let N be a square free positive integer,
and F ∈ H !

0(N ;C) have principal part at each cusp given by

F |0Wδ =
∑
n≤0

aδ(n)qn +O(1)

for each divisor δ | N.
If ∆ is fundamental, there exists a form

ϑ
1/2
∆,r(F ) ∈ H1/2,ρ̃(N ;C),
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with (|D|, s)-th coefficient given by

aF (∆, r;D, s) :=
1√
D

(tN(∆, D, rs)(F )− sgn(∆)tN(∆, D,−rs)(F )) .

If D is fundamental, there exists a form

ϑ
3/2
D,s(F ) ∈ H3/2,ρ̃(N ;C),

with (|∆|, r)-th coefficient given by

bF (D, s; ∆, r) :=
−1√
D

(tN(D,∆, rs)(F ) + sgn(D)tN(D,∆,−rs)(F )) .

Here if ∆ > 0 then ρ̃ = ρ ; otherwise ρ̃ = ρ.

The principal part of ϑ
1/2
∆,r(F ) is given by

(8.3) ϑ
1/2
∆,r(F )(q) =

∑
δ|N

∑
n<0

aδ(n)
∑
d|n

(
∆

d

)
q−

n2

4Nd2
|∆|(eλδ nd r − sgn(∆)e−λδ nd r) +O(1),

and the principal part of ϑ
3/2
D,s(F ) is given by

(8.4) ϑ
3/2
D,s(F ) =

∑
δ|N

∑
n<0

aδ(n)
∑
d|n

n

d

(
D

d

)
q−

n2

4Nd2
|D|(eλδ nd s + sgn(D)e−λδ nd s) +O(1).

Here ej is the j-th standard basis element with j ∈ Z/(2NZ), the symbol
( ·
·

)
is the

Kronecker symbol, and λδ is defined as in (7.4).

This corrects a sign error in Theorem 4.5 and a misplaced
√
N in Theorem 4.6 of

[2] (These corrections can be seen in [3] which considers a projection of this lift in
the ∆ < 0 case). In the notation of [1] and [2] respectively, the lifts ϑ3/2 and ϑ1/2 of
the theorem are given by

ϑ
3/2
D,s(F )(τ) =

−1√
D

Λe
D,s(τ, F )

and

ϑ
1/2
∆,r(F )(τ) =

2√
∆
I∆,r(τ, F ).

Proof. The theorem is almost directly a composite of Theorems 1.1, 4.3, and 4.6 of
[1] and Theorems 4.1,4.5, and 4.6 of [2]. The only new contribution is that we allow
non-constant principal part at cusps other than infinity.

If S∆,r = QN,∆,r/Γ0(N) with quadratic forms counted with multiplicity 1
ωq
, then a

short calculation (see [22, Sec I.1 eq. (6)]) shows that

S∆,r|Wδ = S∆,λδr.

This implies

(8.5) ϑ
1/2
∆,r(F |0Wδ) = ϑ

1/2
∆,λδr

(F ),
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and similarly for ϑ
3/2
D,s. Since we may write

F =
∑
δ|N

Fδ|0Wδ

with Fδ having non-constant principal part only at the cusp infinity. The more
general statement for the principal parts follows. �

The Hecke operators defined in the previous section also commute with these lifts.
As with the Atkin–Lehner involutions, this can be seen by careful consideration of
how the matrix expansions for the integer weight Hecke operators affect the cosets
of quadratic forms. If S∆,r is as above, then for a prime p not dividing N the Hecke
operator Tp acts on S∆,r by

S∆,r|Tp = Sp2∆,pr +

(
∆

p

)
S∆,r + pS ∆

p2
,rp−1 .

Here the final term is taken to be 0 if p2 does not divide ∆. This formula can be
found for instance in [22, Sec. I.1], [35, Proof of Theorem 5(2)] or [34, pgs. 290–292].
Using the multiplication relations already established for the Hecke operators, we
can extend these formulas for operators of non-prime index. We find that

ϑ
1/2
∆,r(f |0T̂n) = ϑ

1/2
∆,r(f)|1/2,ρ̃Tn

and
ϑ

3/2
D,s(f |0T̂n) = ϑ

3/2
D,s(f)|3/2,ρ̃Tn.

The non-holomorphic parts of the lifts can be determined using the following, using
linearity to extend to cases when ξ0F is not a multiple of a newform.

Theorem 8.2 ([2, Theorem 4.3, Proposition 4.4]). Assume the notation above, and
suppose F ∈ Hg

0 (N ;C) for some newform g ∈ S2(N ;C). If F has a zero constant
term at all cusps, then the following hold.

(1) The lift ϑ
3/2
D,s(F ) is weakly holomorphic and

ξ1/2ϑ
1/2
∆,r(F ) ∈ S3/2,ρ̃(N ;C)

corresponds to some multiple of ξ0F under the Shimura correspondence.

(2) The lift ϑ
1/2
∆,r(F ) is weakly holomorphic if and only if

L(ξ0F,∆, 1) = 0.

Here L(ξ0F,∆, s) is the twisted L function defined as in (1.2). In particular,

ϑ
1/2
∆,r(F ) is weakly holomorphic if F is.

If we allow the constant terms of F at cusps to be non-zero, then ξ1/2ϑ
1/2
∆,r(F ) and

ξ3/2ϑ
3/2
D,s(F ) may differ from what is stated above by a finite linear combination of

unary theta functions.

One result of the Shimura correspondence between ξ1/2ϑ
1/2
∆,r(F ) and ξ0F is that if

sgn(∆) = εg, where εg = ±1 is the eigenvalue of g under the Fricke involution,

g|2WN =: εgg,
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then the lift ϑ
1/2
∆,r(F ) is weakly holomorphic. In this case, it is known that L(ξF,∆, 1) = 0.

Equivalently, we can observe that the formulas above show that ξ1/2ϑ
1/2
∆,r(F ) has eigen-

value −εg under the Fricke involution despite corresponding to g under the Shimura
correspondence.

If ϑ
1/2
∆,r(F ) is weakly holomorphic, then the algebraicity of the coefficients is tied to

the algebraicity of the principal parts. On the other hand, if L(ξ0F,∆, 1) 6= 0, some
coefficients may still be algebraic despite the form not being weakly holomorphic.

Theorem 8.3 ([8, Theorems 7.6, 7.8]). Assume the notation above, and suppose
F ∈ Hg

0 (N ;K, σ) for some newform g, so that F has zero constant terms at all
cusps. Then the following are equivalent:

(1) The coefficient aF (∆, r;D, s) is algebraic.
(2) The coefficient aF (∆, r;D, s) is in K.
(3) The product

L(ξ0F,∆, 1)L′(ξ0F,D, 1) = 0.

8.1.1. Lifts for non-fundamental discriminants. Notice that given F as above, when
D and ∆ are both fundamental, then Theorem 8.1 shows there is duality between the

coefficients of ϑ
1/2
∆,r(F ) and those of ϑ

1/2
D,s(F ), similar to that seen in Theorem 5.1(2).

That is, in the notation of the theorem

aF (∆, r;D, s) = −bF (D, s; ∆, r).

Notice that there are gaps in this duality statement since it requires ∆ and D to
both be fundamental. These gaps can be filled. Using the formulas above for the
action of the Hecke operators, we find that if ` is a prime not dividing N and

F`m := F |0
(
T̂`m −

(
D

`

)
T̂`m−1

)
,

then

bF (D, s; ∆`2m, r`m) = bF`m (D, s; ∆, r) = −aF`m (∆, r;D, s).

Therefore, if we define

(8.6) ϑ
1/2

∆`2m,r`m(F ) := ϑ
1/2
∆,r(F`m) = ϑ

1/2
∆,r|1/2,ρ̃

(
T`m −

(
D

p

)
T`m−1

)
,

and define aF (∆`2m, r`m;D, s) to be its (|D|, s)-th coefficient, we have that

aF (∆`2m, r`m;D, s) = −bF (D, s; ∆`2m, r`m).

If ` | N , then notice that

tN(∆, D`2, h`)(F ) = tN/`(∆, D, h)(F |0 Tr`),

where Tr` is the trace operation defined in 3.5 sending level N forms to level N/`
forms. Therefore in this case it is natural to define

(8.7) ϑ
1/2

∆`2m+2,r`m+1(F ) := ϑ
1/2
∆,rF`m
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where

F`m := (F |0 Tr`)|0
(
T̂`m −

(
D

p

)
T̂`m−1

)
.

Here, T̂n represents the level N/` operator.

We can define ϑ
1/2

∆n2,rn(F ) similarly for all n by requiring that (8.6) and (8.7) hold

as identities for all discriminants ∆, not divisible by `2. We define the lifts ϑ
3/2
∆,rF

similarly. Notice that the different normalization in the Hecke operators corresponds
to the changing denominators in the formulas in Theorem 8.1.

Using the symmetry between the action of the Hecke operators of weights 1/2 and
3/2, we see that

(8.8) aF (∆, r;D, s) = −bF (D, s; ∆, r)

for all pairs of discriminants ∆D < 0.
With this notation, we have the following theorem on the algebraicity of the coef-

ficients aF (∆, r;D, s) and bF (D, s; ∆, r), generalizing Theorem 8.3.

Theorem 8.4. Assume the notation above, and suppose F ∈ Hg
0 (N ;K, σ) for some

newform g ∈ S2(N,C), so that the constant terms of F at all cusps are 0.

If aF (∆, r;D, s) = −bF (D, s; ∆, r) is algebraic, then either ϑ
1/2
∆,r(F ) or ϑ

3/2
D,s(F ) is

weakly holomorphic with every coefficient in K.

Proof. If D is fundamental, then this follows from applying [8, Theorems 7.6 and

7.8] to ϑ
1/2
∆,r(F ) for all pairs (∆, r). On the other hand, if D is not fundamental

then since there exists a rational basis for M !
3/2,ρ̃

(N ;K), there is some cusp form

h ∈ S3/2,ρ̃(N ;C) such that ϑ
3/2
D,s(F ) − h has coefficients in K. Since F |0(T̂` − ag(`))

is weakly holomorphic, we have that

ϑ
3/2
D,s

(
F |0(T̂` − ag(`))

)
= ϑ

3/2
D,s(F )|3/2,ρ̃(T` − ag(`))

has coefficients in K, and so we can take h so that it corresponds to a multiple of
g under the Shimura correspondence. In particular, this means that if h has any
transcendental coefficients, then bF (D, s; ∆, r) can only be algebraic if the (|∆|, r)-
th coefficient of h vanishes. But then the (|∆|, r)-th coefficient of ϑ

3/2
D′,s′(F ) must be

algebraic for all pairs (D′, s′).

In this case, to see that ϑ
1/2
∆,r(F ) is weakly holomorphic, write ∆ = ∆′n2 with ∆′

fundamental, and take D′ to be fundamental with L′(g,D′, 1) 6= 0. Then

ϑ
1/2
∆,r(F ) = ϑ

1/2
∆′,r′(F

∗)

for some F ∗, as in (8.7). By Theorem 8.2, ϑ
1/2
∆,r(F ) must be weakly holomorphic. �

8.1.2. Borcherds lift. We now consider the generalized Borcherds lift, Φ∆,r(f) as de-
scribed in [8, Sections 5-7].

Theorem 8.5 ([8, Theorem 5.3]). Let D be a fundamental discriminant with s2 ≡ D
(mod 4N). Suppose f ∈ H1/2,ρ̃(N ;C) has principal parts at all components defined
over K, with constant term a+

f (0, 0) = 0. Moreover, if ∆ = 1, let f be orthogonal to
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the cusp forms S1/2,ρ̃(N ;C). Then for a specific rational number Rf,D (= 0 if D 6= 1),
the function

ΦD,s(f)(τ) := Rf,D,s − 4
∑
n≥1

∑
b (mod ∆)

(
D

b

)
a+
f (|D|n2, sn) log |1− qnζbD|

is modular for Γ0(N) and is harmonic on the upper half plane apart from logarithmic
singularities at certain CM points determined by the principal part of f .

The rational number Rf,D,s here comes from the Weyl vector. Notice we have
included some simplifying assumptions from the original theorem. Remark 13 ii) of [8]
indicates that Φ∆,r(f) has a similar expansion at other cusps. In fact unsurprisingly
it turns out that for δ | N,

(8.9) Φ∆,r(f)|0Wδ = Φ∆,r(f |1/2Wδ).

This follows by considering the action of the Atkin–Lehner involution Wδ on the
divisor of ΦD,s(f) (see [8, Proposition 5.2]). The calculation is nearly identical to
that needed for (8.5). This is also worked out in this context in [8, (7.3)].

Similarly, for (n,N) = 1 we have that

ΦD,s(f)|0T̂n = ΦD,s(f |1/2Tn).

This is shown as follows. The q-expansion of ΦD,s(f) at infinity is obtained using the
Taylor expansion

log(1− x) =
∑
m≥1

−xm

m
.

For n = ` a prime, the identity is easily shown using formulas for the action of the

operators T̂` and T` respectively. Since T̂n and Tn obey the same multiplicativity
relations, we see commutativity holds for general n.

We will also need a closely related form, the Borcherds product

ΨD,s(f)(τ) :=
∏
n≥1

∏
b (mod D)

(1− qnζbD)(
D
b )a+

f (|D|n2,rn)

which satisfies

ΦD,s(f) = −4 log |ΨD,s(f)|.
Here, as usual, by ab we mean eb log a, taking the principal branch of the logarithm.

Theorem 8.6 ([8, Theorems 6.1, 6.2]). Assume the notation above and the hy-
potheses of Theorem 8.5. Then the function ΨD,s(f)(τ) converges for all τ with y
sufficiently large, and has a meromorphic continuation to all of H. Moreover, it sat-
isfies

ΨD,s(f)|0γ = ν(γ)ΨD,s(f)

for every γ ∈ Γ0(N), with ν a character for Γ0(N) with |ν(γ)| = 1.
If the coefficients a+

f (m, r) of f are in Z for all h (mod 2N) and m ≤ 0, then the
order of ν is finite if and only if the coefficients a+

f (|D|n2, sn) are rational for all n.
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8.2. Proofs of Proposition 1.2 and Lemma 7.2. With this background on the
trace lifts and Borcherds lifts we can now prove Proposition 1.2 and Lemma 7.2.

Proof of Proposition 1.2. If F has no constant term at any cusp, then (1.3) follows
immediately from Theorem 8.3. Similarly in this case if we fix r, s so that rs ≡ h
(mod 2N), then the proof of Theorem 8.4 shows that there is some cusp form g

corresponding to a multiple of g under the Shimura correspondence so that ϑ
3/2
D,s(F )−

g has coefficients in K. The proposition follows.
If F has constant terms at cusps, then we may subtract off a weakly holomorphic

form with matching constant terms, and with coefficients in K. The twisted trace
of CM values of this weakly holomorphic modular form must itself be in K, so the
proposition holds in this case as well. �

Proof of Lemma 7.2. If the constant term a+
f (0, 0) of f is not 0, we may subtract a

theta series to make it so, without affecting the boundedness of the denominators
on any square class. For each σ ∈ Gal(K/Q), let fσ ∈ H1/2,ρ̃(N ;C) have principal
part defined by acting on each coefficient of the principal part of f by σ. This form
is uniquely defined up to the possible addition of a cuspidal theta function. This
will only concern us in the case D = 1 since the theta series must have non-zero
coefficients supported only on powers of q

1
4N with square exponents. In that case,

we require that each fσ is also orthogonal to cusp forms. Then we have that

a+
fσ(1, 1) =

(
a+
f (1, 1)

)σ
.

We will need the trace function

F0 =
∑
σ

fσ.

By [8, Theorem 5.5], the coefficients a+
F(|D|n2, sn) are rational for all n ∈ Z.

For each σ ∈ Gal(K/Q), let Ψσ := Ψs,D(fσ), and let

Ψ := Ψs,D(F0) =
∏
σ

Ψσ.

Then by Theorem 8.6, there is some power M so that Ψ̂M is a meromorphic modular

function for Γ0(N), and so Ψ̂M has bounded denominators. We can calculate the

expansion of Ψ̂M |0γ for any γ ∈ SL2(Z) using the factorization in (4.4) and (8.9).
This allows us to calculate the function

Ψ̂ :=
∏

γ∈Γ0(N)\SL2(Z)

ΨM |0γ,

which has level 1, and is therefore a rational function in j. In fact this function can
be worked out explicitly following section 8 of [8] by considering its divisor. We find

that Ψ̂ is a quotient of twisted Hilbert class functions, as defined by Zagier in [35,
Equation (2.2)] as follows. If D and ∆ are discriminants with D∆ < 0, then the
twisted Hilbert class functions are defined by

H∆,D(τ) =
∏

Q∈QN,∆D/SL2(Z)

(j(τ)− j(τQ))
χ∆(Q)

ωQ .
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These functions have coefficients which are algebraic integers in Q(
√
D). Moreover

their inverses are their respective images under the non-trivial Galois element in
Gal(Q(

√
D)/Q). We refer the interested reader to section 8 of [8] for more details.

For our purposes, it suffices to know that the coefficients of Ψ̂ are all algebraic
integers.

Notice that the q-expansion of ΨM |0γ(q) for every γ begins 1 + O(q1/N), and so

given a prime P of Q(ζN), we cannot have that Ψ̂M |0γ(q) ≡ 0 (mod P). Therefore

for each such γ, there is some integral element πγ of Q(ζN) so that πγΨ̂
M |0γ has

algebraic integer coefficients, but πγΨ̂
M |0γ(q) 6≡ 0 (mod P). Then∏

γ∈Γ0(N)\SL2(Z)

πγΨ
M |0γ(q) = Ψ̂(q)

∏
γ

πγ 6= 0 (mod P).

But since Ψ̂(q) already has algebraic integral coefficients, we have that
∏

γ πγ is not

divisible by P. Since P was arbitrary, ΨM
0 |0γ(q) has no denominators for any γ.

Expanding the binomial and simplifying the resulting Gauss sums, we find∏
b (mod D)

(1− qnζbD)M(Db )a+
F0

(|D|n2,sn) = 1− sgn(D)
√
DMa+

F0
(|D|n2, sn)qn +O(q2n).

An induction argument on the coefficients of ΨM shows that
√
DMa+

F0
(|D|n2, sn) is

integral. Since D is fundamental, the coefficients Ma+
F0

(|D|n2, sn) are integers.
This suffices to prove the theorem when K = Q. For general K we must continue

a bit further. Suppose K = Q(α) for some algebraic integer α, and let d be the
degree of K. For 1 ≤ m < d, define

Fm =
∑
σ

(αm)σfσ.

Then the coefficients in the principal part of Fm are all in Z, and following the
argument above, we see that there is some bound Mm ∈ Z so that for all n ∈ Z the
coefficients Mma

+
Fm

(|D|n2, sn) are integers.
The relation connecting the series fσ and Fm is a linear transformation. Let M be

the d × d matrix with row indexed by integers m ∈ [0, d − 1] and columns indexed
by elements σ of the Galois group Gal(K/Q), such that the (m,σ)-th entry of M is
given by σ(αm). Then

M · (fσ)σ = (Fm)m.

The matrix M is invertible. Its left kernel is fixed by any Galois action, but any
non-trivial rational relation between rows would easily translate into a polynomial
over Q of degree less then d satisfied by α.

Since the Fm all have rational coefficients with bounded denominators on the
given square class, the series fσ can only acquire additional denominators coming
from M−1. The lemma follows. �

9. The p-adic trace lifts

We will extend the trace lifts ϑ
1/2
∆,r and ϑ

3/2
D,s to p-adic harmonic Maass forms

as follows. Since the lifts are linear, we will, as usual, consider the case that
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F σ ∈ Hg
0 (N ;K, σ) for some newform g with q-expansion

∑
n≥1 bnq

n. For primes p
of K not dividing N , we can adapt the appropriate lifts to the p-adic harmonic
Maass forms. However we consider the image only in terms of p-adic q-series.

CM points are necessarily in the integral locus. Recall that in this region F p is
defined by the p-adic limit of the action of certain Hecke operators. Set

(9.1) A′n =

{
An vp(βg) < 1/2
1
2
(An + An) vp(βg) = 1/2,

where An is defined in (4.4). Then for every E in the integral locus of E(N ;K), we
have that as a p-adic limit,

F p(E) = lim
n→∞

F σ|0A′n(E).

Since the Hecke operators commute with the lifts, we define

(9.2) ϑκ∗,∗(F
p)(q) := lim

n→∞
ϑκ∗,∗(F

σ|0A′n)(q) = lim
n→∞

ϑκ∗,∗(F
σ)|κ,ρ̃A′n(q)

whenever the limit converges p-adically and coefficient-wise. Here ϑκ∗,∗ = ϑ
1/2
∆,r or

ϑ
3/2
D,s, and A′n is defined similar to A′n, replacing the weight 0 operators with the

corresponding half-integer weight operators. The lift ϑκ∗,∗ extends to all of H0(N ;Kp)
by linearity.

It turns out that these lifts always converge and their coefficients are given by
traces over a CM elliptic curves, as in the Archimedean case. Given a positive
definite integer binary quadratic form Q, let EQ be the associated CM elliptic curve,
and let K∆,r be the minimal Galois extension of K with EQ ∈ E(N ;K∆,r) for each

Q ∈ QN,∆,r. The function F p extends to a function over K∆,r
p , which is unique, up

to the action of the Galois group Gal(K∆,r
p /Kp). If we modify equation (8.1) to be

(9.3) tN(∆, D, h) F =
∑

Q∈QN,∆D,h/Γ0(N)

χ∆(Q)

ωQ
F (EQ),

then this similarly modifies the definition of t̃N(∆, D, h)(F p) in (8.2). The modified

t̃N(∆, D, h)(F p) is well-defined and yields values in Kp. Here we have used the fact
that the set

{EQ : Q ∈ QN,∆D,h/Γ0(N)}
is a union of complete orbits of elliptic curves under Gal(Q∆,h/Q), and the definition

of the twisted trace t̃N(∆, D, h) in (8.2) ensures it is invariant under Gal(K∆,h
p /Kp).

With this modified definition of the modular trace, we have the following theorem.

Theorem 9.1. Let F p ∈ H0(N ;Kp), and let the lifts ϑκ∗,∗(F
p)(q) be defined as above.

Then the lift ϑκ∗,∗(F
p)(q) converges p-adically and coefficient-wise. Moreover the co-

efficients of ϑκ∗,∗(F
p)(q) agree with the formulas given Theorem 8.1.

Remark 3. As noted earlier, Theorem 1.3 (3) will follow as a corollary and gives a
(weak) analog of Theorem 8.3 in this setting. Moreover, combined with part Theorem
1.4 (2), this gives explicit bounds on powers powers of primes allowed to appear in
denominators of algebraic coefficients of half-integer weight harmonic Maass forms.
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The proof of this Theorem relies on the following proposition which shows that,
as in the integral weight case with Lemma 4.1, the difference between p-th power
Hecke operators on certain forms converges p-adically and coefficient-wise to 0. This
is nontrivial in the weight 3/2 case, and requires Lemma 7.2.

Proposition 9.2. Suppose f ∈M !
κ,ρ̃(N ;K) with κ = 1/2 or 3/2.

(1) If κ = 1/2, then as n increases, the sequence of q-series (f |k(Tpn −Tpn+2)(q))
n∈N

converges coefficient-wise p-adically to 0.

(2) If g ∈ S2(N ;C) is a newform and f = ϑ
3/2
D,sF for some F ∈ Hg

0 (N ;C), then the

sequence of q-series
(
f |3/2,ρ̃(Tpn −Tpn+2)(q)

)
n∈N converges coefficient-wise p-

adically to 0.

Proof of Proposition 9.2. The proof of part (1) involves a short exercise using formula
(7.3). Write D = D′p2m with p2 not dividing D′. Then only terms UaSbVc of the
Hecke operators with c | pm contribute to the (D, s)-th coefficient. Moreover, the
terms aUaSbVc of the Tpn cancel with terms aUaSbp2Vc from the Tpn+2 whenever
b > 1. Therefore the contributing terms aUaSbVc of the Hecke operators have b and
c bounded. As n increases, so must the power of p dividing a. Since f has bounded
denominators, the contribution from these terms p-adically goes to 0.

Part (2) relies essentially on the calculations behind (8.8) and Lemma 7.2. If D

is not fundamental, then recall that we defined the lift ϑ
3/2
D,s(F ) in terms of Hecke

operators which commute with the lift. In particular, We have

ϑ
3/2
D,s(F ) = ϑ

3/2
D′,s′(F

′),

for some F ′, and with D′ fundamental. Note that ξ0F
′ = αξ0F for some (possibly

zero) α ∈ K since ξ0F is an eigenform for the Hecke operators. In particular,
F ′ ∈ Hg

0 (N ;C). Therefore we will assume without loss of generality that D is
fundamental. Let

Fn := F |0(T̂pn − T̂pn+2),

then we have that

aFn(∆, r;D, s) = −bFn(D, s; ∆, r).

If h := ϑ
1/2
∆,r(F )|1/2,ρ̃, then the left-hand side is a coefficient of h|1/2,ρ̃ (Tpn −Tpn+2) .

If h is weakly holomorphic, then the statement follows immediately from part (1).
If h is not weakly holomorphic, we can still adapt this argument. From Lemma

7.2 we know that the coefficients aFn(∆, r;Dn2, sn) ∈ K for all n, and have bounded
denominators (here we have used that D is fundamental). Following the argument
above for part (1), but restricting our attention only to this square class, we see that
the specified coefficient aFn(∆, r;D, s) converges p-adically to zero as n increases. �

We now complete the proof of Theorem 9.1.

Proof of Theorem 9.1. Equation (9.2) shows that the trace formulas given in Theo-
rem 8.1 hold, so long as the coefficients converge. Given Proposition 9.2, convergence
follows essentially as in Section 4, mutatis mutandis. Proposition 9.2 and (4.4) show
that the principal part converges to the same shape. In fact we see that if our starting
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form is weakly holomorphic, the limit has the same q-expansion at all components.
We will come back to this point in the proof of Theorem 1.3 (3). �

Proof of Theorem 1.3 (3). Following the argument in the proof of Proposition 1.2,
we reduce to the case that F ν has vanishing constant terms at all cusps. Ler h = rs
be any factorization of h so that r2 ≡ ∆ (mod ()4N) and s2 ≡ D (mod 4N).

Theorems 8.3 and 8.4 show that if L(ξ0F
σ,∆, 1)L′(ξ0F

σ, D, 1) = 0, then either

ϑ
1/2
∆,r(F

σ) or ϑ
3/2
D,s(F

σ) is weakly holomorphic with coefficients in K. Then (9.2) and
Proposition 9.2 show that the coefficients of ϑκ∗,∗(F

p) are the same as those of ϑκ∗,∗(F
σ).

More generally, we can consider ϑ
3/2
D,h(F

p) and ϑ
3/2
D,h(F

σ). The proof is then little
more than that of Theorem 1.3 (2), using the argument in the proof of Theorem
8.4 to translate to this setting. If g ∈ S3/2,ρ̃(N ;K) maps to g under the Shimura

correspondence, then there must be constants ασ
D ∈ C and αp

D ∈ Kp so that(
ϑ

3/2
D,h(F

σ)(q)−ασ
Dg(q)

)
=
(
ϑ

3/2
D,h(F

p)(q)−αp
Dg(q)

)
∈ K((q)).

The claim follows by considering individual coefficients.
�
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