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Abstract

The dispersion-managed nonlinear Schrödinger equation (DM-NLS) is considered.
After applying an exact transformation, the so called lens transformation, we derive
a new Schrödinger-type equation with additional quadratic potential. In the case of
strong dispersion management it is shown how the scales transform into the resulting
equation. By constructing ground states of the averaged variational principle we can
prove the existence of a standing wave solution of the averaged equation in the case
of positive residual dispersion. In contrast to some former discussions of the problem
we show the existence of a region where the potential is of trapping type. Due to the
potential. the solution has a faster decay than the traditional soliton. Moreover we
explain why the shape of the DM-soliton changes with increasing pulse energy from
a sech-profile to a behavior with Gaussian core and oscillating tails and further to a
flatter profile. Furthermore, we illustrate why the DM-soliton can propagate only for
small values of the initial pulse width in the case of vanishing or even negative residual
dispersion. This results seem to be a new analytical description of what is well-known
from numerical simulations.

Keywords: dispersion management, optical solitons, lens transformation, nonlinear
Schrödinger equation, harmonic oscillator

1 Introduction and Main Results

In this paper we present a mathematical investigation of the so-called dispersion managed
soliton using an approach developed by Turitsyn et al. [16, 17, 18, 19, 20] which relies on
the self-similar properties of the main peak of the DM-soliton, combined with a method
previously used by Zharnitsky et al. [23] which permits an averaging procedure.

The idea of dispersion management is using a dispersion compensating fiber (DCF) to
overcome the dispersion of the standard mono-mode fiber (SMF) which causes dispersive
broadening of the pulse over long distances. At the end of each compensation section the
pulse should be close to its shape at the beginning. During the compensation period the
pulse undergoes breathing-like oscillations. Numerical simulations and experiments show
that this pulse is stable over many compensation periods. In analogy to the traditional
NLS it is called DM-soliton or breathing soliton. Large variation of the dispersion makes
nonlinear effects very small and strictly modifies the soliton propagation, this situation is
called strong dispersion management (DM). The case of weak DM is more or less clear by
using the Lie-transform technique [1].



The model equation describing pulse propagation in optical fibers with dispersion man-
agement is given by the cubic nonlinear Schrödinger equation with periodically varying
coefficients (DM-NLS):

iAz(t, z) + D(z)Att(t, z) + c(z)|A(t, z)|2A(t, z) = 0. (1)

Here, A is the complex envelope of the electric field, t is retarded time, z is propagation
distance, D is the dispersion coefficient and c(z) > 0 is representing loss and influence of
the amplifiers. Throughout the paper we assume c to be constant, which is reasonable in
cases where the compensation period is much smaller than amplification distance (loss-less
model). Moreover, the dispersion profile D is assumed to be periodic with normalized pe-
riod 1 and we only consider the case of strong dispersion management, where the residual
dispersion 〈D〉 is small compared to local dispersion, i.e. 〈D〉 << D. Here 〈·〉 denotes
averaging over one period.

In contrast to the method of Zharnitsky et al. [23], our approach is based on a transfor-
mation similar to the lens transformation or pseudo-conformal transformation which is
well-known in the theory of self-focusing in critical NLS. After applying lens transforma-
tion and a generalized variations of constants, we obtain an equation of Schrödinger-type
which can be averaged. Although this leads to a slightly more complicated class of equa-
tions, we are able to show the existence of ground states for many situations of practical
interest. The most important result is that the quadratic potential in the resulting equa-
tion is of trapping type in contrast to a former discussion of the problem (e.g. [1, 19, 20]).
In the case of positive residual dispersion, we illustrate the different regimes where the
shape of the pulse varies from a sech profile to a Gaussian shape and further to a flatter
waveform [16]. Moreover, for vanishing or negative residual dispersion we present con-
ditions under which the DM soliton can propagate. Our analysis includes the situation
examined by Zharnitsky et al. [23].

The aim of this paper is to present this new approach in the theory of DM-solitons. In-
stead of giving all derivations exactly, we have focused on the description of the method
and the main results. Moreover, we only state some qualitative properties of the derived
equations. The detailed bifurcation analysis is beyond the scope of this discussion and
will be done in a continuation of this paper [9].

2 Lens Transformation and Nonlinear TM-Equations

Throughout this paper we restrict ourselves to the following standard dispersion profile:

D(z) = Dloc(z) + 〈D〉 =

{
d + 〈D〉 : 0 ≤ z ≤ 1

4 , 3
4 ≤ z ≤ 1

−d + 〈D〉 : 1
4 < z < 3

4 ,
(2)

with 〈Dloc〉 = 0. In the case of strong dispersion management, 〈D〉 is small compared to
d. Note that d is assumed to be positive without loss of generality (otherwise everything
remains true by a shift of 1/2).

Remark 2.1. One may treat nonlinearity and residual dispersion as perturbations in the
regime of strong DM. In the previous studies [7, 23] they were considered to be both of the
same order ε. We will explain in this paper why this seems not to be the correct model in
all parameter constellations.
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2.1 The linear problem

Since both, nonlinearity and residual dispersion are perturbations, we first examine the
unperturbed problem of (1) which is the linear Schrödinger equation

iAz(t, z) + Dloc(z)Att(t, z) = 0. (3)

With Gaussian initial data A(t, 0) = N exp(− 1
2( t

T0
)2) equation (3) can be solved explicitly.

For physical reasons we have T0, N > 0. The solution is then given by

A(t, z) = N
Q(t/Tlin(z), z)√

Tlin(z)
exp

(
it2

Mlin(z)

Tlin(z)

)
, (4)

where

R(z) :=

∫ z

0
Dloc(z

′)dz′

Tlin(z) :=
√

T 2
0 + 4R2(z)/T 2

0

Mlin(z) :=
1

T 2
0

R(z)

Tlin(z)

Q(x, z) := exp

(
−

x2

2

)
exp

(
−

i

2
arctan(R(z))

)
, x = t/Tlin(z).

Here, R is the accumulated dispersion and Mlin and Tlin describe the optical pulse chirp
(=time-dependent phase) and width. Differentiating Tlin resp. Mlin and using R′(z) =
D(z) we obtain

T ′
lin(z) = 4Dloc(z)Mlin(z), Tlin(0) = T0 > 0 (5)

M ′
lin(z) =

Dloc(z)

T 3
lin(z)

, Mlin(0) = 0. (6)

Here, (·)′ denotes d/dz. Note that Tlin and Mlin are 1-periodic if and only if the residual
dispersion is zero. In this case A(t, z) is also 1-periodic in z. The evolution of Gaussian
initial data in the perturbed equation (1) should be close to the solution of the linear
problem in the case of strong DM since nonlinear effects and residual dispersion are small.

2.2 Lens Transformation

In a series of papers, Turitsyn and Gabitov (see for example [16, 17, 18, 19]) suggest the
following exact transformation which is similar to the so called lens transformation also
known as pseudo-conformal transformation:

A(t, z) = N
Q(t/T (z), z)√

T (z)
exp

(
it2

M(z)

T (z)

)
. (7)

Here, the rapid oscillations of pulse width and chirp are included in T and M . Inserting
the above transformation into the master equation (1) they obtain a reduced variational
problem and after suitable scaling they derive the following ordinary differential equation
describing the evolution of T and M as periodic solutions of

T ′(z) = 4D(z)M(z), T (0) = T0 > 0 (8)

M ′(z) =
D(z)

T 3(z)
−

N2

T 2(z)
, M(0) = 0. (9)
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Thereby, T0 has to be determined in such a way that for a given N 2 the corresponding
solution is periodic or vice versa. N 2 has the physical meaning of pulse energy. To simplfy
notation c should be normalized to 1 (that means c is included in N 2). Note that the above
equations are some nonlinear version of equations (5) and (6) and are therefore often called
“nonlinear TM-equations”. Numerical simulations show that transformation (7) describes
the DM soliton very well. A typical shape of periodic T and M can be found in Figure 1.
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Figure 1: Periodic solutions T (solid line) and M (dashed line) and periodic orbit in the MT -plane

System (8), (9) raises several questions:

• Do periodic solutions always exist ?

• How is N 2 related to T0, 〈D〉 and d ? Can we find approximative formulas ?

• If the residual dispersion is vanishing, are there other solutions besides N 2 = 0 ?
Does there occur some bifurcation ?

Applying the lens transformation (7) we obtain after some algebraic manipulations the
following equation for Q = Q(x, z) in the new variable x = t/T (z):

iQz +
D(z)

T 2(z)
(Qxx − x2Q) +

N2

T (z)
(x2Q + |Q|2Q) = 0. (10)

Although (10) seems to be more complicated than the master equation (1), it is more
suitable for our purposes. The major differences are:

• The linear part of the equation has now an additional term corresponding to a
quadratic potential.

• Instead of D, which is typically piecewise constant, the “effective dispersion” D/T 2

is not explicitly known in general.

Of course the “sign” of the quadratic potential is of fundamental importance for the whole
approach. Naive averaging of equation (10) gives a repelling potential (e.g. [1, 19, 20]).
Thus, it is essential to do a careful averaging procedure. Numerical investigations of (10)
in the case of positive residual dispersion using the basis of the Gauss-Hermite functions
show that the real DM-soliton can be approximated with high accuracy using only the
first modes [14, 16].

In order to apply an averaging procedure to (10) we first have to introduce the correct scales
in the case of strong DM. To understand how the scales change under lens transformation
it is essential to examine the nonlinear TM -equations.
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3 Periodic solutions of the nonlinear TM-equations

In this section we will discuss the existence of periodic solutions of the nonlinear TM -
equations and derive approximative formulas for the value of N 2.

If the residual dispersion 〈D〉 is positive, the following theorem due to Kunze [4] holds:

Theorem 3.1 (Existence of periodic solutions). Assume C1, C2 > 0 are given and
〈D〉 > 0. Then the nonlinear TM -equations

T ′(z) = 4D(z)M(z), M ′(z) = C1
D(z)

T 3(z)
−

C2

T 2(z)

have a 1-periodic solution.

To prove this the author shows that there exists a T0 such that the solution with T (0) = T0

and M(0) = 0 is periodic. If (T,M) is a solution of the nonlinear TM -equations with
M(0) = 0 then T is symmetric with respect to z = 1

2 . Of course the existence of a periodic
orbit is essential for the whole approach.

The characteristic feature of the strong DM regime is |〈D〉| < d. Assuming that 〈D〉 is of
order ε, say 〈D〉 = εα, while Dloc is of order 1, Turitsyn et al. [16] establish the following
relation by a perturbation method:

N2 = ε
α/T0

2/
√

1 + y2 − y−1 ln(y +
√

1 + y2)
+ O(ε2),where y =

d

2T 2
0

, (11)

that is N 2 is of the same order as 〈D〉. The parameter y is well-known in the context of
DM and is called ”map strength”. It should be mentioned that formula (11) gives a linear
relation between 〈D〉 and N 2 and is a good approximation for small y corresponding to
large T0 in the case of positive residual dispersion and for large y corresponding to small
T0 in the case of negative residual dispersion. At a certain value of y(=: ȳ ∼ 3.319) the
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Figure 2: Numerical (solid line) vs. analytical (dotted line) values for N 2 in the case of
large T0 (d = 8 ⇒ T0 ∼ 1.09767 and T0 = 2.0)

denominator becomes zero and (11) is no longer valid. Defining the corresponding critical

5



pulse width as

T0 =

√
d

2y
(12)

it is natural to consider the case T0 ∼ T0 separately since relation (11) becomes singular.
In a neighborhood of T0 we expand both, 〈D〉 and T0 − T0, in powers of the artificial
parameter ε and after cumbersome algebraic manipulations we obtain the following result:

Lemma 3.2. If T0 ∼ T0 the following approximative formula holds:

N2 = −
b(T0 − T0)

2a
±

√
b2(T0 − T0)2 − 4ac〈D〉

2a
(13)

∼ −4.665(T0 − T0) ±

√
21.766(T0 − T0)2 + 19.404〈D〉.

Thereby, the constants a, b and c depend on y in the following way:

a : = 4(y2 − 1)
y3 + (

√
1 + y2 − 1)(y2 − y + 1)

(1 + y2)5/2(y +
√

1 + y2)
∼ 0.684

b : = 8(y2 − 1)
y

(1 + y2)3/2
∼ 6.386

c : = −4y
y2 + y

√
1 + y2 + 1

(y +
√

1 + y2)
√

1 + y2
∼ −13.28.

The above result implies the existence of three qualitatively different situations depending
on the sign of 〈D〉.

• 〈D〉 > 0: one positive (N 2 > 0) solution for all T0.

• 〈D〉 < 0: two positive solutions if T0 < T ∗
0 , where

T ∗
0 := T0 − 2

√
ac〈D〉/b ∼ T0 − 0.944

√
−〈D〉.

• 〈D〉 = 0: one positive solution if T0 < T0.

Figure 3 illustrates this result and compares analytical and numerical values in the different
parameter constellations.
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Figure 3: The relation between N 2 and T0 in the case (a) 〈D〉 = 0.05, (b) 〈D〉 = −0.05 and (c),
〈D〉 = 0. The local dispersion was chosen as d = 8. Analytical values of N 2 are compared to values
of N2 leading to fixed points of the nonlinear TM -equations found by numerical simulations.

Due to the different formulas for N 2 we have to distinguish between two situations in the
case of positive residual dispersion:
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• T0 >> T0, where the linear relation (11) is valid.

• T0 ∼ T0, where formula (13) is valid.

In the next section we will show the existence of a ground state of the averaged Hamiltonian
in the case of positive residual dispersion and T0 > T0. It becomes evident that the
quadratic potential in the transformed equation does not matter in the first case while in
the second it will be of “good” sign.

The existence of the DM-soliton depends strongly on the solvability of the nonlinear TM -
equations. Recapitulating the results it is now clear that the different regimes, where
the DM-soliton does exist or not, could be explained by investigating the nonlinear TM -
equations (see Remark 3.3 below). This is another surprising similarity between the above
ODE (nonlinear TM -equations) and the PDE (DM-NLS) model.

Remark 3.3.

• For 〈D〉 > 0 it is known from numerical simulations that the DM-soliton exists for
all values of the map strength. Furthermore it is known that the shape of the DM-
soliton varies with decreasing map strength. In the next section we will derive a new
class of equations and will explain how our method can be used to understand this
fundamental property of the DM-soliton.

• For 〈D〉 < 0 there is no solution of the nonlinear TM -equations in the case of small
map strength, whereas there exist two solutions in the opposite case. This seems to
be a new explanation of what was obtained by Pelinovsky [12], i.e. two pulses in the
case of negative residual dispersion.

• For 〈D〉 = 0 there occurs a bifurcation at the critical map strength y. In particular
this shows the existence of a “nontrivial” periodic solution of the nonlinear TM -
equations. Of course, this corresponds to the situation which leads to the existence
of the DM-soliton in the case of vanishing residual dispersion. From [10] it is known
that the DM-soliton exists if the map strength is above a critical value.
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Figure 4: The value of N 2 as a function of 〈D〉 for d = 8 (⇒ T0 ∼ 1.09767) and different values
of T0. Analytical values.

The dependence of N 2 on T0 and 〈D〉 is shown in Figure 4. It becomes evident how the
scales are transformed under lens transformation. In particular, it is clarified that the

7



dependence of N 2 on 〈D〉 is not necessary linear and, consequently, residual dispersion
and nonlinear effects can be of different order. However, it is essential to observe that the
behavior substantially changes at T0. Note that N 2(〈D〉) = O(

√
〈D〉) for T0 = T0.

In Figure 5, the (〈D〉, T0 − T0)-plane is divided into four regions:

• A := {(〈D〉, T0 − T0)|〈D〉 > 0, T0 > T0}, where N 2(〈D〉) = O(〈D〉)

• B := {(〈D〉, T0 − T0)|〈D〉 ≥ 0, T0 < T0}, where N 2(0) 6= 0.

• C := {(〈D〉, T0 − T0)|〈D〉 < 0, T0 < T ∗
0 }, where there are two solutions.

• D := {(〈D〉, T0 − T0)|〈D〉 ≤ 0, T0 > T ∗
0 }, where no solution does exist.

PSfrag replacements

T0 − T0

〈D〉

〈D〉

〈D〉

〈D〉

N
2

N
2

N
2

A

B

C

D

Figure 5: Bifurcation diagram in the (〈D〉, T0 − T0)-plane.

It becomes evident that in region B the parameter N 2 is no longer of the same order as
the residual dispersion, a corresponding equation has not been studied in this context.
The recent results for positive residual dispersion [7, 23] are only valid in region A.

In the next section we will present an averaging procedure for the lens-transformed DM-
NLS and derive a new class of model equations involving a quadratic potential. We will
show that in region A the potential is not repelling in contrast to some former discussions
of the problem. Moreover, we will derive a equation in region B by a modified averaging
method which can be regarded as a model equation for DM-solitons with large energy
which are of practical interest due to their reduced signal-to-noise ratios.

4 Averaging of the lens-transformed DM-NLS

In this section we describe how the lens transformed DM-NLS can be averaged using the
method by Zharnitsky et al. [23]. At first we explain how the averaging procedure can
be applied to the DM-NLS after lens transformation. Thereby, we will first examine the
case T0 >> T0, where analytical formulas for the mean values are at hand. Adapting the
averaging procedure and using numerical simulations we then verify that the quadratic
potential is not repelling for T0 > T0, that is region A in Figure 5. Due to the quadratic
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potential the existence of ground states of the averaged equations is assured. In the
remainder of this section we present a modified method for the other regions and briefly
discuss the averaged equations.

Recall that the resulting equation after lens transformation is given by (10):

iQz +
D(z)

T 2(z)
(Qxx − x2Q) +

N2

T (z)
(x2Q + |Q|2Q) = 0.

There is similarity between (10) and (1): In both equations the dispersion coefficient D
resp. D/T 2 has high local dispersion compared to average dispersion. Therefore it is
natural to use the same method as Zharnitsky et al. [23], i.e. removing strong variations
of D/T 2 by variation of constants and average the resulting equation. It was shown in the
last section how the scales change under lens transformation.

As mentioned in the last section we have to distinguish between different regimes depend-
ing on the value of N 2 resp. T0 as indicated in Figure 5. Here we have chosen to distinguish
the different regimes by the value of T0 which corresponds to initial pulse width. But this
could also be done by using the ratio of d and some dcrit for a given T0. Since the map
strength is defined as y = d/(2T 2

0 ) everything can also be expressed in terms of the map
strength. However, in the next section we will get rid of the artificial parameter T0 and
formulate the results in terms of N 2 which corresponds to initial pulse energy in order to
make the results more applicable.

4.1 The case 〈D〉 > 0

In this subsection we will analyse the case of positive residual dispersion. It will turn out
that the quadratic potential is attractive for a large class of system parameters. Note that
previous results [7, 23] are only valid for T0 > T0 since they consider nonlinear effects and
residual dispersion to be of the same order.

4.1.1 The region of small map strength

In the region of small map strength we have T0 >> T0. From (11) it follows with 〈D〉 = εα

N2(ε, T0) =
εα/T0

F (d/(2T 2
0 ))

=: εC

where F (y) := 2/
√

1 + y2 − y−1 ln(y +
√

1 + y2). In contrast to (1) it is not obvious how
the unperturbed (ε = 0) part of equation (10) looks like. Note that T is ε-depending with
limε→0 T (z; ε) = Tlin(z) because limε→0 N2(ε) = 0. Letting now ε → 0 in (10) gives

iQz(x, z) +
Dloc(z)

T 2
lin(z)

(Qxx(x, z) − x2Q(x, z)) = 0. (14)

Let U(t) be the unitary group generated by 4− x2 and define the accumulated effective
dispersion as

Reff(z) :=

∫ z

0
Dloc(z

′)/T 2
lin(z

′)dz′. (15)

Then S(z) := U(Reff(z)) is the solution operator of the unperturbed equation (14) which
is the harmonic oscillator with an additional z-dependent factor Dloc(z)/T 2

lin(z). Since
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〈Dloc/T
2
lin〉 = 0 the operator S is 1-periodic. Moreover it is unitary and conserves momen-

tum and energy [11]. Splitting (10) into unperturbed and ε−dependent part we obtain

iQz +
Dloc

T 2
lin

(Qxx − x2Q) +

(
(
D

T 2
−

Dloc

T 2
lin

)(Qxx − x2Q) +
N2

T
(x2Q + |Q|2Q)

)
= 0.

Using the solution of the unperturbed equation we introduce a canonical transformation

Q(z, x) = S(z)v(z, x) (16)

which yields after applying S−1(z) and some straight-forward simplifications using the
fact that a semigroup and its generator commute

ivz + (
D

T 2
−

Dloc

T 2
lin

)(vxx − x2v) + S−1(z)

(
N2

T
(x2S(z)v + |S(z)v|2S(z)v)

)
= 0. (17)

It is essential that both D/T 2 − Dloc/T
2
lin and N2/T are now of order ε. Therefore,

averaging of the above equation makes sense. Equation (17) possesses a Hamiltonian
similar to that of the cubic NLS with additional quadratic potential:

H =(
D

T 2
−

Dloc

T 2
lin

)

∫
∞

−∞

(
|vx|

2 + x2|v|2
)
dx −

N2

T

∫
∞

−∞

(
x2|S(z)v|2 +

1

2
|S(z)v|4

)
dx.

Using 〈Dloc/T
2
lin〉 = 0, formal averaging now yields

〈H〉=〈
D

T 2
〉

∫
∞

−∞

(
|ux|

2 + x2|u|2
)
dx −

∫ 1

0

N2

T (z)

∫
∞

−∞

(
x2|S(z)u|2 +

1

2
|S(z)u|4

)
dxdz

with corresponding Euler-Lagrange equation

〈
D

T 2
〉(uxx − x2u) +

∫ 1

0
S−1(z′)

(
N2

T (z′)
(x2S(z′)u + |S(z′)u|2S(z′)u)

)
dz′ = λu. (18)

Solutions of (18) are standing wave solutions of the averaged DM-NLS after lens transfor-
mation

iuz + 〈
D

T 2
〉(uxx − x2u)+

∫ 1

0
S−1(z′)

(
N2

T (z′)
(x2S(z′)u + |S(z′)u|2S(z′)u)

)
dz′ = 0. (19)

Remark 4.1. For a jusitification of the averaging procedure we refer to [23]. Translat-
ing their proof to our situation would require a lengthy and cumbersome expansion of all
coefficients up to second order and is omitted here.

The following Lemma is essential to simplify the averaged equation:

Lemma 4.2. For all u ∈ X := {u ∈ H1(
�

) :
∫ �

x2|u|2dx < ∞} we have:

S−1(z)

(
N2

T (z)
x2S(z)u

)
=

N2

T (z)

( cos(4Reff(z))−1

2
uxx +

cos(4Reff(z))+ 1

2
x2u

+i
sin(4Reff(z))

2
(u+2xux)

)
.

Proof. see Appendix B.
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Note that Reff is defined in (15). Due to symmetry the last term averages out, i.e.
〈sin(4Reff)/T 〉 = 0. This together with the Lemma implies the following result: The
averaged lens-transformed DM-NLS reads as

iuz+ auxx − bx2u +
∫ 1
0 S−1(z)

(
N2

T (z) |S(z)u|2S(z)u
)

dz = 0, (20)

where

a : = 〈 D
T 2 − N2

T
1−cos(4Reff)

2 〉, b : = 〈
D

T 2
−

N2

T

1+cos(4Reff)

2
〉. (21)

Of course the existence and behavior of the solutions strongly depends on the sign of a
and b.

The averaged Hamiltonian can be written as

〈H〉 = a
∫
∞

−∞
|ux|

2dx + b
∫
∞

−∞
x2|u|2dx −

∫ 1
0

N2

2T

∫
∞

−∞
|S(z)u|4 dx dz. (22)

At first sight we would require a > 0 and b ≥ 0 to obtain ground states.

Remark 4.3.

• The structure of the lens-transformed DM-NLS is always of the above type. Only the
value (and the sign) of a and b changes in the different regions.

• Note that naive averaging of (10) would give [20]

iuz + 〈
D

T 2
〉uxx − (〈

D

T 2
〉 − 〈

N2

T
〉)x2u + 〈

N2

T
〉|u|2u = 0 (23)

in contrast to (20). As 〈D/T 2〉 > 0 and 〈D/T 2〉 − 〈N2/T 〉 < 0 the potential in (23)
is of non-trapping type and there exist no square-integrable ground states of the
corresponding Hamiltonian and accordingly no pulse-like solutions.

Remember that in the situation discussed in this section formula (11) is valid. The fol-
lowing approximations hold with y = d/(2T 2

0 ) [14]:

〈
D

T 2
〉 ∼

N2

T0

√
1 + y2

and 〈
N2

T
〉 ∼

N2

T0
y−1 ln(y +

√
1 + y2).

In a similar way we can show that [8]

〈
N2 cos(4Reff )

T
〉 ∼ 〈

N2 cos(4Reff )

Tlin
〉 =

N2

T0
(

2√
1 + y2

− y−1 ln(y +
√

1 + y2)).

Combining the above results we arrive at

a = (〈
D

T 2
〉 − N2〈

1 − cos(4Reff )

2T
〉)

∼
N2

T0
(

2√
1 + y2

− y−1 ln(y +
√

1 + y2)) =
N2

T0
F (y), (24)

b = (〈
D

T 2
〉 − N2〈

1 + cos(4Reff )

2T
〉) ∼ 0. (25)

11



It is interesting that F (y) does again play a role. For large T0 as in this section we have
y < y implying F (y) > 0 and accordingly a > 0. Using the above expression for b the
quadratic potential does not matter in first order approximation. Note that numerical
simulations show that b is small but positive. The averaged Hamiltonian is now

〈H〉 = εC
(

F (y)
T0

∫
∞

−∞
|ux|

2dx −
∫ 1
0

1
2T (z)

∫
∞

−∞
|Su|4 dx dz

)
+ O(ε2),

where we have set N 2 = εC according to (11). As we only consider first order averaging
we should neglect terms of higher order and minimize

〈H〉 = εC
(

F (y)
T0

∫
∞

−∞
|ux|

2dx −
∫ 1
0

1
2T

∫
∞

−∞
|Su|4 dx dz

)

with respect to some constraint in order to obtain stable ground state solutions of the
averaged equation.

The above averaged Hamiltonian is similar to the one obtained by Zharnitsky et al. [23].
The only difference is that the nonlinear term consists now of S(z) instead of U(z) =
exp(iR(z)4) and the nonlinear coefficient is now z-dependent (but it could be assumed
to be constant without loss of generality).

The constrained minimization procedure works similar to the proof of Zharnitsky et al.
Note that the crucial lemma in [23] was the bound on localization in the linear Schrödinger
equation which is also valid for the case of the harmonic oscillator. Following the proof
in [23] which is nearly identical to the one by Yew et al. [21] one can show the existence
of standing wave solutions by applying a mountain pass argument. We will omit the
proof since we are mainly interested in the case where the potential does matter, see the
following section. It should be noted that there is one advantage in our approach: It seems
to be more suitable for numerical investigations because the equations become much more
simple if we use the basis of Gauss-Hermite eigenfunctions. Moreover the corresponding
Euler-Lagrange equations are similar to those investigated by Turitsyn et al. [14, 16] which
admit a very good and efficient approximation of the DM-soliton.

4.1.2 The region of medium map strength

In the region of medium map strength (T0 ∼ T0) we have to treat the cases T0 > T0 and
T0 < T0 separately since the behavior completely changes.

The case T0 > T0. This case is much more exciting than the previous one: The quadratic
potential will have “good” sign and therefore we will find a ground state u with xu ∈
L2(

�
). Bearing in mind the last section, it would be natural to require

〈
N2 cos(4Reff)

Tlin
〉 ∼ 0 (26)

in order to obtain positive sign for both
∫
∞

−∞
|ux|

2dx and
∫
∞

−∞
x2|u|2dx. Using

〈
N2 cos(4Reff)

Tlin
〉 =

N2

T0
(

2√
1 + y2

− y−1 ln(y +
√

1 + y2)) =
N2

T0
F (y)

we can conclude that condition (26) is valid for y ∼ y implying T0 ∼ T0. In what follows
we will explain that this “naive” idea will work.

12



Letting 〈D〉 tend to zero in the nonlinear TM -equations we conclude using (13)

N2(T0, 〈D〉) → N 2(T0, 0) = 0

and hence T → Tlin. According to the above explanations the unperturbed part of (10) is
again given by (14) with Tlin(0) now close to T0. Using again Q(z, x) = S(z)v(z, x) and
the same calculations as in the previous case we again obtain the averaged equation (20)
with a and b defined as above, see (21). Unfortunately it is very unpleasant to calculate
approximations for the mean values since we have to expand all quantities up to the second
order. By the choice of T0 we expect N 2〈cos(4Reff )/T 〉 to be of high order. Instead of
doing all this calculations we refer to numerical simulations which show

〈D/T 2〉 − N2〈(1 ± cos(4Reff))/2T 〉 > 0.

In Figure 6 the dependence of a and b on the initial pulse width is presented. Starting with
arbitrary big initial pulse width T0 we see that b, the coefficient of the quadratic potential,
is close to zero in analogy to the analytical result. Making T0 smaller the parameter b
becomes positive and therefore the quadratic potential comes into play. Now we are in
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Figure 6: Numerical values for a (solid line) and b (dashed line) in the case d = 8(⇒ T0 ∼ 1.09767)
and 〈D〉 = 0.05

position to define the constrained minimization problem which gives us weak standing
wave solutions of the averaged DM-NLS after lens transformation. Let

I(u) := 〈H〉(u) = a

∫
∞

−∞

|ux|
2dx + b

∫
∞

−∞

x2|u|2dx −

∫ 1

0

N2

2T

∫
∞

−∞

|S(z)u|4 dx dz (27)

It is natural to look for minimizers of I in the following well known Hilbert space:

X :=
{
u ∈ H1(

�
)
∣∣∣ xu ∈ L2(

�
)
}

.

For u, v ∈ X we can define the inner product

< u, v >X :=< ux, vx >L2 + < u, v >L2 + < xu, xv >L2

and energy norm ‖u‖2
X :=‖xu‖2

L2 + ‖u‖2
H1 . Note that X equipped with the above norm

is compactly embedded into L2(
�

) [22]. Using this fact it is easy to obtain ground states:

13



Theorem 4.4 (Existence of ground states). The constrained minimization problem
Iω = min{I(u)|u ∈ X, ‖ u ‖2

2= ω} has at least one nontrivial solution u ∈ X for all
ω > 0. This minimizer satisfies the corresponding Euler-Lagrange equation with Lagrange-
multiplier λ = λω.

Proof. see Appendix A.

The parameter λ is the quasi-impulse, i.e. we have shown that there exists a solution
of the NLS after lens transformation (10) which is close to S(z)u(x) exp(iλz), recall that
S(z) is 1-periodic. Note that the ground state u is shown to have the decay property
xu ∈ L2(

�
) which is a new theoretical decay result. The fast decay results in suppression

of soliton interaction, and consequently, in the possibility of denser information packing.

Remark 4.5.

• Following the argument of Zhang [22] the ground states are orbital stable.

• From the type of the potential one would expect that the DM-soliton has Gaussian
tails. For example this was shown by Kavian and Weissler [3] for a simpler nonlin-
earity. However, from numerical simulations it is known that the tails have oscillat-
ing structure and decay exponentially, cf. [10, 19]. The Gaussian decay is lost due
the nonlocal properties of the nonlinearity derived in this paper.

• For a similar equation a detailed bifurcation analysis is known [5]. A complete de-
scription of the solutions and the bifurcation behavior will be given in a continuation
of this paper [9]

• Note that expanding u using the Gauss-Hermite eigenfunctions we obtain equations
similar to those derived by Turitsyn et al. [16] which describe the true DM-soliton
very well [14, 16], see the next section for details.

Thus, we have shown the following theorem which is our main result:

Theorem 4.6 (Existence of standing waves of arbitrary energy). For
positive residual dispersion the averaged lens transformed DM-NLS in the case of medium
map strength and T0 > T0 reads as

iuz + auxx − bx2u +

∫ 1

0
S−1(z′)

(
N2

T (z′)
|S(z′)u|2S(z′)u

)
dz′ = 0 with a, b > 0.

It possesses standing wave solutions u(x, t) = v(x) exp(iλt) of arbitrary energy ‖v ‖2
2= ω,

where v ∈ X.

Note that the above theorem includes the case T0 >> T0 as limit because b vanishes for
large T0. Since the aim of this paper is to explain how the lens transformation can be used
to verify various numerically and experimentally well-known properties of the DM-soliton
we do not give a more detailed investigation of Equation (20).

Recapitulating the derived results we have explained the parameter-dependence of the DM-
soliton, partly analytical and partly by numerical calculations. The fact that the quadratic
potential is attractive is essential, nevertheless we can use our method to describe the
behavior of the DM-solitons in other regions. This will be done briefly in the remainder
of this section.
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The case T0 < T0. In this case N 2 is no longer of the same order as 〈D〉, i.e. the
unperturbed equation is nonlinear and the method used in the previous cases does not
work. To overcome this problem one has to treat both, residual dispersion 〈D〉 and T0−T0,
as perturbations, then

lim
ε→0

N2(T0, < D >) = N 2(T0, 0) = 0.

In this case the unperturbed equation reads as

iQz +
Dloc

T 2
lin

(Qxx − x2Q) = 0 with Tlin(0) = T0,

where the difference to the other regimes is the value of Tlin(0).

This can be seen in a more analytical way as follows: With N 2 = O(ε) and 〈D〉 = O(ε2)
one can see that δ = T0 − T0 < 0 is of order ε using the formula

N2 = −
bδ

2a
+

√
b2δ2 − 4ac〈D〉

2a
,

which implies

δ = −
b2

2a

〈D〉

N2
+

N2

2a
.

In our situation we have 〈D〉/N 2 = O(ε) and N 2 = O(ε). Therefore it follows δ = O(ε)
and accordingly T0 → T0 for ε → 0. It should be mentioned that this behavior is supported
by numerical simulations, see Figure 7 (a).
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Figure 7: (a) The parameter T0(N
2, 〈D〉) as a function of ε. Here N2 = εC and 〈D〉 = ε2α with

C = 4 and α = 0.2. It is T0 = 1.09767. (b) The values of a and b for 〈D〉 = 0.05 between T0 = 0.75

and T0 = T0. Here T̃0 ∼ 0.793

With the above rescaling of the problem the unperturbed part is again (14), but now
Tlin(0) = T0 and the method developed in the last section can be applied. Numerical

simulations then show the existence of a critical parameter T̃0 depending on d and 〈D〉
where the parameter b changes its sign, see Figure 7 (b). Thus, we have established
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Theorem 4.7 (Averaged Equation for T0 < T0). If T0 < T0 and 〈D〉 = ε2α with
α > 0 the averaged equation after lens-transformation reads as

iuz + auxx − bx2u +

∫ 1

0
S−1(z)

(
N2

T (z)
|S(z)u|2S(z)u

)
dz = 0

where a > 0 and

• b > 0 for T0 > T̃0

• b < 0 for T0 < T̃0

Thereby, a, b = O(〈D〉) = O(ε2) and N2 = O(ε).

Remark 4.8.

• One could ask why one should include the terms of higher order in the averaged
equation. Applying an averaging procedure with normal transformations it turns
out that second order correction terms vanish due to symmetry, see [13] for details.
However, a detailed analysis of this situation is beyond the scope of this paper.

• The switching of the potential from attracting to repelling corresponds to the transi-
tion to a flatter profile which is well-known for solutions in the regime of vey large
map strength. In the vicinity of the critical parameter T̃0 the DM-soliton concept
breaks down; in the next section we will reformulate this result in terms of input
pulse energy to make it more meaningful for applications.

4.2 The case 〈D〉 < 0

In this section we give an overview on the case of negative residual dispersion. In order to
prevent confusion we will write the Hamiltonians in different situations only in a qualitative
sense, i.e. we are only interested in the sign of a and b without regarding its absolut value.
The nonlinear part is always the same, we write N 2 = εC and

N(u) :=

∫ 1

0

C

2T

∫
∞

−∞

|S(z)u|4 dx dz.

4.2.1 The lower branch.

The lower branch corresponds to the solutions with smaller energy. Applying the averaging
procedure together with numerical calculations shows that the corresponding Hamiltonian
is of the following type

〈H〉 = −ε

∫
∞

−∞

|ux|
2 + ε

∫
∞

−∞

x2|u|2 dx − εN(u).

It can be seen easily that the Hamiltonian is unbounded.

4.2.2 The upper branch.

In this case N 2 is no longer O(ε) and the modified method should be applied. Numerical

calculations show that b is always negative and there is a critical parameter T̃0 where a
changes its sign. Thus, we have the following qualitative Hamiltonians

〈H〉 = −ε2
∫
∞

−∞
|ux|

2dx − ε2
∫
∞

−∞
x2|u|2 dx − εN(u), T0 < T̃0,

〈H〉 = ε2
∫
∞

−∞
|ux|

2dx − ε2
∫
∞

−∞
x2|u|2 dx − εN(u), T0 > T̃0.
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This situation corresponds to the case T0 > T0 for positive residual dispersion. In analogy,
a and b are of order 〈D〉 = O(ε2) which means they are of higher order. Note that for

T0 < T̃0 the only critical points of the averaged Hamiltonian are saddles and maxima; we
omit the proof here. This is a an analogon to the result of Zharnitsky et al. [23]

Remark 4.9. The averaged Hamiltonian of the DM-NLS for negative residual dispersion
has also been investigated by Jackson, Jones and Zharnitsky [2] who have shown the non-
existence of a minimizer. In our case we have explained that there is no solution of
the nonlinear TM -equations in the case of small map strength, whereas there exist two
solutions in the opposite case. This corresponds to the result of Pelinovsky [12]. Jackson
et al. [2] have shown by a numerical averaging procedure that in the case of negative residual
dispersion close to zero a local minimum of a reduced Hamiltonian persists. It vanishes
when residual dispersion is decreased further.

4.3 The case 〈D〉 = 0

In the case 〈D〉 = 0 we have shown in Section 3 that nontrivial periodic solutions of the
nonlinear TM -equations exist only for T0 < T0. Using Equation (13) we have

N2 ∼ −9.33 (T0 − T0).

Regarding N 2 as a small quantity yields that T0 − T0 is of the same order, say ε. Hence
in the unperturbed problem we have Tlin(0) = T0 and the modified averaging method
should be employed. Numerical simulations then show that both, a and b, are of order ε3.
Therefore the correct Hamiltonian in this case is of type

H = −εN(u).

Remark 4.10. If residual dispersion is vanishing numerical simulations show the exis-
tence of a stable periodic pulse. Using the approach of Zharnitsky one has no control on
the derivative in the averaged equation, i.e. there is no term including uxx in the resulting
equation. The existence of a minimizer was recently shown by Kunze [6]. Note that in
contrast to the result of Zharnitsky [23] now the harmonic oscillator semigroup is involved.
This could make it easier to obtain a ground state in some Lp-space.

5 Summary of the results in terms of the originial equation

In this section we translate our results to the DM-NLS (1). Since the energy

E =

∫
� |A(z, t)|2dt

is a conserved quantity of the DM-NLS we will use E to parametrize the solutions instead
of the more artificial parameter T0. We have

E =

∫
� |A(z, t)|2dt =

N2

T (z)

∫
�
∣∣∣∣Q(t/T (z), z) exp

(
it2

M(z)

T (z)

)∣∣∣∣
2

dt

= N2

∫
� |Q(x, z)|2 dx, with x = t/T (z).

After transformation Q(x, z) = S(z)v(x, z) and ansatz v(x, z) = exp(iλz)u(x) we end up
at

E = N2

∫
� |u(x)|2 dx. (28)
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Thus the parameter N 2 in the lens transformation can be regarded as scaling of energy.
For prescribed energy E = N 2 we determine the parameter T0 such that the corresponding
solution of the nonlinear TM -equations is 1-periodic and search for solutions with unit-
norm of the DM-NLS after lens transformation. Note that the parameter T0 is uniquely
determined for given values of N 2 and 〈D〉. Figure 8 shows the curves N 2(T0, 〈D〉) for
different values of T0, these curves cover the union of the regions A, . . . , E.
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F : no solution

Figure 8: Partition of the (N 2, 〈D〉) in regions with constant sign of a and b.

Remark 5.1. The recent publications deal with the situation where 〈D〉 and N 2 are of
same order ε. This is exactly true in region A resp. E, where the original averaging
procedure is applicable. In this regions both, a and b, are O(ε). The modified averaging
procedure is valid in the other regions, where in terms of the characteristic lengths no
longer Zrd ∼ Znl, but rather Zdisp << Znl << Zrd. To the best of our knowledge such a
situation has not been studied in the literature. Therefore the derived equations could be
regarded as a first step towards the analysis of DM-solitons with large energy which are of
practical interest due to their small signal-to-noise ratio.

The main result of this paper then reads as follows

Theorem 5.2 (Existence of the DM-soliton). For prescribed energy E = N 2 there
exists a solution of the DM-NLS which is close (in the sense of the averaging procedure)
to the 1-periodic function

A(t, z) = N
U(Reff(z)) {exp(iλz)u(t/T (z))}√

T (z)
exp

(
it2

M(z

T (z)

)
,

where T and M are 1-periodic solutions of the nonlinear TM -equations and the profile
u ∈ H1(

�
) fulfils xu ∈ L2(

�
). Moreover, u is orbital stable as a ground state of the

averaged Hamiltonian.

Figure 8 explains why the shape of the DM-soliton varies with increasing pulse energy
supposed the fiber parameters d and 〈D〉 > 0 are given. For small values of the energy the
parameter b is of higher order. Thus, the quadratic potential has little influence and the
DM-soliton is close to the traditional NLS-soliton. For larger values of E the significance
of the quadratic potential increases, the corresponding solution is the well-known energy-
enhanced DM-soliton with Gaussian core. Increasing E above a critical value Ñ2, the
parameter b becomes negative and the solution of the averaged equation is no longer in
L2(

�
), this corresponds to numerically observed flatter profile.

18



Remark 5.3. Using the basis {un}n∈ � 0
of Gauss-Hermite eigenfunctions of the harmonic

oscillator the ground state u can be represented as

u(x) =
∞∑

m=0

Fmum(x).

Inserting this ansatz in the averaged DM-NLS after lens transformation and taking the
L2-scalar product of the resulting equation with un we end up at the infinite-dimensional
algebraic system

− λFn + 〈
D(z)

T 2(z)
−

N2

2T (z)
〉λnFn

+ N2〈
cos(4Reff(z))

2T (z)
〉
(√

(n + 1)(n + 2)Fn+2 +
√

n(n − 1)Fn−2

)
(29)

+

∞∑

k,l,m=0

∫ 1

0

N2

T (z)
exp

(
2i(k−l+m−n)Reff(z)

)
dzFkFlFmVn,m,l,k = 0,

where

Vn,m,l,k :=

∫
� um(x)uk(x)ul(x)un(x)dx.

and λn = −2n − 1 denote the eigenvalues corresponding to un. A system similar to the
above one has been previously derived, cf. [16], where the averaging procedure has been
performed by Lie-transform technique. The only difference is that Reff in (29) is replaced
by R(z) defined through R′(z) = D(z)/T 2(z) − 〈D/T 2〉. Strictly speaking, R still depends
on the smallness parameter 〈D〉 = O(ε) and hence R and Reff differ by an ε-dependent
term. For an analysis of system (29) we refer to [16].

As mentioned before the quadratic potential helps to establish further properties of the
DM-soliton, we have restricted ourselves to the existence of ground states of the averaged
variational principle in the present paper.
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A Existence of ground states of the averaged variational

principle

In this section we will give the proof of Theorem 4.4. In order to simplify notation we
assume I to be of the following form

I(u) :=

∫
∞

−∞

|ux|
2dx +

∫
∞

−∞

x2|u|2dx −

∫ 1

0

∫
∞

−∞

|S(z)u|4 dx dz. (30)

Note that there exist T∗, T
∗ > 0 such that T∗ < T (z) < T ∗ which means that we can omit

T without loss of generality. Moreover all constants are normalized to 1.
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Now we are going to prove

Theorem 4.4 The constrained minimization problem

Iω = min{I(u)|u ∈ X, ‖u‖2
2= ω}

has at least one nontrivial solution u ∈ X for all ω > 0.

At first we show that I is bounded from below.

Lemma A.1. ∀ ω ∈ (0,∞) Iω > −∞

Proof. Let u ∈ X with ‖u‖2
2= ω and define v(x, z) := S(z)u(x). In this proof we use the

following equivalent norm on X:

‖u‖2
X′ :=‖xu‖2

L2 + ‖ux ‖
2
L2

. (31)

Due to the Gagliardo-Nirenberg-Sobolev inequality we can estimate as follows

‖v‖4
4≤ C ‖vx ‖2‖v‖3

2= C ‖vx ‖2‖u‖
3/2
2 = C ‖vx ‖2 ω3/2

Because of the conservation of energy in the linear Schrödinger equation we have

‖vx ‖
2
2≤‖vx ‖

2
2 + ‖xv‖2

2=‖v‖2
X′=‖u‖2

X′ .

Therefore
∫ 1

0

∫
� |S(z)u(x)|4 dx dz =

∫ 1

0
‖v‖4

4 dz ≤ C ‖u‖X′ ω3/2

This implies

I(u) ≥‖u‖2
X′ − C ‖u‖X′ ω3/2,

which is a quadratic polynomial in ‖u‖X′ and hence bounded from below. 2

Next we show that every minimizing sequence is bounded in X:

Lemma A.2. Let {un} be a sequence in X with ‖un ‖
2
2= ω and I(un) → Iω. Then there

exists M > 0 with ‖un ‖X≤ M .

Proof. Because I(un) is a converging sequence in
�

we can find a positive constant M , in-
dependent of n, with I(un) ≤ M . Using the inequality obtained in the proof of Lemma A.1
we have M ≥ I(un) ≥‖un ‖

2
X′ − C ‖un ‖X′ ω3/2. But this can only be true if ‖un ‖X′ and

therefore ‖un ‖X is bounded. 2

Now we are able to show the existence of a minimizer, i.e.

∃u ∈ X :‖u‖2
2= ω, I(u) = Iω.

Let {un} be a minimizing sequence. Since {un} is a bounded sequence in the Hilbert
space X we can extract a weakly converging subsequence unk

⇀ u in X for some u ∈ X.
Without loss of generality we assume unk

= un. Because the embedding X ⊂⊂ L2(
�

) is
compact, we have strong convergence un → u in L2. Thus, ‖u‖2

2= ω. We can write

I(u) =‖u‖2
X −J(u), where J(u) =

∫ 1

0

∫
� |S(z)u|4 dx dz.
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Since ‖ · ‖X is weakly lower semi-continuous as a norm on X, we obtain the inequality

‖u‖X≤ lim
n→∞

inf ‖un ‖X .

To complete the proof it suffices to show that J(un) → J(u). To see this, we can show
similar as in the proof of Lemma A.1 that the following estimate is true:

∫ 1

0

∫
� |S(z)(un(x) − u(x))|4 dx dt ≤ C ‖un − u‖X

(∫
� |un − u|2 dx

)3/2

.

The first factor in the right hand side of the above equation is bounded because of the
weak convergence un ⇀ u in X, the second factor tends to zero due to strong convergence
in L2. Thus we have shown

I(u) ≤ lim
n→∞

I(un)

which, together with ‖u‖2
2= ω, completes the proof. Note, that ‖un ‖X→‖u‖X and weak

convergence un ⇀ u in X give un → u strongly in X. 2

B Proof of Lemma 4.2

It remains to show

Lemma 4.2 For all u ∈ X := {u ∈ H1(
�

) :
∫ �

x2|u|2dx < ∞} we have:

S−1(z)

(
N2

T (z)
x2S(z)u

)
=

N2

T (z)

( cos(4Reff(z))−1

2
uxx +

cos(4Reff(z))+ 1

2
x2u

+i
sin(4Reff(z))

2
(u+2xux)

)
.

Proof. Using the basis of Gauss-Hermite eigenfunctions we can write

u(x) =

∞∑

n=0

anun(x), with an ∈
�

.

Taking advantage of the fact that S(z)un is explicitly known we have

S(z)u(x) =

∞∑

n=0

anS(z)un(x) =

∞∑

n=0

an exp(iλnReff(z))un().

Thereby, λn = 2n+1 is the eigenvalue corresponding to un. Further it is known that [15]:

xun(x) = nun−1(x) +
1

2
un+1(x).

Applying this formula twice yields

x2un(x) = n(n − 1)un−2(x) +
1

2
(2n + 1)un(x) +

1

4
un+2(x),
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hence

x2S(z)u(x) =
∞∑

n=0

an exp(iλnReff(z))x2un(x)

=

∞∑

n=0

an exp(iλnReff(z))

(
n(n − 1)un−2(x) +

1

2
(2n + 1)un(x) +

1

4
un+2(x)

)
.

Now we are in position to calculate as follows

S−1(z)
(
x2S(z)u(x)

)

=

∞∑

n=0

aneiλnReff(z)S−1(z)

(
n(n − 1)un−2(x) +

2n + 1

2
un(x) +

1

4
un+2(x)

)

=

∞∑

n=0

an

(
n(n − 1)e4iReff(z)un−2(x) +

2n + 1

2
un(x) +

1

4
e−4iReff(z)un+2(x)

)
,

where in the last equation we have used λn − λn±2 = ∓4. Next we turn to the right hand
side. Using the expansion of u we obtain

S−1(z)
(
x2S(z)u(x)

)
=

∞∑

n=0

an

( cos(4Reff(z))−1

2
u′′

n(x)+
cos(4Reff(z))+1

2
x2un(x)

+i
sin(4Reff(z))

2

(
un(x) + 2xu′

n(x)
) )

.

Due to −u′′
n(x) + x2un(x) = λnun(x) it follows

cos(4Reff(z)) − 1

2
u′′

n(x) +
cos(4Reff(z)) + 1

2
x2un(x)

=
cos(4Reff(z)) − 1

2

(
x2un(x) − λnun(x)

)
+

cos(4Reff(z)) + 1

2
x2un(x)

= cos(4Reff(z))x2un(x) −
cos(4Reff(z)) − 1

2
λnun(x)

= cos(4Reff(z))

(
n(n − 1)un−2(x) +

2n+1

2
un(x) +

un+2(x)

4

)

−
cos(4Reff(z))−1

2
λnun(x)

= n(n − 1) cos(4Reff(z)))un−2(x) +
2n + 1

2
un(x) +

1

4
cos(4Reff(z))un+2(x).

To get control on the term xu′
n(x) we use the relation u′

n = nun−1 − un+1/2, see [15] and
conclude

xu′
n(x) = n(n − 1)un−2(x) −

1

2
un(x) −

1

4
un+2(x)

Hence we have

sin(4Reff(z))

2

(
un(x)+2xu′

n(x)
)

= sin(4Reff(z))

(
n(n − 1)un−2(x)−

un+2(x)

4

)
.

Due to exp(4iReff(z))) = cos(4Reff(z)) + i sin(4Reff(z)) the right-hand side can be written
as

∞∑

n=0

an

(
n(n − 1)e4iReff(z)un−2(x) +

2n + 1

2
un(x) +

e−4iReff(z)

4
un+2(x)

)
,

which gives the assertion of the lemma. 2
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[16] S.K.Turitsyn, T.Schäfer, K.H.Spatschek, V.K.Mezentsev; Path-averaged chirped op-
tical soliton in dispersion-managed fiber communication lines, Optics Communica-
tions 163 (1999) 122-158

[17] S.K.Turitsyn, E.G.Shapiro; Variational approach to the design of optical communica-
tion systems with dispersion management, Optical Fiber Technology 4 (1998) 151-188

23



[18] S.K.Turitsyn, V.K.Mezentsev, E.G.Shapiro; Dispersion-Managed Solitons and
Optimization of the Dispersion Management, Optical Fiber Technology 4 (1998) 384-
452

[19] S.K.Turitsyn, I.Gabitov, E.W.Laedke, V.K.Mezentsev, S.L.Musher, E.G. Shapiro,
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