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Abstract. In his paper Traces of Singular Moduli [14], Zagier studied values of cer-
tain modular functions at imaginary quadratic points known as singular moduli. He
proved that “traces” of these algebraic integers are Fourier coefficients of certain half-
integral weight modular forms. In this paper, he obtained similar results for certain
non-holomorphic modular functions. However, he observed that these “singular moduli”
are not necessarily algebraic integers. Based on numerical examples, the “class polyno-
mials” whose roots are these singular moduli seem to have predictable denominators.
Here we explain this phenomenon and provide a sharp bound on these denominators.

1. Introduction and Statement of Results

Classically, the term singular modulus refers to a value of the modular j-invariant
at an imaginary quadratic point in the upper half plane. These are well-known to be
algebraic integers, and they play a beautiful role in the theory of complex multiplication
and explicit class field theory for imaginary quadratic fields. In [14], Zagier initiated the
study of “traces” of singular moduli. He proved that the generating function associated
to these numbers is a modular form of weight 3/2.

We say a function f(z) is modular of weight k ∈ 1
2
Z on Γ ⊆ SL2(Z) if f(z) satisfies

f

(
az + b

cz + d

)
= ε(γ)(cz + d)kf(z)

for every γ =

(
a b
c d

)
∈ Γ and z in the upper half plane H. Here ε(γ) is a certain

multiplier depending on whether k is integral or not. In general we have ε(γ)4 = 1 if
k ∈ 1

2
Z, and ε(γ) = 1 if k ∈ Z (for more on the theory of half-integral weight modular

forms, see [12]). If f(z) is modular of weight k, holomorphic on H, and meromorphic at
the cusps of Γ, we call f(z) a weakly holomorphic modular form (or if k = 0, simply a
modular function). For any k we denote the space of weakly holomorphic modular forms
of weight k on Γ = SL2(Z) by M !

k. If f(z) is bounded (resp. vanishes) at all the cusps,
we call f a holomorphic modular form (resp. a cusp form), and denote the space of all
such forms by Mk (resp. Sk).

Zagier studied the special values of modular functions evaluated at CM points. Let
QD be the set of binary positive definite integral quadratic forms
Q(x, y) = ax2 + bxy + cy2 with discriminant D = b2 − 4ac and a, b, c ∈ Z. Given such a
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Q(x, y), the associated CM point zQ is given by

zQ :=
−b+

√
D

2a
∈ H.

Matrices in SL2(Z) act on QD by Q|γ(x, y) := Q((x, y)γT ) for γ ∈ SL2(Z). If d ≡ 0, 1
(mod 4), and D is any fundamental discriminant with dD < 0, then given a modular
function F ∈M !

0, Zagier defined the twisted trace of singular moduli by

Trd,D(F ) :=
∑

Q∈QdD/Γ

w−1
Q χ(Q)F (zQ).

Here the factor wQ = 1 unless Q ∼ a(x2 + y2) or Q ∼ a(x2 + xy + y2), in which case
wQ = 2 or 3 respectively, and the genus character χ(Q) is defined by

χ(Q) := χ(a, b, c) :=

{
χD(r) if (a, b, c,D) = 1 and Q represents r, where (r,D) = 1;

0 if (a, b, c,D) > 1,

where χD is the Kronecker symbol
(
D
·

)
.

To illustrate, let j(z) be the usual modular j-invariant and consider the Hauptmodul
for SL2(Z),

J(z) := j(z)− 744 = q−1 + 196884q + 21493760q2 + . . .

(where here and throughout this paper q := e2πiz). Let η(z) be the usual Dedekind eta-
function and Ek(z) the usual weight k Eisenstein series. Then we define the weight 3/2
modular form g(z) by

g(z) := θ1(z) · E4(4z)

η(4z)6
=
∑
n≥−1

B(n)qn,

where θ1(z) :=
∑

n∈Z(−1)nqn
2
.

Theorem (Zagier [14], Theorem 1). Let d be any positive integer such that d ≡ 0, 3
(mod 4). Then

Tr−d,1 (J(z)) = −B(d).

Zagier also considered examples of trace generating functions associated to modular
forms of negative even weight k by taking the twisted trace of the non-holomorphic
modular function

(1.1) ∂f := R−k/2f

where Rk is the iterated Maass raising operator defined in §2.1. Zagier also showed that
these traces are the coefficients of certain half-integral weight modular forms.

In general, it seems that these special values or “singular moduli” for a set of primitive
quadratic forms of a fixed discriminant d form a single orbit of Galois conjugates, though
this remains to be proven in general. These special values generate ring class fields over
the imaginary quadratic field Q(

√
−d). Analogously to the classical case of j(z), we
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define the generalized Hilbert class polynomial of discriminant d for a holomorphic or
non-holomorphic modular function F (z), given by

(1.2) Hd(F ;x) :=
∏

Q∈Qd/Γ

(x− F (zQ))
1
wQ .

The degree of Hd(F, x) is the Hurwitz-Kronecker class number h(d). Note that Hd(F ;x)
is not actually always a polynomial, but if d is a negative fundamental discriminant with
|d| > 4, then Hd(F ;x) is a polynomial, and we will denote its coefficients by

(1.3) Hd(F ;x) =

h(d)∑
n=0

en;F (d)xh(d)−n.

If F (z) has integral coefficients, then e1;F (d) will be integral; however the other coefficients
may not be. For example, consider the weight −2 modular form

F2(z) :=
E4(z)E6(z)

∆
= q−1 − 240− 141444q − 85292800q2 − 238758390q3 + . . . ,

and define the weight 0 non-holomorphic derivative

K(z) := ∂F2 = R−2F2 =
E∗2(z)E4(z)E6(z) + 3E3

4(z) + 2E6(z)2

6∆(z)
,

where E∗2(z) := E2(z) − 3
π=z is the non-holomorphic Eisenstein series of weight 2. The

following table gives Hd(K;x) for the first few negative fundamental discriminants of
class number at least 3.

d Hd(K;x)

−23 x3 − 23 · 141826x2 − 3945271661
23

x− 7693330369871

−31 x3 − 31 · 1201149x2 − 61346290410
31

x+ 1143159756791823

−39 x4 − 39 · 8067588x3 + 8602826222178
39

x2 − 84029669803810035x

+95749227855890319016073
392

Note that in the examples above, both e1;F (d), the third symmetric function e3;F (d)
also always appears to be integral. Extensive calculations along these lines suggest that
these two are the only coefficients which are integral in general. We explain this phe-
nomenon and give a bound on all other denominators of the coefficients of the class
polynomials. This bound appears to be sharp in general.

Our result holds for a class of primes with possible exceptions dependent on the weight
k of the original modular form and the specific coefficient en;F (d) under consideration.
We call such primes good for the pair (k, n). The definition of a good prime relies on
the Hecke algebra acting on modular forms of certain relevant weights. If k is a negative
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even integer and n a positive integer, then we say that an integer ` is a relevant weight
for the pair (k, n) if kn ≤ ` ≤ 0 and there is no integer i, 0 ≤ i ≤ −k

2
− 1, such that

` = kn + 4i + 2. If the Hecke operator Tp does not act nilpotently on the space of cusp
forms S2−`, then we say that p is good for the weight `. If p is good for every ` relevant
for the pair (k, n), we say that p is good for the pair (k, n).

Our main result is the following.

Theorem 1.1. Let f(z) ∈ M !
k be a modular form of negative, even weight with integer

coefficients, d be a negative fundamental discriminant, d 6= −3 or −4, and let en;∂f (d) be
defined as in (1.3). If (p, d) = 1, then en;∂f (d) is p-integral. Otherwise, let

B(n, k) :=

{
−nk

4
if 4 | nk

1
4
(−nk + 2k − 2) otherwise.

Then if p is good for the pair (k, n), we have that

dB(n,k) · en;f (d)

is p-integral.

As there are no non-zero cusp forms of weight less than 12, we obtain the following
corollary with no additional conditions to check.

Corollary 1.2. For any f(z) ∈M !
−2 with integral principal part, we have that

e3;f (d) ∈ Z.

In particular, this explains the integrality pattern in the computed examples for K(z).

Remark. Although the theorem is only stated for D = 1 and d negative and primitive, it
is clear from the proof that an analogous result for arbitrary “twisted class polynomials”
holds in general, though care must be taken when d is −3 or −4 times a square.

1.1. Outline of the proof and the paper. When 4|nk, or p - d, the proof only

requires the integrality results for singular values of E6(z)/
√

∆(z), E4(z)/∆(z)
1
3 , and

E∗2(z)/∆(z)
1
6 given, for instance, in [14]. The remaining case requires additional consid-

eration.
Thanks to Newton’s identities, we may express the elementary symmetric functions in

terms of power-sums. We recall that if

ek(x1, . . . , xn) :=
∑

1≤J1<j2...≤jk≤n

xj1 . . . xjk

is the usual elementary symmetric polynomial of degree k in x1, . . . , xn and

pk(x1, . . . , xn) :=
n∑
i=1

xki
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is the kth power-sum, then Newton’s identities state that

(1.4) kek(x1, . . . , xn) =
k∑
i=1

(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn).

Thus, our problem is reduced to the of study of traces of singular moduli for powers of
∂f(z). We may decompose these powers of raises of modular forms further by using the
following theorem due to Shimura. Theorem 1.3 allows to write such functions as sums
of raises of weakly holomorphic modular forms. The statement of Theorem 1.3 requires
the use of the iterated Maass lowering operator, Ln which is defined in (2.4).

Theorem 1.3 (Shimura [13]). Suppose F is a smooth function on H which is modular of
weight k ≤ 0 and is in the kernel of LE+1. Then there exist uniquely determined modular
forms gj ∈M !

k−2j such that

F =
E∑
j=0

Rjgj.

We refer to the set of weights {k − 2j | gj 6≡ 0} in Theorem 1.3 as the decomposition
weights of F , and the minimal E such that the theorem applies as the depth of F .

This decomposition allows us to apply the work of Duke and Jenkins [5] which gen-
eralizes Zagier’s orignal paper and provides important integrality results. In particular,
Duke and Jenkins define the lifting operations ZD(f) given in (3.1) which take a modular
form f of negative even weight to forms of half-integral weight, whose coefficients are
given in terms of the traces of values of ∂f(z). Moreover they show that if f has integral
coefficients, then so does ZD(f). Applying this to each of the pieces in Theorem 1.3 gives
a bound on the denominators of en;∂f (d), although this is far from optimal. It falls short
for two reasons. Firstly, the use of the decomposition in Theorem 1.3 introduces artificial
denominators which we need to show cancel out. Secondly, certain weights which can
appear give larger denominators than in Theorem 1.1, so we need to show that they are
irrelevant.

The proof of our full result requires a generalization of the Zagier lift, ZD, defined in
(4.2), which we can apply to powers of ∂f(z) and consider the Zagier lifts of every form
in the decomposition at once. The analogous integrality result is as follows.

Theorem 1.4. Let F (z) be a non-holomorphic modular function, which may be decom-
posed as in Theorem 1.3, and let p be a prime which is good for each k in the set of

decomposition weights of F . If F (z) ∈ Z(p)

[
1

4πy

]
((q)), then there is an explicit integer

M dependent on the decomposition weights of F so that RMZD(F (z)) ∈ Z(p)

[
1

16πy

]
((q)).

In particular, if p` exactly divides n, then the coefficients of qn in p`MZD(F (z)) is p-
integral.

The formulae for the coefficients of ZD(F (z)) give bounds on the powers of primes
which can divide the denominators of the traces of F (z). These bounds are given in
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terms of the decomposition weights of F . A priori, the decomposition weights may sit
in a broad range; however when F (z) = (∂f(z))n with f(z) ∈ M !

k, we find that only
the weights which are relevant for the pair (k, n) appear, and thus can contribute to the
bound.

Theorem 1.5. Let f ∈ M !
k and consider the product F = (∂f)n. As in Theorem 1.3,

write F =
∑
∂(gj), where each gj ∈ M !

−2j. If −2m is not a relevant weight for (k, n),
we have that gm ≡ 0.

Theorem 1.5 shows that certain weights which would weaken the bound cannot appear.
Therefore these results, including the exact evaluation of the M given in theorem 1.4 in
terms of the decomposition weights, together prove Theorem 1.1. The remainder of the
paper is organized as follows. In §2 we define the Maass lowering and raising operators
and use them to give a proof of the decomposition theorem. In §3, we recall the work
of Duke-Jenkins which we will build on in §4 to prove Theorem 1.4. In §5, we introduce
the Rankin-Cohen brackets and use them to prove Theorem 1.5.

2. Operators on Maass Forms and the Spectral Decomposition

In this section we recall some of the basic differential operators on Maass forms and
prove Theorem 1.3.

2.1. Maass forms and raising and lowering operators. Maass forms are general-
izations of the modular forms previously described. We say that a function f : H → C
which is modular of weight k is a weak Maass form (or simply a Maass form) if it has
at most linear exponential growth at the cusps and is an eigenfunction of the weight k
hyperbolic Laplacian ∆k, which is defined as

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

For more on the theory of such Maass forms, see e.g. [8].
Given k ∈ 1

2
Z, we define the Maass raising operator Rk by

(2.1) Rk :=
1

2πi

∂

∂z
− k

4πy
.

This operator preserves modularity, and sends Maass forms to Maass forms. If f(z) is
modular of weight k then Rkf(z) is modular of weight k + 2. If f(z) has eigenvalue λ
with respect to ∆k, then Rkf(z) has eigenvalue λ+ k with respect to ∆k+2 (see [3]). We
also define the iterated raising operator Rd

k as the composition of d raising operators of
the appropriate weights:

Rd
k := Rk+2(d−1) ◦ · · · ◦Rk.

Whenever the weight is clear from context, we suppress the dependence on the weight
and simply write Rd. Standard formulas for the iterated raising operator (for example
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see [2, Ch. 1]) give us that

(2.2) Rd
kf(z) =

d∑
j=0

(
d
j

)
Γ(k + d)

Γ(k + d− j)

(
−1

4πy

)j (
∂

2πi∂z

)
f(z).

As in (1.1), if f ∈M !
k with k even and non-positive, we also define ∂f := R−k/2f so that

∂f is modular of weight 0.
In conjunction with the Maass raising operator, we will also need the Maass lowering

operator Lk, defined as

(2.3) Lk := −8πiy2 ∂

∂z̄
.

See [8] or [3] for more details (note that we normalize the factor of automorphy differently
than in [3]). If f is a weight k Maass form with eigenvalue λ, then Lkf is a Maass form
of weight k − 2 and eigenvalue λ− k + 2. We also define the iterated lowering operator

(2.4) Ldk = Ld := Lk−2(d−1) ◦ · · · ◦ Lk.

We choose the specific normalizations for the raising and lowering operators above to
preserve integrality in the following sense. Not all non-holomorphic modular forms are

in C((q))
[

1
4πy

]
; however for the purposes of this paper we restrict our attention to those

which are. We refer to such a non-holomorphic modular form G with integral weight

as having integral coefficients if G ∈ Z((q))
[

1
4πy

]
. If G has half-integral weight, we will

instead require that G be in Z((q))
[

1
16πy

]
. Analogously, we say that G has rational or

p-integral coefficients if G is in Q((q))
[

1
4πy

]
or Z(p)((q))

[
1

4πy

]
respectively.

With these definitions, we have that if G(z) has integral coefficients, then so does
RkG(z), as does LkG(z) if G has integral weight or 4LkG(z) if G has half-integral weight.
We also have the following facts about the Maass raising and lowering operators.

Proposition 2.1. For any complex functions f and g on H and any integer k, the
following are true.

(1) Rk−2Lk = −∆k, and Lk+2Rk = −∆k − k.
(2) Rk and Lk both satisfy the Leibniz rule; that is

Rk+`(fg) = (Rkf) · g + f · (R`g) and Lk+`(fg) = (Lkf) · g + f · (L`g).

(3) We have that Lkf = 0 if and only if f is holomorphic.

These facts imply that sums and products of raises of weakly holomorphic modular
forms must be in the kernel of some finite power of L. This allows a decomposition
for such forms as in Theorem 1.3. This theorem is originally due to Shimura (see [13]
Proposition 3.4, or [6] Section 10.1), however we give a short proof which gives explicit
components which we will need later.
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2.2. Proof of Theorem 1.3.

Proof. Since LE+1F = 0, we have that LEF is weakly holomorphic. We define the gi
recursively beginning with gE. Let

gE =
LEF

cE,E
,

and for each i with 0 ≤ i < E, let

gi :=
1

ci,i

(
LiF −

E∑
j=i+1

ci,jR
j−igj

)
,

where

ci,j :=
j!(−k + j + i)!

(j − i)!(−k + j)!
.

By assumption, k ≤ 0, so ci,j is defined for all j ≥ i. Note that each gi is modular of

weight k− 2i. By rearranging the definition of g0, we see that F =
∑E

i=0R
igi. Therefore

we need only prove that each gi is weakly holomorphic. We do so by inductively showing
that Lgi = 0 for each gi.

By hypothesis, LgE = 0. Suppose that i < E is fixed, and that gj is weakly holomorphic
for each i < j ≤ E. By construction, we have that

(2.5) LiF =
E∑
j=i

ci,jR
j−igj.

Applying the lowering operator to gi gives

Lgi =
1

ci,i

(
Li+1F −

E∑
j=i+1

ci,j(LR)Rj−i−1gj

)
.

Since gj is holomorphic, we have that Rj−i−1gj is an eigenfunction with respect to LR =
(∆k−2i−2−(k−2i−2)). A short calculation using Proposition 2.1 shows that the eigenvalue
is
(j − i)(−k + j + i+ 1). However, ci,j(j − i)(−k + j + i+ 1) = ci+1,j, so

ci,iLgi =

(
Li+1F −

E∑
j=i+1

ci+1,jR
j−i−1gj

)
= 0.

�

3. Integrality Results of Duke and Jenkins

In this section we describe the important work of Duke and Jenkins on integrality
of traces of singular moduli in [5]. In particular, their results allow us to bound the
denominators of the traces of singular moduli of each summand arising in the relevant
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case of Theorem 1.3. Following their paper, consider any f =
∑

n�−∞

a(n)qn ∈M !
2−2s with

s ∈ N. For convenience, set

ŝ :=

{
s if (−1)sD > 0

1− s otherwise.

Also let

Tr∗d,D(f) := (−1)b
ŝ−1
2
c|d|

−ŝ
2 |D|

ŝ−1
2 Trd,D((−1)s−1∂f),

where Trd,D is defined as in (1). For any fundamental discriminant D, they define the
Dth Zagier lift of f to be:

(3.1)

ZD(f) :=
∑
m>0

a(−m)ms−ŝ
∑
n|m

χD(n)nŝ−1q−
m2|D|
n2 +

1

2
L(1− s, χD)a(0) +

∑
dD<0

Tr∗d,D(f)q|d|.

The main theorem of [5] states that ZD(·) is a linear map between spaces of modular
forms, which preserves integrality of Fourier coefficients. The image of ZD is in a distin-
guished subspace of the modular forms of half-integral weight on Γ0(4) which satisfy the
Kohnen plus-space condition (see [7]). Specifically, if k is half-integral, we define M !

λ+1/2

to be the subspace of weakly holomorphic modular forms f(z) of weight λ+1/2 on Γ0(4)
which have a Fourier expansion

f(z) =
∑

n≡0 or (−1)λ (mod 4)

a(n)qn.

Assuming this notation, their theorem is as follows.

Theorem 3.1 ([5, Theorem 1]). Suppose that f ∈M !
2−2s for an integer s ≥ 2. If D is a

fundamental discriminant and ŝ = s or 1 − s such that (−1)ŝD > 0, then we have that
ZD(f) ∈M !

3/2−ŝ. Furthermore, if f has integral Fourier coefficients, so does ZD(f).

Although this theorem is only stated for D fundamental, it extends naturally to any
discriminant D by way of the Hecke algebra. This theorem builds on Zagier’s original
work for s = 1. In that case Theorem 3.1 holds, as long as the constant term of f is 0.
Note that Trd,1(1) is the Hurwitz-Kronecker class number for d, which is integral for d
fundamental and not equal to −3 or −4. Therefore for the remainder of this paper we will
assume that the constant term of each weight 0 modular function under consideration is
zero. We also note that Trd,D = TrD,d, which implies a duality between coefficients of
ZD(f) for positive and negative D.

Duke and Jenkins also give a result which we will need later relating the twisted trace
Tr∗m2D′,D(f) to other twisted traces. In particular they show the following.
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Proposition 3.2 ([5, Lemma 2]). For D and D′ fundamental discriminants with DD′ <
0 and m a positive integer, we have

(3.2) Tr∗m2D′,D(f) = (−m)s−1
∑
a·b|m

µ(a)χD′(a)χD(b)
(m
ab

)s
Tr∗

(mab)
2
D,D′

(f).

4. Proof of Theorem 1.4

The Zagier lift ZD acts only on a single weakly holomorphic modular form. We wish
to define a generalization which will give us information about the singular values of any
non-holomorphic modular function F (z) which can be decomposed by means of Theorem
1.3. The function F can be written as

(4.1) F (z) =

e1∑
j=0

∂g2j(z) +

e2∑
j=1

∂g2j−1(z)

for some non-negative integers e1 and e2 chosen minimally, where gk(z) ∈M !
−2k. Letting

D > 0 and d < 0 be discriminants, we define

(4.2) ZD(F ) :=

e1∑
j=0

(−1)1+j|D|e2+jRe1−jZD(g2j) +

e2∑
j=1

(−1)1−j|D|e2−jRe1+jZD(g2j−1),

which is a non-holomorphic modular form of weight 3
2

+ 2e1, and

Zd(F ) :=

e1∑
j=0

(−1)−j|d|e1−jRe2+jZd(g2j) +

e2∑
j=0

(−1)j|d|e1+jRe2−jZd(g2j−1),

which is a non-holomorphic modular form of weight 1
2

+ 2e2. Note that the coefficient of

q|d| in ZD(F ) and the coefficient of q|D| in Zd(F ) are both equal to

(4.3) |d|e1 |D|e2−1/2 Trd,D(F ).

Theorem 1.4 states that this must be p-integral for appropriate choices of p. Hence when
D = 1, we have bounded the denominator by |d|e1 . This bound determines the B(n, k)
of Theorem 1.1.

We will prove Theorem 1.4 by way of two propositions. In the following, we define the

principal part of a function F (z) =
∑

m�−∞

∑
n≥0

a(m,n)qm
(

1

4πy

)n
to be the polynomial

in q−1 and 1
4πy

given by
∑
m≤0

∑
n≥0

a(m,n)qm
(

1

4πy

)n
.

Proposition 4.1. Let F (z) be a non-holomorphic modular function in Q((q))
[

1
4πy

]
with

depth E and integral principal part, and let m be chosen so that then RMZD(F) has
weight at least 3/2 +E. Then RMZD(F) has integral principal part, and the coefficients
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of
(

1
4πy

)M
qn can be written in terms of sums of traces of the modular functions RtLtF

with 0 ≤ t ≤ E.

Proposition 4.2. Let F (Z) be a non-holomorphic modular function in Z((q))
[

1
4πy

]
. If

M is chosen as in Proposition 4.1, then RMZD(F ) has p-integral coefficients for any
prime p which is good for F.

Proposition 4.2 implies Theorem 1.4 since either ZD(F ) or Zd(F ) will satisfy the
hypotheses of Proposition 4.1 with M = 0.

4.1. Proof of Proposition 4.1. The proof of Proposition 4.1 involves certain tedious
combinatorial calculations. In the interest of brevity, we will omit some details. In
particular, we only give the proof for for D > 0. Although the sign of D affects several
details, a similar argument and calculations hold for D < 0, mutatis mutandis.

We wish to write ZD(F ) in terms of the traces of the non-holomorphic modular func-
tions RtLtF. If G is modular with integral weight and rational coefficients, let hj(G, z)

be the coefficient of
(

1
4πy

)j
in the expansion of G, so that

G =
E∑
j=0

hj(G; z)

(
1

4πy

)j
.

Similarly if G has half-integral weight, let h∗j(G, z) be the coefficient of
(

1
16πy

)j
in the

expansion of G, so that

G =
E∑
j=0

hj(G; z)

(
1

16πy

)j
.

If t is a non-negative integer and F has integer coefficients, then 1
t!
RtLtF has integer

coefficients, and in particular we find that

h0

(
1

j!
RjLjF ; z

)
=

(
1

2πi
· ∂
∂z

)j
hj(F ; z).

If hj(F ; z) =
∑

n�−∞ aj(n)qn, then let

ĥj(F ; z) :=

(−|D|)−j
∑
m>0

a`(−m)
∑
n|m

χD(n)nj
(m
n

)δ
q−

m2|D|
n2 +

1

2
L(−j, χD)aj(0)

+
∑
dD<0

B
(j)
d,Dq

|d|,

where d is a negative discriminant, δ =

{
0 if ` is odd

1 if ` is even,
and

B
(j)
d,D = (−1)b

j−1
2 c|d|

−j−1+δ
2 |D|

−j−δ
2 Trd,D

(
1

j!
RjLjF

)
.
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It suffices to prove the proposition withM chosen so that RMZD(F) has weight 3/2+E.
In this case, we will show that RMZD(F) is given by∑

0≤`≤E/2

(−1)1+`|D|e2+`R
bE/2c−`
3/2+2`

[
ĥ2`(F ; z)

(
1

16πy

)2`

+ ĥ2`+1(F ; z)

(
1

16πy

)2`+1
]
.

By Theorem 1.3, F (z) has a decomposition
∑E+1

s=1 R
sgs(z), where gs ∈ M !

−2s, and so
we may consider the contributions of the gs(z) independently. If s is odd, s = 2t + 1,
then Theorem 3.1 gives us that ZD(gs(z)) has weight −1/2 − 2t. We wish to show that
RsZD(gs(z)) is equal to∑

0≤`≤t

(−|D|)t+1+`Rt−`
3/2+2`

[
ĥ2`(∂gs; z)

(
1

16πy

)2`

+ ĥ2`+1(∂gs; q)

(
1

16πy

)2`+1
]
.(4.4)

Here we have factored out some of the raising operators since hj(∂gs; z) = 0 if j > s.
Using (2.2) to calculate ∂gs(z), we find that

hj(∂gs, z) =
(s+ j)!

(j)!(s− j)!

(
∂

∂z

)
gs(z)

Similarly, if we use (2.2) to calculate Rt+1+`ZD(gs(z)), we find the coefficient of
(

1
16πy

)2`+1

reduces to

(s+ 2`+ 1)!

(2`+ 1)!(s− 2`− 1)!

(
1

2πi
· ∂
∂z

)t−`
ZD(Gs(z)) = (−|D|)t+`+1ĥ2`+1(∂gs, z).

The coefficient of
(

1
16πy

)2`

is not itself (−|D|)t+`+1ĥ2`(∂gs, z), however if we take the

partial derivative 1
2πi
· ∂
∂z

of this coefficient, the result is. We now have that RsZD(gs(z))

and (4.4) must agree for powers of
(

1
16πy

)
up to 2t+ 1, and therefore these are equal.

For even s, say s = 2t,, we have that ZD(gs(z)) has weight 3/2 + 2t. After factoring
out powers of the raising operator, we wish to show that ZD(gs(z)) is equal to∑

0≤`≤t

(−|D|)`−tRt−`
3/2+2`

[
ĥ2`(∂gs, z)

(
1

16πy

)2`

+ ĥ2`+1(∂gs, z)

(
1

16πy

)2`+1
]
.(4.5)

Although (4.5) is not obviously weakly holomorphic as is ZD(gs(z)), we find that cancel-
lation occurs for all positive powers of 1

16πy
. Using (2.2), we can expand (4.5) as a sum

over powers of 1
16πy

. This process yields

∑
i,j,`,m≥0

i+j+`+m=t

(−1)j(4)i+j
(
t− `
i, j,m

)
Γ(3/2 + t+ `)

Γ(3/2 + t+ `− j)
(α(2`) + α(2`+ 1)) ,
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where

α(k) =
(s+ k)!(k + i− 1)!

(k)!(s− k)!(k − 1)!

(
1

16πy

)k+i+j

Z
(−k−i−j)
D (gs),

and by Z
(−r)
D (gs) we mean a formal anti-derivative, so that if ZD(gs) =

∑
n6=0

a(n)qn then

Z
(−r)
D (gs) =

∑
n6=0

a(n)n−rqn. This expression may be rearranged to find the coefficients

of
(

1
16πy

)n
, however the resulting expression seems to have few obvious simplifications.

Using an implementation of the Wilf-Zeilberger method [9] for Mathematica [11], we find
that this new expression is identically zero for positive values of n. For n = 0, a quick
calculation shows that we have recovered ZD(gs).

4.2. Proof of Proposition 4.2. By Proposition 4.1, we have that the principal part
of RMZD(F ) is integral. If RMZD(F ) is not entirely p-integral, take ` to be the largest
integer such that h∗`(R

MZD(F ); z) is not p-integral, and let pn exactly divide the denom-

inator. Then pn 4`

`!
L`RMZD(F ) ≡ pnh∗`(R

MZD(F ); z) (mod p). Since the principal part
of h∗`(R

MZD(F ); z) is integral, we have that pnh∗`(R
MZD(F ); z) is congruent to a cusp

form of the appropriate weight, say k. We note that k must be a decomposition weight
for ZD(F ), and therefore the corresponding weight 3−2k must be a decomposition weight
for F . Moreover, since the coefficients of h∗`(R

MZD(F ); z) are given in terms of Zagier
lifts of weakly holomorphic modular forms, (3.2) shows that this cusp form is eventually
annihilated (mod p) by the Hecke operator Tp2 . Since Tp2 acts nilpotently on the space
of cusp forms Sk, it must also act nilpotently on S2k−1, since these spaces are isomorphic
by way of the Shimura correspondence [7]. Thus p is not good for 3− 2k.

5. A Useful Vanishing Condition

In this section, we prove Theorem 1.5, which is essentially a combinatorial fact. In
particular, we use the structure of Rankin-Cohen brackets to provide a convenient basis
for expressing the combinatorics of the spectral decomposition of the product of two
forms.

5.1. Rankin-Cohen Brackets. In [4] and [10], Rankin and Cohen utilized certain poly-
nomials in derivatives of modular forms which are again modular, called the Rankin-
Cohen Brackets. Let f be a modular form of weight k, g a modular form of weight `,
and n a non-negative integer. Then the nth Rankin-Cohen bracket is defined as:

[f, g](k,`)n :=
∑
r+s=n

(−1)r
(
n+ k − 1

s

)(
n+ `− 1

r

)
f (r) · g(s).

Here f (n) :=
(

1
2πi

d
dz

)n
f . We will suppress the dependence on the weights k and ` and

write simply [f, g]n when the dependence is clear from context. The key fact is that:

(5.1) [·, ·](k,`)n : M !
k ⊗M !

` →M !
k+`+2n.
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This can be seen, for example, using the Cohen-Kuznetsov lifting to Jacobi-like forms.

5.2. The Vanishing Lemma. Using the Rankin-Cohen brackets, we are now in position
to prove Theorem 1.5. Using an inductive argument and the spectral decomposition of
Theorem 1.3, it suffices to prove the following lemma for the product of raisings of just
two forms of possibly different weights.

Lemma 5.1. Let f ∈ M !
k and g ∈ M !

` have negative even weight. Set F := ∂f · ∂g
and write F =

∑
∂(gi) for the modular forms gi defined in Theorem 1.3. Suppose m =

k + ` + 4i + 2 where 0 ≤ i ≤ −min {k,`}
2
− 1. Then if gm/2 has weight m, we have that

gm/2 ≡ 0.

Proof. In Proposition 2.3 of [1], the authors consider a similar combinatorial expansion
which is given in terms of Rankin-Cohen brackets. Using their proposition, it suffices to
prove the following (setting k = −2r, ` = −2s) whenever j < r and j is odd:

S(j) :=
s∑

m=0

(−1)(j+m) ·
(
m+r
j

)(
s
m

)(
m−r−1
r+m−j

)(−r−2s+m+j−1
m+r−j

) = 0.

Using the Wilf-Zeilberger method [9], one finds that the function S(j) satisfies the fol-
lowing recursion in the range j < r:

(2 + j)(1 + j − 2r)(1 + j − 2s)(j − 2r − 2s) · S(j + 2)

−4(1 + 2j − 2r − 2s)(3 + 2j − 2r − 2s)(j − r − s)(1 + j − r − s) · S(j) = 0.

For the base case, j = 1, we must show that gE−1 vanishes in the notation of Theorem 1.3.
A calculation shows that LE−1[(∂f) · (∂g)] is some nonzero multiple of R(f · g), so that
by Theorem 1.3, we have that gE−1 is a multiple of RgE. However gE−1 is holomorphic,
whereas RgE is not, which implies that gE−1 ≡ 0. �
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