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Abstract

The Umbral Moonshine Conjectures assert that there are infinite-dimensional graded mod-
ules, for prescribed finite groups, whose McKay-Thompson series are certain distinguished mock
modular forms. Gannon has proved this for the special case involving the largest sporadic sim-
ple Mathieu group. Here we establish the existence of the umbral moonshine modules in the
remaining 22 cases.

∗MSC2010: 11F22, 11F37.
∗The authors thank the NSF for its support. The first author also thanks the Simons Foundation (#316779), and

the third author thanks the A. G. Candler Fund.

1



1 INTRODUCTION AND STATEMENT OF RESULTS 2

1 Introduction and Statement of Results

Monstrous moonshine relates distinguished modular functions to the representation theory of the
Monster, M, the largest sporadic simple group. This theory was inspired by the famous observations
of McKay and Thompson in the late 1970s [18,51] that

196884 = 1 + 196883,

21493760 = 1 + 196883 + 21296876.

The left hand sides here are familiar as coefficients of Klein’s modular function (note q := e2πiτ ),

J(τ) =

∞∑
n=−1

c(n)qn := j(τ)− 744 = q−1 + 196884q + 21493760q2 + . . . .

The sums on the right hand sides involve the first three numbers arising as dimensions of irreducible
representations of M,

1, 196883, 21296876, 842609326, . . . , 258823477531055064045234375.

Thompson conjectured that there is a graded infinite-dimensional M-module

V \ =
∞⊕

n=−1

V \
n ,

satisfying dim(V \
n) = c(n). For g ∈M, he also suggested [50] to consider the graded-trace functions

Tg(τ) :=

∞∑
n=−1

tr(g|V \
n)qn,

now known as the McKay-Thompson series, that arise from the conjectured M-module V \. Using
the character table for M, it was observed [18,50] that the first few coefficients of each Tg(τ) coincide
with those of a generator for the function field of a discrete group Γg < SL2(R), leading Conway
and Norton [18] to their famous Monstrous Moonshine Conjecture: This is the claim that for each
g ∈M there is a specific genus zero group Γg such that Tg(τ) is the unique normalized hauptmodul
for Γg, i.e., the unique Γg-invariant holomorphic function on H which satisfies Tg(τ) = q−1 +O(q)
as =(τ)→∞.

In a series of ground-breaking works, Borcherds introduced vertex algebras [2], and generalized
Kac–Moody Lie algebras [3, 4], and used these notions to prove [5] the Monstrous Moonshine
Conjecture of Conway and Norton. He confirmed the conjecture for the module V \ constructed by
Frenkel, Lepowsky, and Meurman [30–32] in the early 1980s. These results provide much more than
the predictions of monstrous moonshine. The M-module V \ is a vertex operator algebra, one whose
automorphism group is precisely M. The construction of Frenkel, Lepowsky and Meurman can be
regarded as one of the first examples of an orbifold conformal field theory. (Cf. [23].) Here the
orbifold in question is the quotient

(
R24/Λ24

)
/(Z/2Z), of the 24-dimensional torus Λ24⊗ZR/Λ24 '

R24/Λ24 by the Kummer involution x 7→ −x, where Λ24 denotes the Leech lattice.
We refer to [24,32,35,36] for more on monstrous moonshine.
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In 2010, Eguchi, Ooguri, and Tachikawa reignited moonshine with their observation [28] that
dimensions of some representations of M24, the largest sporadic simple Mathieu group (cf. e.g.
[20, 21]), are multiplicities of superconformal algebra characters in the K3 elliptic genus. This
observation suggested a manifestation of moonshine for M24: Namely, there should be an infinite-
dimensional graded M24-module whose McKay-Thompson series are holomorphic parts of harmonic
Maass forms, the so-called mock modular forms. (See [45, 54, 55] for introductory accounts of the
theory of mock modular forms.)

Following the work of Cheng [10], Eguchi and Hikami [27], and Gaberdiel, Hohenegger, and
Volpato [33, 34], Gannon established the existence of this infinite-dimensional graded M24-module
in [37].

It is natural to seek a general mathematical and physical setting for these results. Here we
consider the mathematical setting, which develops from the close relationship between the monster
group M and the Leech lattice Λ24. Recall (cf. e.g. [20]) that the Leech lattice is even, unimodular,
and positive-definite of rank 24. It turns out that M24 is closely related to another such lattice.
Such observations led Cheng, Duncan and Harvey to further instances of moonshine within the
setting of even unimodular positive-definite lattices of rank 24. In this way they arrived at the
Umbral Moonshine Conjectures (cf. §5 of [15], §6 of [16], and §2 of [17]), predicting the existence
of 22 further, graded infinite-dimensional modules, relating certain finite groups to distinguished
mock modular forms.

To explain this prediction in more detail we recall Niemeier’s result [43] that there are 24 (up to
isomorphism) even unimodular positive-definite lattices of rank 24. The Leech lattice is the unique
one with no root vectors (i.e. lattice vectors with norm-square 2), while the other 23 have root
systems with full rank, 24. These Niemeier root systems are unions of simple simply-laced root
systems with the same Coxeter numbers, and are given explicitly as

A24
1 , A

12
2 , A

8
3, A

6
4, A

4
6, A

2
12,

A4
5D4, A

2
7D

2
5, A

3
8, A

2
9D6, A11D7E6, A15D9, A17E7, A24,

D6
4, D

4
6, D

3
8, D10E

2
7 , D

2
12, D16E8, D24, E

4
6 , E

3
8 ,

(1.1)

in terms of the standard ADE notation. (Cf. e.g. [20] or [39] for more on root systems.)
For each Niemeier root system X let NX denote the corresponding unimodular lattice, let WX

denote the (normal) subgroup of Aut(NX) generated by reflections in roots, and define the umbral
group of X by setting

GX := Aut(NX)/WX . (1.2)

(See §A.1 for explicit descriptions of the groups GX .)
Let mX denote the Coxeter number of any simple component of X. An association of dis-

tinguished 2mX -vector-valued mock modular forms HX
g (τ) = (HX

g,r(τ)) to elements g ∈ GX is
described and analyzed in [15–17].

For X = A24
1 we have GX ' M24 and mX = 2, and the functions HX

g,1(τ) are precisely the
mock modular forms assigned to elements g ∈ M24 in the works [10, 27, 33, 34] mentioned above.
Generalizing the M24 moonshine initiated by Eguchi, Ooguri and Tachikawa, we have the following
conjecture of Cheng, Duncan and Harvey (cf. §2 of [17] or §9.3 of [24]).
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Conjecture (Umbral Moonshine Modules). Let X be a Niemeier root system X and set m := mX .
There is a naturally defined bi-graded infinite-dimensional GX -module

ǨX =
⊕
r∈IX

⊕
D∈Z, D≤0,

D=r2 (mod 4m)

ǨX
r,−D/4m (1.3)

such that the vector-valued mock modular form HX
g = (HX

g,r) is a McKay-Thompson series for ǨX

related1 to the graded trace of g on ǨX by

HX
g,r(τ) = −2q−1/4mδr,1 +

∑
D∈Z, D≤0,

D=r2 (mod 4m)

tr(g|ǨX
r,−D/4m)q−D/4m (1.4)

for r ∈ IX .

In (1.3) and (1.4) the set IX ⊂ Z/2mZ is defined in the following way. If X has an A-type
component then IX := {1, 2, 3, . . . ,m− 1}. If X has no A-type component but does have a D-type
component then m = 2 mod 4, and IX := {1, 3, 5, . . . ,m/2}. The remaining cases are X = E4

6

and X = E3
8 . In the former of these, IX := {1, 4, 5}, and in the latter case IX := {1, 7}.

Remark. The functions HX
g (τ) are defined explicitly in §B.3. An alternative description in terms

of Rademacher sums is given in §B.4.

Here we prove the following theorem.

Theorem 1.1. The umbral moonshine modules exist.

Two remarks.

1) Theorem 1.1 for X = A24
1 is the main result of Gannon’s work [37].

2) The vector-valued mock modular forms HX = (HX
g,r) have “minimal” principal parts. This

minimality is analogous to the fact that the original McKay-Thompson series Tg(τ) for the Monster
are hauptmoduln, and plays an important role in our proof.

Example. Many of Ramanujan’s mock theta functions [46] are components of the vector-valued
umbral McKay-Thompson series HX

g = (HX
g,r). For example, consider the root system X = A12

2 ,
whose umbral group is a double cover 2.M12 of the sporadic simple Mathieu group M12. In terms

1In the statement of Conjecture 6.1 of [16] the function HX
g,r in (1.4) is replaced with 3HX

g,r in the case that
X = A3

8. This is now known to be an error, arising from a misspecification of some of the functions HX
g for X = A3

8.
Our treatment of the case X = A3

8 in this work reflects the corrected specification of the corresponding HX
g which is

described and discussed in detail in [17].
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of Ramanujan’s 3rd order mock theta functions

f(q) = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

φ(q) = 1 +
∞∑
n=1

qn
2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

χ(q) = 1 +

∞∑
n=1

qn
2

(1− q + q2)(1− q2 + q4) · · · (1− qn + q2n)

ω(q) =
∞∑
n=0

q2n(n+1)

(1− q)2(1− q3)2 · · · (1− q2n+1)2
,

ρ(q) =

∞∑
n=0

q2n(n+1)

(1 + q + q2)(1 + q3 + q6) · · · (1 + q2n+1 + q4n+2)
,

we have that

HX
2B,1(τ) = HX

2C,1(τ) = HX
4C,1(τ) = −2q−

1
12 · f(q2),

HX
6C,1(τ) = HX

6D,1(τ) = −2q−
1
12 · χ(q2),

HX
8C,1(τ) = HX

8D,1(τ) = −2q−
1
12 · φ(−q2),

HX
2B,2(τ) = −HX

2C,2(τ) = −4q
2
3 · ω(−q),

HX
6C,2(τ) = −HX

6D,2(τ) = 2q
2
3 · ρ(−q).

See §5.4 of [16] for more coincidences between umbral McKay-Thompson series and mock theta
functions identified by Ramanujan almost a hundred years ago.

Our proof of Theorem 1.1 involves the explicit determination of each GX -module ǨX by com-
puting the multiplicity of each irreducible component for each homogeneous subspace. It guarantees
the existence and uniqueness of a ǨX which is compatible with the representation theory of GX

and the Fourier expansions of the vector-valued mock modular forms HX
g (τ) = (HX

g,r(τ)).
At first glance our methods do not appear to shed light on any deeper algebraic properties of the

ǨX , such as might correspond to the vertex operator algebra structure on V \, or the monster Lie
algebra introduced by Borcherds in [5]. However, we do determine, and utilize, specific recursion
relations for the coefficients of the umbral McKay-Thompson series which are analogous to the
replicability properties of monstrous moonshine formulated by Conway and Norton in §8 of [18]
(cf. also [1]). More specifically, we use recent work [41] of Imamoğlu, Raum and Richter, as
generalized [42] by Mertens, to obtain such recursions. These results are based on the process of
holomorphic projection.

Theorem 1.2. For each g ∈ GX and 0 < r < m, the mock modular form HX
g,r(τ) is replicable in

the mock modular sense.

A key step in Borcherds’ proof [5] of the monstrous moonshine conjecture is the reformulation of
replicability in Lie theoretic terms. We may speculate that the mock modular replicability utilized
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in this work will ultimately admit an analogous algebraic interpretation. Such a result remains an
important goal for future work.

In the statement of Theorem 1.2, replicable means that there are explicit recursion relations
for the coefficients of the vector-valued mock modular form in question. For example, we recall the
recurrence formula for Ramanujan’s third order mock theta function f(q) =

∑∞
n=0 cf (n)qn that

was obtained recently by Imamoğlu, Raum and Richter [41]. If n ∈ Q, then let

σ1(n) :=

{∑
d|n d if n ∈ Z,

0 otherwise,

sgn+(n) :=

{
sgn(n) if n 6= 0,

1 if n = 0,

and then define
d(N, Ñ, t, t̃) := sgn+(N) · sgn+(Ñ) ·

(
|N + t| − |Ñ + t̃|

)
.

Then for positive integers n, we have that∑
m∈Z

3m2+m≤2n

(
m+

1

6

)
cf

(
n− 3

2
m2 − 1

2
m

)

=
4

3
σ(n)− 16

3
σ
(n

2

)
− 2

∑
a,b∈Z
2n=ab

d

(
N, Ñ,

1

6
,
1

6

)
,

where N := 1
6(−3a + b − 1) and Ñ := 1

6(3a + b − 1), and the sum is over integers a, b for which

N, Ñ ∈ Z. This is easily seen to be a recurrence relation for the coefficients cf (n). The replicability
formulas for all of the HX

g,r(τ) are similar (although some of these relations are slightly more
complicated and involve the coefficients of weight 2 cusp forms).

It is important to emphasize that, despite the progress which is represented by our main results,
Theorems 1.1 and 1.2, the following important question remains open in general.

Question. Is there a “natural” construction of ǨX? Is ǨX equipped with a deeper algebra structure
as in the case of the monster module V \ of Frenkel, Lepowsky and Meurman?

We remark that this question has been answered positively, recently, in one special case: A
vertex operator algebra structure underlying the umbral moonshine module ǨX for X = E3

8 has
been described explicitly in [25]. See also [14, 26], where the problem of constructing algebraic
structures that illuminate the umbral moonshine observations is addressed from a different point
of view.

The proof of Theorem 1.1 is not difficult. It is essentially a collection of tedious calculations.
We use the theory of mock modular forms and the character table for each GX (cf. §A.2) to solve
for the multiplicities of the irreducible GX -module constituents of each homogeneous subspace in
the alleged GX -module ǨX . To prove Theorem 1.1 it suffices to prove that these multiplicities
are non-negative integers. To prove Theorem 1.2 we apply recent work [42] of Mertens on the
holomorphic projection of weight 1

2 mock modular forms, which generalizes earlier work [41] of
Imamoğlu, Raum and Richter.
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In §2 we recall the facts about mock modular forms that we require, and we prove Theorem 1.2.
We prove Theorem 1.1 in §3. The appendices furnish all the data that our method requires. In
particular, the umbral groups GX are described in detail in §A, and explicit definitions for the
mock modular forms HX

g (τ) are given in §B.

2 Harmonic Maass forms and Mock modular forms

Here we recall some very basic facts about harmonic Maass forms as developed by Bruinier and
Funke [9] (see also [45]).

We begin by briefly recalling the definition of a harmonic Maass form of weight k ∈ 1
2Z and

multiplier ν (a generalization of the notion of a Nebentypus). If τ = x + iy with x and y real, we
define the weight k hyperbolic Laplacian by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
. (2.1)

Suppose Γ is a subgroup of finite index in SL2(Z) and k ∈ 1
2Z. Then a function F (τ) which is

real-analytic on the upper half of the complex plane is a harmonic Maass form of weight k on Γ
with multiplier ν if:

(a) The function F (τ) satisfies the weight k modular transformation,

F (τ)|kγ = ν(γ)F (τ)

for every matrix γ =

(
a b
c d

)
∈ Γ, where F (τ)|kγ := F (γτ)(cτ + d)−k, and if k ∈ Z + 1

2 , the

square root is taken to be the principal branch.

(b) We have that ∆kF (τ) = 0,

(c) There is a polynomial PF (q−1) and a constant c > 0 such that F (τ)− PF (e−2πiτ ) = O(e−cy)
as τ → i∞. Analogous conditions are required at each cusp of Γ.

We denote the C-vector space of harmonic Maass forms of a given weight k, group Γ and
multiplier ν by Hk(Γ, ν). If no multiplier is specified, we will take

ν0(γ) :=

( c
d

)√(−1

d

)−1
2k

,

where
(∗
d

)
is the Kronecker symbol.

2.1 Main properties

The Fourier expansion of harmonic Maass forms F (see Proposition 3.2 of [9]) splits into two
components. As before, we let q := e2πiτ .
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Lemma 2.1. If F (τ) is a harmonic Maass form of weight 2− k for Γ where 3
2 ≤ k ∈

1
2Z, then

F (τ) = F+(τ) + F−(τ),

where F+ is the holomorphic part of F , given by

F+(τ) =
∑

n�−∞
c+
F (n)qn

where the sum admits only finitely many non-zero terms with n < 0, and F− is the nonholomorphic
part, given by

F−(τ) =
∑
n<0

c−F (n)Γ(k − 1, 4πy|n|)qn.

Here Γ(s, z) is the upper incomplete gamma function.

The holomorphic part of a harmonic Maass form is called a mock modular form. We denote
the space of harmonic Maass forms of weight 2 − k for Γ and multiplier ν by Hk(Γ, ν). Similarly,
we denote the corresponding subspace of holomorphic modular forms by Mk(Γ, ν), and the space

of cusp forms by Sk(Γ, ν). The differential operator ξw := 2iyw ∂
∂τ (see [9]) defines a surjective map

ξ2−k : H2−k(Γ, ν)→ Sk(Γ, ν)

onto the space of weight k cusp forms for the same group but conjugate multiplier. The shadow
of a Maass form f(τ) ∈ H2−k(Γ, ν) is the cusp form g(τ) ∈ Sk(Γ, ν) (defined, for now, only up to
scale) such that ξ2−kf(τ) = g

||g|| , where || • || denotes the usual Petersson norm.

2.2 Holomorphic projection of weight 1
2
mock modular forms

As noted above, the modular transformations of a weight 1
2 harmonic Maass form may be simplified

by multiplying by its shadow to obtain a weight 2 nonholomorphic modular form. One can use
the theory of holomorphic projections to obtain explicit identities relating these nonholomorphic
modular forms to classical quasimodular forms. In this way, we may essentially reduce many
questions about the coefficients of weight 1

2 mock modular forms to questions about weight 2
holomorphic modular forms. The following theorem is a special case of a more general theorem due
to Mertens (cf. Theorem 6.3 of [42]). See also [41].

Theorem 2.2 (Mertens). Suppose g(τ) and h(τ) are both theta functions of weight 3
2 contained in

S 3
2
(Γ, νg) and S 3

2
(Γ, νh) respectively, with Fourier expansions

g(τ) : =
s∑
i=1

∑
n∈Z

nχi(n)qn
2
,

h(τ) :=

t∑
j=1

∑
n∈Z

nψj(n)qn
2
,
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where each χi and ψi is a Dirichlet character. Moreover, suppose h(τ) is the shadow of a weight 1
2

harmonic Maass form f(τ) ∈ H 1
2
(Γ, νh). Define the function

Df,g(τ) := 2

∞∑
r=1

∑
χi,ψj

∑
m,n∈Z+

m2−n2=r

χi(m)ψj(n)(m− n)qr.

If f(τ)g(τ) has no singularity at any cusp, then f+(τ)g(τ) + Df,g(τ) is a weight 2 quasimodular
form. In other words, it lies in the space CE2(τ) ⊕M2(Γ, νgνh), where E2(τ) is the quasimodular

Eisenstein series E2(τ) := 1− 24
∑
n≥1

nqn

1− qn
.

Two Remarks.
1) These identities give recurrence relations for the weight 1

2 mock modular form f+ in terms of
the weight 2 quasimodular form which equals f+(τ)g(τ)+Df,g(τ). The example after Theorem 1.2
for Ramanujan’s third order mock theta function f is an explicit example of such a relation.

2) Theorem 2.2 extends to vector-valued mock modular forms in a natural way.

Proof of Theorem 1.2. Fix a Niemeier lattice and its root system X, and let M = mX denote its
Coxeter number. Each HX

g,r(τ) is the holomorphic part of a weight 1
2 harmonic Maass form ĤX

g,r(τ).
To simplify the exposition in the following section, we will emphasize the case that the root system
X is of pure A-type. If the root system X is of pure A-type, the shadow function SXg,r(τ) is given

by χ̂XA
g,r SM,r(τ) (see §B.2), where

SM,r(τ) =
∑
n∈Z

m≡r (mod 2M)

n q
n2

4M ,

and χ̂XA
g,r = χXA

g or χ̄XA
g depending on the parity of r is the twisted Euler character given in the

appropriate table in §A.3, a character of GX . (If X is not of pure A-type, then the shadow function
SXg,r(τ) is a linear combination of similar functions as described in §B.2.)

Given X and g, the symbol ng|hg given in the corresponding table in §A.3 defines the modularity

for the vector-valued function (ĤX
g,r(τ)). In particular, if the shadow (SXg,r(τ)) is nonzero, and if

for γ ∈ Γ0(ng) we have that
(SXg,r(τ))|3/2γ = σg,γ(SXg,r(τ)),

then
(ĤX

g,r(τ))|1/2γ = σg,γ(ĤX
g,r(τ)).

Here, for γ ∈ Γ0(ng), we have σg,γ = νg(γ)σe,γ where νg(γ) is a multiplier which is trivial on
Γ0(nghg). This identity holds even in the case that the shadow SXg,r vanishes.

The vector-valued function (HX
g,r(τ)) has poles only at the infinite cusp of Γ0(ng), and only at the

component HX
g,r(τ) where r = 1 if X has pure A-type, or at components where r2 ≡ 1 (mod 2M)

otherwise. These poles may only have order 1
4M . This implies that the function (ĤX

g,r(τ)SXg,r(τ))
has no pole at any cusp, and is therefore a candidate for an application of Theorem 2.2.
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The modular transformation of SM,r(τ) implies that

(σe,S)2 = (σe,T )4M = I

where S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, and I is the identity matrix. Therefore SXM,r(τ), viewed as

a scalar-valued modular function, is modular on Γ(4M), and so (ĤX
g,r(τ)SXg,r(τ)) is a weight 2

nonholomorphic scalar-valued modular form for the group Γ(4M) ∩ Γ0(ng) with trivial multiplier.
Applying Theorem 2.2, we obtain a function FXg,r(τ)—call it the holomorphic projection of

ĤX
g,r(τ)SXe,r(τ)—which is a weight 2 quasimodular form on Γ(4M)∩Γ0(ng). In the case that SXg,r(τ)

is zero, we substitute SXe,r(τ) in its place to obtain a function F̃Xg,r(τ) = HX
g,r(τ)SXe,r(τ) which is a

weight 2 holomorphic scalar-valued modular form for the group Γ(4M)∩Γ0(ng) with multiplier νg
(alternatively, modular for the group Γ(4M) ∩ Γ0(nghg) with trivial multiplier).

The function FXg,r(τ) may be determined explicitly as the sum of Eisenstein series and cusp
forms on Γ(4M)∩Γ0(nghg) using the standard arguments from the theory of holomorphic modular
forms (i.e. the “first few” coefficients determine such a form). Therefore, we have the identity

FXg,r(τ) = HX
g,r(τ) · SXg,r(τ) +DX

g,r(τ), (2.2)

where the function DX
g,r(τ) is the correction term arising in Theorem 2.2. If X has pure A-type,

then

DX
g,r(τ) = (χ̂XA

g,r )2
∞∑
N=1

∑
m,n∈Z+

m2−n2=N

φr(m)φr(n)(m− n)q
N
4M , (2.3)

where

φr(`) =

{
±1 if ` ≡ ±r (mod 2M)

0 otherwise.

Suppose HX
g,r(τ) =

∞∑
n=0

AXg,r(n)qn−
D
4M where 0 < D < 4M and D ≡ r2 (mod 4M), and FXg,r(τ) =

∞∑
N=0

BX
g,r(n)qn. Then by Theorem 2.2, we find that

BX
g,r(N) =χ̂XA

g,r

∑
m∈Z

m≡r (mod 2M)

m ·AXg,r
(
N +

D −m2

4M

)
+ (χ̂XA

g,r )2
∑

m,n∈Z+

m2−n2=N

φr(m)φr(n)(m− n).

(2.4)

The function FXg,r(τ) may be found in the following manner. Using the explicit prescriptions

for HX
g,r(τ) given in §B.3 and (2.2) above, we may calculate the first several coefficients of each

component. The Eisenstein component is determined by the constant terms at cusps. Since DX
g,r(τ)

(and the corresponding correction terms at other cusps) has no constant term, these are the same as

the constant terms of ĤX
g,r(τ)SXg,r(τ), which are determined by the poles of ĤX

g,r. Call this Eisenstein
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component EXg,r(τ). The cuspidal component can be found by matching the initial coefficients of

FXg,r(τ)− EXg,r(τ).

Once the coefficients BX
g,r(n) are known, equation (2.4) provides a recursion relation which may

be used to calculate the coefficients of HX
g,r(τ). If the shadows SXg,r(τ) are zero, then we may apply

a similar procedure in order to determine F̃Xg,r(τ). For example, suppose F̃Xg,r(τ) =
∞∑
N=0

B̃X
g,r(n)qn,

and X has pure A-type. Then we find that the coefficients B̃X
g,r(N) satisfy

B̃X
g,r(N) = χ̂XA

g,r

∑
m∈Z

m≡s (mod 2M)

m ·AXg,r
(
N +

D −m2

4M

)
(2.5)

Proceeding in this way we obtain the claimed results.

3 Proof of Theorem 1.1

Here we prove Theorem 1.1. The idea is as follows. For each Niemeier root system X we begin
with the vector-valued mock modular forms (HX

g (τ)) for g ∈ GX . We use their q-expansions to
solve for the q-series whose coefficients are the alleged multiplicities of the irreducible components
of the alleged infinite-dimensional GX -module

ǨX =
⊕

r (mod 2m)

⊕
D∈Z, D≤0,

D=r2 (mod 4m)

ǨX
r,−D/4m.

These q-series turn out to be mock modular forms. The proof requires that we establish that these
mock modular forms have non-negative integer coefficients.

Proof of Theorem 1.1. As in the previous section, we fix a root system X and set M := mX , and
we emphasize the case when X is of pure A-type.

The umbral moonshine conjecture asserts that

HX
g,r(τ) =

∞∑
n=0

∑
χ

mX
χ,r(n)χ(g)qn−

r2

4M (3.1)

where the second sum is over the irreducible characters of GX . Here we have rewritten the traces
of the graded components ǨX

r,n− r2

4M

in 1.4 in terms of the values of the irreducible characters of

GX , where the mX
χ,r(n) are the corresponding multiplicities. Naturally, if such a ǨX exists, these

multiplicities must be non-negative integers for n > 0. Similarly, if the mock modular forms
HX
g,r(τ) can be expressed as in 3.1 with mX

χ,r(n) non-negative integers, then we may construct the

umbral moonshine module ǨX explicitly with ǨX
r,n−r2/4m defined as the direct sum of irreducible

components with the given multiplicities mX
χ,r(n).

Let

HX
χ,r(τ) :=

1

|GX |
∑
g

χ(g)HX
g,r(τ). (3.2)
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It turns out that the coefficients of HX
χ,r(τ) are precisely the multiplicities mX

χ,r(n) required so that
3.1 holds: if

HX
χ,r(τ) =

∞∑
n=0

mX
χ,r(n)qn−

r2

4M , (3.3)

then

HX
g,r(τ) =

∞∑
n=0

∑
χ

mX
χ,r(n)χ(g)qn−

r2

4M .

Thus the umbral moonshine conjecture is true if and only if the Fourier coefficients of HX
χ,r(τ) are

non-negative integers.
To see this fact, we recall the orthogonality of characters. For irreducible characters χi and χj ,

1

|GX |
∑
g∈GX

χi(g)χj(g) =

{
1 if χi = χj ,

0 otherwise.
(3.4)

We also have the relation for g and h ∈ GX ,

∑
χ

χi(g)χi(h) =

{
|CGX (g)| if g and h are conjugate,

0 otherwise.
(3.5)

Here |CGX (g)| is the order of the centralizer of g in GX . Since the order of the centralizer times
the order of the conjugacy class of an element is the order of the group, (3.2) and (3.5) together
imply the relation

HX
g,r(τ) =

∑
χ

χ(g)HX
χ,r(τ),

which in turn implies 3.3.
We have reduced the theorem to proving that the coefficients of certain weight 1/2 mock modular

forms are all non-negative integers. For holomorphic modular forms we may answer questions of
this type by making use of Sturm’s theorem [49] (see also Theorem 2.58 of [44]). This theorem
provides a bound B associated to a space of modular forms such that if the first B coefficients of a
modular form f(τ) are integral, then all of the coefficients of f(τ) are integral. This bound reduces
many questions about the Fourier coefficients of modular forms to finite calculations.

Sturm’s theorem relies on the finite dimensionality of certain spaces of modular forms, and
so it can not be applied directly to spaces of mock modular forms. However, by making use of
holomorphic projection we can adapt Sturm’s theorem to this setting.

Let ĤX
χ,r(τ) be defined as above. Recall that the transformation matrix for the vector-valued

function ĤX
g,r(τ)) is σg,γ , the conjugate of the transformation matrix for (SXe,r(τ)) when γ ∈

Γ0(nghg), and σg,γ is the identity for γ ∈ Γ(4M). Therefore if

NX
χ := lcm{nghg | g ∈ G,χ(g) 6= 0},

then the scalar-valued functions ĤX
χ,r(τ) are modular on Γ(4M) ∩ Γ0(NX

χ ).
Let

Aχ,r(τ) := HX
χ,r(τ)SXe,1(τ),
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and let Ãχ,r(τ) be the holomorphic projection of Aχ,r(τ). Suppose that HX
χ,r(τ) has integral coef-

ficients up to some bound B. Formulas for the shadow functions (cf. §B.2) show that the leading
coefficient of SXe,1(τ) is 1 and has integral coefficients. This implies that the function

Aχ,r(τ) := HX
χ,r(τ)SXe,1(τ)

also has integral coefficients up to the bound B. The shadow of HX
χ,r(τ) is given by

SXχ,r(τ) :=
1

|GX |
∑
g

χ(g)SXg,r(τ).

If X is pure A-type, then SXg,r(τ) = χXA
g,r SM,r(τ) = (χ′(g) + χ′′(g))SM,r(τ) for some irreducible

characters χ′ and χ′′, according to §A.3 and §B.2. Therefore,

SXχ,r(τ) =

{
SM,r(τ) if χ = χ′ or χ′′,

0 otherwise.

When X is not of pure A-type the shadow is some sum of such functions, but in every case has
integer coefficients, and so, applying Theorem 2.2 to Aχ,r(τ), we find that Ãχ,r(τ) also has integer
coefficients up to the bound B. In particular, since Ãχ,r(τ) is modular on Γ(4M) ∩ Γ0(NX

χ ), then

if B is at least the Sturm bound for this group we have that every coefficient of Ãχ,r(τ) is integral.
Since the leading coefficient of SXe,1(τ) is 1, we may reverse this argument and we have that every

coefficient of HX
χ,r(τ). Therefore, in order to check that HX

χ,r(τ) has only integer coefficients, it
suffices to check up to the Sturm bound for Γ(4M) ∩ Γ0(Nχ). These calculations were carried out
using the sage mathematical software [47].

The calculations and argument given above shows that the multiplicities mX
χ,r(n) are all integers.

To complete the proof, it suffices to check that they are also are non-negative. The proof of this
claim follows easily by modifying step-by-step the argument in Gannon’s proof of non negativity
in the M24 case [37] (i.e. X = A24

1 ). Here we describe how this is done.
Expressions for the alleged McKay-Thompson series HX

g,r(τ) in terms of Rademacher sums
and unary theta functions are given in §B.4. Exact formulas are known for all the coefficients of

Rademacher sums because they are defined by averaging the special function r
[α]
1/2(γ, τ) (see (B.114))

over cosets of a specific modular group modulo Γ∞, the subgroup of translations. Therefore,
Rademacher sums are standard Maass-Poincaré series, and as a result we have formulas for each of
their coefficients as convergent infinite sums of Kloosterman-type sums weighted by values of the
I1/2 modified Bessel function. (For example, see [8] or [53] for the general theory, and [12] for the
specific case that X = A24

1 .) More importantly, this means also that the generating function for the
multiplicities mX

χ,r(n) is a weight 1
2 harmonic Maass form, which in turn means that exact formulas

(modulo the unary theta functions) are also available in similar terms. For positive integers n, this
then means that (cf. Theorem 1.1 of [8])

mX
χ,r(n) =

∑
ρ

∑
m<0

aXρ (m)

n
1
4

∞∑
c=1

KX
ρ (m,n, c)

c
· IX

(
4π
√
|nm|
c

)
, (3.6)

where the sums are over the cusps ρ of the group Γ0(NX
g ), and finitely many explicit negative

rational numbers m. The constants aXρ (m) are essentially the coefficients which describe the gen-
erating function in terms of Maass-Poincaré series. Here I is a suitable normalization and change
of variable for the standard I1/2 modified Bessel-function.
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The Kloosterman-type sums KX
ρ (m,n, c) are well known to be related to Salié-type sums (for

example see Proposition 5 of [40]). These Salié-type sums are of the form

SXρ (m,n, c) =
∑

x (mod c)
x2≡−D(m,n) (mod c)

εXρ (m,n) · e
(
βXx

c

)
,

where εXρ (m,n) is a root of unity, −D(m,n) is a discriminant of a positive definite binary quadratic

form, and βX is a nonzero positive rational number.
These Salié sums may then be estimated using the equidistribution of CM points with discrim-

inant −D(m,n). This process was first introduced by Hooley [38], and it was first applied to the
coefficients of weight 1

2 mock modular forms by Bringmann and Ono [7]. Gannon explains how to
make effective the estimates for sums of this shape in §4 of [37], thereby reducing the proof of the
M24 case of umbral moonshine to a finite calculation. In particular, in equations (4.6-4.10) of [37]
Gannon shows how to bound coefficients of the form (3.6) in terms of the Selberg–Kloosterman
zeta function, which is bounded in turn in his proof of Theorem 3 of [37]. We follow Gannon’s
proof mutatis mutandis. We find, for each root system, that the coefficients of each multiplicity
generating function are positive beyond the 390th coefficient. Moreover, the coefficients exhibit
subexponential growth. A finite computer calculation in sage has verified the non-negativity of
the finitely many remaining coefficients.

Remark. It turns out that the estimates required for proving nonnegativity are the worst for the
M24 case considered by Gannon.
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A The Umbral Groups

In this section we present the facts about the umbral groups that we have used in establishing
the main results of this paper. We recall (from [16]) their construction in terms of Niemeier root
systems in §A.1, and we reproduce their character tables (appearing also in [16]) in §A.2. Note
that we use the abbreviations an :=

√
−n and bn := (−1 +

√
−n)/2 in the tables of §A.2.

The root system description of the umbral groups (cf. §A.1) gives rise to certain characters
called twisted Euler characters which we recall (from [16]) in §A.3. The data appearing in §A.3
plays an important role in §B.2, where we use it to describe the shadows SXg of the umbral McKay-

Thompson series HX
g explicitly.

A.1 Construction

As mentioned in §1, there are exactly 24 self-dual even positive-definite lattices of rank 24 up to
isomorphism, according to the classification of Niemeier [43] (cf. also [19, 52]). Such a lattice L is
determined up to isomorphism by its root system L2 := {α ∈ L | 〈α, α〉 = 2}. The unique example
without roots is the Leech lattice. We refer to the remaining 23 as the Niemeier lattices, and we
call a root system X a Niemeier root system if it occurs as the root system of a Niemeier lattice.

The simple components of Niemeier root systems are root systems of ADE type, and it turns
out that the simple components of a Niemeier root system X all have the same Coxeter number.
Define mX to be the Coxeter number of any simple component of X, and call this the Coxeter
number of X.

For X a Niemeier root system write NX for the corresponding Niemeier lattice. The umbral
group attached to X is defined by setting

GX := Aut(NX)/WX (A.1)

where WX is the normal subgroup of Aut(NX) generated by reflections in root vectors.
Observe that GX acts as permutations on the simple components of X. In general this action

is not faithful, so define G
X

to be the quotient of GX by its kernel. It turns out that the level of
the mock modular form HX

g attached to g ∈ GX is given by the order, denoted ng, of the image of

g in ḠX . (Cf. §A.3 for the values ng.)
The Niemeier root systems and their corresponding umbral groups are described in Table 1.

The root systems are given in terms of their simple components of ADE type. Here D10E
2
7 , for

example, means the direct sum of one copy of the D10 root system and two copies of the E7 root
system. The symbol ` is called the lambency of X, and the Coxeter number mX appears as the
first summand of `.

In the descriptions of the umbral groups GX , and their permutation group quotients ḠX , we
write M24 and M12 for the sporadic simple groups of Mathieu which act quintuply transitively on
24 and 12 points, respectively. (Cf. e.g. [21].) We write GLn(q) for the general linear group of
a vector space of dimension n over a field with q elements, and SLn(q) is the subgroup of linear
transformations with determinant 1, &c. The symbols AGL3(2) denote the affine general linear
group, obtained by adjoining translations to GL3(2). We write Dihn for the dihedral group of order
2n, and Symn denotes the symmetric group on n symbols. We use n as a shorthand for a cyclic
group of order n.
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Table 1: The Umbral Groups

X A24
1 A12

2 A8
3 A6

4 A4
5D4 A4

6 A2
7D

2
5

` 2 3 4 5 6 7 8

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4

ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22

X A3
8 A2

9D6 A11D7E6 A2
12 A15D9 A17E7 A24

` 9 10 12 13 16 18 25

GX Dih6 4 2 4 2 2 2
ḠX Sym3 2 1 2 1 1 1

X D6
4 D4

6 D3
8 D10E

2
7 D2

12 D16E8 D24

` 6+3 10+5 14+7 18+9 22+11 30+15 46+23

GX 3.Sym6 Sym4 Sym3 2 2 1 1
ḠX Sym6 Sym4 Sym3 2 2 1 1

X E4
6 E3

8

` 12+4 30+6,10,15

GX GL2(3) Sym3

ḠX PGL2(3) Sym3

We also use the notational convention of writing A.B to denote the middle term in a short exact
sequence 1 → A → A.B → B → 1. This introduces some ambiguity which is nonetheless easily
navigated in practice. For example, 2.M12 is the unique (up to isomorphism) double cover of M12

which is not 2 ×M12. The group AGL3(2) naturally embeds in GL4(2), which in turn admits a
unique (up to isomorphism) double cover 2.GL4(2) which is not a direct product. The group we
denote 2.AGL3(2) is the preimage of AGL3(2) < GL4(2) in 2.GL4(2) under the natural projection.



A THE UMBRAL GROUPS 17
A
.2

C
h
a
ra

ct
e
r
T
a
b
le
s

T
a
b

le
2:

C
h

ar
ac

te
r

ta
b

le
of
G
X
'
M

2
4
,
X

=
A

2
4

1

[g
]

F
S

1A
2A

2B
3A

3B
4A

4
B

4
C

5
A

6
A

6
B

7
A

7
B

8
A

1
0
A

1
1
A

1
2
A

1
2
B

1
4
A

1
4
B

1
5
A

1
5
B

2
1
A

2
1
B

2
3
A

2
3
B

[g
2
]

1A
1A

1A
3A

3B
2A

2A
2
B

5
A

3
A

3
B

7
A

7
B

4
B

5
A

1
1
A

6
A

6
B

7
A

7
B

1
5
A

1
5
B

2
1
A

2
1
B

2
3
A

2
3
B

[g
3
]

1A
2A

2B
1A

1A
4A

4
B

4
C

5
A

2
A

2
B

7
B

7
A

8
A

1
0
A

1
1
A

4
A

4
C

1
4
B

1
4
A

5
A

5
A

7
B

7
A

2
3
A

2
3
B

[g
5
]

1A
2A

2B
3A

3B
4A

4
B

4
C

1
A

6
A

6
B

7
B

7
A

8
A

2
B

1
1
A

1
2
A

1
2
B

1
4
B

1
4
A

3
A

3
A

2
1
B

2
1
A

2
3
B

2
3
A

[g
7
]

1A
2A

2B
3A

3B
4A

4
B

4
C

5
A

6
A

6
B

1
A

1
A

8
A

1
0
A

1
1
A

1
2
A

1
2
B

2
A

2
A

1
5
B

1
5
A

3
B

3
B

2
3
B

2
3
A

[g
1
1
]

1A
2A

2B
3A

3B
4A

4
B

4
C

5
A

6
A

6
B

7
A

7
B

8
A

1
0
A

1
A

1
2
A

1
2
B

1
4
A

1
4
B

1
5
B

1
5
A

2
1
A

2
1
B

2
3
B

2
3
A

[g
2
3
]

1A
2A

2B
3A

3B
4A

4
B

4
C

5
A

6
A

6
B

7
A

7
B

8
A

1
0
A

1
1
A

1
2
A

1
2
B

1
4
A

1
4
B

1
5
A

1
5
B

2
1
A

2
1
B

1
A

1
A

χ
1

+
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
χ
2

+
23

7
−

1
5
−

1
−

1
3
−

1
3

1
−

1
2

2
1
−

1
1
−

1
−

1
0

0
0

0
−

1
−

1
0

0

χ
3

◦
45
−

3
5

0
3
−

3
1

1
0

0
−

1
b 7

b 7
−

1
0

1
0

1
−
b 7
−
b 7

0
0

b 7
b 7
−

1
−

1

χ
4

◦
45
−

3
5

0
3
−

3
1

1
0

0
−

1
b 7

b 7
−

1
0

1
0

1
−
b 7
−
b 7

0
0

b 7
b 7
−

1
−

1

χ
5

◦
23

1
7
−

9
−

3
0
−

1
−

1
3

1
1

0
0

0
−

1
1

0
−

1
0

0
0

b 1
5
b 1

5
0

0
1

1

χ
6

◦
23

1
7
−

9
−

3
0
−

1
−

1
3

1
1

0
0

0
−

1
1

0
−

1
0

0
0

b 1
5
b 1

5
0

0
1

1
χ
7

+
25

2
28

12
9

0
4

4
0

2
1

0
0

0
0

2
−

1
1

0
0

0
−

1
−

1
0

0
−

1
−

1
χ
8

+
25

3
13
−

11
10

1
−

3
1

1
3
−

2
1

1
1
−

1
−

1
0

0
1
−

1
−

1
0

0
1

1
0

0
χ
9

+
48

3
35

3
6

0
3

3
3
−

2
2

0
0

0
−

1
−

2
−

1
0

0
0

0
1

1
0

0
0

0

χ
1
0
◦

77
0
−

14
10

5
−

7
2
−

2
−

2
0

1
1

0
0

0
0

0
−

1
1

0
0

0
0

0
0

b 2
3
b 2

3

χ
1
1
◦

77
0
−

14
10

5
−

7
2
−

2
−

2
0

1
1

0
0

0
0

0
−

1
1

0
0

0
0

0
0

b 2
3
b 2

3

χ
1
2
◦

99
0
−

18
−

10
0

3
6

2
−

2
0

0
−

1
b 7

b 7
0

0
0

0
1

b 7
b 7

0
0

b 7
b 7

1
1

χ
1
3
◦

99
0
−

18
−

10
0

3
6

2
−

2
0

0
−

1
b 7

b 7
0

0
0

0
1

b 7
b 7

0
0

b 7
b 7

1
1

χ
1
4

+
10

35
27

35
0

6
3
−

1
3

0
0

2
−

1
−

1
1

0
1

0
0
−

1
−

1
0

0
−

1
−

1
0

0

χ
1
5
◦

10
35
−

21
−

5
0
−

3
3

3
−

1
0

0
1

2b
7

2
b 7
−

1
0

1
0
−

1
0

0
0

0
−
b 7
−
b 7

0
0

χ
1
6
◦

10
35
−

21
−

5
0
−

3
3

3
−

1
0

0
1

2b
7

2
b 7
−

1
0

1
0
−

1
0

0
0

0
−
b 7
−
b 7

0
0

χ
1
7

+
12

65
49
−

15
5

8
−

7
1
−

3
0

1
0
−

2
−

2
1

0
0
−

1
0

0
0

0
0

1
1

0
0

χ
1
8

+
17

71
−

21
11

16
7

3
−

5
−

1
1

0
−

1
0

0
−

1
1

0
0
−

1
0

0
1

1
0

0
0

0
χ
1
9

+
20

24
8

24
−

1
8

8
0

0
−

1
−

1
0

1
1

0
−

1
0
−

1
0

1
1
−

1
−

1
1

1
0

0
χ
2
0

+
22

77
21
−

19
0

6
−

3
1
−

3
−

3
0

2
2

2
−

1
1

0
0

0
0

0
0

0
−

1
−

1
0

0
χ
2
1

+
33

12
48

16
0
−

6
0

0
0
−

3
0
−

2
1

1
0

1
1

0
0
−

1
−

1
0

0
1

1
0

0
χ
2
2

+
35

20
64

0
10
−

8
0

0
0

0
−

2
0
−

1
−

1
0

0
0

0
0

1
1

0
0
−

1
−

1
1

1
χ
2
3

+
53

13
49

9
−

15
0

1
−

3
−

3
3

1
0

0
0
−

1
−

1
0

1
0

0
0

0
0

0
0

0
0

χ
2
4

+
55

44
−

56
24

9
0
−

8
0

0
−

1
1

0
0

0
0
−

1
0

1
0

0
0
−

1
−

1
0

0
1

1
χ
2
5

+
57

96
−

28
36
−

9
0
−

4
4

0
1
−

1
0

0
0

0
1
−

1
−

1
0

0
0

1
1

0
0

0
0

χ
2
6

+
10

39
5
−

21
−

45
0

0
3
−

1
3

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0
−

1
−

1



A THE UMBRAL GROUPS 18
T

ab
le

3:
C

h
ar

ac
te

r
ta

b
le

of
G
X
'

2
.M

1
2
,
X

=
A

1
2

2

[g
]

F
S

1A
2
A

4A
2
B

2C
3
A

6A
3B

6B
4B

4C
5A

10
A

12
A

6C
6D

8A
8B

8C
8D

20
A

20
B

11
A

22
A

11
B

22
B

[g
2
]

1A
1
A

2A
1A

1
A

3A
3
A

3B
3B

2B
2B

5A
5A

6B
3A

3A
4B

4B
4C

4C
10

A
10

A
11

B
11

B
11

A
11

A
[g

3
]

1A
2
A

4A
2
B

2C
1
A

2A
1A

2A
4B

4C
5A

10
A

4A
2B

2C
8A

8B
8C

8D
20

A
20

B
11

A
22

A
11

B
22

B
[g

5
]

1A
2
A

4A
2
B

2C
3
A

6A
3B

6B
4B

4C
1A

2A
12

A
6C

6D
8B

8A
8D

8C
4A

4A
11

A
22

A
11

B
22

B
[g

1
1
]

1A
2
A

4A
2
B

2C
3
A

6A
3B

6B
4B

4C
5A

10
A

12
A

6C
6D

8A
8B

8C
8D

20
B

20
A

1A
2A

1A
2A

χ
1

+
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
χ

2
+

11
11
−

1
3

3
2

2
−

1
−

1
−

1
3

1
1
−

1
0

0
−

1
−

1
1

1
−

1
−

1
0

0
0

0
χ

3
+

11
11
−

1
3

3
2

2
−

1
−

1
3
−

1
1

1
−

1
0

0
1

1
−

1
−

1
−

1
−

1
0

0
0

0

χ
4

◦
16

16
4

0
0
−

2
−

2
1

1
0

0
1

1
1

0
0

0
0

0
0
−

1
−

1
b 1

1
b 1

1
b 1

1
b 1

1

χ
5

◦
16

16
4

0
0
−

2
−

2
1

1
0

0
1

1
1

0
0

0
0

0
0
−

1
−

1
b 1

1
b 1

1
b 1

1
b 1

1

χ
6

+
45

45
5
−

3
−

3
0

0
3

3
1

1
0

0
−

1
0

0
−

1
−

1
−

1
−

1
0

0
1

1
1

1
χ

7
+

54
54

6
6

6
0

0
0

0
2

2
−

1
−

1
0

0
0

0
0

0
0

1
1
−

1
−

1
−

1
−

1
χ

8
+

55
55
−

5
7

7
1

1
1

1
−

1
−

1
0

0
1

1
1
−

1
−

1
−

1
−

1
0

0
0

0
0

0
χ

9
+

55
55
−

5
−

1
−

1
1

1
1

1
3
−

1
0

0
1
−

1
−

1
−

1
−

1
1

1
0

0
0

0
0

0
χ

1
0

+
55

55
−

5
−

1
−

1
1

1
1

1
−

1
3

0
0

1
−

1
−

1
1

1
−

1
−

1
0

0
0

0
0

0
χ

1
1

+
66

66
6

2
2

3
3

0
0
−

2
−

2
1

1
0
−

1
−

1
0

0
0

0
1

1
0

0
0

0
χ

1
2

+
99

99
−

1
3

3
0

0
3

3
−

1
−

1
−

1
−

1
−

1
0

0
1

1
1

1
−

1
−

1
0

0
0

0
χ

1
3

+
1
2
0

12
0

0
−

8
−

8
3

3
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0
−

1
−

1
−

1
−

1
χ

1
4

+
1
4
4

14
4

4
0

0
0

0
−

3
−

3
0

0
−

1
−

1
1

0
0

0
0

0
0
−

1
−

1
1

1
1

1
χ

1
5

+
1
7
6

17
6
−

4
0

0
−

4
−

4
−

1
−

1
0

0
1

1
−

1
0

0
0

0
0

0
1

1
0

0
0

0
χ

1
6
◦

10
−

10
0
−

2
2

1
−

1
−

2
2

0
0

0
0

0
1
−

1
a

2
a

2
a

2
a

2
0

0
−

1
1
−

1
1

χ
1
7
◦

10
−

10
0
−

2
2

1
−

1
−

2
2

0
0

0
0

0
1
−

1
a

2
a

2
a

2
a

2
0

0
−

1
1
−

1
1

χ
1
8

+
12
−

12
0

4
−

4
3
−

3
0

0
0

0
2
−

2
0

1
−

1
0

0
0

0
0

0
1
−

1
1
−

1
χ

1
9
−

32
−

32
0

0
0
−

4
4

2
−

2
0

0
2
−

2
0

0
0

0
0

0
0

0
0
−

1
1
−

1
1

χ
2
0
◦

44
−

44
0

4
−

4
−

1
1

2
−

2
0

0
−

1
1

0
1
−

1
0

0
0

0
a

5
a

5
0

0
0

0
χ

2
1
◦

44
−

44
0

4
−

4
−

1
1

2
−

2
0

0
−

1
1

0
1
−

1
0

0
0

0
a

5
a

5
0

0
0

0
χ

2
2
◦

1
1
0
−

1
1
0

0
−

6
6

2
−

2
2
−

2
0

0
0

0
0

0
0
a

2
a

2
a

2
a

2
0

0
0

0
0

0
χ

2
3
◦

1
1
0
−

1
1
0

0
−

6
6

2
−

2
2
−

2
0

0
0

0
0

0
0
a

2
a

2
a

2
a

2
0

0
0

0
0

0
χ

2
4

+
1
2
0
−

1
2
0

0
8
−

8
3
−

3
0

0
0

0
0

0
0
−

1
1

0
0

0
0

0
0
−

1
1
−

1
1

χ
2
5
◦

1
6
0
−

1
6
0

0
0

0
−

2
2
−

2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
−
b 1

1
b 1

1
−
b 1

1
b 1

1

χ
2
6
◦

1
6
0
−

1
6
0

0
0

0
−

2
2
−

2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
−
b 1

1
b 1

1
−
b 1

1
b 1

1



A THE UMBRAL GROUPS 19

Table 4: Character table of GX ' 2.AGL3(2), X = A8
3

[g] FS 1A 2A 2B 4A 4B 2C 3A 6A 6B 6C 8A 4C 7A 14A 7B 14B

[g2] 1A 1A 1A 2A 2B 1A 3A 3A 3A 3A 4A 2C 7A 7A 7B 7B
[g3] 1A 2A 2B 4A 4B 2C 1A 2A 2B 2B 8A 4C 7B 14B 7A 14A
[g7] 1A 2A 2B 4A 4B 2C 3A 6A 6B 6C 8A 4C 1A 2A 1A 2A

χ1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 ◦ 3 3 3 −1 −1 −1 0 0 0 0 1 1 b7 b7 b7 b7
χ3 ◦ 3 3 3 −1 −1 −1 0 0 0 0 1 1 b7 b7 b7 b7
χ4 + 6 6 6 2 2 2 0 0 0 0 0 0 −1 −1 −1 −1
χ5 + 7 7 7 −1 −1 −1 1 1 1 1 −1 −1 0 0 0 0
χ6 + 8 8 8 0 0 0 −1 −1 −1 −1 0 0 1 1 1 1
χ7 + 7 7 −1 3 −1 −1 1 1 −1 −1 1 −1 0 0 0 0
χ8 + 7 7 −1 −1 −1 3 1 1 −1 −1 −1 1 0 0 0 0
χ9 + 14 14 −2 2 −2 2 −1 −1 1 1 0 0 0 0 0 0
χ10 + 21 21 −3 1 1 −3 0 0 0 0 −1 1 0 0 0 0
χ11 + 21 21 −3 −3 1 1 0 0 0 0 1 −1 0 0 0 0
χ12 + 8 −8 0 0 0 0 2 −2 0 0 0 0 1 −1 1 −1
χ13 ◦ 8 −8 0 0 0 0 −1 1 a3 a3 0 0 1 −1 1 −1
χ14 ◦ 8 −8 0 0 0 0 −1 1 a3 a3 0 0 1 −1 1 −1

χ15 ◦ 24 −24 0 0 0 0 0 0 0 0 0 0 b7 −b7 b7 −b7
χ16 ◦ 24 −24 0 0 0 0 0 0 0 0 0 0 b7 −b7 b7 −b7

Table 5: Character table of GX ' GL2(5)/2, X = A6
4

[g] FS 1A 2A 2B 2C 3A 6A 5A 10A 4A 4B 4C 4D 12A 12B

[g2] 1A 1A 1A 1A 3A 3A 5A 5A 2A 2A 2C 2C 6A 6A
[g3] 1A 2A 2B 2C 1A 2A 5A 10A 4B 4A 4D 4C 4B 4A
[g5] 1A 2A 2B 2C 3A 6A 1A 2A 4A 4B 4C 4D 12A 12B

χ1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 + 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
χ3 + 4 4 0 0 1 1 −1 −1 2 2 0 0 −1 −1
χ4 + 4 4 0 0 1 1 −1 −1 −2 −2 0 0 1 1
χ5 + 5 5 1 1 −1 −1 0 0 1 1 −1 −1 1 1
χ6 + 5 5 1 1 −1 −1 0 0 −1 −1 1 1 −1 −1
χ7 + 6 6 −2 −2 0 0 1 1 0 0 0 0 0 0
χ8 ◦ 1 −1 1 −1 1 −1 1 −1 a1 −a1 a1 −a1 a1 −a1
χ9 ◦ 1 −1 1 −1 1 −1 1 −1 −a1 a1 −a1 a1 −a1 a1
χ10 ◦ 4 −4 0 0 1 −1 −1 1 2a1 −2a1 0 0 −a1 a1
χ11 ◦ 4 −4 0 0 1 −1 −1 1 −2a1 2a1 0 0 a1 −a1
χ12 ◦ 5 −5 1 −1 −1 1 0 0 a1 −a1 −a1 a1 a1 −a1
χ13 ◦ 5 −5 1 −1 −1 1 0 0 −a1 a1 a1 −a1 −a1 a1
χ14 + 6 −6 −2 2 0 0 1 −1 0 0 0 0 0 0
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Table 6: Character table of GX ' GL2(3), X ∈ {A4
5D4, E

4
6}

[g] FS 1A 2A 2B 4A 3A 6A 8A 8B

[g2] 1A 1A 1A 2A 3A 3A 4A 4A
[g3] 1A 2A 2B 4A 1A 2A 8A 8B

χ1 + 1 1 1 1 1 1 1 1
χ2 + 1 1 −1 1 1 1 −1 −1
χ3 + 2 2 0 2 −1 −1 0 0
χ4 + 3 3 −1 −1 0 0 1 1
χ5 + 3 3 1 −1 0 0 −1 −1
χ6 ◦ 2 −2 0 0 −1 1 a2 a2

χ7 ◦ 2 −2 0 0 −1 1 a2 a2

χ8 + 4 −4 0 0 1 −1 0 0

Table 7: Character table of GX ' 3.Sym6, X = D6
4

[g] FS 1A 3A 2A 6A 3B 3C 4A 12A 5A 15A 15B 2B 2C 4B 6B 6C

[g2] 1A 3A 1A 3A 3B 3C 2A 6A 5A 15A 15B 1A 1A 2A 3B 3C
[g3] 1A 1A 2A 2A 1A 1A 4A 4A 5A 5A 5A 2B 2C 4B 2B 2C
[g5] 1A 3A 2A 6A 3B 3C 4A 12A 1A 3A 3A 2B 2C 4B 6B 6C

χ1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 + 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1
χ3 + 5 5 1 1 2 −1 −1 −1 0 0 0 3 −1 1 0 −1
χ4 + 5 5 1 1 2 −1 −1 −1 0 0 0 −3 1 −1 0 1
χ5 + 5 5 1 1 −1 2 −1 −1 0 0 0 −1 3 1 −1 0
χ6 + 5 5 1 1 −1 2 −1 −1 0 0 0 1 −3 −1 1 0
χ7 + 16 16 0 0 −2 −2 0 0 1 1 1 0 0 0 0 0
χ8 + 9 9 1 1 0 0 1 1 −1 −1 −1 3 3 −1 0 0
χ9 + 9 9 1 1 0 0 1 1 −1 −1 −1 −3 −3 1 0 0
χ10 + 10 10 −2 −2 1 1 0 0 0 0 0 2 −2 0 −1 1
χ11 + 10 10 −2 −2 1 1 0 0 0 0 0 −2 2 0 1 −1

χ12 ◦ 6 −3 −2 1 0 0 2 −1 1 b15 b15 0 0 0 0 0

χ13 ◦ 6 −3 −2 1 0 0 2 −1 1 b15 b15 0 0 0 0 0
χ14 + 12 −6 4 −2 0 0 0 0 2 −1 −1 0 0 0 0 0
χ15 + 18 −9 2 −1 0 0 2 −1 −2 1 1 0 0 0 0 0
χ16 + 30 −15 −2 1 0 0 −2 1 0 0 0 0 0 0 0 0
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Table 8: Character table of GX ' SL2(3), X = A4
6

[g] FS 1A 2A 4A 3A 6A 3B 6B

[g2] 1A 1A 2A 3B 3A 3A 3B
[g3] 1A 2A 4A 1A 2A 1A 2A

χ1 + 1 1 1 1 1 1 1

χ2 ◦ 1 1 1 b3 b3 b3 b3
χ3 ◦ 1 1 1 b3 b3 b3 b3
χ4 + 3 3 −1 0 0 0 0
χ5 − 2 −2 0 −1 1 −1 1

χ6 ◦ 2 −2 0 −b3 b3 −b3 b3
χ7 ◦ 2 −2 0 −b3 b3 −b3 b3

Table 9: Character table of GX ' Dih4, X = A2
7D

2
5

[g] FS 1A 2A 2B 2C 4A

[g2] 1A 1A 1A 1A 2A

χ1 + 1 1 1 1 1
χ2 + 1 1 −1 −1 1
χ3 + 1 1 −1 1 −1
χ4 + 1 1 1 −1 −1
χ5 + 2 −2 0 0 0

Table 10: Character table of GX ' Dih6, X = A3
8

[g] FS 1A 2A 2B 2C 3A 6A

[g2] 1A 1A 1A 1A 3A 3A
[g3] 1A 2A 2B 2C 1A 2A

χ1 + 1 1 1 1 1 1
χ2 + 1 1 −1 −1 1 1
χ3 + 2 2 0 0 −1 −1
χ4 + 1 −1 −1 1 1 −1
χ5 + 1 −1 1 −1 1 −1
χ6 + 2 −2 0 0 −1 1
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Table 11: Character table of GX ' 4, for X ∈ {A2
9D6, A

2
12}

[g] FS 1A 2A 4A 4B

[g2] 1A 1A 2A 2A

χ1 + 1 1 1 1
χ2 + 1 1 −1 −1
χ3 ◦ 1 −1 a1 a1

χ4 ◦ 1 −1 a1 a1

Table 12: Character table of GX ' PGL2(3) ' Sym4, X = D4
6

[g] FS 1A 2A 3A 2B 4A

[g2] 1A 1A 3A 1A 2A
[g3] 1A 2A 1A 2B 4A

χ1 + 1 1 1 1 1
χ2 + 1 1 1 −1 −1
χ3 + 2 2 −1 0 0
χ4 + 3 −1 0 1 −1
χ5 + 3 −1 0 −1 1

Table 13: Character table of GX ' 2, for X ∈ {A11D7E6, A15D9, A17E7, A24, D10E
2
7 , D

2
12}

[g] FS 1A 2A

[g2] 1A 1A

χ1 + 1 1
χ2 + 1 −1

Table 14: Character table of GX ' Sym3, X ∈ {D3
8, E

3
8}

[g] FS 1A 2A 3A

[g2] 1A 1A 3A
[g3] 1A 2A 1A

χ1 + 1 1 1
χ2 + 1 −1 1
χ3 + 2 0 −1
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A.3 Twisted Euler Characters

In this section we reproduce certain characters—the twisted Euler characters—which are attached
to each group GX , via its action on the root system X. (Their construction is described in detail
in §2.4 of [16].)

To interpret the tables, write XA for the (possibly empty) union of type A components of
X, and interpret XD and XE similarly, so that if m = mX Then X = Adm−1 for some d, and
X = XA ∪ XD ∪ XE , for example. Then g 7→ χ̄XA

g denotes the character of the permutation

representation attached to the action of ḠX on the simple components of XA. The characters
g 7→ χ̄XD

g and g 7→ χ̄XE
g are defined similarly. The characters χXA

g , χXD
g , χXE

g and χ̌XD
g incorporate

outer automorphisms of simple root systems induced by the action GX on X. We refer to §2.4
of [16] for full details of the construction. For the purposes of this work, it suffices to have the
explicit descriptions in the tables in this section. The twisted Euler characters presented here will
be used to specify the umbral shadow functions in §B.2.

The twisted Euler character tables also attach integers ng and hg to each g ∈ GX . By definition,
ng is the order of the image of g ∈ GX in ḠX (cf. §A.1). The integer hg may be defined by setting
hg := Ng/ng where Ng is the product of the shortest and longest cycle lengths appearing in the
cycle shape attached to g by the action of GX on a (suitable) set of simple roots for X.

Table 15: Twisted Euler characters at ` = 2, X = A24
1

[g] 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B

ng|hg 1|1 2|1 2|2 3|1 3|3 4|2 4|1 4|4 5|1 6|1 6|6

χ̄XA
g 24 8 0 6 0 0 4 0 4 2 0

[g] 7AB 8A 10A 11A 12A 12B 14AB 15AB 21AB 23AB

ng|hg 7|1 8|1 10|2 11|1 12|2 12|12 14|1 15|1 21|3 23|1

χ̄XA
g 3 2 0 2 0 0 1 1 0 1

Table 16: Twisted Euler characters at ` = 3, X = A12
2

[g] 1A 2A 4A 2B 2C 3A 6A 3B 6B 4B 4C 5A 10A 12A 6C 6D 8AB 8CD 20AB 11AB 22AB

ng|hg 1|1 1|4 2|8 2|1 2|2 3|1 3|4 3|3 3|12 4|2 4|1 5|1 5|4 6|24 6|1 6|2 8|4 8|1 10|8 11|1 11|4

χ̄XA
g 12 12 0 4 4 3 3 0 0 0 4 2 2 0 1 1 0 2 0 1 1

χXA
g 12−12 0 4−4 3−3 0 0 0 0 2 −2 0 1−1 0 0 0 1 −1
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Table 17: Twisted Euler characters at ` = 4, X = A8
3

[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

ng|hg 1|1 1|2 2|2 2|4 4|4 2|1 3|1 3|2 6|2 4|8 4|1 7|1 7|2

χ̄XA
g 8 8 0 0 0 4 2 2 0 0 2 1 1

χXA
g 8 −8 0 0 0 0 2 −2 0 0 0 1 −1

Table 18: Twisted Euler characters at ` = 5, X = A6
4

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

ng|hg 1|1 1|4 2|2 2|1 3|3 3|12 5|1 5|4 2|8 4|1 6|24

χ̄XA
g 6 6 2 2 0 0 1 1 0 2 0

χXA
g 6 −6 −2 2 0 0 1 −1 0 0 0

Table 19: Twisted Euler characters at ` = 6, X = A4
5D4

[g] 1A 2A 2B 4A 3A 6A 8AB

ng|hg 1|1 1|2 2|1 2|2 3|1 3|2 4|2

χ̄XA
g 4 4 2 0 1 1 0

χXA
g 4 −4 0 0 1 −1 0

χ̄XD
g 1 1 1 1 1 1 1

χXD
g 1 1 −1 1 1 1 −1

χ̌XD
g 2 2 0 2 −1 −1 0

Table 20: Twisted Euler characters at ` = 6 + 3, X = D6
4

[g] 1A 3A 2A 6A 3B 6C 4A 12A 5A 15AB 2B 2C 4B 6B 6C

ng|hg 1|1 1|3 2|1 2|3 3|1 3|3 4|2 4|6 5|1 5|3 2|1 2|2 4|1 6|1 6|6

χ̄XD
g 6 6 2 2 3 0 0 0 1 1 4 0 2 1 0

χXD
g 6 6 2 2 3 0 0 0 1 1 −4 0 −2 −1 0

χ̌XD
g 12 −6 4 −2 0 0 0 0 2 −1 0 0 0 0 0
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Table 21: Twisted Euler characters at ` = 7, X = A4
6

[g] 1A 2A 4A 3AB 6AB

ng|hg 1|1 1|4 2|8 3|1 3|4

χ̄XA
g 4 4 0 1 1

χXA
g 4 -4 0 1 -1

Table 22: Twisted Euler characters at ` = 8, X = A2
7D

2
5

[g] 1A 2A 2B 2C 4A

ng|hg 1|1 1|2 2|1 2|1 2|4

χ̄XA
g 2 2 0 2 0

χXA
g 2 -2 0 0 0

χ̄XD
g 2 2 2 0 0

χXD
g 2 -2 0 0 0

Table 23: Twisted Euler characters at ` = 9, X = A3
8

[g] 1A 2A 2B 2C 3A 6A

ng|hg 1|1 1|4 2|1 2|2 3|3 3|12

χ̄XA
g 3 3 1 1 0 0

χXA
g 3 -3 1 -1 0 0

Table 24: Twisted Euler characters at ` = 10, X = A2
9D6

[g] 1A 2A 4AB

ng|hg 1|1 1|2 2|2

χ̄XA
g 2 2 0

χXA
g 2 -2 0

χ̄XD
g 1 1 1

χXD
g 1 1 −1
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Table 25: Twisted Euler characters at ` = 10 + 5, X = D4
6

[g] 1A 2A 3A 2B 4A

ng|hg 1|1 2|2 3|1 2|1 4|4

χ̄XD
g 4 0 1 2 0

χXD
g 4 0 1 −2 0

Table 26: Twisted Euler characters at ` = 12, X = A11D7E6

[g] 1A 2A

ng|hg 1|1 1|2

χ̄XA
g 1 1

χXA
g 1 −1

χ̄XD
g 1 1

χXD
g 1 −1

χ̄XE
g 1 1

χXE
g 1 −1

Table 27: Twisted Euler characters at ` = 12 + 4, X = E4
6

[g] 1A 2A 2B 4A 3A 6A 8AB

ng|hg 1|1 1|2 2|1 2|4 3|1 3|2 4|8

χ̄XE
g 4 4 2 0 1 1 0

χXE
g 4 −4 0 0 1 −1 0

Table 28: Twisted Euler characters at ` = 13, X = A2
12

[g] 1A 2A 4AB

ng|hg 1|1 1|4 2|8

χ̄XA
g 2 2 0

χXA
g 2 -2 0
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Table 29: Twisted Euler characters at ` = 14 + 7, X = D3
8

[g] 1A 2A 3A

ng|hg 1|1 2|1 3|3

χ̄XD
g 3 1 0

χXD
g 3 1 0

Table 30: Twisted Euler characters at ` = 16, X = A15D9

[g] 1A 2A

ng|hg 1|1 1|2

χ̄XA
g 1 1

χXA
g 1 −1

χ̄XD
g 1 1

χXD
g 1 −1

Table 31: Twisted Euler characters at ` = 18, X = A17E7

[g] 1A 2A

ng|hg 1|1 1|2

χ̄XA
g 1 1

χXA
g 1 −1

χ̄XE
g 1 1

Table 32: Twisted Euler characters at ` = 18 + 9, X = D10E
2
7

[g] 1A 2A

ng|hg 1|1 2|1

χ̄XD
g 1 1

χXD
g 1 −1

χ̄XE
g 2 0
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Table 33: Twisted Euler characters at ` = 22 + 11, X = D2
12

[g] 1A 2A

ng|hg 1|1 2|2

χ̄XD
g 2 0

χXD
g 2 0

Table 34: Twisted Euler characters at ` = 25, X = A24

[g] 1A 2A

ng|hg 1|1 1|4

χ̄XA
g 1 1

χXA
g 1 −1

Table 35: Twisted Euler characters at ` = 30 + 6, 10, 15, X = E3
8

[g] 1A 2A 3A

ng|hg 1|1 2|1 3|3

χ̄XE
g 3 1 0
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B The Umbral McKay-Thompson Series

In this section we describe the umbral McKay-Thompson series in complete detail. In particular,
we present explicit formulas for all the McKay-Thompson series attached to elements of the umbral
groups by umbral moonshine in §B.3. Most of these expressions appeared first in [15,16], but some
appear for the first time in this work.

In order to facilitate explicit formulations we recall certain standard functions in §B.1. We
then, using the twisted Euler characters of §A.3, explicitly describe the shadow functions of umbral
moonshine in §B.2. The umbral McKay–Thompson series defined in §B.3 may also be described in
terms of Rademacher sums, according to the results of [17]. We present this description in §B.4.

B.1 Special Functions

Throughout this section we assume q := e2πiτ , and u := e2πiz, where τ, z ∈ C with Im τ > 0. The
Dedekind eta function is η(τ) := q1/24

∏
n>0(1− qn), where . Write ΛM (τ) for the function

ΛM (τ) := Mq
d

dq

(
log

η(Mτ)

η(τ)

)
=
M(M − 1)

24
+M

∑
k>0

∑
d|k

d
(
qk −MqMk

)
,

which is a modular form of weight two for Γ0(N) if M |N .
Define the Jacobi theta function θ1(τ, z) by setting

θ1(τ, z) := iq1/8u−1/2
∑
n∈Z

(−1)nunqn(n−1)/2. (B.1)

According to the Jacobi triple product identity we have

θ1(τ, z) = −iq1/8u1/2
∏
n>0

(1− u−1qn−1)(1− uqn)(1− qn). (B.2)

The other Jacobi theta functions are

θ2(τ, z) := q1/8u1/2
∏
n>0

(1 + u−1qn−1)(1 + uqn)(1− qn),

θ3(τ, z) :=
∏
n>0

(1 + u−1qn−1/2)(1 + uqn−1/2)(1− qn),

θ4(τ, z) :=
∏
n>0

(1− u−1qn−1/2)(1− uqn−1/2)(1− qn).

(B.3)

Define Ψ1,1 and Ψ1,−1/2 by setting

Ψ1,1(τ, z) := −iθ1(τ, 2z)η(τ)3

θ1(τ, z)2
,

Ψ1,−1/2(τ, z) := −i η(τ)3

θ1(τ, z)
.

(B.4)

These are meromorphic Jacobi forms of weight one, with indexes 1 and −1/2, respectively. Here,
the term meromorphic refers to the presence of simple poles in the functions z 7→ Ψ1,∗(τ, z), for
fixed τ ∈ H, at lattice points z ∈ Zτ + Z. (Cf. §8 of [22].)
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From §5 of [29] we recall the index m theta functions, for m ∈ Z, defined by setting

θm,r(τ, z) :=
∑
k∈Z

u2mk+rq(2mk+r)2/4m, (B.5)

where r ∈ Z. Evidently, θm,r only depends on r mod 2m. We set Sm,r(τ) := 1
2πi ∂zθm,r(τ, z)|z=0,

so that

Sm,r(τ) =
∑
k∈Z

(2mk + r)q(2mk+r)2/4m. (B.6)

For a m a positive integer define

µm,0(τ, z) =
∑
k∈Z

u2kmqmk
2 uqk + 1

uqk − 1
=
u+ 1

u− 1
+O(q), (B.7)

and observe that we recover Ψ1,1 upon specializing (B.7) to m = 1. Observe also that

µm,0(τ, z + 1/2) =
∑
k∈Z

u2kmqmk
2 uqk − 1

uqk + 1
=
u− 1

u+ 1
+O(q). (B.8)

Define the even and odd parts of µm,0 by setting

µkm,0(τ, z) :=
1

2
(µm,0(τ, z) + (−1)kµm,0(τ, z + 1/2)) (B.9)

for k mod 2.
For m, r ∈ Z + 1

2 with m > 0 define half-integral index theta functions

θm,r(τ, z) :=
∑
k∈Z

e(mk + r/2)u2mk+rq(2mk+r)2/4m, (B.10)

and define also Sm,r(τ) := 1
2πi∂zθm,r(τ, z)|z=0, so that

Sm,r(τ) =
∑
k∈Z

e(mk + r/2)(2mk + r)q(2mk+r)2/4m. (B.11)

As in the integral index case, θm,r depends only on r mod 2m. We recover −θ1 upon specializing
θm,r to m = r = 1/2.

For m ∈ Z + 1/2, m > 0, define

µm,0(τ, z) := i
∑
k∈Z

(−1)ku2mk+1/2qmk
2+k/2 1

1− uqk
=
−iu1/2

y − 1
+O(q). (B.12)

Given α ∈ Q write [α] for the operator on q-series (in rational, possibility negative powers of q)
that eliminates exponents not contained in Z + α, so that if f =

∑
β∈Q c(β)qβ then

[α]f :=
∑
n∈Z

c(n+ α)qn+α (B.13)
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B.2 Shadows

Let X be a Niemeier root system and let m = mX be the Coxeter number of X. For g ∈ GX we
define the associated shadow function SXg = (SXg,r) by setting

SXg := SXA
g + SXD

g + SXE
g (B.14)

where the SXA
g , &c., are defined in the following way, in terms of the twisted Euler characters χXA

g ,
&c. given in §A.3, and the unary theta series Sm,r (cf. (B.6)).

Note that if m = mX then SXg,r = SXg,r+2m = −SXg,−r for all g ∈ GX , so we need specify the SXA
g,r ,

&c., only for 0 < r < m.
If XA = ∅ then SXA

g := 0. Otherwise, we define SXA
g,r for 0 < r < m by setting

SXA
g,r :=

{
χXA
g Sm,r if r = 0 mod 2,

χ̄XA
g Sm,r if r = 1 mod 2.

(B.15)

If XD = ∅ then SXD
g := 0. If XD 6= ∅ then m is even and m ≥ 6. If m = 6 then set

SXD
g,r :=


0 if r = 0 mod 2,

χ̄XD
g S6,r + χXD

g S6,6−r if r = 1, 5 mod 6,

χ̌XD
g S6,r if r = 3 mod 6.

(B.16)

If m > 6 and m = 2 mod 4 then set

SXD
g,r :=

{
0 if r = 0 mod 2,

χ̄XD
g Sm,r + χXD

g Sm,m−r if r = 1 mod 2.
(B.17)

If m > 6 and m = 0 mod 4 then set

SXD
g,r :=

{
χXD
g Sm,m−r if r = 0 mod 2,

χ̄XD
g Sm,r if r = 1 mod 2.

(B.18)

If XE = ∅ then SXE
g := 0. Otherwise, m is 12 or 18 or 30. In case m = 12 define SXE

g,r for
0 < r < 12 by setting

SXE
g,r =


χ̄XE
g (S12,1 + S12,7) if r ∈ {1, 7},
χ̄XE
g (S12,5 + S12,11) if r ∈ {5, 11},
χXE
g (S12,4 + S12,8) if r ∈ {4, 8},

0 else.

(B.19)

In case m = 18 define SXE
g,r for 0 < r < 18 by setting

SXE
g,r =


χ̄XE
g (S18,r + S18,18−r) if r ∈ {1, 5, 7, 11, 13, 17},
χ̄XE
g S18,9 if r ∈ {3, 15},
χ̄XE
g (S18,3 + S18,9 + S18,15) if r = 9,

0 else.

(B.20)
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In case m = 30 define SXE
g,r for 0 < r < 30 by setting

SXE
g,r =


χ̄XE
g (S30,1 + S30,11 + S30,19 + S30,29) if r ∈ {1, 11, 19, 29},
χ̄XE
g (S30,7 + S30,13 + S30,17 + S30,23) if r ∈ {7, 13, 17, 23},

0 else.

(B.21)

B.3 Explicit Prescriptions

Here we give explicit expressions for all the umbral McKay-Thompson series HX
g . Most of these

appeared first in [15,16]. The expressions in §§B.3.3, B.3.4, B.3.7, B.3.14 are taken from [26]. The
expressions in §§B.3.11, B.3.15, B.3.19, B.3.23 are taken from [14]. The expressions for HX

g with

X = E3
8 appeared first in [25]. The expression for H

(6+3)
2B,1 in §B.3.6, and the expressions for H

(12+4)
4A,r

and H
(12+4)
8AB,r in §B.3.13, appear here for the first time.

The labels for conjugacy classes in GX are as in §A.2.

B.3.1 ` = 2, X = A24
1

We have G(2) = GX 'M24 and mX = 2. So for g ∈M24, the associated umbral McKay-Thompson

series H
(2)
g = (H

(2)
g,r ) is a 4-vector-valued function, with components indexed by r ∈ Z/4Z, satisfying

H
(2)
g,r = −H(2)

g,−r, and in particular, H
(2)
g,r = 0 for r = 0 mod 2. So it suffices to specify the H

(2)
g,1

explicitly.

Define H
(2)
g = (H

(2)
g,r ) for g = e by requiring that

−2Ψ1,1(τ, z)ϕ
(2)
1 (τ, z) = −24µ2,0(τ, z) +

∑
r mod 4

H(2)
e,r (τ)θ2,r(τ, z), (B.22)

where

ϕ
(2)
1 (τ, z) := 4

(
θ2(τ, z)2

θ2(τ, 0)2
+
θ3(τ, z)2

θ3(τ, 0)2
+
θ4(τ, z)2

θ4(τ, 0)2

)
. (B.23)

More generally, for g ∈ G(2) define

H
(2)
g,1 (τ) :=

χ̄
(2)
g

24
H

(2)
e,1 (τ)− F (2)

g (τ)
1

S2,1(τ)
, (B.24)

where χ̄
(2)
g and F

(2)
g are as specified in Table 36. Note that χ̄

(2)
g = χ̄XA

g , the latter appearing in
Table 15. Also, S2,1(τ) = η(τ)3.

The functions f23,a and f23,b in Table 36 are cusp forms of weight two for Γ0(23), defined by

f23,a(τ) :=
η(τ)3η(23τ)3

η(2τ)η(46τ)
+ 3η(τ)2η(23τ)2 + 4η(τ)η(2τ)η(23τ)η(46τ) + 4η(2τ)2η(46τ)2,

f23,b(τ) := η(τ)2η(23τ)2.

(B.25)

Note that the definition of F
(2)
g appearing here for g ∈ 23A ∪ 23B corrects errors in [11,12].
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Table 36: Character Values and Weight Two Forms for ` = 2, X = A24
1

[g] χ̄
(2)
g F

(2)
g (τ)

1A 24 0
2A 8 16Λ2(τ)
2B 0 2η(τ)8η(2τ)−4

3A 6 6Λ3(τ)
3B 0 2η(τ)6η(3τ)−2

4A 0 2η(2τ)8η(4τ)−4

4B 4 4(−Λ2(τ) + Λ4(τ))
4C 0 2η(τ)4η(2τ)2η(4τ)−2

5A 4 2Λ5(τ)
6A 2 2(−Λ2(τ)− Λ3(τ) + Λ6(τ))
6B 0 2η(τ)2η(2τ)2η(3τ)2η(6τ)−2

7AB 3 Λ7(τ)
8A 2 −Λ4(τ) + Λ8(τ)

10A 0 2η(τ)3η(2τ)η(5τ)η(10τ)−1

11A 2 2(Λ11(τ)− 11η(τ)2η(11τ)2)/5
12A 0 2η(τ)3η(4τ)2η(6τ)3η(2τ)−1η(3τ)−1η(12τ)−2

12B 0 2η(τ)4η(4τ)η(6τ)η(2τ)−1η(12τ)−1

14AB 1 (−Λ2(τ)− Λ7(τ) + Λ14(τ)− 14η(τ)η(2τ)η(7τ)η(14τ))/3
15AB 1 (−Λ3(τ)− Λ5(τ) + Λ15(τ)− 15η(τ)η(3τ)η(5τ)η(15τ))/4
21AB 0 (7η(τ)3η(7τ)3η(3τ)−1η(21τ)−1 − η(τ)6η(3τ)−2)/3
23AB 1 (Λ23(τ)− 23f23,a(τ)− 69f23,b(τ))/11

B.3.2 ` = 3, X = A12
2

We have G(3) = GX ' 2.M12 and mX = 3. So for g ∈ 2.M12, the associated umbral McKay-

Thompson series H
(3)
g = (H

(3)
g,r ) is a 6-vector-valued function, with components indexed by r ∈

Z/6Z, satisfying H
(3)
g,r = −H(3)

g,−r, and in particular, H
(3)
g,r = 0 for r = 0 mod 3. So it suffices to

specify the H
(3)
g,1 and H

(3)
g,2 explicitly.

Define H
(3)
g = (H

(3)
g,r ) for g = e by requiring that

−2Ψ1,1(τ, z)ϕ
(3)
1 (τ, z) = −12µ3,0(τ, z) +

∑
r mod 6

H(3)
e,r (τ)θ3,r(τ, z), (B.26)

where

ϕ
(3)
1 (τ, z) := 2

(
θ3(τ, z)2

θ3(τ, 0)2

θ4(τ, z)2

θ4(τ, 0)2
+
θ4(τ, z)2

θ4(τ, 0)2

θ2(τ, z)2

θ2(τ, 0)2
+
θ2(τ, z)2

θ2(τ, 0)2

θ3(τ, z)2

θ3(τ, 0)2

)
. (B.27)
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More generally, for g ∈ G(3) define

H
(3)
g,1 (τ) :=

χ̄
(3)
g

12
H

(3)
e,1 (τ) +

1

2

(
F (3)
g + F (3)

zg

) 1

S3,1(τ)
, (B.28)

H
(3)
g,2 (τ) :=

χ
(3)
g

12
H

(3)
e,1 (τ) +

1

2

(
F (3)
g − F (3)

zg

) 1

S3,2(τ)
, (B.29)

where χ
(3)
g and F

(3)
g are as specified in Table 37, and z is the non-trivial central element of G(3).

The action of g 7→ zg on conjugacy classes can be read off Table 37, for the horizontal lines indicate
the sets [g] ∪ [zg].

Note the eta product identities, S3,1(τ) = η(2τ)5/η(4τ)2, and S3,2(τ) = 2η(τ)2η(4τ)2/η(2τ).

Note also that χ̄
(3)
g = χ̄XA

g and χ
(3)
g = χXA

g , the latter appearing in Table 16.

Table 37: Character Values and Weight Two Forms for ` = 3, X = A12
2

[g] χ̄
(3)
g χ

(3)
g F

(3)
g (τ)

1A 12 12 0
2A 12 −12 0

4A 0 0 −2η(τ)4η(2τ)2/η(4τ)2

2B 4 4 −16Λ2(τ)
2C 4 −4 16Λ2(τ)− 16

3 Λ4(τ)

3A 3 3 −6Λ3(τ)
6A 3 −3 −9Λ2(τ)− 2Λ3(τ) + 3Λ4(τ) + 3Λ6(τ)− Λ12(τ)

3B 0 0 8Λ3(τ)− 2Λ9(τ) + 2 η6(τ)/η2(3τ)
6B 0 0 −2η(τ)5η(3τ)/η(2τ)η(6τ)

4B 0 0 −2η(2τ)8/η(4τ)4

4C 4 0 −8Λ4(τ)/3

5A 2 2 −2Λ5(τ)
10A 2 −2

∑
d|20 c10A(d)Λd(τ) + 20

3 η(2τ)2η(10τ)2

12A 0 0 −2η(τ)η(2τ)5η(3τ)/η(4τ)2η(6τ)

6C 1 1 2(Λ2(τ) + Λ3(τ)− Λ6(τ))
6D 1 −1 −5Λ2(τ)− 2Λ3(τ) + 5

3Λ4(τ) + 3Λ6(τ)− Λ12(τ)

8AB 0 0 −2η(2τ)4η(4τ)2/η(8τ)2

8CD 2 0 −2Λ2(τ) + 5
3Λ4(τ)− Λ8(τ)

20AB 0 0 −2η(2τ)7η(5τ)/η(τ)η(4τ)2η(10τ)

11AB 1 1 −2
5Λ11(τ)− 33

5 η(τ)2η(11τ)2

22AB 1 −1
∑

d|44 cg(d)Λd(τ)− 11
5

∑
d|4 c

′
g(d)η(dτ)2η(11dτ)2 + 22

3 f44(τ)

The function f44 is the unique new cusp form of weight 2 for Γ0(44), normalized so that f44(τ) =
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q +O(q3) as =(τ)→∞. The coefficients cg(d) and c′g(d) for g ∈ 10A ∪ 22A ∪ 22B are given by

c10A(2) = −5, c10A(4) = −5

3
, c10A(5) = −2

3
, c10A(10) = 1, c10A(20) = −1

3
, (B.30)

c22AB(2) = −11

5
, c22AB(4) =

11

5
, c22AB(11) = − 2

15
, c22AB(22) =

1

5
, c22AB(44) = − 1

15
, (B.31)

c′22AB(1) = 1, c′22AB(2) = 4, c′22AB(4) = 8. (B.32)

B.3.3 ` = 4, X = A8
3

We have mX = 4, so the umbral McKay-Thompson series H
(4)
g = (H

(4)
g,r ) associated to g ∈ G(4) is

an 8-vector-valued function, with components indexed by r ∈ Z/8Z.

Define H
(4)
g = (H

(4)
g,r ) for g ∈ G(4), g /∈ 4C, by requiring that

ψ(4)
g (τ, z) = −χ(4)

g µ0
4,0(τ, z)− χ̄(4)

g µ1
4,0(τ, z) +

∑
r mod 8

H(4)
g,r (τ)θ4,r(τ, z), (B.33)

where χ
(4)
g := χXA

g and χ̄
(4)
g := χ̄XA

g (cf. Table 17), and the ψ
(4)
g are meromorphic Jacobi forms of

weight 1 and index 4 given explicitly in Table 38.

Table 38: Character Values and Meromorphic Jacobi Forms for ` = 4, X = A8
3

[g] χ
(4)
g χ̄

(4)
g ψ

(4)
g (τ, z)

1A 8 8 2iθ1(τ, 2z)3θ1(τ, z)−4η(τ)3

2A −8 8 2iθ1(τ, 2z)3θ2(τ, z)−4η(τ)3

2B 0 0 −2iθ1(τ, 2z)3θ1(τ, z)−2θ2(τ, z)−2η(τ)3

4A 0 0 −2iθ1(τ, 2z)θ2(τ, 2z)2θ2(2τ, 2z)−2η(2τ)2η(τ)−1

4B 0 0 −2iθ1(2τ, 2z)θ3(2τ, 2z)2θ4(2τ, 2z)η(2τ)2η(τ)−2η(4τ)−2

2C 0 4 2iθ1(τ, 2z)θ2(τ, 2z)2θ1(τ, z)−2θ2(τ, z)−2η(τ)3

3A 2 2 2iθ1(3τ, 6z)θ1(τ, z)−1θ1(3τ, 3z)−1η(τ)3

6A −2 2 −2iθ1(3τ, 6z)θ2(τ, z)−1θ2(3τ, 3z)−1η(τ)3

6BC 0 0 cf. (B.34)

8A 0 0 −2iθ1(τ, 2z)θ2(2τ, 4z)θ2(4τ, 4z)−1η(τ)η(4τ)η(2τ)−1

4C 0 2 2iθ1(τ, 2z)θ2(2τ, 4z)θ1(2τ, 2z)−2η(2τ)7η(τ)−3η(4τ)−2

7AB 1 1 cf. (B.34)
14AB −1 1 cf. (B.34)
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ψ
(4)
6BC :=

(
θ1(τ, z + 1

3)θ1(τ, z + 1
6)− θ1(τ, z − 1

3)θ1(τ, z − 1
6)
) −iθ1(3τ, 6z)

θ1(3τ, 3z)θ2(3τ, 3z)
η(3τ)

ψ
(4)
7AB :=

 3∏
j=1

θ1(τ, 2z + j2

7 )θ1(τ, z − j2

7 ) +
3∏
j=1

θ1(τ, 2z − j2

7 )θ1(τ, z + j2

7 )

 −i
θ1(7τ, 7z)

η(7τ)

η(τ)4

ψ
(4)
14AB :=

 3∏
j=1

θ1(τ, 2z + j2

7 )θ2(τ, z − j2

7 ) +
3∏
j=1

θ1(τ, 2z − j2

7 )θ2(τ, z + j2

7 )

 i

θ2(7τ, 7z)

η(7τ)

η(τ)4

(B.34)

For use later on, note that ψ
(4)
1A = −2Ψ1,1ϕ

(4)
1 , where

ϕ
(4)
1 (τ, z) :=

θ1(τ, 2z)2

θ1(τ, z)2
. (B.35)

B.3.4 ` = 5, X = A6
4

We have mX = 5, so the umbral McKay-Thompson series H
(5)
g = (H

(5)
g,r ) associated to g ∈ G(5) is

a 10-vector-valued function, with components indexed by r ∈ Z/10Z.

Define H
(5)
g = (H

(5)
g,r ) for g ∈ G(5), g /∈ 5A ∪ 10A, by requiring that

ψ(5)
g (τ, z) = −χ(5)

g µ0
5,0(τ, z)− χ̄(5)

g µ1
5,0(τ, z) +

∑
r mod 10

H(5)
g,r (τ)θ5,r(τ, z), (B.36)

where χ
(5)
g := χXA

g and χ̄
(5)
g := χ̄XA

g (cf. Table 18), and the ψ
(5)
g are meromorphic Jacobi forms of

weight 1 and index 5 given explicitly in Table 39.

Table 39: Character Values and Meromorphic Jacobi Forms for ` = 5, X = A6
4

[g] χ
(5)
g χ̄

(5)
g ψ

(5)
g (τ, z)

1A 6 6 2iθ1(τ, 2z)θ1(τ, 3z)θ1(τ, z)−3η(τ)3

2A −6 6 −2iθ1(τ, 2z)θ2(τ, 3z)θ2(τ, z)−3η(τ)3

2B −2 2 −2iθ1(τ, 2z)θ1(τ, 3z)θ1(τ, z)−1θ2(τ, z)−2η(τ)3

2C 2 2 2iθ1(τ, 2z)θ2(τ, 3z)θ1(τ, z)−2θ2(τ, z)−1η(τ)3

3A 0 0 −2iθ1(τ, 2z)θ1(τ, 3z)θ1(3τ, 3z)−1η(3τ)
6A 0 0 −2iθ1(τ, 2z)θ2(τ, 3z)θ2(3τ, 3z)−1η(3τ)

4AB 0 0 cf. (B.37)

4CD 0 2 cf. (B.37)

12AB 0 0 cf. (B.37)
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ψ
(5)
4AB(τ, z) := −iθ2(τ, 2z)

θ1(τ, z + 1
4)θ1(τ, 3z + 1

4)− θ1(τ, z − 1
4)θ1(τ, 3z − 1

4)

θ2(2τ, 2z)2

η(2τ)2

η(τ)

ψ
(5)
4CD(τ, z) := −iθ2(τ, 2z)

θ1(τ, z + 1
4)θ1(τ, 3z − 1

4) + θ1(τ, z − 1
4)θ1(τ, 3z + 1

4)

θ1(2τ, 2z)θ2(2τ, 2z)

η(2τ)2

η(τ)

ψ
(5)
12AB(τ, z) := i

θ2(τ, 2z)

θ2(6τ, 6z)

(
θ1(τ, z + 1

12)θ1(τ, z + 1
4)θ1(τ, z + 5

12)θ1(τ, 3z − 1
4)

− θ1(τ, z − 1
12)θ1(τ, z − 1

4)θ1(τ, z − 5
12)θ1(τ, 3z + 1

4)
) η(6τ)

η(τ)3

(B.37)

For g ∈ 5A use the formulas of §B.3.20 to define

H
(5)
5A,r(τ) := H

(25)
1A,r(τ/5)−H(25)

1A,10−r(τ/5) +H
(25)
1A,10+r(τ/5)−H(25)

1A,20−r(τ/5) +H
(25)
1A,20+r(τ/5).

(B.38)

For g ∈ 10A set H
(5)
10A,r(τ) := −(−1)rH

(5)
5A,r(τ).

For use later on we note that ψ
(5)
1A = −2Ψ1,1ϕ

(5)
1 , where

ϕ
(5)
1 (τ, z) :=

θ1(τ, 3z)

θ1(τ, z)
. (B.39)

B.3.5 ` = 6, X = A4
5D4

We have mX = 6, so the umbral McKay-Thompson series H
(6)
g = (H

(6)
g,r ) associated to g ∈ G(6) is

a 12-vector-valued function with components indexed by r ∈ Z/12Z. We have H
(6)
g,r = −H(6)

g,−r, so

it suffices to specify the H
(6)
g,r for r ∈ {1, 2, 3, 4, 5}.

To define H
(6)
g = (H

(6)
g,r ) for g = e, first define h(τ) = (hr(τ)) by requiring that

−2Ψ1,1(τ, z)ϕ
(6)
1 (τ, z) = −24µ6,0(τ, z) +

∑
r mod 12

hr(τ)θ6,r(τ, z), (B.40)

where

ϕ
(6)
1 (τ, z) := ϕ

(2)
1 (τ, z)ϕ

(5)
1 (τ, z)− ϕ(3)

1 (τ, z)ϕ
(4)
1 (τ, z). (B.41)

(Cf. (B.23), (B.27), (B.35), (B.39).) Now define the H
(6)
1A,r by setting

H
(6)
1A,1(τ) :=

1

24
(5h1(τ) + h5(τ)) ,

H
(6)
1A,2(τ) :=

1

6
h2(τ),

H
(6)
1A,3(τ) :=

1

4
h3(τ),

H
(6)
1A,4(τ) :=

1

6
h4(τ),

H
(6)
1A,5(τ) :=

1

24
(h1(τ) + 5h5(τ)) .

(B.42)



B THE UMBRAL MCKAY-THOMPSON SERIES 38

Define H
(6)
2A,r by requiring

H
(6)
2A,r(τ) := −(−1)rH

(6)
1A,r(τ). (B.43)

For the remaining g, recall (B.13). The H
(6)
g,r for g /∈ 1A ∪ 2A are defined as follows for r = 2

and r = 4, noting that H
(3)
g,4 = H

(3)
g,−2 = −H(3)

g,2 .

H
(6)
2B,r(τ) := [− r2

24 ]H
(3)
4C,r(τ/2)

H
(6)
4A,r(τ) := [− r2

24 ]H
(3)
4B,r(τ/2)

H
(6)
3A,r(τ) := [− r2

24 ]H
(3)
6C,r(τ/2)

H
(6)
6A,r(τ) := [− r2

24 ]H
(3)
6D,r(τ/2)

H
(6)
8AB,r(τ) := [− r2

24 ]H
(3)
8CD,r(τ/2)

(B.44)

For the H
(6)
g,3 we define

H
(6)
2B,3(τ), H

(6)
4A,3(τ) := −[− 9

24 ]H
(2)
6A,1(τ/3),

H
(6)
3A,3(τ), H

(6)
6A,3(τ) := 0,

H
(6)
8AB,3(τ) := −[− 9

24 ]H
(2)
12A,1(τ/3).

(B.45)

Noting that H
(2)
g,5 = H

(2)
g,1 and H

(3)
g,5 = −H(3)

g,1 , the H
(6)
g,1 and H

(6)
g,5 are defined for o(g) 6= 0 mod 3

by setting

H
(6)
2B,r(τ) := [− 1

24 ]
1

2

(
H

(2)
6A,r(τ/3) +H

(3)
4C,r(τ/2)

)
H

(6)
4A,r(τ) := [− 1

24 ]
1

2

(
H

(2)
6A,r(τ/3) +H

(3)
4B,r(τ/2)

)
H

(6)
8AB,r(τ) := [− 1

24 ]
1

2

(
H

(2)
12A,r(τ/3) +H

(3)
8CD,r(τ/2)

) (B.46)

It remains to specify the H
(6)
g,r when g ∈ 3A ∪ 6A and r is 1 or 5. These cases are determined by

using the formulas of §B.3.17 to set

H
(6)
3A,1(τ), H

(6)
6A,1(τ) := H

(18)
1A,1(3τ)−H(18)

1A,11(3τ) +H
(18)
1A,13(3τ),

H
(6)
3A,5(τ), H

(6)
6A,5(τ) := H

(18)
1A,5(3τ)−H(18)

1A,7(3τ) +H
(18)
1A,17(3τ).

(B.47)

B.3.6 ` = 6 + 3, X = D6
4

We have mX = 6, so the umbral McKay-Thompson series H
(6+3)
g = (H

(6+3)
g,r ) associated to g ∈

G(6+3) is a 12-vector-valued function with components indexed by r ∈ Z/12Z. In addition to the

identity H
(6+3)
g,r = −H(6+3)

g,−r , we have H
(6+3)
g,r = 0 for r = 0 mod 2. Thus it suffices to specify the

H
(6+3)
g,r for r ∈ {1, 3, 5}.



B THE UMBRAL MCKAY-THOMPSON SERIES 39

Recall (B.13). For r = 1, define

H
(6+3)
1A,1 (τ), H

(6+3)
3A,1 (τ) := H

(6)
1A,1(τ) +H

(6)
1A,5(τ),

H
(6+3)
2A,1 (τ), H

(6+3)
6A,1 (τ) := H

(6)
2B,1(τ) +H

(6)
2B,5(τ),

H
(6+3)
3B,1 (τ) := H

(6)
3A,1(τ) +H

(6)
3A,5(τ),

H
(6+3)
3C,1 (τ) := −2

η(τ)2

η(3τ)
,

H
(6+3)
4A,1 (τ), H

(6+3)
12A,1 (τ) := H

(6)
8AB,1(τ) +H

(6)
8AB,5(τ),

H
(6+3)
5A,1 (τ), H

(6+3)
15A,1 (τ) := [− 1

24 ]H
(2)
15AB,1(τ/3),

H
(6+3)
2C,1 (τ) := H

(6)
4A,1(τ)−H(6)

4A,5(τ),

H
(6+3)
4B,1 (τ) := H

(6)
8AB,1(τ)−H(6)

8AB,5(τ),

H
(6+3)
6B,1 (τ) := H

(6)
6A,1(τ)−H(6)

6A,5(τ),

H
(6+3)
6C,1 (τ) := −2

η(2τ) η(3τ)

η(6τ)
.

(B.48)

Then define H
(6+3)
2B,1 by setting

H
(6+3)
2B,1 (τ) := 2H

(6+3)
4B,1 (τ) + 2

η(τ)3

η(2τ)2
. (B.49)

For r = 3 set

H
(6+3)
1A,3 (τ) := 2H

(6)
1A,3(τ),

H
(6+3)
3A,3 (τ) := −H(6)

1A,3(τ),

H
(6+3)
2A,3 (τ) := 2H

(6)
2B,3(τ),

H
(6+3)
6A,3 (τ) := −H(6)

2B,3(τ),

H
(6+3)
4A,3 (τ) := 2H

(6)
8AB,3(τ),

H
(6+3)
12A,3 (τ) := −H(6)

8AB,3(τ),

H
(6+3)
5A,3 (τ) := −2[− 9

24 ]H
(2)
15AB,1(τ),

H
(6+3)
15A,3 (τ) := [− 9

24 ]H
(2)
15AB,1(τ),

(B.50)

and

H
(6+3)
3B,3 (τ), H

(6+3)
3C,3 (τ), H

(6+3)
2B,3 (τ), H

(6+3)
2C,3 (τ), H

(6+3)
4B,3 (τ), H

(6+3)
6B,3 (τ), H

(6+3)
6C,3 (τ) := 0. (B.51)

For r = 5 define H
(6+3)
g,5 (τ) := H

(6+3)
g,1 (τ) for [g] ∈ {1A, 3A, 2A, 6A, 3B, 3C, 4A, 12A, 5A, 15AB},

and set H
(6+3)
g,5 (τ) := −H(6+3)

g,1 (τ) for the remaining cases, [g] ∈ {2B, 2C, 4B, 6B, 6C}.
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B.3.7 ` = 7, X = A4
6

We have mX = 7, so the umbral McKay-Thompson series H
(7)
g = (H

(7)
g,r ) associated to g ∈ G(7) =

GX ' SL2(3) is a 14-vector-valued function, with components indexed by r ∈ Z/14Z.

Define H
(7)
g = (H

(7)
g,r ) for g ∈ G(7) by requiring that

ψ(7)
g (τ, z) = −χ(7)

g µ0
7,0(τ, z)− χ̄(7)

g µ1
7,0(τ, z) +

∑
r mod 14

H(7)
g,r (τ)θ7,r(τ, z), (B.52)

where χ
(7)
g := χXA

g and χ̄
(7)
g := χ̄XA

g (cf. Table 21), and the ψ
(7)
g are meromorphic Jacobi forms of

weight 1 and index 7 given explicitly in Table 40.

Table 40: Character Values and Meromorphic Jacobi Forms for ` = 7, X = A4
6

[g] χ
(7)
g χ̄

(7)
g ψ

(7)
g (τ, z)

1A 4 4 2iθ1(τ, 4z)θ1(τ, z)−2η(τ)3

2A −4 4 −2iθ1(τ, 4z)θ2(τ, z)−2η(τ)3

4A 0 0 −2iθ1(τ, 4z)θ2(2τ, 2z)−1η(2τ)η(τ)

3A 1 1 cf. (B.53)
6A −1 1 cf. (B.53)

ψ
(7)
3A(τ, z) := −i

θ1(τ, 4z + 1
3)θ1(τ, z − 1

3) + θ1(τ, 4z − 1
3)θ1(τ, z + 1

3)

θ1(3τ, 3z)
η(3τ)

ψ
(7)
6A(τ, z) := −i

θ1(τ, 4z + 1
3)θ1(τ, z − 1

6)− θ1(τ, 4z − 1
3)θ1(τ, z + 1

6)

θ2(3τ, 3z)
η(3τ)

(B.53)

For use later on we note that ψ
(7)
1A = −2Ψ1,1ϕ

(7)
1 , where

ϕ
(7)
1 (τ, z) :=

θ1(τ, 4z)

θ1(τ, 2z)
. (B.54)

B.3.8 ` = 8, X = A2
7D

2
5

We have mX = 8, so the umbral McKay-Thompson series H
(8)
g = (H

(8)
g,r ) associated to g ∈ G(8) is

a 16-vector-valued function with components indexed by r ∈ Z/16Z. We have H
(8)
g,r = −H(8)

g,−r, so

it suffices to specify the H
(8)
g,r for r ∈ {1, 2, 3, 4, 5, 6, 7}.

To define H
(8)
g = (H

(8)
g,r ) for g = e, first define h(τ) = (hr(τ)) by requiring that

−2Ψ1,1(τ, z)

(
ϕ

(8)
1 (τ, z) +

1

2
ϕ

(8)
2 (τ, z)

)
= −24µ8,0(τ, z) +

∑
r mod 16

hr(τ)θ8,r(τ, z), (B.55)

where

ϕ
(8)
1 (τ, z) := ϕ

(3)
1 (τ, z)ϕ

(6)
1 (τ, z)− 5ϕ

(4)
1 (τ, z)ϕ

(5)
1 (τ, z),

ϕ
(8)
2 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(5)
1 (τ, z)− ϕ(8)

1 (τ, z).
(B.56)
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(Cf. (B.27), (B.35), (B.39), (B.41).) Now define the H
(8)
1A,r by setting

H
(8)
1A,r(τ) :=

1

6
hr(τ), (B.57)

for r ∈ {1, 3, 4, 5, 7}, and

H
(8)
1A,2(τ), H

(8)
1A,6(τ) :=

1

12
(h2(τ) + h6(τ)) . (B.58)

Define H
(8)
2A,r for 1 ≤ r ≤ 7 by requiring

H
(8)
2A,r(τ) := −(−1)rH

(8)
1A,r(τ). (B.59)

For the remaining g, recall (B.13). The H
(8)
g,r for g ∈ 2B ∪ 2C ∪ 4A are defined as follows for

r ∈ {1, 3, 5, 7}, noting that H
(4)
g,7 = H

(4)
g,−1 = −H(4)

g,1 , &c.

H
(8)
2BC,r(τ) := [− r2

32 ]H
(4)
4C,r(τ/2)

H
(8)
4A,r(τ) := [− r2

32 ]H
(4)
4B,r(τ/2)

(B.60)

The H
(8)
2BC,r and H

(8)
4A,r vanish for r = 0 mod 2.

B.3.9 ` = 9, X = A3
8

We have mX = 9, so for g ∈ G(9) the associated umbral McKay-Thompson series H
(9)
g = (H

(9)
g,r ) is a

18-vector-valued function, with components indexed by r ∈ Z/18Z, satisfying H
(9)
g,r = −H(9)

g,−r, and

in particular, H
(9)
g,r = 0 for r = 0 mod 9. So it suffices to specify the H

(9)
g,r for r ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

Define H
(9)
g = (H

(9)
g,r ) for g = e by requiring that

−Ψ1,1(τ, z)ϕ
(9)
1 (τ, z) = −3µ9,0(τ, z) +

∑
r mod 18

H(9)
e,r (τ)θ9,r(τ, z), (B.61)

where

ϕ
(9)
1 (τ, z) := ϕ

(3)
1 (τ, z)ϕ

(7)
1 (τ, z)− ϕ(5)

1 (τ, z)2. (B.62)

(Cf. (B.27), (B.39), (B.54).)

Recall (B.13). The H
(9)
2B,r are defined for r ∈ {1, 2, 4, 5, 7, 8} by setting

H
(9)
2B,r(τ) := [− r2

36 ]H
(3)
6C,r(τ/3), (B.63)

where we note that H
(3)
g,4 = H

(3)
g,−2 = −H(3)

g,2 , &c. We determine H
(9)
2B,3 and H

(9)
2B,6 by using §B.3.17

to set

H
(9)
2B,r(τ) := H

(18)
1A,r(2τ)−H(18)

1A,18−r(2τ) (B.64)

for r ∈ {3, 6}.
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The H
(9)
3A,r are defined by the explicit formulas

H
(9)
3A,1(τ) := [− 1

36 ]f
(9)
1 (τ/3),

H
(9)
3A,2(τ) := [− 4

36 ]f
(9)
2 (τ/3),

H
(9)
3A,3(τ) := −θ3,3(τ, 0),

H
(9)
3A,4(τ) := −[−16

36 ]f
(9)
2 (τ/3),

H
(9)
3A,5(τ) := −[−25

36 ]f
(9)
1 (τ/3),

H
(9)
3A,6(τ) := θ3,0(τ, 0),

H
(9)
3A,7(τ) := [−13

36 ]f
(9)
1 (τ/3),

H
(9)
3A,8(τ) := [−28

36 ]f
(9)
2 (τ/3),

(B.65)

where

f
(9)
1 (τ) := −2

η(τ)η(12τ)η(18τ)2

η(6τ)η(9τ)η(36τ)
,

f
(9)
2 (τ) :=

η(2τ)6η(12τ)η(18τ)2

η(τ)η(4τ)4η(6τ)η(9τ)η(36τ)
− η(τ)η(2τ)η(3τ)2

η(4τ)2η(9τ)
.

(B.66)

Finally, the H
(9)
g,r are determined for g ∈ 2A ∪ 2C ∪ 6A by setting

H
(9)
2A,r(τ) := (−1)r+1H

(9)
1A,r(τ),

H
(9)
2C,r(τ) := (−1)r+1H

(9)
2B,r(τ),

H
(9)
6A,r(τ) := (−1)r+1H

(9)
3A,r(τ).

(B.67)

B.3.10 ` = 10, X = A2
9D6

We have mX = 10, so the umbral McKay-Thompson series H
(10)
g = (H

(10)
g,r ) associated to g ∈ G(10)

is a 20-vector-valued function with components indexed by r ∈ Z/20Z. We have H
(10)
g,r = −H(10)

g,−r,

so it suffices to specify the H
(10)
g,r for 1 ≤ r ≤ 9.

To define H
(10)
g = (H

(10)
g,r ) for g = e, first define h(τ) = (hr(τ)) by requiring that

−6Ψ1,1(τ, z)ϕ
(10)
1 (τ, z) = −24µ10,0(τ, z) +

∑
r mod 20

hr(τ)θ10,r(τ, z), (B.68)

where

ϕ
(10)
1 (τ, z) := 5ϕ

(4)
1 (τ, z)ϕ

(7)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(6)
1 (τ, z). (B.69)
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(Cf. (B.35), (B.39), (B.41), (B.54).) Now define the H
(10)
1A,r for r odd by setting

H
(10)
1A,1(τ) :=

1

24
(3h1(τ) + h9(τ)) ,

H
(10)
1A,3(τ) :=

1

24
(3h3(τ) + h7(τ)) ,

H
(10)
1A,5(τ) :=

1

6
h5(τ),

H
(10)
1A,3(τ) :=

1

24
(h3(τ) + 3h7(τ)) ,

H
(10)
1A,9(τ) :=

1

24
(h1(τ) + 3h9(τ)) .

(B.70)

For r = 0 mod 2 set

H
(10)
1A,r(τ) :=

1

12
hr(τ), (B.71)

and define H
(10)
2A,r for 1 ≤ r ≤ 9 by requiring

H
(10)
2A,r(τ) := −(−1)rH

(10)
1A,r(τ). (B.72)

It remains to specify H
(10)
g,r for g ∈ 4A ∪ 4B. For r = 0 mod 2 set

H
(10)
4AB,r(τ) := 0. (B.73)

For r odd, recall (B.13), and define

H
(10)
4A,r(τ) := [− r2

40 ]
1

2

(
H

(2)
10A,r(τ/5) +H

(5)
4CD,r(τ/2)

)
. (B.74)

B.3.11 ` = 10 + 5, X = D4
6

We have mX = 10, so the umbral McKay-Thompson series H
(10+5)
g = (H

(10+5)
g,r ) associated to

g ∈ G(10+5) is a 20-vector-valued function with components indexed by r ∈ Z/20Z. We have

H
(10+5)
g,r = 0 for r = 0 mod 2, so it suffices to specify the H

(10+5)
g,r for r odd. Observing that

H
(10+5)
g,r = −H(10+5)

g,−r we may determine H
(10+5)
g by requiring that

ψ(5/2)
g (τ, z) = −2χ(5/2)

g iµ5/2,0(τ, z) +
∑

r∈Z+1/2
r mod 5

e(−r/2)H
(10+5)
g,2r (τ)θ5/2,r(τ, z), (B.75)

where χ
(5/2)
g := χ̄XD

g as in Table 25, and the ψ
(5/2)
g are the meromorphic Jacobi forms of weight 1

and index 5/2 defined as follows.
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Table 41: Character Values and Meromorphic Jacobi Forms for ` = 10 + 5, X = D4
6

[g] χ̄
(5/2)
g ψ

(5/2)
g (τ, z)

1A 4 2iθ1(τ, 2z)2θ1(τ, z)−3η(τ)3

2A 0 −2iθ1(τ, 2z)2θ1(τ, z)−1θ2(τ, z)−2η(τ)3

3A 1 2iθ1(3τ, 6z)θ1(τ, 2z)−1θ1(3τ, 3z)−1η(τ)3

2B 2 2iθ1(τ, 2z)θ2(τ, 2z)θ1(τ, z)−2θ2(τ, z)−1η(τ)3

4A 0 −2iθ1(τ, 2z)θ2(τ, 2z)θ2(2τ, 2z)−1η(τ)η(2τ)

B.3.12 ` = 12, X = A11D7E6

We have mX = 12, so the umbral McKay-Thompson series H
(12)
g = (H

(12)
g,r ) associated to g ∈

G(12) ' Z/2Z is a 24-vector-valued function with components indexed by r ∈ Z/24Z. We have

H
(12)
g,r = −H(12)

g,−r, so it suffices to specify the H
(12)
g,r for 1 ≤ r ≤ 11.

To define H
(12)
e = (H

(12)
e,r ), first define h(τ) = (hr(τ)) by requiring that

−2Ψ1,1(τ, z)
(
ϕ

(12)
1 (τ, z) + ϕ

(12)
2 (τ, z)

)
= −24µ12,0(τ, z) +

∑
r mod 24

hr(τ)θ12,r(τ, z), (B.76)

where

ϕ
(12)
1 (τ, z) := 3ϕ

(3)
1 (τ, z)ϕ

(10)
1 (τ, z)− 8ϕ

(4)
1 (τ, z)ϕ

(9)
1 (τ, z) + ϕ

(5)
1 (τ, z)ϕ

(8)
1 (τ, z),

ϕ
(12)
2 (τ, z) := 4ϕ

(4)
1 (τ, z)ϕ

(9)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(8)
1 (τ, z)− ϕ(12)

1 (τ, z).
(B.77)

(Cf. (B.27), (B.35), (B.39), (B.54), (B.56), (B.62), (B.69).) Now define the H
(12)
1A,r for r 6= 0 mod 3

by setting

H
(12)
1A,1(τ) :=

1

24
(3h1(τ) + h7(τ)) ,

H
(12)
1A,2(τ), H

(12)
1A,10(τ) :=

1

24
(h2(τ) + h10(τ)) ,

H
(12)
1A,4(τ), H

(12)
1A,8(τ) :=

1

12
(h4(τ) + h8(τ)) ,

H
(12)
1A,5(τ) :=

1

24
(3h5(τ) + h11(τ)) ,

H
(12)
1A,7(τ) :=

1

24
(h1(τ) + 3h7(τ)) ,

H
(12)
1A,11(τ) :=

1

24
(h5(τ) + 3h11(τ)) .

(B.78)

For r = 0 mod 3 set

H
(12)
1A,r(τ) :=

1

12
hr(τ), (B.79)

and define H
(12)
2A,r by requiring

H
(12)
2A,r(τ) := −(−1)rH

(12)
1A,r(τ). (B.80)
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B.3.13 ` = 12 + 4, X = E4
6

We have mX = 12, so the umbral McKay-Thompson series H
(12+4)
g = (H

(12+4)
g,r ) associated to

g ∈ G(12+4) is a 24-vector-valued function with components indexed by r ∈ Z/24Z. In addition to

the identity H
(12+4)
g,r = −H(12+4)

g,−r , we have H
(12+4)
g,r = 0 for r ∈ {2, 3, 6, 9, 10}, H(12+4)

g,1 = H
(12+4)
g,7 ,

H
(12+4)
g,4 = H

(12+4)
g,8 , and H

(12+4)
g,5 = H

(12+4)
g,11 . Thus it suffices to specify the H

(12+4)
g,1 , H

(12+4)
g,4 and

H
(12+4)
g,5 .

Recall (B.13). Also, set SE6
1 (τ) := S12,1(τ) + S12,7(τ), and SE6

5 (τ) := S12,5(τ) + S12,11(τ). For
r = 1 define

H
(12+4)
1A,1 (τ) := H

(12)
1A,1(τ) +H

(12)
1A,7(τ),

H
(12+4)
2B,1 (τ) := [− 1

48 ]
(
H

(6)
8AB,1(τ/2)−H(6)

8AB,5(τ/2)
)
,

H
(12+4)
4A,1 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
−2

η(2τ)8

η(τ)4
SE6

1 (τ) + 8
η(τ)4η(4τ)4

η(2τ)4
SE6

5 (τ)

)
,

H
(12+4)
3A,1 (τ) := [− 1

48 ]
(
H

(6)
3A,1(τ/2)−H(6)

3A,5(τ/2)
)
,

H
(12+4)
8AB,1 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
−2F

(12+4)
8AB,1 (τ)SE6

1 (τ) + 12F
(12+4)
8AB,5 (τ/2)SE6

5 (τ)
)
.

(B.81)

In the expression for g ∈ 8AB, we write F
(12+4)
8AB,1 for the unique modular form of weight 2 for Γ0(32)

such that

F
(12+4)
8AB,1 (τ) = 1 + 12q + 4q2 − 24q5 − 16q6 − 8q8 +O(q9), (B.82)

and we write F
(12+4)
8AB,5 for the unique modular form of weight 2 for Γ0(64) such that

F
(12+4)
8AB,5 (τ) = 3q + 4q3 + 6q5 − 8q7 − 9q9 + 12q11 − 18q13 − 24q15 +O(q17). (B.83)

For r = 4 define

H
(12+4)
1A,4 (τ) := H

(12)
1A,4(τ) +H

(12)
1A,8(τ),

H
(12+4)
3A,4 (τ) := H

(6)
3A,2(τ/2) +H

(6)
3A,4(τ/2),

(B.84)

and set H
(12+4)
g,4 (τ) := 0 for g ∈ 2B ∪ 4A ∪ 8AB.

For r = 5 define

H
(12+4)
1A,5 (τ) := H

(12)
1A,5(τ) +H

(12)
1A,11(τ),

H
(12+4)
2B,5 (τ) := [−25

48 ]
(
H

(6)
8AB,5(τ/2)−H(6)

8AB,1(τ/2)
)
,

H
(12+4)
4A,5 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
2
η(2τ)8

η(τ)4
SE6

5 (τ)− 8
η(τ)4η(4τ)4

η(2τ)4
SE6

1 (τ)

)
,

H
(12+4)
3A,5 (τ) := [−25

48 ]
(
H

(6)
3A,5(τ/2)−H(6)

3A,1(τ/2)
)
,

H
(12+4)
8AB,5 (τ) :=

1

SE6
1 (τ)2 − SE6

5 (τ)2

(
2F

(12+4)
8AB,1 (τ)SE6

5 (τ)− 12F
(12+4)
8AB,5 (τ/2)SE6

1 (τ)
)
.

(B.85)
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Finally, define H
(12+4)
g,r for g ∈ 2A ∪ 6A by setting

H
(12+4)
2A,r (τ) := −(−1)rH

(12+4)
1A,r (τ),

H
(12+4)
6A,r (τ) := −(−1)rH

(12+4)
3A,r (τ).

(B.86)

B.3.14 ` = 13, X = A2
12

We have mX = 13, so the umbral McKay-Thompson series H
(13)
g = (H

(13)
g,r ) associated to g ∈

G(13) = GX ' Z/4Z is a 26-vector-valued function, with components indexed by r ∈ Z/26Z.

Define H
(13)
g = (H

(13)
g,r ) for g ∈ G(13) by requiring that

ψ(13)
g (τ, z) = −χ(13)

g µ0
13,0(τ, z)− χ̄(13)

g µ1
13,0(τ, z) +

∑
r mod 26

H(13)
g,r (τ)θ13,r(τ, z), (B.87)

where χ
(13)
g := χXA

g and χ̄
(13)
g := χ̄XA

g (cf. Table 28), and the ψ
(13)
g are meromorphic Jacobi forms

of weight 1 and index 13 given explicitly in Table 42.

Table 42: Character Values and Meromorphic Jacobi Forms for ` = 13, X = A2
12

[g] χ
(13)
g χ̄

(13)
g ψ

(13)
g (τ, z)

1A 2 2 2iθ1(τ, 6z)θ1(τ, z)−1θ1(τ, 3z)−1η(τ)3

2A −2 2 −2iθ1(τ, 6z)θ2(τ, z)−1θ2(τ, 3z)−1η(τ)3

4A 0 0 cf. (B.88)

ψ
(13)
4AB(τ, z) := −iθ2(τ, 6z)

θ1(τ, z + 1
4)θ1(τ, 3z + 1

4)− θ1(τ, z − 1
4)θ1(τ, 3z − 1

4)

θ2(2τ, 2z)θ2(2τ, 6z)

η(2τ)2

η(τ)
(B.88)

For use later on we note that ψ
(13)
1A = −2Ψ1,1ϕ

(13)
1 , where

ϕ
(13)
1 (τ, z) :=

θ1(τ, z)θ1(τ, 6z)

θ1(τ, 2z)θ1(τ, 3z)
. (B.89)

B.3.15 ` = 14 + 7, X = D3
8

We have mX = 14, so the umbral McKay-Thompson series H
(14+7)
g = (H

(14+7)
g,r ) associated to

g ∈ G(14+7) is a 28-vector-valued function with components indexed by r ∈ Z/28Z. We have

H
(14+7)
g,r = 0 for r = 0 mod 2, so it suffices to specify the H

(14+7)
g,r for r odd. Observing that

H
(14+7)
g,r = −H(14+7)

g,−r we may determine H
(14+7)
g by requiring that

ψ(7/2)
g (τ, z) = −2χ̄(7/2)

g iµ7/2,0(τ, z) +
∑

r∈Z+1/2
r mod 7

e(−r/2)H
(14+7)
g,2r (τ)θ7/2,r(τ, z), (B.90)

where χ̄
(7/2)
g := χ̄XD

g is the number of fixed points of g ∈ G(14+7) ' S3 in the defining permutation

representation on 3 points. The ψ
(7/2)
g are the meromorphic Jacobi forms of weight 1 and index

7/2 defined in Table 43.
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Table 43: Character Values and Meromorphic Jacobi Forms for ` = 14 + 7, X = D3
8

[g] χ̄
(7/2)
g ψ

(7/2)
g (τ, z)

1A 3 2iθ1(τ, 3z)θ1(τ, z)−2η(τ)3

2A 1 2iθ2(τ, 3z)θ1(τ, z)−1θ2(τ, z)−1η(τ)3

3A 0 −2iθ1(τ, z)θ1(τ, 3z)θ1(3τ, 3z)−1η(3τ)

B.3.16 ` = 16, X = A15D9

We have mX = 16, so the umbral McKay-Thompson series H
(16)
g = (H

(16)
g,r ) associated to g ∈

G(16) ' Z/2Z is a 32-vector-valued function with components indexed by r ∈ Z/32Z. We have

H
(16)
g,r = −H(16)

g,−r, so it suffices to specify the H
(16)
g,r for 1 ≤ r ≤ 15.

To define H
(16)
g = (H

(16)
g,r ) for g = e, first define h(τ) = (hr(τ)) by requiring that

−6Ψ1,1(τ, z)

(
ϕ

(16)
1 (τ, z) +

1

2
ϕ

(16)
2 (τ, z)

)
= −24µ16,0(τ, z) +

∑
r mod 32

hr(τ)θ16,r(τ, z), (B.91)

where

ϕ
(16)
1 (τ, z) := 8ϕ

(4)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(12)
1 (τ, z) + ϕ

(7)
1 (τ, z)ϕ

(10)
1 (τ, z),

ϕ
(16)
2 (τ, z) := 12ϕ

(4)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(12)
1 (τ, z)− 3ϕ

(16)
1 (τ, z).

(B.92)

(Cf. (B.35), (B.39), (B.54), (B.69), (B.77), (B.89).) Now define the H
(16)
1A,r by setting

H
(16)
1A,r(τ) :=

1

12
hr(τ) (B.93)

for r odd. For r even, 2 ≤ r ≤ 14, use

H
(16)
1A,r(τ) :=

1

24
(hr(τ) + h16−r(τ)) . (B.94)

Define H
(16)
2A,r by requiring

H
(16)
2A,r(τ) := −(−1)rH

(16)
1A,r(τ). (B.95)

B.3.17 ` = 18, X = A17E7

We have mX = 18, so the umbral McKay-Thompson series H
(18)
g = (H

(18)
g,r ) associated to g ∈

G(18) ' Z/2Z is a 36-vector-valued function with components indexed by r ∈ Z/36Z. We have

H
(18)
g,r = −H(18)

g,−r, so it suffices to specify the H
(18)
g,r for 1 ≤ r ≤ 17.

To define H
(18)
g = (H

(18)
g,r ) for g = e, first define h(τ) = (hr(τ)) by requiring that

−24Ψ1,1(τ, z)φ(18)(τ, z) = −24µ18,0(τ, z) +
∑

r mod 36

hr(τ)θ18,r(τ, z), (B.96)
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where

φ(18) :=
1

12

(
ϕ

(18)
1 +

1

3
ϕ

(18)
3 + 4

θ12
1

η12

(
ϕ

(12)
1 + 2ϕ

(12)
2 +

1

3
ϕ

(12)
3

))
. (B.97)

For the definition of φ(18) we require

ϕ
(9)
2 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(6)
1 (τ, z)− 4ϕ

(5)
1 (τ, z)2 − 4ϕ

(9)
1 (τ, z),

ϕ
(11)
1 (τ, z) := 3ϕ

(5)
1 (τ, z)ϕ

(7)
1 (τ, z) + 2ϕ

(3)
1 (τ, z)ϕ

(9)
1 (τ, z)− ϕ(4)

1 (τ, z)ϕ
(8)
1 (τ, z),

ϕ
(12)
3 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(9)
2 (τ, z),

ϕ
(14)
1 (τ, z) := 3ϕ

(5)
1 (τ, z)ϕ

(10)
1 (τ, z) + ϕ

(3)
1 (τ, z)ϕ

(12)
1 (τ, z)− 4ϕ

(4)
1 (τ, z)ϕ

(11)
1 (τ, z),

ϕ
(15)
1 (τ, z) := ϕ

(5)
1 (τ, z)ϕ

(11)
1 (τ, z) + 6ϕ

(3)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(4)

1 (τ, z)ϕ
(12)
1 (τ, z),

ϕ
(15)
2 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(12)
1 (τ, z)− 2ϕ

(5)
1 (τ, z)ϕ

(11)
1 (τ, z)− 2ϕ

(15)
1 (τ, z),

ϕ
(18)
1 (τ, z) := ϕ

(5)
1 (τ, z)ϕ

(14)
1 (τ, z) + 3ϕ

(3)
1 (τ, z)ϕ

(16)
1 (τ, z)− 4ϕ

(4)
1 (τ, z)ϕ

(15)
1 (τ, z),

ϕ
(18)
3 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(15)
2 (τ, z),

(B.98)

in addition to the other ϕ
(m)
k that have appeared already. Now define the H

(18)
1A,r by setting

H
(18)
1A,r(τ) :=

1

24
hr(τ) (B.99)

for r even. For r odd, use

H
(18)
1A,1(τ) :=

1

24
(2h1(τ) + h17(τ)) ,

H
(18)
1A,3(τ) :=

1

24
(h3(τ) + h9(τ)) ,

H
(18)
1A,5(τ) :=

1

24
(2h5(τ) + h13(τ)) ,

H
(18)
1A,7(τ) :=

1

24
(2h7(τ) + h11(τ)) ,

H
(18)
1A,9(τ) :=

1

24
(h3(τ) + 2h9(τ) + h15(τ)) ,

H
(18)
1A,11(τ) :=

1

24
(h7(τ) + 2h11(τ)) ,

H
(18)
1A,13(τ) :=

1

24
(h5(τ) + 2h13(τ)) ,

H
(18)
1A,15(τ) :=

1

24
(h15(τ) + h9(τ)) ,

H
(18)
1A,17(τ) :=

1

24
(h1(τ) + 2h17(τ)) .

(B.100)

Define H
(18)
2A,r in the usual way for root systems with a type A component, by requiring

H
(18)
2A,r(τ) := −(−1)rH

(18)
1A,r(τ). (B.101)
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B.3.18 ` = 18 + 9, X = D10E
2
7

We have mX = 18, so the umbral McKay-Thompson series H
(18+9)
g = (H

(18+9)
g,r ) associated to

g ∈ G(18+9) ' Z/2Z is a 36-vector-valued function with components indexed by r ∈ Z/36Z. We

have H
(18+9)
g,r = −H(18+9)

g,−r , H
(18+9)
g,r = H

(18+9)
g,18−r for 1 ≤ r ≤ 17, and H

(18+9)
g,r = 0 for r = 0 mod 2, so

it suffices to specify the H
(18+9)
g,r for r ∈ {1, 3, 5, 7, 9}.

Define

H
(18+9)
1A,r (τ) := H

(18)
1A,r(τ) +H

(18)
1A,18−r(τ),

H
(18+9)
2A,r (τ) := H

(18)
1A,r(τ)−H(18)

1A,18−r(τ),
(B.102)

for r ∈ {1, 3, 5, 7, 9}.

B.3.19 ` = 22 + 11, X = D2
12

We have mX = 22, so the umbral McKay-Thompson series H
(22+11)
g = (H

(22+11)
g,r ) associated to

g ∈ G(22+11) ' Z/2Z is a 44-vector-valued function with components indexed by r ∈ Z/44Z. We

have H
(22+11)
g,r = −H(22+11)

g,−r and H
(22+11)
g,r = 0 for r = 0 mod 2, so it suffices to specify the H

(22+11)
g,r

for r odd. Observing that H
(22+11)
g,r = −H(22+11)

g,−r we may determine H
(22+11)
g by requiring that

ψ(11/2)
g (τ, z) = −2χ̄(11/2)

g iµ11/2,0(τ, z) +
∑

r∈Z+1/2
r mod 11

e(−r/2)H
(22+11)
g,2r (τ)θ11/2,r(τ, z), (B.103)

where χ̄
(11/2)
1A := 2, χ̄

(11/2)
2A := 0, and the ψ

(11/2)
g are the meromorphic Jacobi forms of weight 1 and

index 11/2 defined as follows.

ψ
(11/2)
1A (τ, z) := 2i

θ1(τ, 4z)

θ1(τ, z)θ1(τ, 2z)
η(τ)3

ψ
(11/2)
2A (τ, z) := −2i

θ1(τ, 4z)

θ2(τ, z)θ2(τ, 2z)
η(τ)3

(B.104)

B.3.20 ` = 25, X = A24

We have mX = 25, so for g ∈ G(25) ' Z/2Z, the associated umbral McKay-Thompson series

H
(25)
g = (H

(25)
g,r ) is a 50-vector-valued function, with components indexed by r ∈ Z/50Z, satisfying

H
(25)
g,r = −H(25)

g,−r, and in particular, H
(25)
g,r = 0 for r = 0 mod 25. So it suffices to specify the H

(25)
g,r

for 1 ≤ r ≤ 24.
Define H

(25)
g = (H

(25)
g,r ) for g = e by requiring that

−Ψ1,1(τ, z)ϕ
(25)
1 (τ, z) = −µ25,0(τ, z) +

∑
r mod 50

H(25)
e,r (τ)θ25,r(τ, z), (B.105)

where

ϕ
(25)
1 (τ, z) :=

1

2
ϕ

(5)
1 (τ, z)ϕ

(21)
1 (τ, z)− ϕ(7)

1 (τ, z)ϕ
(19)
1 (τ, z) +

1

2
ϕ

(13)
1 (τ, z)2. (B.106)
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For the definition of ϕ
(25)
1 we require

ϕ
(17)
1 (τ, z) := 4ϕ

(5)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(9)

1 (τ, z)2,

ϕ
(19)
1 (τ, z) := ϕ

(4)
1 (τ, z)ϕ

(16)
1 (τ, z) + 2ϕ

(7)
1 (τ, z)ϕ

(13)
1 (τ, z)− ϕ(5)

1 (τ, z)ϕ
(15)
1 (τ, z),

ϕ
(21)
1 (τ, z) := ϕ

(5)
1 (τ, z)ϕ

(17)
1 (τ, z)− 2ϕ

(9)
1 (τ, z)ϕ

(13)
1 (τ, z),

(B.107)

in addition to the other ϕ
(m)
k that have appeared already. Define H

(25)
2A,r in the usual way for root

systems with a type A component, by requiring

H
(18)
2A,r(τ) := −(−1)rH

(18)
1A,r(τ). (B.108)

B.3.21 ` = 30 + 15, X = D16E8

We have mX = 30, so the umbral McKay-Thompson series H
(30+15)
g = (H

(30+15)
g,r ) associated to

g ∈ G(30+15) = {e} is a 60-vector-valued function with components indexed by r ∈ Z/60Z. We have

H
(30+15)
e,r = −H(30+15)

e,−r , H
(30+15)
e,r = H

(30+15)
e,30−r for 1 ≤ r ≤ 29, and H

(30+15)
e,r = 0 for r = 0 mod 2, so

it suffices to specify the H
(30+15)
e,r for r ∈ {1, 3, 5, 7, 9, 11, 13, 15}.

Define

H
(30+15)
1A,1 (τ) :=

1

2

(
H

(30+6,10,15)
1A,1 + [− 1

120 ]H
(10+5)
3A,1 (τ/3)

)
,

H
(30+15)
1A,3 (τ) := [− 9

120 ]H
(10+5)
3A,3 (τ/3),

H
(30+15)
1A,5 (τ) := [− 25

120 ]H
(10+5)
3A,5 (τ/3),

H
(30+15)
1A,7 (τ) :=

1

2

(
H

(30+6,10,15)
1A,7 + [− 49

120 ]H
(10+5)
3A,3 (τ/3)

)
,

H
(30+15)
1A,11 (τ) :=

1

2

(
H

(30+6,10,15)
1A,1 − [− 1

120 ]H
(10+5)
3A,1 (τ/3)

)
,

H
(30+15)
1A,13 (τ) :=

1

2

(
H

(30+6,10,15)
1A,7 − [− 49

120 ]H
(10+5)
3A,3 (τ/3)

)
,

H
(30+15)
1A,15 (τ) := −[−105

120 ]H
(10+5)
3A,5 (τ/3).

(B.109)

B.3.22 ` = 30 + 6, 10, 15, X = E3
8

We have mX = 30, and G(30+6,10,15) = GX ' S3. The umbral McKay-Thompson series H(30+6,10,15)

is a 60-vector-valued function with components indexed by r ∈ Z/60Z. We have

H(30+6,10,15)
g,r (τ) =


±H(30+6,10,15)

g,1 if r = ±1,±11,±19,±29 mod 60,

±H(30+6,10,15)
g,7 if r = ±7,±13,±17,±27 mod 60,

0 else,

(B.110)
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so it suffices to specify the H
(30+6,10,15)
g,r for r = 1 and r = 7. These functions may be defined as

follows.

H
(30+6,10,15)
1A,1 := −2

1

η(τ)2

 ∑
k,l,m≥0

+
∑

k,l,m<0

 (−1)k+l+mq(k2+l2+m2)/2+2(kl+lm+mk)+(k+l+m)/2+3/40

H
(30+6,10,15)
2A,1 := −2

1

η(2τ)

 ∑
k,m≥0

−
∑
k,m<0

 (−1)k+mq3k2+m2/2+4km+(2k+m)/2+3/40

H
(30+6,10,15)
3A,1 := −2

η(τ)

η(3τ)

∑
k∈Z

(−1)kq15k2/2+3k/2+3/40

H
(30+6,10,15)
1A,7 = −2

1

η(τ)2

 ∑
k,l,m≥0

+
∑

k,l,m<0

 (−1)k+l+mq(k2+l2+m2)/2+2(kl+lm+mk)+3(k+l+m)/2+27/40

H
(30+6,10,15)
2A,7 = 2

1

η(2τ)

 ∑
k,m≥0

−
∑
k,m<0

 (−1)k+mq3k2+m2/2+4km+3(2k+m)/2+27/40

H
(30+6,10,15)
3A,7 = −2

η(τ)

η(3τ)

∑
k∈Z

(−1)kq15k2/2+9k/2+27/40

(B.111)

B.3.23 ` = 46 + 23, X = D24

We havemX = 22, andG(46+23) = {e}. The umbral McKay-Thompson seriesH
(46+23)
e = (H

(46+23)
e,r )

is a 92-vector-valued function with components indexed by r ∈ Z/92Z. We have H
(46+23)
e,r =

−H(46+23)
e,−r and H

(46+23)
e,r = 0 for r = 0 mod 2, so it suffices to specify the H

(46+23)
e,r for r odd.

Observing that H
(46+23)
e,r = −H(46+23)

e,−r we may determine H
(46+23)
e by requiring that

ψ(23/2)
e (τ, z) = −2iµ23/2,0(τ, z) +

∑
r∈Z+1/2
r mod 23

e(−r/2)H
(46+23)
g,2r (τ)θ23/2,r(τ, z), (B.112)

where ψ
(23/2)
e is the meromorphic Jacobi forms of weight 1 and index 23/2 defined by setting

ψ(23/2)
e (τ, z) := 2i

θ1(τ, 6z)

θ1(τ, 2z)θ1(τ, 3z)
η(τ)3. (B.113)

B.4 Rademacher Sums

Let Γ∞ denote the subgroup of upper-triangular matrices in SL2(Z). Given α ∈ R and γ ∈ SL2(Z),

define r
[α]
1/2(γ, τ) := 1 if γ ∈ Γ∞. Otherwise, set

r
[α]
1/2(γ, τ) := e(−α(γτ − γ∞))

∑
k≥0

(2πiα(γτ − γ∞))n+1/2

Γ(n+ 3/2)
, (B.114)
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where e(x) := e2πix. Let n be a positive integer, and suppose that ν is a multiplier system
for vector-valued modular forms of weight 1/2 on Γ = Γ0(n). Assume that ν = (νij) satisfies
ν11(T ) = eπi/2m, for some basis {ei}, for some positive integer m, where T = ( 1 1

0 1 ). To this data,
attach the Rademacher sum

RΓ,ν(τ) := lim
K→∞

∑
γ∈Γ∞\ΓK,K2

ν(γ)e
(
− γτ

4m

)
e1 j(γ, τ)1/2 r

[−1/4m]
1/2 (γ, τ), (B.115)

where ΓK,K2 :=
{(

a b
c d

)
∈ Γ | 0 ≤ c < K, |d| < K2

}
, and j(γ, τ) := (cτ + d)−1 for γ =

(
a b
c d

)
. If

the expression (B.115) converges then it defines a mock modular form of weight 1/2 for Γ whose
shadow is given by an explicitly identifiable Poincaré series. We refer to [13] for a review of this,
and to [53] for a more general and detailed discussion.

Convergence of (B.115) can be shown by rewriting the Fourier expansion as in [53, Theorem 2]
in terms of a sum of Kloostermann sums weighted by Bessel functions. This expression converges
at w = 1/2 by the analysis discussed at the end of §3, following the method of Hooley as adapted
by Gannon. That analysis requires not only establishing that the expressions converge, but also
explicitly bounding the rates of convergence.

For the special case that X = A3
8 we require 8-vector-valued functions ť

(9)
g = (ť

(9)
g,r) for g ∈ GX

with order 3 or 6. For such g, define ť
(9)
g,r, for 0 < r < 9, by setting

ť
(9)
3A,r(τ) :=


0, if r 6= 0 mod 3,

−θ3,3(τ, 0), if r = 3,

θ3,0(τ, 0), if r = 6,

(B.116)

in the case that g has order 3, and

ť
(9)
6A,r(τ) :=


0, if r 6= 0 mod 3,

−θ3,3(τ, 0), if r = 3,

−θ3,0(τ, 0), if r = 6,

(B.117)

when o(g) = 6. Here θm,r(τ, z) is as defined in (B.5).
The following result is proved in [17], using an analysis of representations of the metaplectic

double cover of SL2(Z).

Theorem B.1 ([17]). Let X be a Niemeier root system and let g ∈ GX . Assume that the
Rademacher sum RX

Γ0(ng),ν̌Xg
converges. If X 6= A3

8, or if X = A3
8 and g ∈ GX does not satisfy

o(g) = 0 mod 3, then we have

ȞX
g (τ) = −2RXΓ0(ng),ν̌Xg

. (B.118)

If X = A3
8 and g ∈ GX satisfies o(g) = 0 mod 3 then

ȞX
g,r(τ) = −2RXΓ0(ng),ν̌Xg

(τ) + ť(9)
g (τ). (B.119)

The X = A24
1 case of Theorem B.1 was proven first in [12], via different methods.
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