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Abstract

The Kurth solution is a particular non-isotropic steady state solution to the gravitational
Vlasov-Poisson system. It has the property that by means of a suitable time-dependent
transformation it can be turned into a family of time-dependent solutions. Therefore, for a
general steady state Q(x, v) = Q̃(eQ, β), depending upon the particle energy eQ and β = `2 =
|x ∧ v|2, the question arises if solutions f could be generated that are of the form

f(t) = Q̃
(
eQ(R(t), P (t), B(t)), B(t)

)
for suitable functions R, P and B, all depending on (t, r, pr, β) for r = |x| and pr = x·v

|x| . We
are going to show that, under some mild assumptions, basically if R and P are independent
of β, and if B = β is constant, then Q already has to be the Kurth solution.

This paper is dedicated to the memory of Professor Robert Glassey.

1 Introduction

It is a remarkable fact that very few of Bob Glassey’s influential papers concern the Vlasov-Poisson
system. Certainly there is an in-depth treatment of the existence of global solutions in his book
[3], but apart from that only [4, 5] comes to this author’s mind. Maybe this is due to Glassey’s
mathematical formation in the tradition of John, Nirenberg, Segal, Strauss ... that he liked better
hyperbolic equations, and in particular the relativistic Vlasov-Maxwell system.

For this reason, Glassey would have probably not paid much attention to the present paper,
but being a polite person, he would nevertheless have found some friendly words for it. In addition,
this paper has no hard analytic proofs, which Glassey could do so well. Let us only mention [6]
on global existence for the ‘2.5’ dimensional relativistic Vlasov-Maxwell system, jointly with Jack
Schaeffer, which is not so well-known (in the sense that not many people have read it in all detail),
but which is a true masterpiece. One has to use all kinds of structures in the system and is not
allowed to loose the tiniest part of an ε to close the argument in the end.
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Here we are going to consider the Vlasov-Poisson system in the gravitational case, which is
given by

∂tf(t, x, v) + v · ∇xf(t, x, v)−∇xUf (t, x) · ∇vf(t, x, v) = 0, (1.1)

where

∆xUf (t, x) = 4πρf (t, x), lim
|x|→∞

Uf (t, x) = 0, ρf (t, x) =

∫
R3

f(t, x, v) dv, (1.2)

for (t, x, v) ∈ R× R3 × R3. Therefore

Uf (t, x) = −
∫
R3

ρf (t, y)

|y − x|
dy. (1.3)

The system possesses an abundance of solutions Q = Q(x, v) that are independent of time. Let

eQ(x, v) =
1

2
|v|2 + UQ(x)

denote the particle energy and let

`2(x, v) = |L|2 = |x|2|v|2 − (x · v)2

be the square of the angular momentum L = x ∧ v, respectively. Then both eQ and `2 are
conserved along solutions of the characteristic equations Ẍ(s) = −∇UQ(X(s)); note that also UQ
is independent of time. Next recall that a function g = g(x, v) is said to be spherically symmetric,
if g(Ax,Av) = g(x, v) for all A ∈ SO(3) and x, v ∈ R3. Now it is the content of Jeans’s theorem
that the distribution function Q of every spherically symmetric steady state solution has to be of
the form

Q(x, v) = Q̃(eQ(x, v), `2(x, v))

for a suitable function Q̃ of two variables; see [1, Section 2] for a precise formulation. Such steady
state solutions are called non-isotropic, in contrast to the isotropic ones, which can be written
as Q(x, v) = Q̃(eQ(x, v)); a solution of the latter form will necessarily be spherically symmetric,
[2, 11].

In this paper we will have a closer look at one particular and non-isotropic steady state solution
Q, which has been found by Kurth in 1978 and which will be denoted by QK in the sequel; see [7].
It is surrounded by time-periodic solutions fε(t) such that fε → QK as ε→ 0. Since the fε(t) are
semi-explicit, the Kurth solution is a good testing ground for all kinds of questions, including some
from numerics [10]. It is very degenerate in many respects, so an important issue is to understand
whether it reflects what happens ‘generically’ close to steady states (in a sense to be made precise),
or on the contrary it is just a peculiarity. The Kurth solution is given by

QK(x, v) =
3

4π3

1

(1− |x|2 − |v|2 + |x ∧ v|2)1/2
where (. . .) > 0 and |x ∧ v| < 1,

and QK(x, v) = 0 else, (1.4)

for x, v ∈ R3. Then (see Lemma 3.1 below) its charge density

ρQK
(x) =

∫
R3

QK(x, v) dv =
3

4π
1B1(0)(x)
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is, up to a factor, the characteristic function of the unit ball in R3. The solution to ∆UQK
= 4πρQK

and UQK
(x)→ 0 as |x| → ∞ is given by

UQK
(x) =

{
1
2
|x|2 − 3

2
: |x| ≤ 1

− 1
|x| : |x| > 1

. (1.5)

Next consider the second-order ODE φ̈ = − 1
φ2

+ 1
φ3

and let φε denote the solution such that

φε(0) = 1 and φ̇ε(0) = ε. It follows that φε is periodic for ε < 1 (in fact |ε| < 1), and its period is
calculated to be Tε = 2π

(1−ε2)3/2
. Defining

fε(t, x, v) = QK

( x

φε(t)
, φε(t)v − φ̇ε(t)x

)
, t ∈ R, x, v ∈ R3, (1.6)

the fε(t) are Tε-periodic and (formal) solutions to the gravitational Vlasov-Poisson system; see
Lemma 3.2 below. We may also write

fε(t) = QK ◦ Λε(t), Λε(t)(x, v) =
( x

φε(t)
, φε(t)v − φ̇ε(t)x

)
. (1.7)

The associated density is

ρε(t, x) =

∫
R3

fε(t, x, v) dv =
3

4π

1

φε(t)3
1{|x|<φε(t)} =

1

φε(t)3
ρQK

( x

φε(t)

)
,

resulting in the potential

Uε(t, x) =
1

φε(t)
UQK

( x

φε(t)

)
. (1.8)

The function QK is spherically symmetric, hence so is fε(t), since

fε(t, Ax,Av) = QK

(
A

x

φε(t)
, A[φε(t)v − φ̇ε(t)x]

)
= QK

( x

φε(t)
, φε(t)v − φ̇ε(t)x

)
= fε(t, x, v)

for t ∈ R, A ∈ SO(3), x, v ∈ R3. Therefore we may re-express everything in the adapted spherically
symmetric variables

r = |x|, pr =
x · v
|x|

, ` = |x ∧ v|.

To begin with,

eQK
(r, pr, `

2) =
1

2
|v|2 + UQK

(r) =
1

2
p2
r + Ueff,K(r, `2), (1.9)

Ueff,K(r, `2) = UQK
(r) +

`2

2r2
=

{
r2

2
− 3

2
+ `2

2r2
: r ≤ 1

−1
r

+ `2

2r2
: r ≥ 1

, (1.10)

by (1.5). Here Ueff,K is called the effective potential, and henceforth we will sometimes write e
instead of eQK

. Also,

1− |x|2 − |v|2 + |x ∧ v|2 = 1− r2 − p2
r −

`2

r2
+ `2 = −2(1 + e) + `2, (1.11)
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so that

Q̃K(e, `2) =
3

4π3

1

(−2(1 + e) + `2)1/2
where (. . .) > 0 and ` < 1,

and Q̃K(e, `2) = 0 else. (1.12)

In spherically symmetric coordinates, the Λε(t) from (1.7) are identified with

Λε(t)(r, pr) =
( r

φε(t)
, φε(t)pr − φ̇ε(t)r

)
, (1.13)

since fε(t) = QK ◦ Λε(t) and

1−
∣∣∣ x

φε(t)

∣∣∣2 − |φε(t)v − φ̇ε(t)x|2 +
∣∣∣ x

φε(t)
∧ [φε(t)v − φ̇ε(t)x]

∣∣∣2
= 1− r2

φε(t)2
− φε(t)2

(
p2
r +

`2

r2

)
+ 2φε(t)φ̇ε(t) rpr − φ̇ε(t)2r2 + `2

= 1− r2

φε(t)2
− (φε(t)pr − φ̇ε(t)r)2 − φε(t)2 `

2

r2
+ `2 = F

( r

φε(t)
, φε(t)pr − φ̇ε(t)r, `2

)
for

F (r, pr, `
2) = 1− r2 − p2

r −
`2

r2
+ `2. (1.14)

Now we are in position to describe the main result of this paper. Writing β = `2, the Kurth
solution is

QK = Q̃K(eQ, β) = Q̃K

(
eQ(r, pr, β), β

)
,

whereas the neighboring fε(t) = fε(t, r, pr, β) can be expressed as

fε(t) = Q̃K

(
eQ(Rε(t), Pε(t), Bε(t)), Bε(t)

)
for

Rε(t) = Rε(t, r, pr, β) =
r

φε(t)
, (1.15)

Pε(t) = Pε(t, r, pr, β) = φε(t)pr − φ̇ε(t)r, (1.16)

Bε(t) = Bε(t, r, pr, β) = β, (1.17)

according to (1.13), (1.11) and (1.14). It should be remarked (as is verified in Lemma 3.3 below)
that defining

Hε,K(t, r, pr, β) = − φ̇ε(t)
φε(t)

r pr −
1

2
(φ̇ε(t)

2 − φε(t)φ̈ε(t)) r2,

then
d

dt
Zε(t) = J∇Hε,K(t, Zε(t), Bε(t)), (1.18)

where

Zε = (Rε, Pε), J =

(
0 1
−1 0

)
.

4



In other words, the time evolution of Zε is governed by the time-dependent Hamiltonian Hε,K.
Also note that both Rε and Pε are in fact independent of β, and Bε = β is constant.

Thus, for a general steady state Q(x, v) = Q̃(eQ, β), the question arises if solutions f could be
found that are of the form

f(t) = Q̃
(
eQ(R(t), P (t), B(t)), B(t)

)
(1.19)

for suitable functions R, P and B, all depending on (t, r, pr, β), such that the evolution of Z =
(R,P ) is Hamiltonian. For the moment it will play no role if the f come in a family of fε that is
close to Q as ε→ 0, or if the function(s) are periodic or not.

We are going to show that, basically, if R and P are independent of β, and if B = β is constant,
then Q already has to be the Kurth solution QK.

Theorem 1.1 Suppose that the functions

(R,P,B)(t) = (R(t, r, pr, β), P (t, r, pr, β), B(t, r, pr, β))

are such that f(t) = f(t, r, pr, β) is a solution to the gravitational Vlasov-Poisson system and
moreover R and P are independent of β, and B = β is constant:

(R,P,B)(t) = (R(t, r, pr), P (t, r, pr), β).

Let there exist a Hamiltonian H = H(t, r, pr) such that ∂tZ = J∇H(t, Z) is satisfied for Z =
(R,P ). In addition, we assume that

(a) ∂eQ̃ 6= 0 on the support of Q and U ′Q(0) = 0;

(b) ∂rR > 0 and there is a function σ(t) such that

lim
δ→0

R(t, δ, pr)

δ
= σ(t); (1.20)

(c) for the Jacobian of the map (r, pr) 7→ (R(0, r, pr), P (0, r, pr)) we have

det
(∂(R(0, r, pr), P (0, r, pr))

∂(r, pr)

)
= 1. (1.21)

Then, defining α = U ′′Q(0), we must have

U ′Q(r) = αr, R(t, r) =
r

φ(t)
, P (t, r, pr) = φ(t)pr − φ̇(t)r,

where φ solves

φ̈(t) = α
(
− 1

φ(t)2
+

1

φ(t)3

)
.

Remark 1.2 (a) The proof in Section 2 is a physics-style calculation, and we are not very precise
about, for instance, the regularity of Q̃. However, this is not the main focus of the paper and
missing details could be filled in easily.
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(b) The constant on the right-hand side of (1.21) needs not be 1, any other number 6= 0 would also
work.

(c) Concerning hypothesis (b), it will turn out in the proof that ∂rR 6= 0, see (2.10) below. Thus
we are going to assume ∂rR > 0 without loss of generality. Also R = R(t, r) will be shown to be
independent of pr. Hence (1.20) means that in fact

σ(t) = lim
δ→0

R(t, δ)

δ
= ∂rR(t, 0)

is required to exist. This can be guaranteed for instance if we suppose that H ∈ C2.

(d) When we started to look into the question if in general solutions of the form (1.19) could be
found, this author was convinced that β should play no role for the argument, in the sense that
everything will be constant in β. Theorem 1.1 indicates that actually the situation is much more
complicated, and that, in a vague sense, some ‘phase mixing’ would be needed in order that (1.19)
could provide a time-dependent solution. ♦

2 Proof of Theorem 1.1

Since the solution f is spherically symmetric by (1.19), its potential Uf satisfies

∂rUf (t, r̃) =
4π

r̃2

∫ r̃

0

r2ρf (t, r) dr =
4π

r̃2

∫ r̃

0

dr r2

∫
dvf(t, x, v)

=
4π2

r̃2

∫ r̃

0

dr

∫ ∫
dpr dβ Q̃

(
eQ(R(t), P (t), B(t)), B(t)

)
, (2.1)

where the arguments of (R,P,B) are (t, r, pr, β) and we have used that dv = 2π
r2
dpr d` ` = π

r2
dpr dβ.

By definition,

f(t, r, pr, β) = Q̃
(1

2
P (t)2 + U(R(t)) +

B(t)

2R(t)2
, B(t)

)
for U = UQ denoting the potential generated by the steady state Q. From the spherically symmetric
version of the Vlasov equation (see [1]) we hence obtain, for all (t, r, pr, β),

0 = ∂tf(t, r, pr, β) + pr ∂rf(t, r, pr, β) +
( β
r3
− ∂rUf (t, r)

)
∂prf(t, r, pr, β)

= (∂eQ̃)
[
P (∂tP ) + U ′(R)(∂tR) +

1

2R2
(∂tB)− B

R3
(∂tR)

]
+ (∂βQ̃)(∂tB)

+ pr(∂eQ̃)
[
P (∂rP ) + U ′(R)(∂rR) +

1

2R2
(∂rB)− B

R3
(∂rR)

]
+ pr(∂βQ̃)(∂rB)

+
( β
r3
− ∂rUf (t, r)

)
(∂eQ̃)

[
P (∂prP ) + U ′(R)(∂prR) +

1

2R2
(∂prB)− B

R3
(∂prR)

]
+
( β
r3
− ∂rUf (t, r)

)
(∂βQ̃)(∂prB)

= (∂eQ̃)P
[
∂tP + pr(∂rP ) +

( β
r3
− ∂rUf (t, r)

)
(∂prP )

]
+(∂eQ̃)

(
U ′(R)− B

R3

) [
∂tR + pr(∂rR) +

( β
r3
− ∂rUf (t, r)

)
(∂prR)

]
+
(

(∂eQ̃)
1

2R2
+ ∂βQ̃

) [
∂tB + pr(∂rB) +

( β
r3
− ∂rUf (t, r)

)
(∂prB)

]
. (2.2)
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Since B = β is constant by hypothesis, the last line drops out. Also ∂eQ̃ 6= 0 on the support of Q,
whence (2.2) reduces to

0 = P
[
∂tP + pr(∂rP ) +

( β
r3
− ∂rUf (t, r)

)
(∂prP )

]
+
(
U ′(R)− β

R3

) [
∂tR + pr(∂rR) +

( β
r3
− ∂rUf (t, r)

)
(∂prR)

]
. (2.3)

As R and P are assumed to be independent of β, we can compare the coefficients of the powers
β0, β1, β2 in β to deduce that

0 = P
[
∂tP + pr(∂rP )− ∂rUf (t, r)(∂prP )

]
+U ′(R)

[
∂tR + pr(∂rR)− ∂rUf (t, r)(∂prR)

]
, (2.4)

0 = P
1

r3
(∂prP ) + U ′(R)

1

r3
(∂prR)− 1

R3

[
∂tR + pr(∂rR)− ∂rUf (t, r)(∂prR)

]
, (2.5)

0 =
1

r3R3
(∂prR).

Thus ∂prR = 0 and (2.4), (2.5) simplify to

0 = P
[
∂tP + pr(∂rP )− ∂rUf (t, r)(∂prP )

]
+ U ′(R)

[
∂tR + pr(∂rR)

]
, (2.6)

0 = P
1

r3
(∂prP )− 1

R3

[
∂tR + pr(∂rR)

]
, (2.7)

which is a PDE system for (R(t, r), P (t, r, pr)). Coming back to (2.1), we have

∂rUf (t, r̃) =
4π2

r̃2

∫ r̃

0

dr

∫ ∫
dpr dβ Q̃

(1

2
P (t)2 + U(R(t)) +

β

2R(t)2
, β
)

=
4π2

r̃2

∫ ∞
0

dβ

∫ r̃

0

dr

∫
dpr Q̃

(1

2
P (t)2 + U(R(t)) +

β

2R(t)2
, β
)
. (2.8)

Let φt denote the solution map that is associated to ∂tz = J∇H(t, z), i.e., z(t) = φt(r, pr) solves
the equation and satisfies z(0) = (r, pr). Thus with Z(t, r, pr) = (R(t, r), P (t, r, pr)) we get

Z(t) = φt(Z(0)), (2.9)

since Z is assumed to be a solution. Note that we do not suppose that Z(0) = (r, pr), since this
is also not satisfied for the Kurth solution: from (1.15), (1.16) we have (Rε, Pε)(0) = (r, pr − εr)
in this case. Since the system is Hamiltonian, each map φt is a symplectomorphism [8, Lemma
1.10], and hence in particular detDφt = 1 holds for its Jacobian determinant. By (1.21) from
assumption (c) we also know that detDZ(0) = 1. Therefore (2.9) shows that detDZ(t) = 1, and
hence

(∂rR)(t, r)(∂prP )(t, r, pr)− (∂prR)(t, r)(∂rP )(t, r, pr) = 1,

which in our case is
(∂rR)(t, r)(∂prP )(t, r, pr) = 1 (2.10)

for all (t, r, pr). At fixed t we are going to apply the change of variables

(r, pr) 7→ (R(t, r), P (t, r, pr)) = Z(t, r, pr) = (R,P )
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to (2.8), which has detDZ(t, r, pr) = 1 by (2.10) and R(t, 0) = 0 due to assumption (b). Then we
get

∂rUf (t, r̃) =
4π2

r̃2

∫ ∞
0

dβ

∫ R(t,r̃)

0

dR

∫
dP Q̃

(1

2
P 2 + U(R) +

β

2R2
, β
)

=
4π2

r̃2

∫ R(t,r̃)

0

dR

∫
dP

∫
dβ Q̃

(1

2
P 2 + U(R) +

β

2R2
, β
)
. (2.11)

On the other hand,

U ′(r̃) =
4π

r̃2

∫ r̃

0

r2ρQ(r) dr =
4π

r̃2

∫ r̃

0

dr r2

∫
dv Q(x, v)

=
4π2

r̃2

∫ r̃

0

dr

∫
dpr

∫
dβ Q̃

(1

2
p2
r + U(r) +

β

2r2
, β
)
. (2.12)

Comparing (2.11) to (2.12), we have shown that

∂rUf (t, r) =
R(t, r)2

r2
U ′(R(t, r)) (2.13)

is verified. From (2.6), (2.13) and (2.7) it follows that

0 = P (∂tP + pr(∂rP ))− P ∂rUf (t, r)(∂prP ) + U ′(R)(∂tR + pr(∂rR))

= P (∂tP + pr(∂rP ))− P R2

r2
U ′(R) (∂prP ) + U ′(R)(∂tR + pr(∂rR))

= P (∂tP + pr(∂rP ))− P R2

r2
U ′(R) (∂prP ) +R3P

1

r3
(∂prP )U ′(R)

=
P

r3

[
r3(∂tP + pr(∂rP ))− rR2 U ′(R) (∂prP ) +R3(∂prP )U ′(R)

]
,

so that
r3(∂tP + pr(∂rP )) +R2(R− r)U ′(R) (∂prP ) = 0. (2.14)

Furthermore, by (2.7),

∂prP
2 = 2P (∂prP ) = 2

r3

R3
(∂tR + pr(∂rR)),

and since R is independent of pr, integration
∫
dpr yields

P 2(t, r, pr)− P 2(t, r, 0) = 2
r3

R3
pr (∂tR) +

r3

R3
p2
r (∂rR). (2.15)

In addition, integration
∫
dpr of (2.10) leads to

(∂rR)(P (t, r, pr)− P (t, r, 0)) = pr.

Combining this relation with (2.15), we get

P (t, r, pr) + P (t, r, 0) = 2 (∂rR)
r3

R3
(∂tR) + (∂rR)

r3

R3
pr (∂rR),
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which in turn implies that

P (t, r, pr) =
1

2

(
P (t, r, pr)− P (t, r, 0) + P (t, r, pr) + P (t, r, 0)

)
=

pr
2 ∂rR

+ (∂rR)
r3

R3

(
∂tR +

1

2
pr (∂rR)

)
; (2.16)

there are only R’s on the right-hand side, which are independent of pr. If we take the derivative
w.r. to t, we obtain

∂tP = − pr
2 (∂rR)2

(∂2
trR) + (∂2

trR)
r3

R3

(
∂tR +

1

2
pr (∂rR)

)
− (∂rR) (∂tR)

3r3

R4

(
∂tR +

1

2
pr (∂rR)

)
+ (∂rR)

r3

R3

(
∂2
ttR +

1

2
pr (∂2

trR)
)
.

Due to (2.14) and (2.10), we get

0 = r3∂tP + r3pr(∂rP ) +R2(R− r)U ′(R) (∂prP )

= r3
[
− pr

2 (∂rR)2
(∂2
trR) + (∂2

trR)
r3

R3

(
∂tR +

1

2
pr (∂rR)

)
− (∂rR) (∂tR)

3r3

R4

(
∂tR +

1

2
pr (∂rR)

)
+ (∂rR)

r3

R3

(
∂2
ttR +

1

2
pr (∂2

trR)
)

+ pr(∂rP )
]

+R2(R− r)U ′(R)
1

(∂rR)
.

Taking pr = 0, this yields

0 =
r6

R3

[
(∂2
trR) (∂tR)− (∂rR) (∂tR)2 3

R
+ (∂rR) (∂2

ttR)
]

+R2(R− r)U ′(R)
1

(∂rR)
. (2.17)

If t is fixed, then the map (r, pr) 7→ (R(t, r), P (t, r, pr)) = Z(t, r, pr) is symplectic, owing to (2.10),
and it is generated by the ‘point transformation’ r 7→ R(t, r). Thus, using [9, equ. (1.44)], there is
a scalar function v = v(t, r) such that

P (t, r, pr) =
1

∂rR(t, r)
(pr − ∂rv(t, r)). (2.18)

Therefore, from (2.16),

1

∂rR
(pr − ∂rv(t, r)) = P =

pr
2 ∂rR

+ (∂rR)
r3

R3

(
∂tR +

1

2
pr (∂rR)

)
. (2.19)

Taking once again pr = 0, we see that

∂rv(t, r) = −(∂rR)2 (∂tR)
r3

R3
. (2.20)

If we plug this relation back to (2.19), it follows that

(∂rR)3 r
3

R3
= 1,
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or

∂rR =
R

r
.

For δ > 0 integration yields

R(t, r) = r
R(t, δ)

δ
eC(t)

for a suitable function C(t). By assumption, taking the limit δ → 0, we get

R(t, r) = a(t)r,

where a(t) = σ(t)eC(t). Thus (2.17) simplifies to

0 =
r3

a(t)3

[
ȧ(t)2r − a(t) ȧ(t)2r2 3

a(t)r
+ a(t)ä(t)r

]
+ a(t)2r3(a(t)− 1)U ′(a(t)r)

1

a(t)
,

which is

U ′(a(t)r) =
2ȧ(t)2 − a(t)ä(t)

a(t)4(a(t)− 1)
r.

Replacing a(t)r by r, this leads to

U ′(r) =
2ȧ(t)2 − a(t)ä(t)

a(t)5(a(t)− 1)
r.

Since the variables are separated, we deduce that there is α ∈ R such that

U ′(r)

r
= α =

2ȧ(t)2 − a(t)ä(t)

a(t)5(a(t)− 1)
(2.21)

for all (t, r). Thus if we set φ(t) = 1
a(t)

, then φ̇(t) = − ȧ(t)
a(t)2

and, by (2.21),

φ̈(t) = − ä(t)

a(t)2
+ 2

ȧ(t)2

a(t)3
=

1

a(t)3
(2ȧ(t)2 − a(t)ä(t)) = α a(t)2(a(t)− 1) = α

(
− 1

φ(t)2
+

1

φ(t)3

)
.

Moreover, we also have

R(t, r) =
r

φ(t)
.

Next, using (2.20),

∂rv(t, r) = −a(t)2 ȧ(t)r
r3

a(t)3r3
= − ȧ(t)

a(t)
r =

φ̇(t)

φ(t)
r,

and hence upon integration

v(t, r) =
1

2

φ̇(t)

φ(t)
r2 + γ(t)

for a suitable function γ(t). Thus (2.18) implies that

P (t, r, pr) =
1

∂rR(t, r)
(pr − ∂rv(t, r)) = φ(t)

(
pr −

φ̇(t)

φ(t)
r
)

= φ(t) pr − φ̇(t) r.

Lastly, U ′(0) = 0 in conjunction with (2.21) shows that

α = lim
r→0

U ′(r)

r
= U ′′(0).

This completes the proof of Theorem 1.1. 2
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3 Some technical results

Lemma 3.1 One has ∫
R3

QK(x, v) dv =
3

4π
1B1(0)(x)

Proof : We only consider r = |x| < 1. First note that

1− |x|2 − |v|2 + |x ∧ v|2 = 1− r2 − p2
r −

`2

r2
+ `2 > 0

means that p2
r < (1− r2)(1− `2

r2
) ≤ 1− r2 and also

`2 < r2 − r2p2
r

1− r2
=: `2

0.

In spherical symmetry we have dv = 2π
r2
dpr d` `. Therefore by (1.4),∫

R3

QK(x, v) dv =
2π

r2

∫
|pr|≤

√
1−r2

dpr

∫ `0

0

d` `QK(r, pr, `)

=
3

2π2r2

∫
|pr|≤

√
1−r2

dpr

∫ `0

0

d` `
1

(1− r2 − p2
r − `2

r2
+ `2)1/2

=
3

2π2

1

1− r2

∫
|pr|≤

√
1−r2

dpr

∫ `0

0

d` (−1)
d

d`

(
1− r2 − p2

r −
`2

r2
+ `2

)1/2

=
3

2π2

1

1− r2

∫
|pr|≤

√
1−r2

dpr (1− r2 − p2
r)

1/2

=
3

π2

∫ 1

0

ds (1− s2)1/2

=
3

4π
,

as was to be shown. 2

Lemma 3.2 The function fε from (1.6) is a (formal) solution to the gravitational Vlasov-Poisson
system.

Proof : To begin with, (1.6) yields

∂tfε = − φ̇ε
φ2
ε

x · ((∇xQK) ◦ Λε)− φ̈ε x · ((∇vQK) ◦ Λε) + φ̇ε v · ((∇vQK) ◦ Λε), (3.1)

where Λε is defined in (1.7). Observe that on {QK 6= 0}:

∇xQK(x, v) =
(4π3

3

)2

Q3
K(x, v) ((1− |v|2)x+ 〈x, v〉v), (3.2)

∇vQK(x, v) =
(4π3

3

)2

Q3
K(x, v) ((1− |x|2)v + 〈x, v〉x). (3.3)
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Furthermore,

∇xfε =
1

φε
((∇xQK) ◦ Λε)− φ̇ε ((∇vQK) ◦ Λε),

∇vfε = φε ((∇vQK) ◦ Λε).

On {fε 6= 0} we have

Uε(t, x) =
1

φε(t)

( |x|2
2φε(t)2

− 3

2

)
, ∇xUε(t, x) =

x

φε(t)3
.

Thus we obtain from φ̈ε = − 1
φ2ε

+ 1
φ3ε

that

∂tfε + v · ∇xfε −∇xUε · ∇vfε

= − φ̇ε
φ2
ε

x · ((∇xQK) ◦ Λε)− φ̈ε x · ((∇vQK) ◦ Λε) + φ̇ε v · ((∇vQK) ◦ Λε)

+
1

φε
v · ((∇xQK) ◦ Λε)− φ̇ε v · ((∇vQK) ◦ Λε)−

x

φ2
ε

· ((∇vQK) ◦ Λε)

= − φ̇ε
φ2
ε

x · ((∇xQK) ◦ Λε)−
1

φ3
ε

x · ((∇vQK) ◦ Λε) +
1

φε
v · ((∇xQK) ◦ Λε)

=
1

φ3
ε

(4π3

3

)2

(Q3
K ◦ Λε)

[
− φεφ̇ε x ·

(
(1− |φεv − φ̇εx|2)

x

φε
+ 〈 x

φε
, φεv − φ̇εx〉[φεv − φ̇εx]

)
−x ·

(
(1−

∣∣∣ x
φε

∣∣∣2)[φεv − φ̇εx] + 〈 x
φε
, φεv − φ̇εx〉

x

φε

)
+φ2

ε v ·
(

(1− |φεv − φ̇εx|2)
x

φε
+ 〈 x

φε
, φεv − φ̇εx〉[φεv − φ̇εx]

)]
= 0,

where the last step requires some calculation. Apart from that,

∆Uε(t, x) =
1

φε(t)3
∆UQK

( x

φε(t)

)
=

4π

φε(t)3
ρQK

( x

φε(t)

)
= 4πρε(t, x),

which completes the somewhat formal argument. 2

Lemma 3.3 The functions Rε, Pε and Bε from (1.15), (1.16) and (1.17), respectively, provide a
solution to (1.18).

Proof : Since Hε,K is independent of β, we drop this variable. Then

∂rHε,K(t, r, pr) = − φ̇ε(t)
φε(t)

pr − (φ̇2
ε(t)− φε(t)φ̈ε(t)) r, ∂prHε,K(t, r, pr) = − φ̇ε(t)

φε(t)
r.

This yields

Ṙε(t) = − r

φ2
ε(t)

φ̇ε(t) = ∂prHε,K(t, Rε(t), Pε(t))
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as well as

Ṗε(t) = φ̇ε(t)pr − φ̈ε(t)r

=
φ̇ε(t)

φε(t)

(
φε(t)pr − φ̇ε(t)r

)
+ (φ̇2

ε(t)− φε(t)φ̈ε(t))
r

φε(t)

=
φ̇ε(t)

φε(t)
Pε(t) + (φ̇2

ε(t)− φε(t)φ̈ε(t))Rε(t)

= −∂rHε,K(t, Rε(t), Pε(t)),

and altogether this yields (1.18). 2
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