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1. Introduction

Traditionally the transmission of optical pulses in nonlinear fiber optics was inti-
mately connected to the classical soliton solution of the NLS equation that arises
as a ground state of the equation, after averaging out the rapid oscillations of the
power. This standard optical soliton decays like ∼ e−|x| and preserves its shape
during propagation by compensating the constant dispersion in the fiber through
the nonlinearity. Starting at about 1995, however the concept of dispersion-
managed optical solitons (DM solitons) was introduced. The basic set-up for these
devices consists in two optical fibers of opposite dispersions that are concatenated
into a line. Furthermore, a periodic chain of amplifiers is used to compensate for
the fiber losses. It turned out that in real-world applications DM solitons could
be used for highly efficient data transmission, in particular leading to an excellent
performance in systems that are designed with a large variation of the dispersions
in two adjacent pieces of the line, along with a low average.

To motivate the equation that will be of interest to us in this short survey,
consider an optical fiber extended in the z-direction of R3. It is assumed that
the fiber has a constant circular cross-section in the transversal x, y-directions. A
z-segment of length L+ and dispersion β+ > 0 is followed by a segment of length
L− and dispersion β− < 0. Then the piece [0, L+] ∪ [L+, L+ + L−] is periodically
repeated along the z-axis. In order to make some simplifying assumptions it is
supposed that the fiber is unimodal and supports a monochromatic wave. Denoting
ω1 a fixed frequency and k1 the associated wave number, the ansatz E(x, y, z, t) =
κA(z, t)Φ(x, y)ei(k1z−ω1t) is made for the electromagnetic field E. Here Φ is a
(transversal) eigenfunction. To lowest order in κ the equation

iAz + β2(z)Att + iβ3(z)Attt + |A|2A = 0

formally arises [10] from the Maxwell equation for E, where β2(z) = β+ in [0, L+]
and β2(z) = β− in ]L+, L+ + L−[, and also a non-constant third order dispersion
function β3(z) has been included. Due to the periodic change of the dispersion and
the periodic amplification, the system will exhibit rapid oscillations of the pulse
width and power. This fast dynamics is averaged out by replacing βj(z) with
ε−1βj(ε−1z) and performing a formal averaging over ε on one segment. Renaming
z → t, t → x, A → u, the resulting propagation equation for the slow dynamics is
found to be

(1) iut + β2uxx + iβ3uxxx + 〈Q〉(u) = 0,

where 〈Q〉(u) =
∫ 1

0
T (−t)(|T (t)u|2T (t)u) dt is the averaged nonlinearity for the

function u(t, x) = (T (t)u)(x) solving iut+β2uxx+iβ3uxxx = 0 and T (0)u = u. The
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constants βj ≥ 0 denote the residual dispersions; for instance, β2 = L+β+ +L−β−

for β2(z) as described above.

2. Summary of Results

First we consider the case where β3 = 0. In [18] it was shown that the averaging
outlined above is mathematically justified. Hence it is reasonable to look for
ground state solutions, i.e., minimizers of the functional H(u) = α

∫
R |ux|2 dx −∫ 1

0

∫
R |T (t)|4 dx dt under the constraint

∫
R |u|2 dx = 1. Note that a minimizer u∗

leads to the periodic solution u(t, x) = eiωtu∗(x) of (1) for some ω, and hence
to a nearly stable pulse for the non-averaged equation. If α > 0, then H has a
minimizer; see [21, 4]. The regularity of such minimizers and further properties
are investigated in [19]. If α = 0, then H still has a minimizer [7], and such
minimizers also arise as the singular limit α → 0+ of minimizers uα for α >
0 [6]. From a technical viewpoint, the difficulty of such a result is due to the
invariances of the functional, and furthermore it is owed to the fact that there a
no bounds on minimal sequences (uj)j∈N in spaces different from L2(R). In [7]
a new and general method was devised that relies on applying the concentration
compactness principle to both unit-mass sequences (uj)j∈N and (ûj)j∈N (‘two-
level concentration compactness’). The paper [16] reproved the existence of a
minimizer u∗ with different methods (using Xs,b-spaces) that also allowed to show
that u∗ ∈ C∞(R)∩L2(R) is smooth. For x ∈ R2, there is no minimizer, and there
is also no minimizer for x ∈ R, if |T (t)|4 is replaced by |T (t)|6 in H; see [16].

Closely related to H at α = 0 is the functional Hs(u) = − ∫
R

∫
R |T (t)|6 dx dt.

Refining the method from [7], it was proved in [8] that the constraint variational
problem for Hs admits a minimum, i.e., the best constant S > 0 in the Strichartz
inequality ‖u‖L6

tx(R×R) ≤ S‖u0‖L2(R) is attained. In [1], this result was reproved
by a more elementary method that relies on interpreting the space-time Fourier
transform ũ3(τ, ξ) in a clever way as a (τ, ξ)-dependent inner product and the
Strichartz estimate as an application of the Cauchy-Schwarz inequality to this
inner product. In particular, as the cases of equality in the Cauchy-Schwarz in-
equality are known, the best constant could be evaluated to be S = 12−1/12 with
corresponding minimizer u∗(x) = e−|x|

2
(and all orbits thereof under the symme-

try groups). In two dimensions, x ∈ R2, and |T (t)|6 in Hs replaced by |T (t)|4, the
best constant is 2−1/2 and obtained from the same minimizer. Furthermore, [1]
contains similar results for some Strichartz inequalities for wave equations. Yet
by another method, without making use of the Fourier transform at all, similar
results are obtained in [2].

For the case β3 > 0 in (1), i.e., higher-order dispersion, the existence of a
minimizer is due to [11, 12] in the case of non-zero average dispersion. For zero
average dispersion see [9], where also certain dispersion relations of order higher
than three could be included; once again, this paper relies on the method of two-
level concentration compactness.

Further references related to the subject of dispersion management include [3,
5, 14, 15, 20, 22, 23].

2



Quite recently, also so-called diffraction-managed optical fibers attracted some
interest [13, 17]. Mathematically, here the continuous problem for x ∈ R has to
be replaced by a discrete version.
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