15.12.2000

9. Uni-Übung zur Vorlesung Algorithmische Mathematik

Aufgabe 1

Seien $f: \mathbb{R}^2 \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}^2$ gegeben durch

$$f(x_1, x_2) := x_1^2 - x_2$$
 bzw. $g(t) := (t^2, \cos(t))^T$. (1)

Berechnen Sie $(f \circ g)'(t)$ und $D(g \circ f)(x_1, x_2)$.

Aufgabe 2

Gegeben sei das folgende Optimierungsproblem

min
$$x_1^3 - x_1^2 x_2 + 2x_2^2$$
 (2)
unter $x_1, x_2 \ge 0$.

Existieren Lösungen im Inneren des zulässigen Bereichs?

Aufgabe 3

Gegeben sei die Funktion $h(x,y) := x^2 - y$, in dieser Aufgabe soll die Nullstellenmenge von h untersucht werden.

- (i) Finden Sie eine Funktion f(x), derart daß aus h(x,y) = 0 folgt: y = f(x). Man sagt in diesem Fall: h(x,y) = 0 lässt sich nach y auflösen.
- (ii) Wie man leicht erkennt, ist h(0,0) = 0. Beweisen Sie die lokale Existenz um (0,0) eines f wie in (i) mittels des Satzes über implizit definierte Funktionen und vergleichen Sie f'(0) mit dem Wert aus (i).

<u>Tip:</u> Mit der Notation aus dem Satz ist hier $(x^*, y^*) = (0, 0)$, zum Beweis der Existenz ist nur zu zeigen: $\frac{\partial h}{\partial y}(0, 0) \neq 0$

(iii) Zeigen Sie, daß sich die Gleichung $0 = h(x, y) + y^3 + x^4 + 7yx^2$ lokal um (0, 0) nach y auflösen lässt.