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In 1949, Lehner showed that certain coefficients of the modular invariant j(τ) are divis-

ible by high powers of small primes. Kolberg refined Lehner’s results and proved con-
gruences for these coefficients modulo high powers of these primes. We extend Lehner’s

and Kolberg’s work to the elements of a canonical basis for the space of weight 0 weakly

holomorphic modular forms.

1. Introduction

A weakly holomorphic modular form of weight k for SL2(Z) is a holomorphic func-

tion f defined on the upper half-plane that satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for all

(
a b

c d

)
∈ SL2(Z),

and is meromorphic at the cusp ∞. The function f will have a q-expansion of the

form f(τ) =
∑
n≥n0

a(n)qn, where q = e2πiτ and n0 ∈ Z. If n0 ≥ 0, then f is a

holomorphic modular form.

The modular function

j(τ) =
(1 + 240

∑∞
n=1 σ3(n)qn)

3

q
∏∞
n=1(1− qn)24

= q−1 + 744 +
∑
n≥1

c(n)qn

is a weakly holomorphic modular form of weight 0. The coefficients c(n) of j(τ) are

integers, and they play many important roles in mathematics. For instance, they

appear as the degrees of a special graded representation of the Monster group.

In 1949 Lehner [7] showed that

c(2a3b5c7dn) ≡ 0 (mod 23a+832b+35c+17d).

He also showed that similar results hold for the coefficients of other weight 0 weakly

holomorphic modular forms, but only if the order of the pole at infinity is less than

the prime under consideration.

Lehner’s results for the function j(τ) were later refined by Kolberg [4,5] and

Aas [1], who proved more specific congruences modulo large powers of the primes

p = 2, 3, 5, and 7. These congruences give a lower bound for the power of the prime

p dividing the coefficients of j(τ), and in many cases they give the exact power of p
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dividing the coefficients. For the special case c(pa), their work shows that Lehner’s

congruences are the best possible.

In this paper we extend the results of Lehner, Kolberg, and Aas for the j-function

to every function in a canonical basis for the space of weight 0 weakly holomorphic

modular forms, removing Lehner’s restriction on the order of the pole at ∞. In

defining this basis we follow the notation of Duke and Jenkins [3]. For all integers

m ≥ 0, let f0,m(τ) be the unique weight 0 weakly holomorphic modular form with

Fourier expansion

f0,m(τ) = q−m +

∞∑
n=1

a0(m,n)qn.

Each of the f0,m(τ) can be expressed as a monic polynomial in j(τ) with integer

coefficients. For instance,

f0,0(τ) = 1,

f0,1(τ) = j(τ)− 744,

f0,2(τ) = j2(τ)− 1488 j(τ) + 159768.

Note that all the a0(m,n) are integers. Additionally, for m > 1,

f0,m(τ) = f0,1(τ)|T0(m),

where T0(m) is the normalized weight 0 Hecke operator of index m, which is m

times the usual Hecke operator. These basis elements are the same as Zagier’s Jm
functions [9].

The main theorem of this paper gives congruences for the coefficients a0(m,n)

of all the f0,m(τ) that are similar to the congruences Kolberg and Aas showed for

the coefficients c(n) of the j-function.

A similar basis {fk,m(τ)} can be defined for weakly holomorphic modular forms

of any even weight k. Let

fk,m(τ) = q−m +

∞∑
n=`+1

ak(m,n)qn

for all integers m ≥ −`, where ` =
⌊
k
12

⌋
− 1 if k ≡ 2 (mod 12), and ` =

⌊
k
12

⌋
otherwise. Duke and Jenkins [3] showed that a Zagier-type duality exists between

bases of this type, so that ak(m,n) = −a2−k(n,m). In particular, this gives us

a2(m,n) = −a0(n,m). By use of this duality, our results for weight 0 modular

forms are easily adapted to weight 2.

In section 2 of this paper we state the specific congruences given by Kolberg

and Aas for the coefficients of j(τ), followed by the statement of our main theorem.

The proof of the theorem will be given in section 3.
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2. Statement of Results

We begin by stating Kolberg’s and Aas’s congruences for the coefficients c(n) of

j(τ). In all of the following, we assume that (n, p) = 1.

For p = 2:

c(2an) ≡ −23a+83a−1σ7(n) (mod 23a+13) if a > 0, (2.1)

c(n) ≡ 20σ7(n) (mod 27) if n ≡ 1 (mod 8), (2.2)

c(n) ≡ 1

2
σ(n) (mod 23) if n ≡ 3 (mod 8), (2.3)

c(n) ≡ −12σ7(n) (mod 28) if n ≡ 5 (mod 8). (2.4)

For p = 3:

c(3an) ≡ ∓32a+310a−1
σ(n)

n
(mod 32a+6) if a > 0, n ≡ ±1 (mod 3), (2.5)

c(n) ≡ 2 · 33σ(n)

n
(mod 37) if n ≡ 1 (mod 3). (2.6)

For p = 5:

c(5an) ≡ −5a+13a−1nσ(n) (mod 5a+2) if a > 0, (2.7)

c(n) ≡ 10nσ(n) (mod 52) if
(n

5

)
= −1. (2.8)

For p = 7:

c(7an) ≡ 7a5a−1nσ3(n) (mod 7a+1) if a > 0, (2.9)

c(n) ≡ 2nσ3(n) (mod 7) if
(n

7

)
= 1. (2.10)

Equations (2.7) and (2.9) above are due to Aas [1]; the rest are due to Kolberg [4,

5,6]. In equations (2.8) and (2.10) above,

(
n

p

)
denotes the Legendre symbol. No

congruences have been given for n ≡ −1 (mod 8), or for n ≡ −1 (mod p) for

the other primes. Kolberg suggests that no similar congruence exists in this case,

and states that even determining the parity of c(8n − 1) may be comparable to

determining the parity of the partition function [5].

The main theorem of this paper extends each of the congruences given above to

the coefficients a0(m,n) of all basis elements f0,m.

Theorem 2.1. For each p ∈ {2, 3, 5, 7}, let a1, a2 ≥ 0, a = |a1−a2|, and b1, b2 6≡ 0

(mod p). Then
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For p = 2:

a0(2a1b1, 2
a2b2) ≡ −23a+83a−1 · b1σ7(b1)σ7(b2) (mod 23a+13)

if a2 > a1, (2.11)

≡ −24a+83a−1 · b1σ7(b1)σ7(b2) (mod 24a+13)

if a1 > a2, (2.12)

≡ 20b1σ7(b1)σ7(b2) (mod 27)

if a = 0, b1b2 ≡ 1 (mod 8), (2.13)

≡ 1

2
b1σ(b1)σ(b2) (mod 23)

if a = 0, b1b2 ≡ 3 (mod 8), (2.14)

≡ −12b1σ7(b1)σ7(b2) (mod 28)

if a = 0, b1b2 ≡ 5 (mod 8). (2.15)

For p = 3:

a0(3a1b1, 3
a2b2) ≡ ∓32a+310a−1

σ(b1)σ(b2)

b2
(mod 32a+6)

if a2 > a1, b1b2 ≡ ±1 (mod 3), (2.16)

≡ ∓33a+310a−1
σ(b1)σ(b2)

b2
(mod 33a+6)

if a1 > a2, b1b2 ≡ ±1 (mod 3), (2.17)

≡ 2 · 33σ(b1)σ(b2)

b2
(mod 37)

if a = 0, b1b2 ≡ 1 (mod 3). (2.18)

For p = 5:

a0(5a1b1, 5
a2b2) ≡ −5a+13a−1b21b2 · σ(b1)σ(b2) (mod 5a+2)

if a2 > a1, (2.19)

≡ −52a+13a−1b21b2 · σ(b1)σ(b2) (mod 52a+2)

if a1 > a2, (2.20)

≡ 10b21b2 · σ(b1)σ(b2) (mod 52)

if a = 0,

(
b1b2

5

)
= −1. (2.21)
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For p = 7:

a0(7a1b1, 7
a2b2) ≡ 7a5a−1 · b21b2 · σ3(b1)σ3(b2) (mod 7a+1)

if a2 > a1, (2.22)

≡ 72a5a−1b21b2 · σ3(b1)σ3(b2) (mod 72a+1)

if a1 > a2, (2.23)

≡ 2b21b2 · σ3(b1)σ3(b2) (mod 7)

if a = 0,

(
b1b2

7

)
= 1. (2.24)

As with the coefficients c(n) of the j-function, we have no congruences for b1b2 ≡
−1 (mod p). Note that if we take a1 = 0 and b1 = 1, these congruences reduce

exactly to those of Kolberg and Aas.

3. Proof of the Theorem

3.1. Preliminary Identities

We begin by giving some propositions that will be useful in proving the theorem.

Proposition 1. If k or (2− k) ∈ {0, 4, 6, 8, 10, 14}, then

mk−1ak(m,n) = nk−1ak(n,m).

Proof. By the duality mentioned earlier, ak(m,n) = −a2−k(n,m), so we need only

prove the proposition for the case k ∈ {2, 4, 6, 8, 10, 14}. By Lewis and Zagier ([8],

chapter IV, section 2) the k − 1st derivative of f2−k,m(τ) is a weakly holomorphic

modular form on SL2(Z) of weight k, so it must be a linear combination of the

fk,m(τ). In fact, we find

1

(2πi)k−1
dk−1

dτk−1
f2−k,m(τ) = −mk−1q−m+

∞∑
n=1

nk−1a2−k(m,n)qn = −mk−1fk,m(τ).

This gives us mk−1ak(m,n) = −nk−1a2−k(m,n) = nk−1ak(n,m).

For k = 0, this gives us na0(m,n) = ma0(n,m). A version of this weight 0

equation was used by Asai, Kaneko and Ninomiya [2].

Proposition 2. For all positive integers k,∑
d|(m,n)

dkσk

(mn
d2

)
= σk(m)σk(n)

Proof. For odd k ≥ 3 the proposition follows from the application of the Hecke

operator Tm to the appropriate Eisenstein series since these series are Hecke eigen-

forms. For the general proof we proceed algebraically.
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We note first that
∑
d|(m,n) d

kσk

(mn
d2

)
is multiplicative, so without loss of gen-

erality we reduce to the case m = pa, n = pb, with a ≤ b. We rewrite the expression

as

a∑
j=0

pjkσk(pa+b−2j) =

a∑
j=0

pjk
(
p(a+b−2j+1)k − 1

pk − 1

)

=
p(b+1)k

∑a
j=0 p

(a−j)k −
∑a
j=0 p

jk

pk − 1

= σk(pa)σk(pb).

Another important identity follows from standard formulas for the action of the

Hecke operator. These give us

f0,1(τ)|T0(m) =
∑
n

 ∑
d|(m,n)

m

d
a0

(
1,
mn

d2

) qn

= q−m +

∞∑
n=1

 ∑
d|(m,n)

m

d
a0

(
1,
mn

d2

) qn

which must be a weight 0 weakly homomorphic modular form. Therefore

f0,1(τ)|T0(m) = f0,m(τ) (as noted earlier), and we have

a0(m,n) =
∑

d|(m,n)

m

d
a0

(
1,
mn

d2

)
. (3.1)

3.2. Proof of the congruences

The proofs of the congruences follow nearly identical steps for each prime. We give

the full proof for p = 2, and include corresponding intermediate results for p = 3,

5, and 7. Throughout this section, let b1 and b2 be relatively prime to p.

Proposition 3. Let a = a2 > 0, a1 = 0. Then

a0(b1, 2
ab2) ≡ −23a+83a−1b1σ7(b1)σ7(b2) (mod 23a+13).

Proof.

We note that for odd d, d−1 ≡ d7 (mod 25). We apply equation (3.1), Kolberg’s
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congruence (2.1), and then reduce by Proposition 2 in that order:

2−3a−8a0(b1, 2
ab2) = 2−3a−8

∑
d|(b1,b2)

b1
d
a0

(
1, 2a

b1 b2
d2

)

≡ −3a−1b1
∑

d|(b1,b2)

d−1σ7

(
b1b2
d2

)

≡ −3a−1b1
∑

d|(b1,b2)

d7σ7

(
b1b2
d2

)
≡ −3a−1b1σ7(b1)σ7(b2) (mod 25).

Following similar steps, we find that for p = 3,

a0(b1, 3
ab2) ≡ ∓32a+310a−1

1

b2
σ(b1)σ(b2) (mod 32a+6) if b1b2 ≡ ±1 (mod 3).

For p = 5, we use d−3 ≡ d (mod 5) to get

a0(b1, 5
ab2) ≡ −5a+13a−1b21b2σ(b1)σ(b2) (mod 5a+2).

For p = 7, we use d−3 ≡ d3 (mod 7) to get

a0(b1, 7
ab2) ≡ 7a5a−1b21b2σ3(b1)σ3(b2) (mod 7a+1).

Proposition 4. If a2 ≥ a1, then

a0(2a1b1, 2
a2b2) ≡ a0(b1, 2

a2−a1b2) (mod 23(a2−a1)+15)

Proof. By applying T0(2a1) to f0,b1 , we find that

a0(2a1b1, 2
a2b2) =

∑
d|2a1

2a1

d
a0(b1, b2

2a2+a1

d2
).

When d < 2a1 , Proposition 3 gives us

2a1

d
a0(b1, b2

2a2+a1

d2
) ≡ 0 (mod 23(a2−a1+2)+8+1),

so the previous expression reduces to a0(b1, 2
a2−a1b2) (mod 23(a2−a1)+15).

Similarly, for p = 3 we find that

a0(3a1b1, 3
a2b2) ≡ a0(b1, 3

a2−a1b2) (mod 32(a2−a1)+11).

For p = 5,

a0(5a1b1, 5
a2b2) ≡ a0(b1, 5

a2−a1b2) (mod 52(a2−a1)+6).

For p = 7,

a0(b1, 7
ab2) ≡ 7a5a−1b21b2σ3(b1)σ3(b2) (mod 7a+1).
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Propositions 3 and 4, and their counterparts for p = 3, 5, and 7, imply con-

gruences (2.11), (2.16), (2.19), and (2.22). Along with Proposition 1, these imply

congruences (2.12), (2.17), (2.20), and (2.23) respectively.

Following steps similar to those used in the proof of Proposition 3, we will now

prove congruences (2.13)-(2.15). We note that for all odd b1, b2, and d, it is true

that
b1b2
d2
≡ b1b2 (mod 23).

Proof of (2.13). Let a1 = a2 = a, and suppose b1b2 ≡ 1 (mod 23). Again, d−1 ≡
d7 (mod 25). Therefore

2−2a0(2ab1, 2
ab2) ≡ 2−2a0(b1, b2)

≡ 5 b1
∑

d|(b1,b2)

d−1σ7

(
b1b2
d2

)
≡ 5 b1σ7(b1)σ7(b2) (mod 25).

Proof of (2.14). Let a1 = a2 = a, and suppose b1b2 ≡ 3 (mod 8). Since b1b2 6≡ 1

(mod 8), b1b2 is not a square, which implies that 1
2σ

(
b1b2
d2

)
is an integer. For d

odd, d−1 ≡ d (mod 23). Therefore,

a0(2ab1, 2
ab2) ≡ a0(b1, b2)

≡ 1

2
b1

∑
d|(b1,b2)

d−1σ

(
b1b2
d2

)
≡ 1

2
b1σ(b1)σ(b2) (mod 23).

Proof of (2.15). Let a1 = a2 = a, and suppose b1b2 ≡ 5 (mod 23). Since

1
2σ

(
b1b2
d2

)
and

σ7(b1)σ7(b2)

2
are both integers, we have

2−3a0(2ab1, 2
ab2) ≡ 2−3a0(b1, b2)

≡ −3

2
b1

∑
d|(b1,b2)

d−1σ7

(
b1b2
d2

)
≡ −3

2
b1σ7(b1)σ7(b2) (mod 25).

The congruences (2.18), (2.21), and (2.24) are proven similarly, using the re-

spective versions of Propositions 3 and 4. This concludes the proof of the theorem.

4. Concluding remarks

We conclude with a few remarks about certain interesting phenomena.
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In his work for p = 7, Aas [1] makes special note of the fact that if
(n

7

)
= −1,

then nσ3(n) ≡ 0 (mod 7). With congruence (2.9), this shows that if
(n

7

)
= −1,

then the coefficient c(7an) is divisible by 7a+1. Similarly our congruences show

that if either

(
b1
7

)
or

(
b2
7

)
= −1, then a0(7a1b1, 7

a2b2) is divisible by an extra

power of 7 than is guaranteed by the Theorem 2.1 for the general case. Specif-

ically, a0(7a1b1, 7
a2b2) is divisible by 7a+1 if a2 > a1, and by 72a+1 if a1 > a2.

Additionally, if a1 = a2, and

(
b1
7

)
=

(
b2
7

)
= −1, congruence (2.23) shows that

a0(7a1b1, 7
a2b2) ≡ 0 (mod 7).

In many cases, Theorem 2.1 gives the exact power of p dividing the coefficient

a0(m,n). In several cases where the p-divisibility is not best possible, we still find

interesting results involving the expression inside the congruence. For example, if

v2(x) is the 2-adic valuation of x, we have not found any counterexamples computa-

tionally to v2 (a0(b1, 2
ab2)) = 3a+8+v2 (σ7(b1)σ7(b2)) , even when this valuation is

much greater than 3a+13. This is the divisibility suggested in (2.11), with equality

rather than congruence. If we let m = 31 and n = 762, we find

v2 (a0(31, 762)) = 3 · 1 + 8 + v2 (σ7(31)σ7(381)) = 25,

though the theorem only gives a congruence modulo 218. We find similar phenomena

when b1b2 ≡ 1 (mod 4). For instance,

v2 (a0(21, 889)) = 2 + v2 (σ7(21)σ7(889)) = 17,

although the theorem only guarantees divisibility by 28.
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