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Abstract

It is shown that the “tangential” electric and magnetic fields, in the Glassey-Strauss repre-

sentation formulas, are in fact bounded in Ly}, tL%J”S for some ¢ > 0.

1 Introduction and main result

The relativistic Vlasov-Maxwell system describes the time evolution of a plasma with particles
moving at high velocities (close to the speed of light which is taken to be ¢ = 1). The Vlasov
equation

Ohf+v-Vf+(E4+vAB)-V,f=0 (1.1)

governs the evolution of the scalar density function f = f(¢,z,p) > 0, depending on time t € R,
position z € R?, and momentum p € R?; here V always means V,. The velocity v € R3 associated
to pis

v
U:L thus p =

Vit o

where p? = [p|? and v? = |v|? for brevity. The Lorentz force

L=L(t,z,v) = E(t,z) +vAB(t,z) € R®

is obtained from the electric field £ = E(t,x) € R? and the magnetic field B = B(t,z) € R?,
which in turn satisfy the Maxwell equations

OE=VAB—j, V-E=p, (1.2)

and

OB=-VAE, V-B=0. (1.3)

The coupling of (1.1) to (1.2), (1.3) is realized through the charge density p = p(t,z) € R and the
current density j = j(t,z) € R? via

pte)= | flt,op)dp and j(t,z) = / v f(t,2,p) dp.
R3 R3
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Furthermore, initial data

are prescribed such that the constraint equations
V-EO =0 = fOdp and V-BO =0
R3

are satisfied.

There has been quite some activity concerning the relativistic Vlasov-Maxwell over the years,
but nonetheless the question whether (for instance smooth) initial data will yield a global in time
solution still remains open. See [2] and [14] for a general introduction and overview, [9] for a
summary of results up to approximately 2015 and [12] for some newer and further refined criteria
concerning unrestricted global existence, generalizing both [10, 11] and [9]; the full global existence
problem has only been settled in two dimensions [4, 5] and in “two-and-one-half-dimensions”
r€R? peR?[3.

To explain the observation which is the subject of the present paper, we go back to the pio-
neering work [6], where Glassey and Strauss noted that a bound on the momentum support of f
does yield global existence; this result was later reproved by [8] and [1], using different methods.
First recall that the energy

et) = [ [ VIFP ftapdedp+ 5 [ (B + B do (1.4)

3

is conserved along solutions of (1.1), (1.2), and (1.3); note that V,1/1 + p?> = v. Therefore one
gets a bound

E,Be L L2 (1.5)
in terms of the initial data for free. Next, defining EV(z) = 0,F(0,z) and BV (z) = 0,B(0,z), E
and B are the solutions to the wave equations

OF = —(8tj+Vp):—/ (v, +V)fdp, E0)=E? 9,E0)=EY, (1.6)
]R3
OB = V/\j:V/\/ v f dp, B(0) = B9, 9,B(0) = BWY. (1.7)
R3

In [6], Glassey and Strauss noted that (1.6) and (1.7) can be used to derive representation formulas
for the fields as follows. Write

S:at—i—v-v, TJ:—w]at—l-amj
Then 0, and V can be expressed in terms of S and T, since

o = (I+v-w)H(S—v-T), (1.8)
O, = Ti+(1+v-w)'wi(S—v-T). (1.9)

J

Note that with w = ==
ly—z|

Vylft=ly—2zly,p)] = (=wd + V) f(...) = (Tf)(..),
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and, for instance,

E = —D_l/ dp(V+v0,)f
R3

d
= —/ dp/ Y (V+vd)f.
R3 ly—z|<t |y - I’|

First one uses (1.9) and (1.8) for the right-hand side and then one integrates (T'f)(...) =V, [.. ]
by parts in y. After a lengthy calculation one finds

E=FEp+ Epr+ Er+ Eg (1.10)

(and a similar expression for B), where Ep and Epr are data terms,

d
ET(t7$) = _/|y<tﬁ/k;3 deE,T(Wav)f(t_ |y|7x+yap)7 (111)
d
Es(t,x) = —/ el dp K s(w,v) (Lf)(t —|y|, = + vy, p), (1.12)
ly|<t |Z/‘ R3

and the integral kernels Kg r(w,v) € R* and Kg s(w,v) € R**3 behave as follows:

K, 7(w,v)] < C(L+p*) (1 +v-w) ™2 (1.13)
|Kp, s(w,v)z] < CA+p?) 21 +v-w) Yz (2 €RP). (1.14)

See Section 3 below for the precise form of the kernels and a recap of the proof of (1.13) and (1.14).
Relation (1.10) is the Glassey-Strauss representation formula for the electric field E and, together
with its counterpart for B, it has become an indipensible tool for proving existence results for the
relativistic Vlasov-Maxwell system. Variants of it have been used for related systems as well.

Assuming initial data of compact support, certainly the data terms Ep and Epr in (1.10) will
behave well. Thus, in the light of (1.5), it is natural to ask what could be said about the terms Er
and Fg individually. We will call Er the tangential part and we are going to prove the following
result.

Theorem 1.1 Consider initial data of compact support. Then Er, By € L, ,L**° for some § > 0.

loc,t

Remark 1.2 (a) Since the argument for Br is the same as for Er, we will only consider the latter
in what follows.

(b) The number ¢ > 0 will be a uniform constant, for instance § = % is a possible choice. As this
result is mainly understood to be a “proof of concept”, certainly the regularity that is gained here

will not be optimal.

( ) By Er € LY, ,L2" we mean the following: There is a continuous function C' = C(t) :

[1 oo[ which only depends on ¢ and the initial energy £(0), the initial mass M(0) =
fRS ng (x,p)dzdp and ||fO such that ||Er(t,-)|| 2rsgs < C(t) for t € [0, Tiax], Where
Tax > 0 denotes the maximal time of existence of the solution. A constant denoted by C' will

always be one which only depends on £(0), M(0) and || f©]|_..

(d) Due to Theorem 1.1 and (1.5) one has Eg € LyY.,L?, but we are not able to derive this bound
directly from (1.12).



2 Proof of Theorem 1.1

According to (1.11) and (1.13) we have

1

wi<t I /R31+p (1+v w3
=: Cu(t,x).

’ET<tax)| < C (t_ \y!,x—l—y,p)

The Fourier transform of w is

ate) - /e'- u(t,z) do

1 / .
B dxeizg‘xft_ yax+y7p
/|y<t [yl /Rsl+p (1+v-w)?? (t = 1y] )
dy e 1 .
B TR Emn e AUl RSy
/R31+p /y|§t ly|? (1+v-w)3/? (t =yl )

/ dp /tdsf(t—sf)/ d5(w) —
R31+p2 0 A \w\zl (1+U'W)3/2.

To evaluate the inner integral choose a unit vector e € R? such that {v,,e} is an orthonormal

basis of R?, where v = v/|v| = and @ = S=€9% 416 orthogonal unit vectors. Consider
/|v] p/Ipl V-0 g

the matrix A = € R3*3, where the vectors are taken as rows. Then Av = es and

[S{EE <l

Al = ey. Tt follows that Av = |[v]Av = |v]es and AE = |¢|AE = [E]JA(V/1 — (€-0)2u+ (€-9)D) =
1€/(V/1 = (£-0)2ey + (€ D)e3). Thus if w € R? and Aw = 7, then by the invariance of the inner
product,

§-w=(A9) - (Aw) = €] (\/1 = (€ 0P ea+ (€ 0es) - = Il (/1 = (€- 02 m + (€ ) ).

and similarly v - w = |v|ns. Hence we can employ the change of variables n = Aw, dS(n) = dS(w),
and afterwards pass to spherical coordinates to obtain

eliséw 15 1€1(n/1=(£0)? n2+(€-0)n3)
/ ASW) T3 opr / ds(n)
lw|=1 In|=1

+ v - w)3/? (1 + |v|ns)3/2
/ de/ p zs|§\(\/ —(€-0)2 sin 0 sin o+ (€-D) cos )
© sin @

(1+ |U| cos <p)3/2

— / do (L&U / do els\fh/ sin 0v/1—o2
—1

1+ |v|o)3/2

1 eisa§~17 —
= 27?/ dUng(S’&l 1—(6-1})2\/1—02)’

where
1

2
JO(T) _ %\/O eirsin@ do
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is the Bessel function of order zero. Its asymptotic expansion is

Jo(r) = \/gcos (7’ — Z> + 0032, r— o0, (2.1)

see [7, p. 432], and also |Jy(r)| < 1 is verified. Thus altogether we obtain

B ipr f(t—s.6p) /1 i <1+T|£U e |§|\/7m>

-1

t
ds

u(t, &) = 2w

Our estimates below will only use (2.1) and |Jo(r)] < 1. It is tempting to assume that some
improvement could be possible due to the oscillatory behavior of Jy, but we have not been able to
do so.

Next we introduce a standard Littlewood-Paley decomposition of u. For, fix ¢q € C5°(R™) such

that ¢o(§) = 1 for [§] < 1 and po(§) = 0 for [§] > 2. For j € N put v;(£) = ¢o(277€) — wo(27771€).
Then ¢;(§) = 0 for [§] < 277" and for [¢] > 27*!. Furthermore, 377 ¢;(§) = 1 for all £ € R™.
Henceforth we shall consider u; = u;(t,x) given by u;(t,&) = ¢;(§)u(t, &) for j € Ny. In this way

we obtain
o
u = E Uj
j=0

for

iso &-v —
i (t, €) —27r/ ds/ sgp)/ dae—mJ()(s\ﬁ] 1—(5-@)2\/1—02),
R 1 (1+ |vo)
where fj(t, £,p) = ¢;(§) f (t,&, p); the Fourier transform of f only refers to the variable x. Then
15t D)l gagesy < O Dl gsnys G € Noy g € 1,06, 22)

uniformly in ¢ and p; the constant C' > 0 does only depend on ¢. Since supp fj(t, op) C {271 <
€] < 2771} Bernstein’s inequality (or a direct estimate) moreover leads to

I1£3(t, '7p)||Lg(R3) < 023j/2||fj(ta '7p)||L316(R3)7 (2.3)

uniformly in ¢ and p. Denote by (¢;);cy, & partition of unity on 10, 1] such that supp ¢y C [3,1]
and supp ¥; C [27UF2 2791 for j € N. Accordingly we decompose

() =D Y g (t, €), (2.4)

k=0 m=0 n=0

where

%mwﬂzzﬁlhwagéd%%ﬂwﬂ@m%(1—@@%

x /1 do (1+T|£U3/2‘]°( €[\/1— (€ m) (VI— o).

-1

The next lemma is the main technical tool for the proof of Theorem 1.1.
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Lemma 2.1 For j € N and k,m,n € Ny,

o(kt+m+n—j)/2

gt )l R3)<Ctm1n{1 T}Q’kmin{2’2m23j/2,(\/ﬁ+ NG 2*”}. (2.5)
Proof: Observe that by (2.1) always
0 (2) (V1= (€ 9)2) (VT = 02) [ o (slély/1 = (€ 92 VI =2
< On(3)on (V1= € 0)onlVi=e) mm{l’svwl/m—<£~v> I
< v (2)n (1= €02 (VI= ) main {1, 20N

t1/2
Therefore

|ﬂjkmn(t7 €)|
2(1€+m+n 7)/2

< cmin {12200 [asnn(3) [ HE - senln(y/1- € o)

« /_1 do—L 4 (VTP (2.6)

1 (L4 [o]o)??
From (2.2) and (2.3) we deduce that

||fj(t>'ﬂp)HL2 @) < Ot D) | 2y < C2PN 5t D)y sy < C292Nf(E s 0) |2 reys (27)

and also

|’fj(t7'7p)HL2 (R3) = CHf]( ) 7p>HL2 (R3) < CHf( ) >p)HL2(R3 (28>

both uniformly in ¢ and p.
To begin with the estimate of (2.6), the support of ¥,,(v/1 — 02) is contained in

= /1 — 9-2m+2 < |J‘ < A /1 — 2—2(m+2) — o4

Then oy —o_ < C272™ and it follows that

1 (L4 [o]o)??

/_1 da%iﬂm(\/l —0?)
2

1 1 1 1
< - + - )
oIN/TTo ol Jitodl i-oiil vI-o
< Clow—o)(1+ (1 +p)2) < C272(14 )2
Thus, below taking R = 2™ > 1 and using that f 1 W = |72|(\/11_| ‘ \/1+\ |) < 2@{ 1+ p?,
we find that
[ 2t —senl [ ot VT )
rs 1 +p? o (14 Julo)32

dp / dp
— o+
/p|<R 1 +P2( ) >R 1+p2< )



< cz-?m/ VIT RISt - s, 6p)|dp+C it —s,6p
pl<R ; | p|>R \/1 +p |U| s )

< 022’”/ \/1+p2!ﬂ(t—8,£,p)\dp+0}%2/ V1P| fi(t = s, )l dp
pI<R Ipl2R

< 02—2’”/ VI+p2|fi(t — s,€,p)| dp.
R3

As a consequence, by (2.7) and energy conservation (1.4),

H/R:al—i—p |f] _77p|/ 1+|v|0_3/2¢m(\/1—0'2)
< C2° 2m/ V1+p ”f] S, D HL2 RB)dp

02_27”23]/2/ dp\/1+p2/ def(t —s,z,p)
R3 R3

< CE&0)272m2%/2
= C272m2¥2,

LZ(R3)

IN

Using this and ¢, (...) <1 1in (2.6), we obtain

k4+m+n—73)/2 t
sty < Comin {12 geamauie [ gy (%)
j L2R3) = ’ /2 o t

2(k+m+n—j)/2

< Ctmin {1, e

} 9=k 9=2m 93i/2, (2.9)
This finishes the proof of the first part of (2.5). Secondly, the support of 1, (v/1 — 72) is contained
in

=11 — 2—2n+2 < |7-| < 1 — 22(n+2) — T4
and 7, — 7_ < 0272, Thus, for all R > 1,

/1<| <k (1 +dp 2)3/2 %( - @)2> - /1g| <k (1 +dp 2)3/2 %(V ! _@)

R T’2 us .
C/ drm/ dp sin p 1, (/1 — cos? p)
1 0

Cln(1 + R) /1 Yn(V1 = 72)dr

Cln(1+ R) (r. — 7_)
Cln(1+ R)272",

IN

IA

IA A

and similarly

/p|g1 %( L= (¢ 17)2> dp < C 27,

Hence if we take R = 27/223/4 > 1, then

L2 semun(yi-€ ) [ dogrin
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dp / dp / dp
= — )+ — )+ — (...
/|p<11+P2( ) 1<\p|<é1+P2( ) \p|zR1+P2( )

< C/qup*/l*? it = 5,601 6a (/1 - (€ 02)
e 1<|p\<3m’fj( 5,€,p)|wn< 1_(5'@)2)
+C |p\>3m|f] —5,§,p)|
< el 1—<f~@>2>dp>”2</| Jesenta)”
+ C</1<P|<R GJ:ZW 1%( v ' ﬁ)2>>1/2<[§p|ﬁé L p? ‘fj(t B S,f,p)]Q dp>1/2
+CR™* /|>R\/1+p2|fj(t—s,€,p)|dp
< c2n( [l -senla)”

+C(In(1+ R))?2 / M|f]t—sfp]2dp> "
+CR? [ VITRI s el dp

< o+ R Fen( [ VIFRIRC sl d)
FCR? [ VITRI s gl db

Therefore

— 1
H/ T2 e =)l 1_(5'@2>/_1daw L2(=9)
< C(ln(1+é))1/22"</ dp\/l—i-p ’fg —5,&,p)| )1/2
+CR™ / VI 2 1F(t = 5,0l 2 sy dp-

For the first term, we use (2.8), || f(t)|., < [|£©
for the second. This leads to

and (1.4), whereas we invoke (2.7) and (1.4)

Mo

- 1 1
[ riplbe=snlin(Vi- @) [ g
C(n(1 + R))Y22™ + CR22%/?
(1 <1+2n/2 23j/4))1/22—n
C(n+j)2™

Due to (2.6), and dropping ¢,,(...) < 1, it follows that

LZ(R?)

IAIAINA

9(k+m+n—j)/2

[ @jmn (2, )”L2R3) < C(O)min{l,T}(\/ﬁ_{_\/;)2_n/0tdswk<§>



. 9 (k+m+n—j)/2 o hon
< O(O)tmln{l,T}(\/ﬁ+\/§)2 2-n, (2.10)

Therefore if we summarize (2.9) and (2.10), we have shown (2.5). O
Lemma 2.2 For j € N,
s (8 ) g2y < O+ VE) 27

Proof: By (2.4),

oo 0 0

||u]( )HL2 (R3) < C”“J( )||L2 R3) <C Znujkmn ||L2 (R3)"
0 m=

In the following, Lemma 2.1 will be used to bound the right-hand side for fixed j € N and k € Nj.
Let « = 2 > 1 and € = 55 €]0,1[. Then by Lemma 2.1,

Z Z ||Uykmn ||L2(R3) < Z 1{m>a37} Hujk‘m'n( )||L2 (R3) + Z 1{m<a33} Hujkmn( >||L2(R3)

m=0 n=0 m,n m,n

Ct ok i i (2—2m 23j/2>1—€ ((\/ﬁ‘i‘ \/;) 9—

<
m:[a%]—l n=0
[0‘%]*‘1 00
LOVEZE Y S o (i )
m=0 n=0
< Otk 931=9i/2 el i 9~ 2(1=e)m
m:[a%}—l
[a%]+1
+C\/E2_k/22_]/2\/; Z 2m/2
Ct2~ 25(1 E)]/QJE/QQ +C\/_2 k/22 ]/2\/_2a

= Ctoh /2 gm(m9leny +C\f 27M2 \/j2a0ie
— Ct2kjwomi 4 oVi2TH? \ja
< C(t+Vi)2 2o i,

Summation on k£ € Ny concludes the proof of the lemma. O

Now we are in position to finish the proof of Theorem 1.1. To summarize, we have seen that
|Er(t, z)| < Cu(t, ), U—Zuj, [l (€, )l 2 <C(t+Vt)2~

for j € N. Clearly one also has |[uo(t, -)[| 2 < Ct. Let H, $(R3) denote the standard (inhomogeneous)
L2-based Sobolev space of order s. Then by the inhomogeneous Sobolev embedding theorem and



by Plancherel’s theorem, for 2 < ¢ < 0o, s > 0 and % < % +

wm

1Er(t, s < Cllult, )l
< Cllult; ) g

e}

1/2
< Cflluott, Mz + (D222 it Ez)
j=1
° 1/2
c|1+ (Yoo
j=1
< C),
provided that s < 1—11 Hence ¢ = 2 + 0 is possible, and for instance s = = and 0= —7 is a suitable
choice. 0

3 Appendix: Explicit form of the kernels

To make this paper self-contained, we will include the following formulas; see [6, Section II] and
[13, (A13), (A14), (A3)]. The fields E and B can be written as

E = Ep+ Epr+ Er+ Eg,

where

Ep(t,z) = 8t(4ﬁ/|| 1E(0)(:c—|—tw)dw)

t
— 0, E(0 tw)d
+47T wl=1 t ( 733—{— OJ) W,
1
Epr(t,z) = —g/H 3KE,DT(W,U)f(O)(iU+yap)dpd‘7(y),
y|=t

Bp(t,z) = 3t(4ﬁ/|| 13(0)(x+tw)dw)

t
+ — 0,B(0,z + tw) d
47T lw|=1
1
Bont.r) = 1 [ [ Ko prw.o O+ y.p)dpdoty)
ly|=t
are the data terms. In addition,
Bit) = - [ S dpKp a0 f— oo+ v
ly|<t ’y‘ R3
dy
E5<t,$) = - deE S(w U) (Lf)<t_|y|7x+y7p)u
ly|<t |y| R3
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and

Br(t.z) — / o /deBTw o) f(t— [yl 2+ y,p),
ly|<t Z/| R3

Bs(t,x) = /| W 4 Ky s(w,0) (LIE— lylz +.p)

y|<t |y’ R3

defining w = |y|™'y and L = E' 4+ v A B. The kernels are

Kp prw,v) = (14+v-w) Hw—(v-w)),
Kpr(wv) = (1+p) 7 (1+v w)*(v+w),
Kes@v) = (14 (140 w)”

I+v-w+ (v ww—2)@v— (v+w) w| € R,
and

Kp prw,v) = —(14+v-w) HvAw),

—(1+p) ' (1+v-w) 2(vAw),

Koslw,r) = (1459 (1 +v-w)
(1+v-WwA(.)-WAw) @ (v+w)| € R,

3

=

€

=
|

Proof of (1.13) and (1.14) : The bound (1.13) is immediate from
v +w =@ +20v-w) +DY2<V2(140v-w)2
Regarding (1.14), we use that

[((v~w)w—v)®v—(v+w)®wz = (- 2)((v-ww—-—v)—(w-2)(v+w)
= —(w—@W-ww)-zw4+w)—1+v-w)(v-2)v

and
lw—(v-wv| = (1-21v-w)?+ (- w2
< (1—(w-wH?<V2(1 +v-w)/2
This yields the claim. a
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