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Preface

For over two millennia it has been the main objective of Algebra to solve equations
and study their solutions. This has naturally led to the study of abstract structures
such as groups, rings, or fields.

The guiding question of this entire course is whether, and if so how, a polyno-
mial equation

f(X) = 0

for some polynomial f is solvable, i.e. whether there exists some α such that
f(α) = 0. Such an α is called a root of the polynomial f . The answer to this
question naturally depends on the domain where the polynomial is considered:
Over the ring of integers Z, the equation 3X − 5 = 0 has no solution, but over the
field of rational numbers Q, it does, namely α = 5/3. Similarly one usually learns
in school that the equation X2 − 2 = 0 has no solution over Q, i.e. that the real
number

√
2 is irrational, but it is solvable over the real numbers R, namely by said

number
√

2 = 1.414213562... and its negative −
√

2. There are still polynomial
equations over R which have no solution in R, e.g. X2 + 1 = 0, but by considering
the complex numbers C, i.e. numbers of the form a + b i where a and b are real
numbers and i is defined as one solution of the equation X2 + 1 = 0, i.e. i2 = −1,
one finds that absolutely every polynomial equation has a complex solution. This
is known as the Fundamental Theorem of Algebra (see Appendix A).

It is a very common problem in Mathematics that one can show that some-
thing exists, but it may be much harder to actually construct it explicitly. It is
like this also with roots of polynomials. Already in ancient times, people new
formulas to solve quadratic equations, i.e. polynomial equations of degree 2. With
the invention of (almost) modern algebraic notation it was possible for the Italian
mathematicians del Ferro, Tartaglia, Cardano, and Ferrari in the 16th and 17th
century to find solution formulae for general cubic (degree 3) and quartic (degree
4) polynomial equations. This lead to the widespread belief that it should be
possible to find formulae for the solutions of any polynomial equation, but no one
was able to find such a formula for general polynomials of degree larger than 4.
As it turns out, such a formula cannot possibly exist in general, which was first
discovered independently by Ruffini and Abel in the early 19th century. Roughly
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speaking they were able to show that the solutions of polynomial equations have
certain symmetries and that the existence of a solution formula means that these
symmetries must have a specific shape. Any such symmetry that occurs for poly-
nomials of degree ≤ 4 has this shape, but in higher degrees, there are polynomials
with more complicated symmetries, so the desired formula cannot exist. It is one
of the main goals of this course to understand this result in detail. The general
theory behind it was developed by Évariste Galois wherefore it now bears his name,
Galois Theory.

It is also not uncommon in Mathematics that the resolution of a problem may
come from a seemingly unrelated area: In ancient Greece mathematicians were
interested in the question whether certain geometric constructions are possible
with compass and straightedge (i.e. an unmarked ruler) in finitely many steps. For
example, it is not too difficult to divide a given line segment into two equal pieces
just using these given tools, or to dissect a given angle. It is more complicated, but
still possible to construct a regular pentagon or a pentadecagon (15-gon) with a
given side length (or equivalently into a given circle). The ancient Greeks however
had four big construction problems which they weren’t able to solve:

1. Construction of the regular n-gon for n other than 2m · 3, 2m · 4, 2m · 5, 2m · 15
(if a regular n-gon is given for some n, it is easy to construct a regular 2n-gon
just by finding the midpoints of all the edges).

2. Doubling the cube: From a given cube construct another cube that has
precisely twice the original cube’s volume.

3. Trisecting an angle: Given an angle θ, construct the angle θ/3.

4. Squaring the circle: Construct a square that has the same area as a given
circle.

In the late 18th century Gauß was the first to make any meaningful progress
in these questions since antiquity: He was able to classify exactly which regular
n-gons are constructible by compass and straightedge by turning this geometric
question into an algebraic one about polynomial equations. He also provided an
explicit method to construct the regular heptadecagon (17-gon). Pierre Wantzel
used Gauß’s ideas to show in 1837 that doubling the cube as well as trisecting
an angle are impossible (in general). The last remaining ancient constructibility
problem of squaring the circle wasn’t resolved until Ferdinand von Lindemann
showed in 1882 that the number π = 3.1415926... is transcendental, i.e. not the
root of any polynomial over Q. Another main point of this course is to illustrate
the details of this connection between geometry and algebra as one of the many
important applications of Galois Theory.
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Galois Theory is ubiquitous throughout many areas of mathematics, such as
Topology, Number Theory, Algebraic Geometry, Representation Theory, Differen-
tial Equations, and many others. Unfortunately there probably won’t be time to
discuss these applications in detail in this course.

Prerequisites Students will be assumed to be familiar with the basic concepts
of Linear Algebra (abstract vector spaces, endomorphisms, minimal and charac-
teristic polynomials), and Abstract Algebra (e.g. the basic theory of groups, rings,
and fields, as well as some single specific results such as the Main Theorem on
finitely generated Abelian groups). Much (but not all!) of the necessary material
will however be recalled briefly during the course.

Literature It should be sufficient to rely on these lecture notes, which are based
very loosely on lecture notes by Prof. Miles Reid from the University of War-
wick, which are freely available at https://homepages.warwick.ac.uk/~masda/
MA3D5/Galois.pdf. Nevertheless there is a large number of alternative texts for
additional reading (in no particular order):

� Emil Artin, Galois Theory, Dover Publications, 1998 (reprint of the 2nd
edition published by Univ. Notre Dame Press, 1944): This is a very compact,
but also thorough treatment of the subject, including the basics on Linear
Algebra as well as advanced aspects of Galois Theory, written by one of the
towering figures of 20th century Algebra.

� Michael Artin, Algebra, Pearson, 2nd edition, 2013: One of the (many) stan-
dard volumes on abstract algebra, covering also much background on for
example Group Theory and Ring Theory.

� Peter Pesic, Abel’s Proof: An Essay on the Sources and Meaning of Math-
ematical Unsolvability, MIT Press, 2004: This is recommended for the his-
torical background of Abel’s (and Ruffini’s) proof of the unsolvability of the
general quintic by radicals. The book is written for a general audience, so
the focus is on history rather than the actual mathematics, although the
author tries to elucidate some of the basic ideas, but not necessarily in a way
that is thorough enough for us.

� Serge Lang, Algebra, Springer, Graduate Texts in Mathematics 211, 3rd
edition, 2005: One of the over 50 textbooks by Serge Lang, and a classic
reference for the topic of algebra.

https://homepages.warwick.ac.uk/~masda/MA3D5/Galois.pdf
https://homepages.warwick.ac.uk/~masda/MA3D5/Galois.pdf
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These notes These notes are intentionally a little broader than is perhaps usual.
Chapter 2 in particular should contain a lot of material which is already known
from other courses, but it wouldn’t go amiss to recall this material here. Some
readers with a strong background in Abstract Algebra may want to skip some of
the sections covering material they know already. To make this easier to judge
each section has a short itemized list of topics and results covered in it.

In Chapter 1, we discuss some properties of polynomials and their roots, fo-
cussing on polynomials with rational, real, or complex coefficients, which is proba-
bly most familiar to most readers. Apart from discussing general relations between
polynomials and their roots, we also discuss the known solution formulae for cubic
and quartic polynomials. Chapter 2 covers some basic facts on the general the-
ory of rings and fields, recalling (or introducing) important concepts such as ring
homomorphisms, ideals, and certain important subclasses of rings. In Chapter 3,
we take a close look at the main subject of this course, fields and their extensions.
Next to introducing some necessary vocabulary and tools for the later chapters, we
discuss one of the main results in this course in this chapter, namely constructibil-
ity problems. Chapter 4 then introduces and recalls some basic concepts of group
theory and in particular contains a discussion on an important class of groups, the
soluble groups, as well as the important Theorem of Jordan-Hölder. In Chapter 5
we put all the previous material together to formulate and prove the key result
in this course, the Main Theorem of Galois Theory, and as one application we
show that there can’t be a solution formula for the general quintic as there was
for quadratics, cubics, or quartics. In the final Chapter 6, we take a closer look at
the notorious Axiom of Choice and some of its applications.

Some section titles in these notes are marked with an asterisk ∗. These sec-
tions contain additional material which may, but doesn’t have to be a little more
advanced than the rest. The material in those sections might appear on the home-
work sheets, but it will not be relevant on any of the quizzes or exams. It is
nevertheless recommended to study those as well as the material in there will be
useful in later studies, especially in the area of Algebra.



Chapter 1

Polynomial Equations

In this chapter we discuss the known formulae for solutions of a polynomial equa-
tion f(X) = 0 as well as the very important relations between the roots of a
polynomial and its coefficients.

1.1 Roots of polynomials

Topics

� polynomials over Q, R, and C

� roots of polynomials

� division with remainder of polynomials

� relation between roots and coefficients

Let us begin by recalling some definitions. To be very concrete we focus on the
familiar fields Q, R, and C of rational, real, and complex numbers for this chapter
and write K to mean either one of them. Many of the things mentioned here work
for general fields in much the same way, although sometimes care must be taken.
In later chapters we will address some of these issues and discuss more general
fields.

Definition 1.1.1. For a formal variableX and finitely many numbers a0, a1..., an ∈
K, we call an expression

f = anX
n + ...+ a1X + a0 =

n∑
j=0

ajX
j

a polynomial over K. The numbers a0, ..., an are called the coefficients of f . The
largest m ≤ n such that am 6= 0 is called the degree of the polynomial, we write

9



10 1.1. ROOTS OF POLYNOMIALS

deg f = m. If all the coefficients are 0, in which case we also write f = 0, then we
formally set the degree of f to be −∞. The set of all polynomials over K in the
variable X is denoted by K[X].

Often we assume implicitly that the coefficient an in Definition 1.1.1 is non-zero,
wherefore the degree of the polynomial written as in the definition is n. In fact
we often normalise our polynomials so that the leading coefficient an = 1. In this
case we call the polynomial f monic.

Remark 1.1.2. It is easy to see that we can add two polynomials f = anX
n +

...+ a0, g = bnX
n + ..+ b0 ∈ K[X] by adding their respecitve coefficients,

f + g = (an + bn)Xn + ...+ (a0 + b0) ∈ K[X].

We then have deg(f + g) ≤ max{deg f, deg g}.
We can also define the product of two polynomials f, g ∈ K[X] to get back a

polynomial in such a way that deg(f · g) = deg f + deg g (Exercise).

This entire course is about understanding the object of the following definition.

Definition 1.1.3. Let f = anX
n + ... + a1X + a0 ∈ K[X] be a polynomial of

degree n. For a complex number α ∈ C we call

f(α) := anα
n + ...+ a1α + a0 ∈ C

the value of f at α. The number α ∈ C is called a root of f if we have f(α) = 0.

We illustrate this with a very familiar example.

Example 1.1.4. As everyone has learned in school one can write down a formula
for the roots of a degree 2, i.e. quadratic, polynomial. If f = aX2 +bX+c ∈ R[X]
and a 6= 0, then the numbers

α1 =
−b+

√
b2 − 4ac

2a
and α2 =

−b−
√
b2 − 4ac

2a
.

Here the quantity ∆ = ∆(f) = b2 − 4ac, called the discriminant of f , decides
about the quality of these roots: if ∆ > 0, then f has two distinct real roots, if
∆ = 0, the f has a double root, and if ∆ < 0, then f has a pair of two complex
conjugate roots.

It is also possible to (almost) reconstruct the coefficients of a polynomial from
its roots: We have, as one checks easily,

α1 + α2 = − b
a

and α1α2 =
c

a
,

so that we can write
f = a(X − α1)(X − α2).
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It was Euclid who first showed that the integers are what is now called a Eu-
clidean domain, i.e. for two given integers m,n 6= 0 we can always write n = qm+r,
where q and r are again integers satisfying 0 ≤ r < |m|, and this representation is
unique. The same is true for polynomials as we shall see now.

Theorem 1.1.5. Let f, g ∈ K[X] be non-zero polynomials. Then there exist
unique polynomials q, r ∈ K[X] such that deg r < deg g satisfying

f = qg + r.

Proof. We have to prove two statements, first existence and then uniqueness of
the given representation. We first deal with the question of existence: Suppose
that deg f ≥ deg g, otherwise we can choose q = 0 and r = f and we are done.
We prove the statement by induction on deg f . For deg f = 0, there is nothing to
show (polynomials of degree 0 are just constants), so assume the statement is true
for polynomials of degree at most n for some n ≥ 0. We need to show that it is
true for polynomials of degree n + 1. So suppose f = an+1X

n+1 + ... + a1X + a0

and g = bmX
m + ... + b1X + b0 and m ≤ n + 1. Let q0 = an+1

bm
Xn+1−m. Then

by construction f − q0g has degree ≤ n, so that by induction hypothesis we have
polynomials q1, r1 with deg r1 < deg g such that f − q0g = q1g + r1. Rearranging
this yields f = (q0 + q1)g + r1, so the claim of existence follows by induction.

Now for the uniqueness: Suppose f = q1g + r1 = q2g + r2 with deg r1, deg r2 <
deg g. Then it follows that

(q1 − q2)g = r2 − r1.

If q1− q2 6= 0, then the left-hand side has degree at least deg g, while the deg(r2−
r1) < deg g assumption and the first part of Remark 1.1.2. This can clearly not be
true, so we must have q1 = q2 and consequently also r1 = r2, therefore uniqueness.

q.e.d.

The inductive proof of Theorem 1.1.5 is effective in that it gives rise to an algorithm
to find the polynomials q and r explicitly. This is often referred to as polynomial
division. The method is very much akin to the familiar long division algorithm.

Example 1.1.6. Let f = 3X4 + 6X3 − 3X2 + 4, g = 2X2 + 3X − 1 ∈ Q[X]. We
want to find polynomials q, r ∈ Q[X] as in Theorem 1.1.5 such that f = qg + r.
In the first step we just divide the leading term 3X4 of f by the leading term 2X2

of g to obtain the leading term 3
2
X2 of q:

3X4 + 6X3 − 3X2 + 4 =
(
2X2 + 3X − 1

) (
3
2
X2

)
.
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Now, as in the proof of Theorem 1.1.5, we multiply this leading term of q by g and
subtract this from f and look at the resulting leading term:

3X4 + 6X3 − 3X2 + 4 =
(
2X2 + 3X − 1

) (
3
2
X2

)
− 3X4 − 9

2
X3 + 3

2
X2

3
2
X3 − 3

2
X2

.

Then we repeat the above, now with a polynomial of smaller degree, until we arrive
at a polynomial that has smaller degree than g.

3X4 + 6X3 − 3X2 + 4 =
(
2X2 + 3X − 1

) (
3
2
X2 + 3

4
X − 15

8

)
− 3X4 − 9

2
X3 + 3

2
X2

3
2
X3 − 3

2
X2

− 3
2
X3 − 9

4
X2 + 3

4
X

− 15
4
X2 + 3

4
X + 4

15
4
X2 + 45

8
X − 15

8
51
8
X + 17

8

.

This smaller degree polynomial, 51
8
X+ 17

8
in this example, is exactly the remainder

r, so that the total computation looks like

3X4 + 6X3 − 3X2 + 4 =
(
2X2 + 3X − 1

) (
3
2
X2 + 3

4
X − 15

8

)
+ 51

8
X + 17

8

− 3X4 − 9
2
X3 + 3

2
X2

3
2
X3 − 3

2
X2

− 3
2
X3 − 9

4
X2 + 3

4
X

− 15
4
X2 + 3

4
X + 4

15
4
X2 + 45

8
X − 15

8
51
8
X + 17

8

.

We now relate division of polynomials to roots.

Definition 1.1.7. Let f, g ∈ K[X] be polynomials. If there is a polynomial q ∈
K[X] such that f = q · g, we say that g divides f and we write g | f . The
polynomial g is then also called a factor or divisor of f . If f has no non-trivial
factors, i.e. constants or constant multiples of itself, we say that f is irreducible.

Remark 1.1.8. Whether or not a polynomial is irreducible depends heavily on the
chosen field K. For example, the polynomial X2− 2 ∈ Q[X] is irreducible, but the
same polynomial in R[X] is reducible since X2 − 2 = (X −

√
2)(X +

√
2) ∈ R[X].

In the following corollary we relate the roots of a polynomial to its factors.
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Corollary 1.1.9. Let f ∈ K[X] be a polynomial of degree n and α ∈ K. Then
the following are true:

1. α is a root of f if and only if (X − α) divides f .

2. f has at most n not necessarily distinct roots.

Proof. Exercise.
q.e.d.

Remark 1.1.10. If K = C in Corollary 1.1.9, then the Fundamental Theorem
of Algebra, a proof of which can be found in Appendix A, guarantees that f =
anX

n + ... + a0 has exactly n roots, counted with multiplicities, i.e. there are n
(not necessarily distinct) numbers α1, ..., αn ∈ C such that

f = an

n∏
j=1

(X − αj).

We saw in Example 1.1.4 that there is a relation between the roots and the coef-
ficients of a quadratic polynomial in that we can express the coefficients in terms
of the roots and vice versa. We now want to generalise the former property to
polynomials of arbitrary degree. In order to do this we need the notion of sym-
metric polynomials. Recall first the definition of the symmetric group on n letters,
denoted by Sn, which we may identify with the group of bijective maps

π : {1, ..., n} → {1, ..., n}.

Definition 1.1.11. 1. A polynomial in n variables P ∈ K[X1, ..., Xn] is called
symmetric if for any permutation π ∈ Sn we have

P (Xπ(1), ..., Xπ(n)) = P (X1, ..., Xn).

2. For 0 ≤ k ≤ n we let σk denote the kth elementary symmetric polynomial,
which is defined as

σk(X1, ..., Xn) :=
∑

M⊆{1,...,n}
#M=k

∏
j∈M

Xj =
∑

1≤i1<i2<...<ik≤n

k∏
j=1

Xij .
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Explicitly the elementary symmetric polynomials look as follows:

σ1 = X1 +X2 + ...+Xn

σ2 = X1X2 +X1X3 + ...+Xn−1Xn

...

σn−1 = X1X2 · · ·Xn−1 +X1 · · ·Xn−2Xn + ...+X2X3 · · ·Xn

σn = X1X2 · · ·Xn.

We formally set σ0 = 1.

Remark 1.1.12. As the name suggests, the elementary symmetric polynomials
are indeed symmetric polynomials.

Proof. Perhaps easiest way to see this is to introduce an auxiliary variable Y and
to consider the polynomial

F =
n∏
j=1

(Y +Xj). (1.1)

It follows directly from the distributive law that

F =
n∑
k=0

σn−k(X1, ..., Xn)Y k. (1.2)

Now for any permutation π ∈ Sn we have

n∑
k=0

σn−k(X1, ..., Xn)Y k =
n∏
j=1

(Y +Xj) =
n∏
j=1

(Y +Xπ(j)) =
n∑
k=0

σn−k(Xπ(1), ..., Xπ(n))Y
k,

(1.3)

since permuting the Xj only permutes the order of the factors in the product, but
not the product itself. Comparing the coefficients of Y k on both extremes of (1.3),
we see that indeed

σk(Xπ(1), ..., Xπ(n)) = σk(X1, ..., Xn).

q.e.d.

From the above proof, we obtain directly our desired relation between roots and
coefficients of a polynomial.
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Corollary 1.1.13. Let f = Xn+an−1X
n−1+...+a0 ∈ K[X] be a monic polynomial

of degree n with (not necessarily distinct) roots α1, ..., αn. Then we have for all
k ∈ {0, ..., n} that

ak = (−1)n−kσn−k(α1, ..., αn).

Proof. By Corollary 1.1.9 we can write f =
∏n

j=1(X − αj), which by (1.1) and
(1.2) can be rewritten as

f =
n∑
k=0

σn−k(−α1, ...,−αn)Xk =
n∑
k=0

(−1)n−kσn−k(α1, ..., αn)Xk.

Comparing coefficients yields the claim.
q.e.d.

1.1.1 Symmetric polynomials∗

Before we conclude this section, we take a look at symmetric polynomials in gen-
eral.

Example 1.1.14. Consider the polynomial P = X2
1 + ... + X2

n. This is clearly a
symmetric polynomial. We comapare this to

σ2
1 =

∑
i1+...+in=2

(
2

i1, ..., in−1

)
X i1

1 · · ·X in
n = (X2

1 + ...+X2
n) + 2

∑
i<j

XiXj,

where we used the so-called multinomial theorem in the first step, which states
that

(X1 + ...+Xn)k =
∑

i1+...+in=k

(
k

i1, ..., in−1

)
X i1

1 · · ·X in
n

with (
k

i1, ..., in−1

)
=

k!

i1! · · · in−1!in!

and which we will prove in the exercises. We recognise the second summand on
the right-hand side to be 2σ2, so that we find that we can express P in terms of
elementary symmetric polynomials,

P = σ2
1 − 2σ2.

More generally we can express any symmetric polynomial in terms of the elemen-
tary symmetric polynomials.
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Theorem 1.1.15. Let P ∈ K[X1, ..., Xn] be a symmetric polynomial. Then there
is a polynomial QP ∈ K[Y1, ..., Yn] such that

P = QP (σ1, ..., σn).

Proof. Every polynomial is a sum of monomials, i.e. expressions of the form
X i1

1 · · ·X in
n , ij ≥ 0. We introduce an order on these monomials, called the lexi-

cographical order : We say that Xn ≺ Xn−1 ≺ ... ≺ X1 and for two monomials

m = X i1
1 · · ·X in

n and m′ = X
i′1
1 · · ·X

i′n
n we say that m ≺ m′ if ik < i′k for some

k ≤ n and ij = i′j for all 0 ≤ j < k. If such a k doesn’t exist, then the monomials
are equal. So the “largest” monomials are those with the largest power of X1,
among those the ones with the largest power of X2 are largest and so forth.

Now consider the leading monomial, i.e. the one highest with respect to the
ordering ≺ among those occuring in P , say X i1

1 · · ·X in
n , of our given polynomial

P . Since P is a symmetric polynomial, the exponents are in decreasing order,
i1 ≥ i2 ≥ ... ≥ in.

The leading term of the elementary symmetric polynomial σk is clearly given
by X1 · · ·Xk, wherefore the leading term of a product of the form σb11 σ

b2
2 · · ·σbnn for

some bj ≥ 0 is given by

Xb1+...+bn
1 Xb2+...+bn

2 · · ·Xbn
n .

By choosing bj = ij − ij+1 for j = 1, ..., n − 1 and bn = in we match the leading
monomial of P . If a denotes the coefficient of the leading monomial in P , then we
see that

P1 = P − aσi1−i21 σi2−i32 · · · σinn
is a symmetric polynomial whose leading monomial is strictly smaller than that of
P . This means that at least one of the exponents in the leading monomial of P1

is smaller than the corresponding one in P , so this process can only be repeated a
finite number of times before we reach zero.

q.e.d.

Theorem 1.1.15 is one of the first results one shows in a course on e.g. In-
variant Theory. In that language symmetric polynomials are exactly the so-called
invariant ring of the group Sn.
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1.2 Roots of unity

Topics

� roots of unity

� cyclotomic polynomials

� action of the cyclic group

In this short section we discuss a very important class of polynomials and their
roots.

The polynomials in question are

Xn − 1, n ∈ N.

Definition 1.2.1. The complex roots of the polynomial Xn−1 are called the nth
roots of unity.

An nth root of unity ζ is called primitive if ζm 6= 1 for all m < n.

It is well known that the complex roots of unity are given by ζkn, k = 0, ..., n− 1,
with

ζn := e2π i /n = cos(2π/n) + i sin(2π/n).

Lemma 1.2.2. The primitive nth roots of unity are given by ζkn, k = 0, ..., n− 1,
gcd(k, n) = 1. In particular, there are exactly ϕ(n) primitive nth roots of unity,
where ϕ(n) = #{k ∈ {0, ..., n− 1} : gcd(n, k) = 1} = #(Z/nZ)× denotes Euler’s
totient function.

Proof. Any root of unity has the form ζkn. Let d = gcd(n, k). Then we have

(ζkn)n/d = ζn·k/dn = (ζnn )k/d = 1,

since both n/d and k/d are integers. Thus if d > 1 then there is a number
m = n/d < n (in fact m | n) such that (ζkn)m = 1. On the other hand if d = 1,
then there is k′ ∈ {0, ..., n− 1} such that kk′ = 1 + `n for some ` ∈ Z, wherefore

(ζkn)k
′
= ζ1+`n

n = ζn · (ζnn )` = ζk.

Thus if there were some m < n such that (ζkn)m = 1, then we would also have
ζmn = 1, which is absurd.

q.e.d.
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The nth cyclotomic polynomial is now definied by

Φn =
n−1∏
k=0

gcd(n,k)=1

(X − ζkn) ∈ C[X].

One can compute the first few of these polynomials explicitly to find for instance

Φ1 = X − 1

Φ2 = X + 1

Φ3 = X2 +X + 1

Φ4 = X2 + 1

Φ5 = X4 +X3 +X2 +X + 1

Φ6 = X2 −X + 1

Φ7 = X7 +X6 +X5 +X4 +X3 +X2 +X + 1

Φ8 = X4 + 1

Φ9 = X6 +X3 + 1.

This suggests that all these polynomials are indeed defined over Q, which, as we
shall see later, together with the fact that they are also irreducible over Q, is indeed
true. Another fact that these computations seems to suggest is that the coefficients
of Φn are always 0 or ±1, which is actually false: The first counterexample is the
coefficient of X41 in Φ105 which is −2. In fact it can be shown that the coefficients
of cyclotomic polynomials become arbitrarily large.

Remark 1.2.3. Consider the polyomial Xn − a for some a ∈ K and let α = n
√
a

denote the (or better an) nth root of a. Then all complex roots of the polynomial
Xn − a are given by ζkn

n
√
a, k = 0, ..., n− 1.

It should be noted that it is in general not so simple to find all complex roots of
a given polynomial from just one.

One important feature of roots of unity is that they realize the cyclic group as
a subgroup of C×. The action of the cyclic group Cn can be reformulated in a very
handy way in terms of roots of unity:

Remark 1.2.4. Suppose we have an action of Cn = 〈g〉 on n objects α1, ..., αn,
i.e. g maps

α1 7→ α2 7→ ... 7→ αn 7→ α1.
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Now consider the formal expressions

d0 = α1 + α2 + ...+ αn

d1 = α1 + ζ−1
n α2 + ...+ ζ−(n−1)

n αn,

d2 = α1 + ζ−2
n α2 + ...+ ζ−(n−2)

n αn,

...

The action of g then corresponds to multiplying dj by ζjn. It is also possible to
recover α1, ..., αn from d0, ..., dn−1:

αj =
1

n

n−1∑
k=0

ζk(j−1)
n dk.

1.3 Cubic and quartic equations

Topics

� Cardano’s formula for cubic equations

� Ferrari’s formula for quartic equations

In Example 1.1.4 we recalled the well-known way to obtain the roots of a quadratic
polynomial directly from its coefficients, using only basic arithmetic operations
and square-roots. This has been known since antiquity. In this section, we sketch
how to obtain similar, but much more complicated, formulas for the solutions
of polynomials of degree 3 or 4. These formulas were found in the 16th and 17th
century by various Italian mathematicians (Cardano, Tartaglia, del Ferro, Ferrari).

We first consider monic cubic polynomials

X3 + aX2 + bX + c (1.4)

and begin with a small remark that allows us to simplify the question.

Remark 1.3.1. Substituting X by X − a/3 in (1.4) yields

X3 +

(
b− a2

3

)
X +

(
2

27
a3 − 1

3
ab+ c

)
,

so we may assume that our cubic takes the form

X3 + 3pX + 2q, (1.5)

the additional factors in front of p, q being there to make the later formulas look
nicer.
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We have the following formula, which was first found by Tartaglia and indepen-
dently by del Ferro and later published (against Tartaglia’s strict instructions) by
Cardano, which is why it is still referred to as Cardano’s formula.

Theorem 1.3.2. The roots of the polynomial f = X3 + 3pX + 2q are given by

3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2,

where the cube roots must be chosen so that their product is −p.

Before we prove this, let us consider an example.

Example 1.3.3. Consider the polynomial X3 + 9X − 26. In the notation of
Theorem 1.3.2, this means that p = 3 and q = −13, thus p3 + q2 = 196 = 142. The
expressions under the cube-roots are therefore 13 + 14 = 27 and 13 − 14 = −1.
Taking the product of the real cube-roots indeed yields −p, so we find one root
to be 3 + (−1) = 2. The other two roots are given by 3ζ3 − ζ2

3 = −1 + 2i
√

3 and
3ζ2

3 − ζ3 = −1− 2i
√

3.

Proof of Theorem 1.3.2. Let α, β, γ denote the 3 complex roots of the given
polynomial f . By Corollary 1.1.13 we find that

α + β + γ = 0 (1.6)

αβ + αγ + βγ = 3p (1.7)

αβγ = −2q. (1.8)

The cyclic group of order 3 acts on the three roots and as well on the set {x, y, z},
where x, y, z are some formal quantities, so that by the reasoning in Remark 1.2.4
we may write

α = x+ y + z

β = x+ ζ−1
3 y + ζ3z

γ = x+ ζ3y + ζ−1
3 z.

Plugging these expressions into (1.6),(1.7), and (1.8) gives the equations

x = 0, yz = −p, and y3 + z3 = −2q.

But this means that y3 and z3 are the roots of the quadratic polynomial g =
Y 2 + 2qY − p3 (cf. 1.1.4), so that we find

y3 = −q +
√
q2 + p3 and z3 = −q −

√
q2 + p3.
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The additional requirement yz = −p then yields the claim of the theorem.
q.e.d.

As we see in the proof the computation of roots of a quadratic polynomial is
required to solve a cubic polynomial. As we shall see now, this pattern continues.
In order to find the roots of a quartic polynomial one has to be able to find the
roots of a cubic polynomial. The proof of the formula is in spirit very similar to
that of Theorem 1.3.2.

Remark 1.3.4. Let f = X4 +aX3 +bX2 +cX+d ∈ K[X] be a monic polynomial
of degree 4. Then we have f(X − a/4) = X4 + rX2 + sX + t for some suitable
r, s, t ∈ K, so we may restrict our analysis to polynomials of this shape.

The following formula for the solution of the quartic was found by Ferrari in the
17th century.

Theorem 1.3.5. The complex roots of the polynomial f = X4 + rX2 + sX + t ∈
K[X], where not all r, s, t can equal 0, are given by

1

2
(u+ v + w),

1

2
(u− v − w),

1

2
(−u+ v − w),

1

2
(−u− v + w),

where u2, v2, w2 are the roots of the resultant cubic

Y 3 + 2rY 2 + (r2 − 4t)Y − s2

and u, v, w have to be chosen such that uvw = −s.

Proof. Let α1, ..., α4 denote the complex roots of f . We have the following relation
between the roots and the coefficients,

α1 + α2 + α3 + α4 = 0 (1.9)

α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4 = r (1.10)

α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 = −s (1.11)

α1α2α3α4 = t. (1.12)

As in the proof of the Cardano formula Theorem 1.3.2 we consider symmetries of
the roots, but not with respect to a cyclic group this time. Why will become clear
later. We define quantities u, v, w by setting

2α1 = u+ v + w (1.13)

2α2 = u− v − w (1.14)

2α3 = −u+ v − w (1.15)

2α4 = −u− v + w, (1.16)
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the factors of 2 on the left-hand side again being more of a cosmetic nature. By
substituting (1.13)–(1.16) into (1.9)–(1.12) we obtain, after a somewhat tedious
calculation, which we skip, that

u2 + v2 + w2 = −2r,

uvw = −s,
u2v2 + u2w2 + v2w2 = r2 − 4t.

(1.17)

Note that the first and third lines in (1.17) are actually the first two elementary
symmetric polynomials in u2, v2, w2, and squaring the second line, we get the third
elementary symmetric polynomial, so that u2, v2, w2 are precisely the roots of the
cubic polynomial

Y 3 + 2rY 2 + (r2 − 4t)Y − s2,

from where the theorem follows.
q.e.d.

Remark 1.3.6. In the proofs of Theorem 1.3.2 and Theorem 1.3.5 we exploited
certain symmetries of the roots of the polynomials. This is the key idea of Galois
theory and will lead to the proof that a formula for the roots of a general quin-
tic, sextic, or higher degree polynomial in terms of the coefficients —using only
elementary arithmetic and nth roots— is impossible.



Chapter 2

Rings and Fields

In this chapter we recall some basic concepts (rings and fields) which should be
familiar from a course in abstract algebra. The aim will be to establish some
important irreducibility criteria. Note that from here on, we explicitly do not
restrict our attention to fields like Q, R, and C, but consider completely general
fields.

2.1 Basic definitions

2.1.1 Integral domains and fraction fields

Topics

� Ring axioms

� Basic properties

� Units

� Integral domains

� Fields of fractions

Definition 2.1.1. A ring (with unity) is a set R together with two binary opera-
tions + : R×R→ R, (a, b) 7→ a+ b and · : R×R→ R, (a, b) 7→ a · b satisfying
the following properties, where a, b, c are arbitrary elements of R:

1. a+. b = b+. a (commutativity)

2. (a+. b)+. c = a+. (b+. c) (associativity)

3. There exists an element 0 ∈ R such that a + 0 = a for all a ∈ R (existence
of zero)

23
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4. For all a ∈ R there is b ∈ R, called an additive inverse of a and usually
denoted by −a, such that a+ b = 0 (existence of inverses).

5. There exists an element 1 ∈ R such that a · 1 = a for all a ∈ R (existence of
one).

6. a · (b+ c) = a · b+ a · c (distributivity).

We don’t bother going through all the consequences of this definition, e.g. that
inverses, ones and zeros are unique etc. which are easy to derive from the definition.

We collect some names for rings with special properties in the following defi-
nition.

Most of the time in this course we work with special rings.

Definition 2.1.2. 1. We call a ring R an (integral) domain if it doesn’t have
any zero-divisors, i.e. we have the implication a · b = 0⇒ a = 0 or b = 0.

2. A ring K is called a field if 1 6= 0 and for every a ∈ R \ {0} there exists
b ∈ R, called a multiplicative inverse of a and usually denoted by a−1, such
that a · b = 1.

Since many rings one usually works with are integral domains, it is important to
remember that this is definitely not true for all rings (think for instance about the
rings Z/nZ with addition and multiplication defined modulo n for composite n or
Q×Q, where we define addition and multiplication componentwise).

Definition 2.1.3. Let R be any ring and u ∈ R. We call u a unit in R if there
exists v ∈ R such that u · v = 1. The set of units is denoted by R×.

Therfore we think of fields as rings where each non-zero element is a unit. Note
also that products of units are again units and the inverse of a unit is again a unit,
wherefore R× is a group.

Definition 2.1.4. Let R, S be rings and ϕ : R → S be a map. If we have
ϕ(a +R b) = ϕ(a) +S ϕ(b), ϕ(a ·R b) = ϕ(a) ·S ϕ(b), and ϕ(1R) = 1S, we call ϕ a
ring homomorphism. If ϕ is injective, we call it an embedding (or sometimes ring
monomorphism), if it is bijective, we call it a ring isomorphism.

Integral domains and fields are very closely related, as the following proposition
shows.

Proposition 2.1.5. 1. Let R be an integral domain. Then there is a field
K = FracR, called the field of fractions of R such that there is a canonical
embedding R ↪→ K. If we have any field E and an embedding ι : R ↪→ E,
then we can extend ι to an embedding ι̂ : K ↪→ E.
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2. Let R be any ring and K a field such that there is an embedding ι : R ↪→ K,
then R is an integral domain.

Proof.

1. For a, b ∈ R, b 6= 0, we define the fraction a
b

as a formal expressions. Two
fractions a

b
and c

d
are considered equal if a·Rd = b·R c in R, where we indicate

the operations in R by a subscript R throughout this proof. Let K = FracR
denote the set of all such fractions. We define addition of two fractions in
the familiar way,

a

b
+K

c

d
:=

a ·R d+R b ·R c
b ·R d

and
a

b
·K

c

d
:=

a ·R c
b ·R d

.

We note that since R is an integral domain and b, d 6= 0 by assumption, we
also have b ·R d 6= 0, so the addition and multiplication introduced above are
indeed well-defined. We can embed R into K in a canonical way through a 7→
a
1
. It is straightforward to check that K with the addition and multiplication

above is a ring, where the neutral elements are given by 0K = 0
1

and 1K = 1
1
,

which we will just write as 0 and 1 from here on. To see that K is a field we
see easily that for a fraction a

b
6= 0 (i.e. a, b 6= 0) we have

a

b
·K

b

a
=
a ·R b
b ·R a

=
a ·R b
a ·R b

=
1

1
= 1,

therfore multiplicative inverses for all non-zero elements, making K a field,
as we claimed.

Now let E be field such that there is an embedding ι : R ↪→ E. Then we can
define the map

ι̂ : K → E,
a

b
7→ ι(a) ·E ι(b)−1.

Since b 6= 0, we also have ι(b) 6= 0 because ι is injective, so there is a (in fact
unique) inverse of ι(b) in E. One the checks in a straightforward manner that
this map is indeed a ring homomorphism. Since all fields are in particular
integral domains (exercise) and a ring homomorphism ϕ : R→ S is injective
if and only if Kerϕ := {r ∈ R : ϕ(r) = 0} = {0}, we find that

ι̂
(a
b

)
= 0 ⇔ ι(a) = 0 or ι(b)−1 = 0,

but ι(b)−1 cannot equal 0, so we must have a = 0, whence a
b

= 0, so that ι̂ is
indeed injective.
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2. Suppose there are a, b ∈ R \ {0} such that a · b = 0. Then ι(a), ι(b) 6= 0 since
ι is injective, so that we have

0 = ι(0) = ι(a · b) = ι(a) · ι(b),

so that K would have zero-divisors, which is a contradiction to K being a
field. Therefore, R cannot have had zero-divisors in the first place, wherefore
it is an integral domain by definition.

q.e.d.

Example 2.1.6. The field of fractions for the ring of integers Z is of course the
field of rational numbers Q.

For a polynomial ring K[X] over a field K, its field of fractions is the so-called
field of rational functions,

K(X) :=

{
f

g
: f, g ∈ K[X], g 6= 0

}
.

2.1.2 Ideals and homomorphisms

Topics

� Ideals

� Ring homomorphisms

� Factor rings

� Prime and maximal ideals

We now consider important substructures of rings.

Definition 2.1.7. Let R be a ring and I ⊆ R a subset. We call I an ideal of R if

1. we have 0 ∈ I and for a, b ∈ I we have a+ b ∈ I,

2. for r ∈ R and a ∈ I we have r · a ∈ I.

We also write I E R.

Ideals are closely connected to ring homomorphisms.
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Proposition 2.1.8. 1. Let ϕ : R → S be a ring homomorphism. Then the
kernel of ϕ,

Ker(ϕ) := {r ∈ R : ϕ(r) = 0}

is an ideal in R.

2. For every ideal I E R in a ring R there exists a ring S and a ring homo-
morphism ϕ : R→ S such that I = Ker(ϕ).

Proof.

1. Exercise.

2. We choose S to be the factor ring R/I := {a+ I : a ∈ R} consisting of all
residue classes of R modulo I. This means a, b ∈ R are considered equal in
R/I if a− b ∈ I. Defining addition via (a + I) + (b + I) := (a + b) + I and
multiplication via (a+I) · (b+I) := (a ·b)+I is well-defined and satisfies the
ring axioms, so that R/I is indeed a ring. The desired homomorphism ϕ is
then what is sometimes referred to as the canonical epimorphism (meaning
it is surjective) defined via a 7→ a + I, which is a ring homomorphism by
definition of the addition and multiplication in R/I and whose kernel is
clearly the ideal I we started with.

q.e.d.

We now define two important classes of ideals.

Definition 2.1.9. Let R be a ring and I E R an ideal with I 6= R.

1. If for all a, b ∈ R we have he implication

ab ∈ I ⇒ a ∈ I or b ∈ I,

we call I a prime ideal.

2. I is called a maximal ideal if any ideal J E R containing I is either I or R.

Remark 2.1.10. The definition of a prime ideal is inspired by a property of (inte-
ger) prime numbers, sometimes referred to as Euclid’s Lemma: If a prime number
p divides a product ab ( of integers in other words ab is in the ideal (p) = pZ
generated by p), it has to divide one of the factors.

It is usually easier to decide whether a given ideal is prime resp. maximal or not
by using the following result.
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Proposition 2.1.11. Let R be a ring and R 6= I E R and ideal.

1. I is a prime ideal if and only if R/I is an integral domain.

2. I is a maximal ideal if and only if R/I is a field.

In particular, any maximal ideal is prime.

Proof.

1. Let a, b ∈ R. If ab ∈ I then (ab) + I = 0 + I ∈ R/I. If I is a prime ideal,
this implies that either a ∈ I or b ∈ I or equivalently a + I = 0 + I ∈ R/I
or b+ I = 0 + I ∈ R/I, so that R/I is an integral domain.

On the other hand if R/I is an integral domain then we know that for a, b ∈ R
with (a+ I)(b+ I) = (ab) + I = 0 + I, we must have a+ I = 0 or b+ I = 0.
In other words we have that if ab ∈ I, then either a ∈ I or b ∈ I, wherefore
I is prime.

2. Let a ∈ R \ I. If I is maximal then the ideal generated by I and a actually
equals R, wherefore in particular there must be some a′ ∈ R and j ∈ I such
that aa′+j = 1. But this means precisely that in R/I we have (a+I)(a′+I) =
(aa′ + I) = 1 − j + I = 1 + I, so that a + I is invertible in R/I, wherefore
R/I is a field.

If on the other hand R/I is a field, then for each a /∈ I, there must be a′ ∈ R
such that (a+ I)(a′+ I) = 1 + I in R/I. Equivalently, this means that there
is some j̃ ∈ I such that aa′ = 1 + j̃. It follows that 1 = aa′ − j̃ lies in the
ideal J generated by a and I, so that we must have J = R. Therefore I
must be maximal and the claim follows.

q.e.d.

2.1.3 Unique factorisation domains, principal ideal domains,
and Euclidean domains

Topics

� Unique factorisation domains

� Principal ideal domains

� Euclidean domains
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� Prime and irreducible elements

� Greatest common divisor

� Characteristic of a ring

Let us now talk about some more special classes of rings. Before doing so, we need
to distinguish two notions which we are used to considering as equivalent from our
experience with the integers.

Definition 2.1.12. Let R be ring, a, b ∈ R, and p ∈ R not a unit.

1. If we have the implication

p = a · b ⇒ a ∈ R× or b ∈ R×

we call p irreducible.

2. If we have the implication

p | (a · b) ⇒ p | a or p | b,

where a | b means that there exists some q ∈ R such that b = a · q, then p is
called a prime.

Remark 2.1.13. As already mentioned, the concepts of primality and irreducibil-
ity coincide for example for the integers Z. Technically, the usual definition of
a prime number is that of an irreducible number and the fact that they are in-
deed prime in this more general sense is known as Euclid’s Lemma (see also Re-
mark 2.1.10). However this is not the case for all rings. We will discuss one
example in the exercises.

Definition 2.1.14. Let R be an integral domain.

1. If any a ∈ R \ (R× ∪ {0}) has unique (finite) factorisation into irreducibles,
i.e. we can write a = p1 · · · pn for irreducible elements p1, ..., pn and if we
have two such factorisations a = p1 · · · pn = q1 · · · qm, then n = m and there
is some permutation π : {1, ..., n} → {1, ..., n} and units u1, ..., un ∈ R×

such that pj = ujqπ(j) for all j ∈ {1, ..., n}, we call R a unique factorisation
domain or factorial domain.

2. If for any ideal I E R there exists a ∈ R such that I = (a) = aR := {a · r :
r ∈ R}, i.e. each ideal is generated by a single element, and R is an integral
domain, we call R a principal ideal domain.
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3. If there exists a function N : R→ Z (called a norm) such that N(a) ≥ 0 for
all a ∈ R, N(0) = 0, and for all a, b ∈ R, b 6= 0, there exist q, r ∈ R such
that

a = qb+ r, N(r) < N(b),

then we call R a Euclidean domain.

Example 2.1.15. Euclidean domains are those that admit a division with re-
mainder.

1. We know that the integers admit division with remainder, the norm is then
the usual absolute value.

2. In Theorem 1.1.5 we showed that the polynomial ring K[X], where K is
Q,R, or C (or indeed any field, since we never used any specific properties
of the field in the proof), is a Euclidean domain, where the norm function
is essentially the degree function, but not quite, as we defined deg 0 = −∞,
which is not a non-negative integer. So to be formally correct, the norm
function could be for instance defined by N(f) = 2deg f , where we define
(consistently with what analysis would tell us) 2−∞ := 0.

Note that in a unique factorisation domain, we can always write a = u ·pm1
1 · · · pmrr

for distinct irreducible elements p1, ..., pr ∈ R, a unit u ∈ R×, and non-negative
integers m1, ...,mr. This exponents have to be the same up to reordering for any
factorisation of a into irreducibles, which motivates the following definition.

Definition 2.1.16. Let R be a unique factorisation domain and suppose we have
a fixed set of representatives of primes up to units (e.g. only the positive prime
numbers in Z).

1. For a ∈ R and an irreducible element p ∈ R we define

vp(a) := max{m ∈ N0 : pm | a}

to be the p-adic valuation of a. For a unit u ∈ R× we set vp(u) = 0 for all
primes, and also vp(0) :=∞.

2. For a, b ∈ R, not both 0, we can define the greatest common divisor of a and
b as

gcd(a, b) :=
∏

p prime

pmin(vp(a),vp(b)). (2.1)

Remark 2.1.17. 1. Note that for all but finitely many prime elements, the
valuation vp(a) is zero for any a 6= 0, so the product defining the gcd in (2.1)
is always finite and therefore well-defined.
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2. Using the above definition inductively, one can also define the gcd of finitely
many elements in a unique factorisation domain.

These classes of rings are all subsets of one another. To show this we need some
preparatory lemmata.

Lemma 2.1.18. Let R be a principal ideal domain. Then R is Noetherian, i.e.
for every incresing chain of ideals

I1 E I2 E I3 E ...

there is n ∈ N such that In = Im for all m ≥ n.

Proof. Consider the set I =
⋃∞
j=1 Ij. Then we claim that I is an ideal in R.

For a, b ∈ I, there exist i, j ∈ N such that a ∈ Ii and b ∈ Ij, hence for each
k ≥ max{i, j} we have a, b ∈ Ik, which is an ideal in R, so that a + b ∈ Ik ⊆ I.
For r ∈ R we have ra ∈ Ii ⊆ I, so that I is indeed an ideal in R. Since R is a
principal ideal domain, we have I = (c) for some c ∈ I. But this means that there
must be some n ∈ N such that c ∈ In, whence In = (c) = I and Im = (c) for all
m ≥ n.

q.e.d.

Lemma 2.1.19. Let R be a principal ideal domain. Then an ideal I is maximal
if and only if it is generated by an irreducible element p, I = (p).

Proof. Let I be a maximal ideal. Since R is a principal ideal domain, there exists
p ∈ I such that I = (p). If we have p = ab for some a, b ∈ R then we have I ⊆ (a)
and I ⊆ (b). But since I is maximal this means that (a) is either equal to R, in
which case a would be a unit, or we have I = (a), so that a = cp for some c ∈ R.
But this implies p = pcb, wherefore b and c are units.

On the other hand let I = (p) for some irreducible element p and J E R an
ideal containing I. Then there is some c ∈ J with J = (c), so in particular p = rc
for some r ∈ R. But since p is irreducible this means that either r or c is a unit,
wherefore we have either J = I or J = R and thus I is maximal.

q.e.d.

Lemma 2.1.20. Let R be a principal ideal domain and p ∈ R irreducible. Then
p is prime.
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Proof. Suppose p | ab, so ab ∈ (p). But by Lemma 2.1.19, (p) is a maximal ideal
and therefore (see 2.1.11) in particular a prime ideal. By definition this implies
that we have a ∈ (p) or b ∈ (p) or equivalently p | a or p | b. Thus p is indeed
prime.

q.e.d.

Theorem 2.1.21. 1. Any principal ideal domain is a unique factorisation do-
main.

2. Any Euclidean domain is a principal ideal domain.

Proof.

1. Let R be a principal ideal domain. We first show that each element in R
has an irreducible factor. For this let a ∈ R. If a is itself irreducible, we are
done. Otherwise there exist a1, b1 ∈ R \ R× such that a = a1b1, wherefore
a ∈ (a1) and hence (a) ⊂ (a1). This inclusion is strict, because if we had
(a) = (a1), we could write a1 = ca for some c ∈ R and thus a = acb1, which
implies, since R is an integral domain, that b1 must be a unit, contrary to our
assumption. Now if a1 is irreducible, we have found an irreducible factor,
otherwise we can factor a1 = a2b2 for non-units a2, b2, yielding the strict
inclusion (a) ⊂ (a1) ⊂ (a2). Proceeding yields an ascending chain of ideals
which by Lemma 2.1.18 has to terminate after finitely many steps. Any
generator of the last ideal is then an irreducible factor of a.

Now we show that a has a factorisation into irreducibles. If a itself is ir-
reducible, there is again nothing to show. If not, from what we showed
above, we may write a = p1c1 for an irreducible element p1 ∈ R and some
c1 ∈ R. Therefore we have (a) ⊂ (c1). Now either c1 is irreducible and we
are finished or we can write c1 = p2c2 for some irreducible element p2 and
some element c2 ∈ R, yielding the inclusion (a) ⊂ (c1) ⊂ (c2). Again by
Lemma 2.1.18, the resulting chain of ideals has to terminate after n steps,
say, yielding a = p1p2 · · · pn−1cn, where cn has to be irreducible, so we have
found our desired factorisation.

It remains to show that this factorisation is unique up to reordering and
units. If we have a = p1 · · · pn = q1 · · · qm, then we have p1 | q1 · · · qm. Since
p is prime by Lemma 2.1.20, this implies that p1 must divide qj for some
j ∈ {1, ...,m}. But since qj is irreducible, this means that there is a unit
u1 ∈ R× such that p1 = u1qj. Applying the same argument successively to
a/p1, a/(p1p2), ... yields the uniqueness.
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2. Let R be a Euclidean domain with norm function N . We first note that if for
a ∈ R we have N(a) = 0, then a = 0. Otherwise we could write b = qa + r
for an arbitrary b ∈ R and suitable q, r ∈ R satisfying 0 ≤ N(r) < N(a) = 0,
which is a contradiction.

Now let I E R be an ideal. If I = {0}, then it is generated by 0, so we can
focus on the case where I contains non-zero elements. Then we may choose
a ∈ I such that

N(a) = min{N(b) : b ∈ I \ {0}}.
Note that this minimum is actually attained since the set is non-empty and
the non-negative integers are well-ordered, i.e. every non-empty subset con-
tains a smallest element. Note also from the above that N(a) > 0. We claim
that I = (a). Then for any b ∈ I there are q, r ∈ R such that b = qa+ r and
N(r) < N(a). But r = b − qa ∈ I, so since a has the minimal norm of all
non-zero elements in I and the norm of r is strictly smaller, we must have
r = 0, so b = qa ∈ (a).

q.e.d.

Remark 2.1.22. The proof for the uniqueness of factorisation in principal ideal
domains is verbatim the same as that for the (known) uniqueness of the prime
factorisation in Z.

Remark 2.1.23. We want to stress that all the inclusions of classes of rings dis-
cussed so far (integral domains ⊃ unique factorisation domains ⊃ principal ideal
domains ⊃ Euclidean domains) are strict:

The ring Z[
√
−5] := {a+ b

√
−5 : a, b ∈ Z} is an integral domain, but doesn’t

have unique factorisation (exercise), the polynomial ring Z[X] is a factorial do-
main (see Theorem 2.2.8) but not a principal ideal domain (the ideal (2, X) is not

principal), and the ring Z[1+
√
−19

2
] is a principal ideal domain, but not a Euclidean

domain (the proof of which is too involved to sketch here).

It is probably true for most people that the ring they are most familiar with is
the ring of integers Z. As we know, this ring admits division with remainder and
is therefore Euclidean, a principal ideal domain, a unique factorization domain,
and has all the nice properties we just derived in much greater generality. In some
sense, the integers are a very universal ring.

Proposition 2.1.24. Let R be any ring, then there exits a unique homomorphism
ϕ : Z→ R.
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Proof. By definition we must have ϕ(1) = 1R and ϕ(0) = 0R. Now ϕ is uniquely
determined by setting

ϕ(n) =

1R + ...+ 1R︸ ︷︷ ︸
n times

if n > 0

−ϕ(−n) if n < 0.

. (2.2)

This homomorphism clearly satisfies ϕ(m + n) = ϕ(m) + ϕ(n) and using the
fact that multiplication in Z is nothing else than repeated addition, it is also
straightforward to see that it is multiplicative.

Any other homomorphism ψ : Z→ R must also satisfy ψ(1) = 1R and ψ(0) =
0R and because it is a homomorphism, it must satisfy (2.2), wherefore it must
equal ϕ.

q.e.d.

This homomorphism ϕ gives rise to the following definition.

Definition 2.1.25. Let R be a ring and ϕ : Z → R the homormorphism in
Proposition 2.1.24. Then the unique integer n ≥ 0 such that kerϕ = (n) is called
the characteristic of R, we write n = char(R).

We note the folowing.

Proposition 2.1.26. If R is an integral domain then we have either char(R) = 0,
or char(R) = p for a prime number p, so that R contains either Z or R contains
Fp = Z/pZ as a subring.

If R = K is a field, then K contains either Q (if char(K) = 0 or Fp (if
char(K) = p) as a subfield. Q resp. Fp is called the prime subfield of K.

Proof. If char(R) = 0, there is nothing to show in either case since then ϕ is
an embedding and Q is the fraction field of Z and therefore the smallest field
containing Z.

If char(R) = n > 1 and n = ab is composite, then ϕ(a)ϕ(b) = 0R, so that R has
zero-divisors. Hence if R is an integral domain, we must have prime characteristic.

q.e.d.
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2.2 Polynomial rings

Topics

� Polynomials over arbitrary rings

In this short section we discuss polynomials over general rings, with a special
emphasis on polynomials over fields.

We have already seen the definition of a polynomial ring over a field like Q, R,
or C in Definition 1.1.1. The exact same definition of course makes sense when we
let the coefficients be in an arbitrary ring.

Definition 2.2.1. Let R be any ring. For a formal variable X and finitely many
a0, a1..., an ∈ R, we call an expression

f = anX
n + ...+ a1X + a0 =

n∑
j=0

ajX
j

a polynomial over R. The a0, ..., an are called the coefficients of f . The largest
m ≤ n such that am 6= 0 is called the degree of the polynomial, we write deg f = m.
If all the coefficients are 0, in which case we also write f = 0, then we formally set
the degree of f to be −∞. The set of all polynomials over R in the variable X is
denoted by R[X], called the polynomial ring over R.

Remark 2.2.2. Using the usual setting for addition and multiplication of polyno-
mials, we see that R[X] is again a ring.

We now discuss some general properties of polynomial rings. We begin by some
fairly clear ones.

Proposition 2.2.3. Let R be an integral domain and f, g ∈ R[X].

1. deg(fg) = deg f + deg g

2. R[X] is an integral domain.

3. f is a unit it R[X] if and only if deg f = 0 and its 0th coefficient is a unit
in R.

4. R embeds into R[X] via a 7→ aX0.

Proof.

1. Let f = anX
n+... and g = bmX

m+... with an, bm 6= 0, where the dots indicate
lower order terms. Then fg = anbmX

n+m + ... and since R is an integral
domain, we have anbm 6= 0, wherefore deg(fg) = n+m = deg f + deg g.
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2. Follows directly from 1. If you multiply two non-zero polynomials, the degree
cannot decrease, so the product cannot be zero.

3. If we have fg = 1 for f, g ∈ R[X], we must have deg f + deg g = deg 1 = 0,
so both f and g must have degree 0, wherefore they are constant. The only
way two constant polynomials can multiply to 1 is clearly when their 0th
coefficients are in R×.

4. This is obvious.

q.e.d.

We have also already shown the following (see Theorem 1.1.5 and notice that we
never relied on the fact that the field is anything specific.

Proposition 2.2.4. If R = K is a field, then K[X] is Euclidean and therefore in
particular by Theorem 2.1.21 a unique factorization domain and a principal ideal
domain.

2.2.1 Gauß’s lemma

Topics

� Primitive polynomials

� Gauß’s Lemma

� Rational root theorem

As we saw in Proposition 2.2.4, the polynomial ring over a field is a Euclidean
domain. We would like to investigate properties of polynomial rings over more
general rings.

Definition 2.2.5. Let R be a unique factorisation domain and f = anX
n + ...+

a1X + a0 ∈ R[X] a polynomial. We call f primitive if gcd(a0, ..., an) = 1 or in
other words if we can write f = u · g for some u ∈ R and g ∈ R[X], then u must
be a unit.

The following observation is fairly straightforward, but important.

Lemma 2.2.6. Let R be a unique factorisation domain with field of fractions K.
Then any polynomial f ∈ K[X] can be written as p

q
g for p, q ∈ R with gcd(p, q) = 1

and a primitive polynomial g ∈ R[X]. Up to multiplication by units, the fraction
p
q

and the polynomial g are unique.
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Proof. Simply multiply f by the least common multiple of the denominators of
its coefficients and factor out the greatest common divisor of the numerators.

q.e.d.

We now come to the Gauß’s Lemma which gives this section its name.

Theorem 2.2.7. (Gauß’s Lemma) Let R be a unique factorisation domain and
K = FracR its field of fractions. Then the following are true.

1. If f, g ∈ R[X] are primitive, then so is f · g.

2. If f ∈ R[X] is irreducible, then it is also irreducible in K[X].

Proof.

1. Let p be any prime in R. Since f = anX
n + ...+a0 and g = bmX

m + ...b0 are
both primitive, there must be numbers r ≤ n and s ≤ m such that a0, ..., ar−1

and b0, ..., bs−1 are all divisible by p, but ar and bs are not. If such r and s
wouldn’t exist, then all the coefficients of one of the polynomials would be
divisible by p, contradicting primitivity. Now the coefficient of Xr+s in f · g
is given by

a0br+s + ...+ ar−1bs+1︸ ︷︷ ︸
p|

+arbs + ar+1bs−1 + ...ar+sb0︸ ︷︷ ︸
p|

,

where for k > n we set ak := 0 and similarly b` := 0 for ` > m. Since ar
and bs are both not divisible by p and R is a unique factorisation domain, p
connot divide arbs and therefore it doesn’t divide the coefficient of Xr+s in
f ·g. Therefore, there is no prime number that could divide all the coefficients
of f · g, wherefore it must be primitive.

2. Let f ∈ R[X] and write f = g · h for g, h ∈ K[X]. By Lemma 2.2.6 we may
write f = p

q
g0 · h0 for p, q ∈ R with no common factor and g0, h0 ∈ R[X]

primitive. By Item 1, g0·h0 is primitive, so q must be a unit. But then we have
found a factorisation of f in R[X], so the claim follows by contraposition.

q.e.d.

We can now show the following important result.

Theorem 2.2.8. Let R be a unique factorisation domain. Then R[X] is a unique
factorisation domain as well. In particular, any polynomial ring in finitely many
variables over a field is a unique factorisation domain.
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Proof. The proof is similar to that of Gauß’s Lemma. Let f ∈ R[X] be a
polynomial, which is neither a unit nor zero and let K = FracR be the fraction field
of R. Then K[X] is Euclidean, wherefore we can write f = p1 · · · pr for irreducible
polynomials p1, ..., pr, which are unique up to constant multiples (i.e. units in
K[X]). Therefore by Lemma 2.2.6 we can write f = a

b
p̃1 · · · p̃r for a, b ∈ R coprime

and primitive polynomials p̃1, ..., p̃r ∈ R[X]. Their product is again primitive
by Gauß’s Lemma 2.2.7, Item 1, so that b must be a unit in R. Since a has a
unique factorisation into prime elements in R, we obtain a factorisation of f into
irreducibles in R[X].

It remains to show uniqueness. If we have any other factorisation in R[X], this
would yield a different factorisation in K[X], where we know that it is unique,
completing the proof.

q.e.d.

Before moving on, we record the following observation which is useful to determine
whether a polynomial over a unique factorisation domain R has a root in K =
FracR.

Theorem 2.2.9. (Rational root theorem) Let R be a unique factorisation domain
and K = FracR its field of fractions. Then a polynomial f = anX

n+...+a0 ∈ R[X]
has a root α = p

q
∈ K, p, q coprime, if and only if p | a0 and q | an.

Proof. We may assume without loss of generality that f is primitive. Then α ∈ K
is a root if and only if we have

f = (X − α) · g

for a polynomial g = bn−1X
n−1 + ... + b0 ∈ K[X]. By Lemma 2.2.6 there are

A,B ∈ R coprime such that

f =
A

qB
(qX − p) · g̃

with g̃ = b̃n−1X
n−1 + ...+ b̃0 ∈ R[X] primitive. Since by Gauß’s Lemma 2.2.7 the

product (qX − p) · g̃ is again primitive and so was f , it follows that the prefactor
A
qB

=: u must be a unit. With this we then find by comparing coefficients that

an = uqb̃n−1 and a0 = upb0, so that indeed p | a0 and q | an as claimed.
q.e.d.
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2.2.2 Irreducibility criteria

Topics

� Reduction (mod p)

� Eisenstein’s criterion

� Irreducibility of some cyclotomic polynomials

It is often important to test whether or not a given polynomial in K[X] for some
field K is irreducible. A far more challenging problem would be to find a factori-
sation into irreducibles, which unfortunately is out of the scope of these notes.

For the sake of explicitness, we consider the field K = Q, but almost everything
here can be generalised to other fields in a straightforward way.

The first criterion for irreducibility is the following.

Theorem 2.2.10. Let f = anX
n + ...+ a0 ∈ Z[X] be a polynomial and p a prime

number satisfying p - an. By considering every coefficient of f modulo p, we obtain
a polynomial

f = anX
n + ...+ a0 ∈ Fp[X].

If f is irreducible in Fp[X], then f is irreducible over Q.

Proof. We may assume without loss of generality that f is primitive, so that by
Gauß’s Lemma 2.2.7 it is enough to show irreducibility over Z. Suppose f = g · h
is reducible over Z. Then, since f is primitive, we must have deg g, deg h ≥ 1.
Reducing modulo p we have f = g · h ∈ Fp[X]. Since the leading coefficient an of
f is not divisible by p, we must have deg g = deg g ≥ 1 and deg h = deg h ≥ 1, so
that f is reducible in Fp[X]. The claim now follows by contraposition.

q.e.d.

Note that it is quite easy in principle to test whether a polynomial over a finite
field is irreducible, since there are only finitely many polynomials that may occur
as factors, one can simply try them all. There are however usually more efficient
ways to accomplish this. If the degree of the polynomial in question is 3 or less, it
is actually sufficient to check for roots modulo p (if a degree 3 polynomial over a
field is reducible, then at least one of the factors must have degree 1, and therefore
it must have a root).

Example 2.2.11. 1. Consider the polynomial f = X3 + 39X2 − 104X − 2 ∈
Z[X]. Reducing this modulo p = 13 yields f = X3− 2, which one can check
by inspection has no zero over F13 and is therefore irreducible, since the
degree of the polynomial is 3. Therefore the polynomial is irreducible over
Q. Note however that if one chooses e.g. p = 2, then f = X3 + X2 + X =
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X(X2 + X + 1) is reducible, so it is important to pick the “correct” prime
in order to apply Theorem 2.2.10.

2. It is not always possible to apply Theorem 2.2.10 at all. It can be shown by
other means that the polynomial f = X4 − 10X2 + 1 is irreducible over Q,
but its reduction f modulo any prime p is reducible (Exercise).

Another irreducibility criterion, which is attributed to Eisenstein, is sometimes
easier to apply, but again not universal.

Theorem 2.2.12. (Eisenstein’s criterion) Let R be a ring and P E R be a prime
ideal of R. Let P 2 := {p ·q : p, q ∈ P} be the square of the prime ideal P . Suppose
that a polynomial f = anX

n + ...+ a0 ∈ R[X] is an Eisenstein polynomial, i.e. its
coefficients satisfy:

(a) an /∈ P ,

(b) aj ∈ P for j ∈ {0, ..., n− 1},

(c) a0 /∈ P 2.

Then f cannot be factored as f = g · h with polynomials g, h ∈ R[X] where
deg(g), deg(h) ≥ 1.

Proof. Suppose there are polynomials g = bmX
m + ... + b0, h = c`X

` + ... +
c0 ∈ R[X] with m, ` ≥ 1 and bm, c` 6= 0 such that f = g · h. Then we have
a0 = b0c0 ∈ P \ P 2, so one of b0 or c0 must lie in P (since P is a prime ideal), but
they cannot both lie in P , since then their product would lie in P 2, which can’t
be by assumption. Suppose without loss of generality that b0 ∈ P .

We claim that then all coefficients b0, ..., bm lie in P . This is true for b0, so
suppose it is true for all bj with for all j < k, where k ≤ m. Then we have

ak = b0ck + b1ck−1 + ...+ bk−1c1︸ ︷︷ ︸
∈P

+bkc0.

Notice that m � n, so in particular we have ak ∈ P by assumption, but since
c0 /∈ P , this can only happen if bk ∈ P .

So by induction we have b0, ..., bm ∈ P , wherefore an = bmc` ∈ P , contradicting
(a). Thus our original assumption must have been false, proving the theorem.

q.e.d.

In combination with Gauß’s Lemma we immediately get the following result.

Corollary 2.2.13. Let f ∈ Z[X] be an Eisenstein polynomial. Then f is irre-
ducible over Q.
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Remark 2.2.14. 1. In most cases we use the ring R = Z, in which case the
only viable prime ideals are going to be the ideals P = (p) for a prime number
p and P 2 = (p2).

2. Note that the Eisenstein criterion does not assume any further properties of
the underlying ring R, making it very flexible.

We end this section by discussing two examples for the application of the Eisenstein
criterion.

Example 2.2.15. For a prime number p consider the pth cyclotomic polynomial

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + ...+X + 1 ∈ Q[X]

(see also Section 1.2). We claim that this polynomial is irreducible over Q. Clearly
Φp is not an Eisenstein polynomial, but with a suitable change of variable, we can
obtain one. Let Y = X − 1. Then we find

Φp(Y + 1) =
(Y + 1)p − 1

Y
= Y p−1 + pY p−2 +

(
p

2

)
Y p−3 + ...+

(
p

p− 2

)
+ p.

It is a well-known fact that p |
(
p
k

)
for 1 ≤ k ≤ p−11, so all coefficients of Φp(Y +1)

except the leading one lie in (p), and the constant coefficient p does not lie in (p2).
Therefore it is an Eisenstein polynomial and hence irreducible over Q.

Example 2.2.16. It is not too hard to show that the p2th cyclotomic polynomial
for a prime p is given by

Φp2 =
Xp2 − 1

Xp − 1
.

We want to show that this is irreducible as well. Replacing again Y = X − 1 we
find that

(Y + 1)p
2 − 1 = p2Y +O(Y 2) and (Y + 1)p − 1 = pY +O(Y 2),

Where O(Y 2) represents terms divisible by Y 2. It follows that Φp2(Y + 1) =
p + O(Y ), so the constant term is divisible by p but not by p2. To examine the
other coefficients consider the equation

(Y + 1)p
2 − 1 = Φp2(Y + 1) · ((Y + 1)p − 1).

1We know that
(
p
k

)
= p!

k!(p−k)! is a non-negative integer and for k as stated, the numerator of

the fraction is divisible by p but the denominator is not, so it must be divisible by p.



42 2.2. POLYNOMIAL RINGS

Since modulo a prime p we have (a+ b)p ≡ ap + bp (mod p), we can write

(Y + 1)p
2 − 1 = ((Y + 1)p)p − 1 ≡ (Y p + 1)p − 1 ≡ Y p2 (mod p),

while
Φp2(Y + 1) · ((Y + 1)p − 1) ≡ Φp2(Y + 1) · Y p (mod p),

so that Φp2(Y + 1) ≡ Y p2−p (mod p). This is equivalent to saying that all the
coefficients of Φp2(Y + 1) except for the leading one are divisible by p, wherefore
it is an Eisenstein polynomial and hence irreducible over Q.



Chapter 3

Field Theory

After we have established several important facts about rings in the previous chap-
ters, we turn our attention to the main object of study in this course, fields and
their extensions.

3.1 First concepts

3.1.1 Extensions and their degrees

Topics

� Field extensions

� Degree theorem

� Simple extensions

Definition 3.1.1. Let K and E be fields. We call E/K a field extension if K ⊆ E
and addition and multiplication in K are the restriction of addition and multipli-
cation in E to K. We then call K a subfield of E and E an extension field of
K.

Some fairly straightforward examples of this are of course the field extensions R/Q
or C/R.

Remark 3.1.2. Let E/K be a field extension. Then in particular E is a (com-
mutative) K-algebra, i.e. a K-vector space with a compatible multiplication.

This motivates the following definition.

Definition 3.1.3. Let E/K be a field extension. Then we call [E : K] := dimK E
the degree of the extension. If this degree is finite, we say that E/K is a finite
extension.

43
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Example 3.1.4. 1. A very important example of finite extensions can be con-
structed as follows: Let K be a field and f ∈ K[X] an irreducible polynomial.
Since K[X] is a Euclidean domain the ideal (f) E K[X] is maximal, where-
fore E := K[X]/(f) is a field and we can consider K a subfield of E via the
embedding K ↪→ E, a 7→ a1. Since dimK E = deg f =: n as a basis is given
by {1, X, ..., Xn−1}, we have consequently [E : K] = n, so that the extension
is finite.

2. Let K be field and consider the field K(X) := FracK[X], the field of ra-
tional functions over K. This is an extension field of K, as K can again
be embedded as constants, but it is not finite, since the set of monomials
{Xn : n ∈ Z} is infinite and linearly independent1, so dimK K(X) =∞.

Our first result on field extensions is the following, sometimes called the degree
theorem.

Theorem 3.1.5. (Degree theorem) Let K2/K1 and K3/K2 be field extensions (so
also K3/K1 is a field extension). Then we have [K3 : K1] = [K3 : K2] · [K2 : K1],
with the understanding that if at least one of the extensions K2/K1 and K3/K2 is
infinite, then so is K3/K1.

Proof. If either K3/K2 or K2/K1 are infinite extension, then K3 contains an
infinite set of elements which is linearly independent over K1, so K3/K1 is infinite
as well.

Now let [K2 : K1] =: m and [K3 : K2] =: n be finite. Then there exists a
K2-basis of K3 (as a K2-vector space) {b1, ..., bn} and a K1 basis {c1, ..., cm} of K2.

Claim: The set B = {b1c1, b1c2, ..., bncm} is a K1-basis of K3.
We first show that B is a generating of K3 as a K1-vector space. For this let

α ∈ K3. There exist unique α1, ..., αn ∈ K2 such that α =
∑n

i=1 αibi. Now for each
αi there exist unique βi,1, ..., βi,m ∈ K1 such that αi =

∑m
j=1 βi,jcj, so that we can

write α =
∑n

i=1

∑m
j=1 βi,jbicj as a K1-linear combination of elements of B.

It remains to show that B is linearly independent over K1. Suppose that we
have βi,j ∈ K1 such that

∑n
i=1

∑m
j=1 βi,jbicj = 0. This means that

n∑
i=1

(
m∑
j=1

βi,jcj

)
bi = 0,

but since the set {b1, ..., bn} is linearly independent overK2, we must have
∑m

j=1 βi,jcj =
0 for all i. But since the set {c1, ..., cm} is linearly independent over K1, this can

1It is however NOT a basis of K(X), since for example the rational function 1
X+1 is not a

linear combination of these monomials



CHAPTER 3. FIELD THEORY 45

only be if all βi,j are 0. It follows therefore that B is linearly independent and thus
a K1-basis of K3. Since #B = mn, the theorem follows.

q.e.d.

In order to work with explicit examples of field extensions, we often represent them
using generators.

Definition 3.1.6. Let E/K be a field extension.

1. For a1, ..., an ∈ E we denote by K(a1, ..., an) the smallest subfield of E con-
taining K and a1, ..., an. Similarly we denote by K[a1, ..., an] the smallest
subring of E (not necessarily a field) containing K and a1, ..., an.

2. E/K is called a simple extension if there exists some a ∈ E such that
E = K(a). Such an a is called a primitive element of E/K.

We shall see later that all “reasonably nice” field extensions are indeed simple
(Theorem 3.5.6).

3.1.2 Algebraic extensions

Topics

� Algebraic extensions

� Minimal polynomial

Proposition 3.1.7. Let E = K(a)/K be a simple extension. The we either have
E = K[a] or E ∼= K(X). In the former case we say that a is algebraic over K,
in the latter a is said to be transcendental over K.

Proof. Consider the following homomorphism of K-algebras, ϕ : K[X] → K(a)
defined via X 7→ a (i.e. we plug a into a polynomial. Then the image Imϕ of
ϕ is a subring of K(a) and hence an integral domain by Proposition 2.1.5. By
the homomorphy theorem we have Imϕ ∼= K[X]/Kerϕ, so that Kerϕ must be
a prime ideal in K[X] (see Proposition 2.1.11). Since K[X] is a principal ideal
domain, there are two possibilities.

1. Kerϕ 6= {0}: In this case there is an irreducible polynomial m ∈ K[X] such
that Kerϕ = (m). In this case (m) is a maximal ideal and hence, again by
Proposition 2.1.11, Imϕ = K[a] is a field, wherefore K[a] = K(a) = E.

2. Kerϕ = {0}: In this case ϕ is injective and Imϕ = K[a] ∼= K[X], which is
not a field. But by definition E = K(a) is the minimal field containing K
and a, wherefore E = FracK[a] ∼= K(X).
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q.e.d.

Definition 3.1.8. Let E/K be a field extension and α ∈ E be algebraic over K.
The unique monic polynomial µα,K ∈ K[X] which generates Kerϕ with ϕ as in the
proof of Proposition 3.1.7, i.e. which satisfies µα,K(α) = 0, is called the minimal
polynomial of a over K. The degree of µα,K is called the degree of α over K.

Remark 3.1.9. The more usual definition of algebraicity is that a ∈ E is algebraic
over K if and only if there exists a polyomial m ∈ K[X] such that m(a) = 0. This
is clearly equivalent to the fact that K(a) = K[a] by the proof of Proposition 3.1.7.

Here and throughout most of this course, we will deal with algebraic extensions.
In Section 3.7 we briefly discuss some elementary properties of transcendental
extensions.

Example 3.1.10. 1. Consider the field extension Q(a)/Q for a =
√

2 +
√

3.
We can compute the minimal polynomial of a by successively taking powers
of a and looking for linear dependencies. We have

a2 = 5 + 2
√

6, a3 = 11
√

2 + 9
√

3, a4 = 49 + 20
√

6 = 10a2 − 1.

We have thus found the minimal polynomial of a to be µa,Q = X4−10X2 +1.

2. The minimal polynomial does depend on the field under consideration. Con-
sider the field extension C/Q and a = ζ8 = e2π i /8 = 1+i√

2
a primitive 8th

root of unity. Then µζ8,Q(X) = Φ8(X) = X4 + 1. But if we consider the
extension R/C, then of course ζ8 is still algebraic over R, but one finds that
µζ8,R(X) = X2 −

√
2X + 1.

In what follows we mainly restrict our attention to so-called algebraic extensions.

Definition 3.1.11. Let E/K be a field extension. If each a ∈ E is algebraic over
K, then we call E/K an algebraic extension.

Theorem 3.1.12. 1. Every finite field extension E/K is algebraic.

2. If we have E = K(a1, ..., an) where each ai is algebraic over K, then E/K is
a finite extension.

Proof.
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1. Let a ∈ E. Since E/K is finite, the sequence of powers of a, (1, a, a2, ...)
must become linearly dependent at some point, let’s say n, so that there
exist α1, ..., αn ∈ K such that

∑n
i=1 αia

i = 0. Hence the polynomial m(X) =∑n
i=1 αiX

i satisfies m(a) = 0, so that a is algebraic over K by Remark 3.1.9.

2. First consider the case n = 1. Then the set {a1, ..., a
m−1
1 }, where m =

deg µa1,K = [K(a1) : K], forms a K-basis of K(a1) = K[a1]. Now suppose the
claim is proven for some n and consider the extension E = K(a1, ..., an+1)/K.
By induction, the extensionK(a1, ..., an)/K is finite and the extension E/K(a1, ..., an)
is finite by the same argument as before, so E/K is finite by the Degree The-
orem (Theorem 3.1.5).

q.e.d.

Slightly more generally we have the following result.

Proposition 3.1.13. Algebraicity is transitive, i.e. if L/K is an algebraic exten-
sion and E/L is an algebraic extension, then E/K is an algebraic extension as
well.

Proof. Let a ∈ E. We want to show that a is algebraic over K. By assumption
a is algebraic over L, so there exist α0, ..., αn−1 ∈ L such that

an +
n−1∑
i=0

αia
i = 0.

Since L/K is algebraic, we known from Theorem 3.1.12 that the extensionK(α0, ..., αn−1)/K
is finite. Since a is algebraic over L0 = K(α0, ..., αn−1), the extension

K(α0, ..., αn−1, a) = L0(a)/L0

is finite, thus by the degree theorem the extension K(α0, ..., αn−1, a)/K is finite
and hence algebraic. In particular a is algebraic over K which is what we wanted
to show.

q.e.d.

Remark 3.1.14. A very slightly different way to characterise algebraic extensions
E/K would be to say that each a ∈ E lies in a finite extension of K. This does
however not imply that all algebraic extensions are finite. For example the field
K = Q(

√
2,
√

3,
√

5,
√

7, ...), where all square-roots of prime numbers are adjoint
to Q is clearly algebraic over Q since every of its generators is, but it is not finite.
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3.2 Splitting fields

Topics

� Rupture field of a polynomial

� Field homomorphisms

� Splitting field of a polynomial

� Algebraically closed fields and algebraic closure

In this section we discuss a fairly universal way to generate field extensions. The
first one was already alluded to in Example 3.1.4.

Definition 3.2.1. Let K be field and f ∈ K[X] a monic polynomial of degree n.

1. An extension field E of K is called a rupture field of f over K if there exists
a ∈ E such that f(a) = 0.

2. The minimal extension field E of K such that f decomposes into linear
factors, i.e. there exist a1, ..., an ∈ E such that f =

∏n
i=1(X − ai) in E[X]

and there is no proper subfield F of E such that this factorisation is possible
in F [X], is called the splitting field of f over K.

Example 3.2.2. 1. The field C of complex numbers is a rupture field of the
polynomial f = X2 + 1 ∈ R[X]. In fact it is also the splitting field of this
polynomial since f = (X− i)(X+ i) ∈ C[X] and [C : R] = 2, so there cannot
be any proper subfield of C containing R where f factors completely.

2. Consider the case K = Q and the polynomial f = X4 − 2. Then the field
L = Q( 4

√
2) is a rupture field of f , but not its splitting field, because i 4

√
2

is also a root of f , but not contained in L. This means in particular that
Q(i 4
√

2) is another rupture field of f . Indeed the field E = Q( 4
√

2, i) is the
splitting field of f over Q: Since

X4 − 2 = (X − 4
√

2)(X +
4
√

2)(X − i 4
√

2)(X + i
4
√

2) ∈ E[X],

f splits completely in E. Any subfield of E where f splits completely must
therefore contain in particular 4

√
2 and i 4

√
2 and thus also i = i 4

√
2/ 4
√

2. But
E is by definition the smallest field containing 4

√
2 and i, so E is indeed the

splitting field of f .

The formulation “the splitting field” in the above example already indicates that
the splitting field of a polynomial is essentially unique. To make this precise and
in particular prove this we need the following concepts.
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Definition 3.2.3. 1. Let K,L be fields. Then a ring homomorphism ϕ : K →
L is called a field homomorphism. A ring isomorphism ϕ : K → K is called
a field automorphism.

2. Let E/K and L/K be field extensions. A homomorphism of K-algebras
ϕ : E → L is called a field homomorphism over K or K-homomorphism. If
there exists a K-algebra isomorphism E → L, we write E ∼=K L.

3. For a field extension E/K we call

Aut(E) := {ϕ : E → E : ϕ is a field automorphism}

the automorphism group of E and

AutK(E) := {ϕ : E → E : ϕ is a field automorphism over K}

the group of K-automorphisms of E over K.

Example 3.2.4. It is important to distinguish between automorphisms and K-
automorphisms of a field: Let for instance K = R and E = C. Then complex
conjugation a+ ib := a − ib is an automorphism of C, and indeed also an R-
automorphism of C.

However if we chooseK = Q(i), the complex conjugation is not aK-automorphism
of C, since a K-algebra homomorphism ϕ of C has to satisfy ϕ(αa) = αϕ(a) for
all a ∈ C and α ∈ Q(i). This is clearly not satisfied (pick for instance a = 1 and
α = i).

Remark 3.2.5. 1. Note that any field homomorphism ϕ : K → L is automat-
ically injective (Exercise).

2. For any field homomorphism ϕ : K → L there is a unique ring homomor-
phism ϕ̃ : K[X] → L[X] which extends ϕ and satisfies ϕ̃(X) = X. It is
given by ϕ̃(

∑n
i=0 aiX

i) =
∑n

i=0 ϕ(ai)X
i.

For later application we record the following.

Lemma 3.2.6. Let K be a field and ϕ : K → K a field homomorphism (such a
homomorphism is also called an endomorphism). Then the set

F := Fix(ϕ) := {α ∈ K : ϕ(α) = α}

is a subfield of K, called the fixed subfield of ϕ.



50 3.2. SPLITTING FIELDS

Proof. Since ϕ(0) = 0 and ϕ(1) = 1 we have 0, 1 ∈ F and for α, β ∈ F we have

α + β = ϕ(α) + ϕ(β) = ϕ(α + β)

and similarly α · β = ϕ(α · β), so that α + β, α · β ∈ F . If α 6= 0 we have
ϕ(α−1) = ϕ(α)−1, so that for α ∈ F , we also have α−1 ∈ F .

q.e.d.

We now return to the discussion of rupture fields and splitting fields.

Theorem 3.2.7. Let K be a field and f =
∑n

i=0 aiX
i a polynomial of degree

n ≥ 1.

1. There exists a rupture field of f over K.

2. Any minimal rupture field L of f has the form L = K[α], where f(α) = 0.

3. Assume f ∈ K[X] is irreducible and ϕ : K → L a field isomorphism. Set
g = ϕ̃(f) =

∑n
i=0 ϕ(ai)X

i ∈ L[X] with ϕ̃ as in Remark 3.2.5. If E = K[α]
is a minimal rupture field of f and F = L[β] a minimal rupture field of g,
then the map

ϕ∗ : E → F,
n∑
i=0

ciα
i 7→

n∑
i=0

ϕ(ci)β
i

defines an isomorphism of fields which extends ϕ.

4. For an irreducible polynomial, any two minimal rupture fields are isomorphic.

Proof.

1. Let p ∈ K[X] be an irreducible polynomial dividing f , write f = p · g for
some g ∈ K[X]. Then E = K[X]/(p) is a field. The class X = X + (p)
satisfies p(X) = 0 in E, and therefore we have f(X) = p(X) · g(X) = 0, so
E is a rupture field of K.

2. Let L be a minimal rupture field of f over K. Then L contains some α such
that f(α) = 0. By definition K(α) ⊆ L is the minimal field containing K
and α, so we must have L = K(α) and since α is algebraic over K, we have
K(α) = K[α].

3. It is clear from the definition that φ∗ is a field homomorphism. Therefore
it is automatically injective and since ϕ is an isomorphism we know that
for each bi ∈ L there is a unique ci ∈ K such that ϕ(ci) = bi, so that
ϕ∗(
∑n

i=0 ciα
i =

∑n
i=0 biβ

i, showing that ϕ∗ is also surjective, so it is indeed
an isomorphism as claimed.
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4. Follows directly from 3.

q.e.d.

Regarding splitting fields we can say the following.

Theorem 3.2.8. Let K be a field and f ∈ K[X] be a polynomial of degree n ≥ 1.

1. There exists an extension field E of K, such that f decomposes into linear
factors in E[X].

2. Any two splitting fields of f are isomorphic over K.

Proof.

1. This follows by iterating Theorem 3.2.7 1. Let K1 be a rupture field of f , so
that there is some α1 ∈ K1 such that f(α1) = 0. This means that we can
write f = (X −α1) · f1 for some f1 ∈ K1[X]. Now repeat the process to find
a rupture field K2 of f1 and so on. Since the degree of the polynomial in
question decreases in every step, this must reach an end at some point, and
the resulting field is one where f splits into linear factors.

2. Let E be a splitting field of f over K and set [E : K] = m. We prove the
following claim, from which the result follows directly, by induction on m.

Claim: If ϕ : K → K ′ is a field isomorphism and E ′ is a splitting field of
ϕ̃(f) ∈ K ′[X], then ϕ can be extended to a field isomorphism ϕ• : E → E ′.

For m = 1, f already decomposes into linear factors over K, so E = K ∼=
K ′ = E ′.

So let m > 1 and assume the claim is true for all ` < m. Then there is
an irreducible factor p of f of degree d ≥ 2. Set p′ = ϕ̃(p). Let α ∈ E
and α′ ∈ E ′ be such that p(α) = 0 and p′(α′) = 0. Then L := K[α] (resp.
L′ := K ′[α′]) are minimal rupture fields of p (resp. p′), wherefore ϕ extends
to an isomorphism ϕ∗ : L→ L′ by Theorem 3.2.7 3. But we have

[E : L] =
[E : K]

[L : K]
=

[E : K]

d
� m

by the degree theorem and E is a splitting field of f ∈ L[X] (and E ′ is
a splitting field of ϕ̃∗(f) ∈ L′[X]). By the induction hypothesis we can
therefore extend ϕ∗ to a field isomorphism ϕ• : E → E ′ which extends ϕ∗,
wherefore it also extends ϕ.
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q.e.d.

One question one may have now is whether for every given field K there is an
extension field such that every polynomial in K[X] splits into linear factors. For
example the complex numbers are an extension field of Q and every polynomial
over Q splits into linear factors over C by the Fundamental Theorem of Algebra
(for a proof see Appendix A).

Definition 3.2.9. A field K is called algebraically closed if every polynomial f ∈
K[X] of degree ≥ 1 has a root in K.

An example of an algebraically closed field is therefore the complex numbers.
Of course not every field can be embedded into the complex numbers, so one

may wonder whether in general there is an algebraically closed field containing a
given field K.

Definition 3.2.10. Let K be any field. Then extension field E of K is called
an algebraic closure of K if E is algebraically closed and the extension E/K is
algebraic.

Even though the complex numbers are an algebraically closed field containing Q,
they are not an algebraic closure of Q because C contains so-called transcendental
numbers (see Appendix B). From here on out, we will assume that every field has
an algebraic closure (Theorem 6.2.4) which is unique up to isomorphism (Corol-
lary 6.2.6). For a field K, we denote its algebraic closure by K. For later purposes,
we record the following lemma about the algebraic closure at this point.

Lemma 3.2.11. Let K ⊆ L ⊆ E ⊆ K be algebraic extensions. Suppose we have
a ring homomorphism ϕ : L → K such that ϕ(a) = a for all a ∈ K. Then there
exists a ring homomorphism ψ : E → K such that ψ(α) = ϕ(α) for all α ∈ L, i.e.
ψ is an entension of ϕ from L to E.

The proofs of all these facts require some preparation, in particular the famous
Zorn’s Lemma 6.1.9. We postpone these proofs until Chapter 6.

3.3 Compass and straightedge constructions

In this section we discuss one of the central results in this course, the possibility
and impossibility of certain geometric constructions with straightedge (i.e. and un-
marked ruler) and compass. As mentioned in the introduction, many of the prob-
lems discussed here go back to the ancient Greeks and those that weren’t solved
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by the Greeks themselves, such as the costruction of the regular heptadecagon
(17-gon), which is possible, or proving the impossibility of doubling the cube, had
remained open for over 2000 years.

One might say now that such geometric questions are in themselves not very
interesting, at least not in modern mathematics, but the moral here should be that
mathematics has some unexpected connections among its subfields. As we shall
see now, the answer for a (seemingly) geometric question sometimes comes from
the theory of field extensions.

3.3.1 From geometry to algebra

Topics

� Constructibility

� Basic constructions with compass and straightedge

� Constructible numbers (examples)

First we need to translate geometry into algebra. For this we interpret the Eu-
clidean plane R2 with the complex numbers C.

Definition 3.3.1. Let S ⊂ C be a finite set of points in the (Euclidean) plane.
For any two distinct points P,Q ∈ S we can draw a unique straight line through
P and Q, denoted PQ. For any three points M,P,Q, which are not all the same,
we can draw a unique circle with centre M and radius |PQ|, the distance of the
points P and Q.

1. A point P ∈ C is 1-step constructible from S if P is an intersection point of
either two lines, a line and a circle, or two circles obtained from points in S.

2. A point P ∈ C is called constructible from S if there exist finitely many points
P1, ..., Pn = P ∈ C such that Pi+1 is 1-step constructible from S∪{P1, ..., Pi}
for all 0 ≤ i ≤ n− 1.

Example 3.3.2. Here are some standard constructions which should be familiar.
Suppose we have our set of given points S = {P,Q,R}.

1. Perpendicular bisector: This is the line perpendicular to the line PQ, which
intersects at its exact midpoint M , i.e. the lengths |PM | and |MQ| are
equal. One draws two circles of the same radius, which needs to be larger
that the distance |PM | (so |PQ| would do), one around P and one around
Q and connects the intersection points (see Figure 3.1). So in particular the
midpoint of any two given points is constructible.
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P M Q

Figure 3.1: Perpendicular bisector

2. Using the perpendicular bisector, we see that we can also construct the line
perpendicular to a given line ` through a given point P , either on the line
or not: Draw a circle around P of radius large enough to intersect the line
twice and construct the perpendicular bisector of the two intersection points.
The resulting line is perpendicular to the original one and passes through
P . By constructing a second perpendicular bisector through P , we can also
construct the line parallel to ` passing through P .

3. Angle bisector: Given three points {P,Q,R} (not all in a straight line), the
lines connecting two of them form an angle α, say at P . We can construct
a line which exactly cuts this angle in half as follows: Draw a circle around
P with radius at most the smaller of the two distances |PQ| and |PR| (or
extend the lines PQ and PR sufficiently so that the circle intersects both
at points S1 and S2. Draw the line S1S2 and construct a perpendicular
bisector to it. This line goes through P and bisects the angle α exactly (see
Figure 3.2).
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P

Q

R

S1

S2

Figure 3.2: Angular bisector

Since we may identify points with numbers, it makes sense to talk about con-
structible numbers, which leads to the question how constructibility behaves with
regard to arithmetic.

Theorem 3.3.3. Suppose we are given a set S with {0, 1} ⊆ S. Then the follow-
ing are true.

1. Every rational number is constructible from S.

2. The set KS := {a ∈ C : a is constructible from S} is a subfield of C.

3. For a ∈ KS , both complex roots of X2−a ∈ KS [X] are in KS , so square-roots
of elements in KS lie in KS .

4. We have a ∈ KS if and only if Re(a) ∈ KS and Im(a) ∈ KS . Also if a ∈ KS ,
we have |a|2 and a ∈ KS .

Proof.

1. We extend the line through 0 and 1, which we identify with the real line,
in both directions indefinitely. Then we draw a circle around 1 with radius
1, which yields two intersections, at 0 and 2, so 2 is constructible from S.
Continuing this procedure with a circle around 2, 3,... and similarly in the
other direction around 0,−1,−2, ..., we see that all integers are constructible
from {0, 1}.
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For any positive real constructible number a, we show that 1/a is also con-
structible (see also Figure 3.3). Construct the line from 0 to a and construct
a line perpendicular to 0a through a. Then draw a circle of radius 1 around
a and obtain an intersection point b which we then connect to 0. We then
find 1 on the (extended) line through 0 and a. The perpendicular line to
0a through 1 intersects the line 0b in a unique point S and since the two
triangles 0ab and 01S are clearly similar, we must have

1

a
=
|ab|
|0a|

=
|1S|
|01|

= |1S|,

so we can draw a circle around 0 with radius 1/a, and its intersection with
the real line is the desired reciprocal.

0 1 a

length 1

b

S

length 1/a

Figure 3.3: Construction of reciprocals

Now if we want to construct a fraction a/b with a ∈ Z and b ∈ N, we can
construct 1/b as described above and then construct a · 1/b by drawing |a|
circles of radius 1/b around 0,±1, ..., depending on the sign of a. Therefore
we can construct a/b and thus every rational number.

2. We first show that the sum of two constructible numbers is constructible.
Suppose that the three points 0, a, b are not all in a straight line. Then we
can construct the line parallel to 0a through b and the line parallel to 0b
through a. These two lines intersect in a unique point, which we recognise
as a + b from the standard geometric interpretation of the addition of two
complex numbers (see Figure 3.4).
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0

a

a+ b

b

Figure 3.4: Addition of constructible numbers

If 0, a, b lie on a straight line, then the circle around a of radius |0b| intersects
said line in exactly two points. The point a+ b is the the intersection point
that farther away from 0 if both a, b lie on the same side of 0, and it is the
one closer to 0 if 0 lies between a and b.

Constructing additive inverses is fairly straightforward (exercise).

Next we consider products of constructible numbers. Again we restrict to
positive real constructible numbers and leave the general case as an exercise.
Draw the line connecting 0 and 1 and extend it to the right. Identify the
number b on this line. Next draw a circle of radius |0a| around 0 and connect
0 to any point on the circle, except the intersection points with the (extended)
line 01. Call this chosen point A. Draw a line from 1 to A and construct
a line parallel to 1A through b. This line has a unique intersection point
B with the (extended) line 0A. Since the triangles with vertices 0, 1, A and
0, b, B are similar, we have

|0b|
|01|

=
|0B|
|0A|

.

The left-hand side equals b and since |0A| = a, it follows that |0B| = a · b,
as desired (see Figure 3.5).
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0 1 b

B

A

length a

Figure 3.5: Multiplication of constructible numbers

We have already shown above how to construct inverses of positive real
numbers and again we leave the general case as an exercise.

3. Again we restrict to the case of positive real constructible numbers and leave
the general case as an exercise. Given such a constructible number a, we
construct the midpoint M of the line 0(a + 1) and draw a circle of radius
(a + 1)/2 around M . Next construct the line perpendicular to 0a passing
through a. This line intersects the circle in a point P . By the Theorem of
Thales, the triangle 0, c+ 1, P is a right-angle triangle with right angle at P .
Now by the Right Triangle Altitude Theorem, the distance h = |cP | satisfies
h2 = c · 1, so h =

√
c and we are finished (see Figure 3.6).
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0 a a+ 1

length
√
a

P

Figure 3.6: Construction of square-roots

4. Similar to the real axis, we can construct the imaginary axis as an orthogonal
line to the real one passing through 0. In particular the imaginary unit i is
constructible. Therefore if a is constructible, we can construct an orthogonal
line to the real line through a to construct Re(a), and similarly for Im(a). If
both a, b ∈ R are constructible, then so is a+ ib since constructible numbers
form a field. The claim about the (squared) absolute value and the complex
conjugate directly follows because we can construct real and imaginary parts.

q.e.d.

3.3.2 Classification of constructible numbers

Topics

� Classification of constructible numbers

� Impossibility of doubling the cube, trisecting an angle, and squaring the circle

In order to classify constructible numbers, we require the following lemma.

Lemma 3.3.4. Let L ≤ C be a subfield of C such that i ∈ L and for each a ∈ L we
also have a ∈ L ( denotes the complex conjugate). If z ∈ C is 1-step constructible
form L, then there exists w ∈ C such that w2 ∈ L and z ∈ L[w].
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Proof. We first note that the fact that i ∈ L and L contains complex conjugates
implies that for each a ∈ L we have Re(a) = 1

2
(a+ a) ∈ L, Im(a) = 1

2 i
(a− a) ∈ L,

and |a|2 = aa ∈ L.
Now let z ∈ C be 1-step constructible from L. There are three cases to dis-

tinuish:

1. z is the intersection of two straight lines through points in L:

In this case there exist four points αj = aj + i bj i ∈ L and βj = cj + i dj ∈ L,
j = 1, 2 such that the lines through the αj and the one through βj intersect
in z (in particular, the lines can’t be parallel or identical). These lines can
be defined through the equations

`1(s) = α1 + (α2 − α1)s and `2(t) = β1 + (β2 − β1)t,

where s, t are real numbers. So we see that the real and imaginary part of z is
the solution to an inhomogeneous linear system of equations with coefficients
in L, so the solution, since it is clearly unique, is also defined over L, so we
find that z ∈ L.

2. z is an intersection point of a straight line and a circle:

Let α1, α2 ∈ L, so that z lies on the line through α1 and α2, i.e. there
exists t ∈ R such that z = α1 + (α2 − α1)t. Furthermore there are points
M,β1, β2 ∈ L, such that z lies on the circle of radius r := |β2 − β1| around
M , i.e we have |z−M |2 = r2. Note here that r2 ∈ L. Therefore we find that

r2 = Re(z −M)2 + Im(z −M)2

= (Re(α2 − α1)t+ Re(α1 −M))2 + (Im(α2 − α1)t+ Im(α1 −M))2,

Thus t satisfies a quadratic equation over L, i.e. [L(z) : L] ≤ 2.

3. z is an intersection point of two circles:

Let z = x + i y, and suppose z lies on the two circles with centre M1 =
a1 + i b1,M2 = a2 + i b2 ∈ L with radii r1 and r2. Note again that r2

j ∈ L.
Therefore x and y satisfy the equations

(x− aj)2 + (y − bj)2 = r2
j , j = 1, 2.

Taking the difference of the two equations, we obtain, after some rearranging,
the equation

(a2 − a1)x+ (b2 − b1)y =
1

2
(r2

1 − r2
2 − a2

1 + a2
2 − b2

1 + b2
2),

which is the equation of a line defined over L, so z is really the intersection
point of a circle and a line and the claim follows from the previous case.
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q.e.d.

With this we can show the key result in this section.

Theorem 3.3.5. Let S ⊂ C and assume {0, 1} ⊆ S. For z ∈ C the following are
equivalent.

(i) z ∈ KS .

(ii) There exists a (finite) tower of fields

Q(S ∪ S) =: L0 ≤ L1 ≤ ... ≤ Ln ≤ C

such that z ∈ Ln and [Lj : Lj−1] = 2.

Proof. If there is such a tower of fields as in (ii), then each element a ∈ Lj, j ≥ 1,
is constructible from the elements in Lj−1 because a must satisfy a quadratic
equation over Lj−1 whose solution only involves arithmetic operations and taking
square-roots. Since all of these operations are constructible by Theorem 3.3.3,
each such a is constructible from Lj−1, and hence also from L0.

If on the other hand z is constructible from S, then there must be a sequence
z1, ..., zk = z and each zj is 1-step constructible from S ∪ {z1, ..., zj−1}. Since S is
constructible from S, it follows directly from Lemma 3.3.4 that by adjoining zj to
Q(S∪S, z1, ..., zj−1) we obtain an extension field of degree at most 2, thus showing
the claim.

q.e.d.

We can now discuss a few examples of constructibility problems.

Example 3.3.6. One of the last open construction problems from Ancient Greece
was the question whether it is possible to “double the cube”, i.e. given a cube with
some volume V , can we construct a cube of volume 2V using only compass and
straightedge?

Let the side length of our given cube be a, so V = a3. If the doubled cube
is constructible, then it would have to be possible to construct its side length b
from a. But b satisfies the equation b3 − 2a3 = 0. This polynomial is clearly
irreducible over Q(a), so we have [Q(a, b) : Q(a)] = 3. But this means that there
can’t be a tower of fields of consecutive degree 2 over Q(a) which contains b, so by
Theorem 3.3.5 b cannot be constructible.

Example 3.3.7. Another classical problem is whether or not it is possible to
trisect a general given angle. Of course some angles can be trisected, for example



62 3.3. COMPASS AND STRAIGHTEDGE CONSTRUCTIONS

a right angle is trisectable since it is fairly easy to construct a 30◦ angle, e.g. by
constructing an angular bisector in an equilateral triangle, which is also easy to
construct.

But it turns out that e.g. an angle of 30◦ cannot be trisected. It is clear from
the usual interpretation of sine and cosine in a circle, an angle can be constructed
if and only if its sine and cosine can be constructed. Now for any angle θ we have
the relation

sin(3θ) = −4 sin3 θ + 3 sin θ,

which follows easily from the standard angle sum formulas for sine and cosine.
Setting x := sin(10◦) we obtain from the special value sin(30◦) = 1

2
the equation

8x3 − 6x+ 1 = 0.

By the Rational Root Theorem 2.2.9, the polynomial 8X3 − 6X + 1 ∈ Q[X] can
only possibly have rational roots at α ∈ {±1,±1

2
,±1

4
,±1

8
}. It is easily checked

that none of these values are roots of the polynomial, wherefore it is irreducible
over Q. But this means that [Q[x] : Q] = 3, so that x cannot be constructible over
Q = Q(sin(30◦)), again by Theorem 3.3.5.

For the sake of completeness we also mention a third classical constructibility prob-
lem, probably the most famous of them all: Squaring the circle, so to construct
from a given circle a square with the same area. This has almost become a prover-
bial expression for an impossible task. It is not hard to see that this problem boils
down to the question whether the number π = 3.1415926... is constructible. It was
first shown by Ferdinand von Lindemann in 1882 that π is indeed transcendental
over Q, so in particular π does not lie in any finite extension of Q, let alone in
one described in Theorem 3.3.5. Lindemann’s proof for the transcendence of π
however is too long and involved to include it here.

Remark 3.3.8. In Ancient Greece, the only tools permitted for geometric con-
structions were compass and straightedge. In modern times people have investigated
how other tools might serve to do exact geometric constructions. For example one
can show that using a ruler and origami, i.e. one is allowed to fold the plane
along a straight line, and it turns out that using this method one can solve general
(!) cubic equations geometrically, like compass and straightedge can solve general
quadratic equations geometrically.
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3.3.3 Constructibility of regular polygons

Topics

� Fermat primes

� Gauß’s theorem on regular polygons

We now discuss one of the results for which Carl Friedrich Gauß became one of
the most famed mathematicians of the early 19th century. He classified exactly
when the regular n-gon is constructible with compass and straightedge. For this
we need the following notion.

Definition 3.3.9. For n ∈ N0 we call Fn := 22n + 1 the nth Fermat number. If
Fn is prime, we call it a Fermat prime.

The first few Fermat numbers are given by

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537,

which are all prime. It had been conjectured that Fn might be prime for all n, but
Euler was able to show that F5 = 641 · 6700417 is composite. In fact, there is no
n > 4 known such that Fn is prime, but it hasn’t been ruled out that such an n
exists.

A further important object which may be familiar from elementary number
theory (and Section 1.2) is the following.

Definition 3.3.10. For n ∈ N we denote by

ϕ(n) := (Z/nZ)∗ = {k ∈ {0, ..., n− 1} : gcd(k, n) = 1}

the Euler totient function.

We record some elementary properties of this function in the following lemma.

Lemma 3.3.11. The following are all true:

1. For m,n ∈ N with gcd(m,n) = 1 we have ϕ(mn) = ϕ(m)ϕ(n).

2. For a prime number p and r ∈ N we have ϕ(pr) = (p− 1)pr−1.

3. For n ∈ N we have n =
∑

d|n ϕ(d).

Proof. Exercise.
q.e.d.

Now we return to our question about the construction of the regular n-gon. This
is of course equivalent to the question whether the primitive nth root of unity
ζn = e2πi/n is constructible from Q. Gauß showed the following result.
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Theorem 3.3.12. For n ≥ 3 the following statements are all equivalent.

(i) The regular n-gon is constructible with compass and straightedge.

(ii) ϕ(n) is a power of 2.

(iii) We have n = 2rp1 · · · pk for some r ∈ N0 and pairwise distinct Fermat primes
p1, ..., pk.

We do not quite have all the necessary tools to prove this result in full. Therefore
we defer part of the proof to Section 5.3.
Proof. We leave the equivalence of (ii) and (iii) as an exercise.

We now show that if the regular n-gon is contructible, then n must have the
form n = 2rp1 · · · pk for pairwise distinct Fermat primes p1, ..., pk. It is clear that
if the regular n-gon is constructible, then so is the regular m-gon for each m | n.
So it suffices to show that for each odd prime p we have p− 1 is a power of 2 and
that the regular p2-gon is not constructible.

Let ζp = e2πi/p be a primitive pth root of unity. We have already seen in
Example 2.2.15 that the pth cyclotomic polynomial

Φp =
Xp − 1

X − 1
= Xp−1 +Xp−2 + ...+X + 1

is irreducible over Q and has ζp as a root, so that the field extension K = Q(ζp)/Q
has degree [Q(ζ) : Q] = p − 1. But since ζp is constructible by assumption, we
know from Theorem 3.3.5 that ζp must lie in some field extension L/Q of degree
[L : Q] = 2` for some `. Since Q(ζp) is the smallest field over Q containing ζp, it
must be a subfield of L, wherefore by the Degree Theorem 3.1.5 we have

p− 1 = [Q(ζp) : Q] | [L : Q] = 2`,

whence p− 1 must be a power of 2.
Next let ζp2 = e2πi/p2 be a primitive p2th root of unity and consider the p2th

cyclotomic polynomial

Φp2 =
Xp2 − 1

Xp − 1
= Xp2−p +Xp2−2p + ...+Xp + 1.

As we saw in Example 2.2.16, this polynomial is irreducible over Q and has ζp2
as a root, wherefore the degree [Q(ζp2) : Q] = p(p − 1). If ζp2 were constructible,
it would have to lie in a field extension L/Q whose degree is a power of 2, but
this cannot be since the smallest field containint ζp2 has degree divisible by p.
Therefore ζp2 cannot be constructible.

q.e.d.
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Example 3.3.13. To give a flavour of the remainder of the proof of Theorem 3.3.12,
namely that for each n of the form given in (iii), the regular n-gon is indeed con-
structible, we look at the first non-trivial case n = 5.

Let L = Q(ζ5) and consider the field K = L ∩ R. Then, as discussed above,
[L : Q] = 4. We clearly have L 6= K, so that [L : K] ≥ 2.

Now note that ζ−1
5 = ζ5, so that φ = ζ + ζ−1 = ζ5 + ζ4

5 = 2 cos(2π/5) is real
and hence φ ∈ K. Therefore ζ5 is a root of the quadratic polynomial

X2 − φX + 1 ∈ K[X],

so indeed we find [L : K] = 2. Setting φ∗ = ζ2
5 + ζ−2

5 = ζ2
5 + ζ3

5 , we see using
Theorem 1.1.15 that

φ+ φ∗ = ζ5 + ζ2
5 + ζ3

5 + ζ4
5 = −1

and
φφ∗ = ζ3

5 + ζ4
5 + ζ6

5 + ζ7
5 = −1,

so that φ and φ∗ are the roots of the quadratic polynomial

X2 +X − 1 ∈ Q[X].

Therefore we can represent ζ5 through the successive solution of quadratic equa-
tions, which means that we can construct it. Explicitly we find that

ζ5 =

√
5− 1

4
+ i

√
10 + 2

√
5

4
. (3.1)

3.3.4 Construction of the regular pentagon

Topics

� Construction of the regular pentagon

In this section we demonstrate a geometric construction of the regular pen-
tagon, which, as we have already seen abstractly through Theorem 3.3.12 and
Example 3.3.13, must be possible. Indeed we can start with given points 0 and 1,
draw the real line through them and first construct the numbers 5 and 6 on there
(see Figure 3.7).

0 1 5 6

Figure 3.7: Step 1
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In the nect step we construct the length
√

5 as described in Theorem 3.3.3:
Drawing a circle of radius 3 around 3 and finding one of its intersection point with
the line perpedincular to the real line through 5 yields the point z0 = 5 + i

√
5, so

the distance between 5 and z1 is exactly
√

5, which we can mark on the real line
(see Figure 3.8).

0 1
√

5 5 6

z0

Figure 3.8: Step 2

Now it is straightforward to construct the point z1 = −1 +
√

5, which is the
real part of 4ζ5 by (3.1). Therefore we can draw a circle of radius 4 around 0, so
that the line perpendicular to the real axis through z1 intersects the circle above
the real line at z2 = 4ζ5 (see Figure 3.9).

0 1 z1
√

5 4 5 6

z0

z2

Figure 3.9: Step 3

We now have found two vertices of our regular pentagon, so we can simply
construct the remaining three by drawing a circle of radius 1, z2 around first z2
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to obtain the third vertex z3, a circle around z3 with the same radius to find the
fourth vertex z4 and the same again for z4 to find the remaining fifth vertex z5. We
then connect the vertices and have constructed a regular pentagon with compass
and straightedge (see Figure 3.10).

0 1 z1
√

5 4 5 6

z2

z3

z4

z5

Figure 3.10: Step 4

3.4 Finite fields

Topics

� Frobenius endomorphism

� Fields with positive characteristic

� Formal derivative of a polynomial

� Existence and uniqueness of finite fields

In this section we want to talk briefly about finite fields. Not surprisingly, it is
far easier to understand the extensions of finte fields than of infinite fields. This
has very practical applications, as for example certain algorithms in cryptography
(namely the Advanced Encryption Standard AES) rely on the arithmetic in such
extensions of finite fields.
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We first record the following result.

Proposition 3.4.1. Let K be any field and U ≤ K× be a finite subgroup of K×.
Then U is cyclic, i.e. there is some z ∈ K such that every element in U is an
integer power of z.

Proof. Since K× is abelian, U is a finitely generated abelian group. If U were
not cyclic, the Main Theorem on Finitely Generated Abelian Groups implies that
there must be some prime number p and elements a, b ∈ U such that a and b, as
well as all expressions aibj with 0 ≤ i, j ≤ p− 1 and i + j > 0, have order p. But
this means that each of the p2 distinct elements aibj is a root of the polynomial
Xp − 1, which can have at most p distinct roots in K. Therefore we have a con-
tradiction so that U must be cyclic.

q.e.d.

We now introduce one of the most important maps for fields of positive character-
istic.

Lemma 3.4.2. Let K be a field of characteristic p > 0. Then the map

Φp : K → K, a 7→ ap

defines an endomorphism of K. If K is finite, the Φp is an automorphism of K.

Proof. Φp clearly maps 0 to 0 and 1 to 1 and for a, b ∈ K we have Φp(ab) =
Φp(a)Φp(b) and for a 6= 0 also Φp(a

−1) = Φp(a)−1. Note that the binomial coeffi-
cient

(
p
k

)
is divisible by p, therefore 0 in K, for each 0 < k < p, so that we have

for a, b ∈ K

Φp(a+ b) = (a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + bp = Φp(a) + Φp(b).

Therefore Φp is an endomorphism.
As a field homomorphism Φp is injective and since injective maps from any

finite set to itself are automatically also surjective we see that Φp is bijective if K
is finite.

q.e.d.

Definition 3.4.3. Let K be a field of characteristic p > 0. The endomorphism
from Lemma 3.4.2 is called the Frobenius endomorphism (or just the Frobenius)
of K.
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We now want to classify finite fields completely. In order to do so we need the
following general lemma which we also need in the next section.

Lemma 3.4.4. For any field K and a polynomial f = anX
n + ...+ a0 ∈ K[X] of

degree n we denote by f ′ := nanX
n−1+...+a1 the (formal) derivative of f . Suppose

f splits completely into linear factors, i.e. there are numbers α1, ..., αn ∈ K such
that f = an

∏n
j=1(X−αj). Then the αj are all distinct if and only if gcd(f, f ′) = 1.

Proof. Suppose that two of the αj are both equal to α ∈ K, so that (X −α)2 | f .
Thus we may write f = (X −α)2 · g for some g ∈ K[X] and we therefore find that
f ′ = 2(X − α)g + (X − α)2g′ = (X − α)(2g + (X − α)g′). Therefore (X − α) |
gcd(f, f ′).

If on the other hand we have gcd(f, f ′) 6= 1, then there must be some αj = α
such that (X − α) | gcd(f, f ′). We can therefore write f = (X − α)h for some
h ∈ K[X] and compute f ′ = h+ (X − α)h′. But since by asumption (X − α) | f ′,
this implies that (X − α) | h, wherefore we have (X − α)2 | f . Thus at least two
of the αj must be equal to α, so they are not all distinct.

q.e.d.

We now come to the announced classification theorem for finite fields.

Theorem 3.4.5. 1. Let K be a finite field. Then the characteristic of K is a
prime number p and #K = pn for some n ≥ 1.

2. On the other hand, for each prime power q = pn there is a field Fq with q
elements. This field Fq is unique up to isomorphism.

Proof.

1. We know from Proposition 2.1.26 that the characteristic of K is either 0 or
a prime number p. Since K is finite, the characteristic cannot be 0, so it
must be some prime p. Therefore K contains the prime field Fp = Z/pZ as
a subfield, so that it is in particular a finite-dimensional vector space over
Fp. Therefore we have #K = pn with n = [K : Fp].

2. Let p be a prime number and n be a natural number. We first show ex-
istence of a field with pn elements: Consider the polynomial f = Xpn −
X ∈ Fp[X] and let K denote its splitting field. Therefore we can factor

f =
∏pn

j=1(X − αj), where Z := {α1, ..., αpn} ⊆ K. Since f ′ = −1 in K[X],
we have gcd(f, f ′) = 1, so that by Lemma 3.4.4 we have #Z = pn. Now
f(0) = f(1) = 0 and more generally we find that a ∈ K is a root of f if
and only if Φn

p (a) = a. The nth power of the Frobenius is of course again
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a field automorphism, so that Z = Fix(Φp) is a subfield of K containing all
the roots of f , so in fact we have Z = K and #K = pn.

Now we show uniqueness of the field. Let L be any field with #L = pn. Then
the prime field of L is again isomorphic to Fp. Furthermore L× is a group with
pn−1 elements, so that we have ap

n−1 = 1 for all a ∈ L× = L\{0} (Exercise).
Therefore L contains the pn roots of the polynomial Xpn − X ∈ Fp[X],
making L the splitting field of said polynomial. Since the splitting field of
a polynomial is unique up to isomorphism by Theorem 3.2.8, we see that K
and L are indeed isomorphic as claimed.

q.e.d.

We conclude this section with a few consequences of this classification.

Remark 3.4.6. 1. Every a ∈ F×pn which generates F×pn as a group, satisfies
Fpn = Fp[a]. Such an a is called a primitive root of Fpn.

2. The subfields of Fpn are precisely Fpd for d | n.

3. For d | n we have

Fpd = {a ∈ Fpn : ap
d

= a} = Fix(Φd
p).

Proof. Exercise.
q.e.d.

3.5 Separable extensions

Topics

� Separable extensions and polynomials

� Perfect fields

� Primitive element theorem

In this section we discuss a special class of field extensions, now again for general
fields, which will be essential for the formulation of Galois Theory in Chapter 5.
We begin with a definition.

Definition 3.5.1. Let K be a field.
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1. Let f ∈ K[X] a polynomial. We call f separable if all roots of f in a splitting
field of f are distinct. Otherwise we call f inseparable.

2. Let E/K be a field extension and a ∈ E. We call a separable if its minimal
polynomial over K is separable. If every a ∈ E is separable, we call the
extension E/K separable.

As we saw in Lemma 3.4.4, it is usually fairly easy to test whether or not a
given polynomial is separable or not if it factors completely over the ground field
K. By the following remark, this is also true if it only splits in an extension field.

Remark 3.5.2. Let f, g ∈ K[X] be polynomials with coefficients in some field K
and let h := gcd(f, g) ∈ K[X]. Then we also have h = gcd(f, g) ∈ E[X] for any
extension field E/K.

Proof. Denote by h̃ ∈ E[X] the greatest common divisor of f and g in E[X].
It follows from the Euclidean algorithm that there exist polynomials α, β ∈

K[X] such that h = αf + βg. Now let s ∈ E[X] be a common divisor of f and
g in E[X], i.e. there are polynomials f̃ , g̃ ∈ E[X] such that f = sf̃ and g = sg̃.
Thus we find

h = αf + βg = s(αf̃ + βg̃),

so that s is a divisor of h in E[X]. In particular we have h̃ | h in E[X].
By the same argument applied with interchanged roles of h and h̃ we must also

have h | h̃, so h and h̃ can only differ by a constant factor.
q.e.d.

By this remark, Lemma 3.4.4 provides a general test for separability of a polyno-
mial. We illustrate this with an example.

Example 3.5.3. 1. Every irreducible polynomial over Q is separable. Indeed
let f ∈ Q[X] be irreducible. Then, since charQ = 0, and deg f ≥ 1, we have
f ′ 6= 0 and deg f ′ < deg f , so we must have gcd(f, f ′) = 1.

2. Let p be a prime number and let K = Fp(t) be the rational function field
over Fp. Then the polynomial Xp − t ∈ K[X] is clearly irreducible over K,
but we have f ′ = pXp−1 = 0 ∈ K[X], so that gcd(f, f ′) = f 6= 1.

As it turns out most extensions we consider in this course are separable.

Definition 3.5.4. A field K is called perfect if all its finite extensions are sepa-
rable.

Theorem 3.5.5. Let K be a field.
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1. If charK = 0, then K is perfect.

2. If K is a finite field, then K is perfect.

Proof.

1. This follows from the same argument we saw in Example 3.5.3 that every
irreducible polynomial over Q is separable, which is clearly equivalent to Q
being a perfect field.

2. Let f =
∑n

j=0 anX
n be an irreducible polynomial. If f ′ 6= 0, then f is separa-

ble by the same argument as above. So assume that f ′ =
∑n

j=1 jajX
j−1 = 0.

Therefore we can have aj 6= 0 only if j ≡ 0 (mod p), so we can write

f =

bn/pc∑
j=0

apjX
pj.

Since K is finite, we know that the Frobenius map Φp is an automorphism
of K, so for each apj there exists a unique bj such that Φp(bj) = bpj = apj.

Therefore the polynomial g =
∑bn/pc

j=0 bjX
j satisfies

gp =

bn/pc∑
j=0

bjX
j

p

=

bn/pc∑
j=0

bpjX
pj =

bn/pc∑
j=0

apjX
pj = f.

But this is a contradiction to f being irreducible, so that this case cannot
occur.

q.e.d.

Note that it is essential in the second part of the proof of Theorem 3.5.5 that
the field K be finite. Otherwise we cannot guarantee that the Frobenius is an
automorphism, and indeed it does not have to be, as we saw in Example 3.5.3.

We now address an important property of separable extensions. Recall that an
extension is called simple if it is generated by a single element, called a primitive
element (see Definition 3.1.6).

Theorem 3.5.6. (Primitive element theorem). Let K be a field and E = K(β, γ)/K
a finite extension, where γ is separable over K. Then there exists α ∈ E such that
E = K(α). In particular, every finite, separable extension is simple.
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Proof. If K is finite, then this follows from Theorem 3.4.5 and Remark 3.4.6, so
we assume from now on that K is infinite.

Let µβ, µγ ∈ K[X] be the minimal polynomials of β and γ over K and let L
be the splitting field of µβµγ over K. Thus we can write

µβ =
n∏
i=1

(X − βi), µγ =
m∏
j=1

(X − γj) ∈ L[X],

where we assume β = β1 and γ = γ1. Since γ is separable over K, we know that
γj 6= γj′ for j 6= j′. Since we assumed K to be infinite, there exists some a ∈ K
such that

βi + aγj 6= β + aγ for all 1 ≤ i ≤ n, 2 ≤ j ≤ m.

We define α := β + aγ and claim that E = K(α).
We have µβ(α − aγ) = µβ(β) = 0, so that γ is a root of h := µβ(α − aX) ∈

K(α)[X]. Therefore γ must also be a root of gcd(µγ, h) ∈ K(α)[X]. For each
j 6= 1 that h(γj) = µβ(β+aγ−aγj). By the choice of a, we have β+aγ−aγj 6= βi
for all i, so h(γj) 6= 0. Therefore the only common root of h and µγ is γ itself,
wherefore we must have gcd(h, µγ) = (X − γ), so that γ ∈ K(α) and thus also
β = α− aγ ∈ K(α), so that we find that K(α) = E as claimed.

q.e.d.

Example 3.5.7. As we saw in Example 3.2.2, the field K = Q( 4
√

2, i) is the
splitting field of the polynomial X4 − 2 ∈ Q[X]. It follows from the proof of
Theorem 3.5.6 that α = 4

√
2 + i is a primitive element for K, i.e. K = Q(α).

Indeed one can find explicitly by means of a somewhat tedious computation that

4
√

2 =
1

24
(5α7 + 19α5 + 5α3 + 151α) and i = − 1

24
(5α7 + 19α5 + 5α3 + 127α).

To conclude this section we add a remark on separable extensions in comparison
to the algebraic closure.

Remark 3.5.8. If E = K(α) ∼= K[X]/(f) is a minimal rupture field of an irre-
ducible polynomial f ∈ K[X] and K is a fixed algebraic closure of K, then any
K-homomorphism E ↪→ K maps a root of f to another root of f and it is uniquely
determined by the image of α. Therefore we have

#{ϕ : E ↪→ K : ϕ K-homomorphism} = #{β ∈ K : f(β) = 0}.

It follows therefore by Theorem 3.5.6 that for any finite separable extension E/K
of degree n that

#{ϕ : E ↪→ K : ϕ K-homomorphism} = n,
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since there exists a primitive element for E and its minimal polynomial has exactly
n distinct roots in K.

3.6 Normal extensions

Topics

� Normal extensions

� Classification as splitting fields of polynomials

We now proceed to study another important class of field extensions. Recall from
the discussion at the end of Section 3.2 that we assume that every field K has
an algebraic closure, which is unique up to isomorphism and which we denote by
K. Also recall the notion of a K-homomorphism (see Definition 3.2.3), i.e. a
homomorphism of two extension fields of K which acts as the identity on K.

Definition 3.6.1. Let K be a field and K its algebraic closure. We call an al-
gebraic extension K ⊆ E ⊆ K normal if every K-homomorphism ϕ : E → K
satisfies ϕ(E) = E.

When it comes to explicit examples, this definition is usually only useful to verify
that an extension is not normal.

Example 3.6.2. The extension E = Q( 4
√

2)/Q is not a normal extension. For
example the map defined by 4

√
2 7→ i 4

√
2 yields a Q-homomorphism ϕ : E → Q,

but it clearly doesn’t map E to itself.

With the following theorem, we find a very useful criterion to test whether or not
a given field extension is normal.

Theorem 3.6.3. Let E/K be a field extension. Then the following statements
are equivalent.

(i) E/K is normal.

(ii) Every irreducible polynomial f ∈ K[X] which has a root in E decomposes
into linear factors in E[X], i.e. all roots of f lie in E.

(iii) The minimal polynomial over K of each element in E decomposes into linear
factors in E[X].

(iv) The minimal polynomial over K of each generator of E decomposes into
linear factors in E[X].
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Proof. We first show the implication (i)⇒ (ii): Let f ∈ K[X] be irreducible and
let α ∈ E be a root of f . Suppose β ∈ K is another root of f . Then the fields K[α]
and K[β] are isomorphic over K as they can both be identified with K[X]/(f). We
call this isomorphism ϕ : K[α] → K[β], where ϕ(α) = β. By Lemma 3.2.11 (see
Chapter 6 for a proof), this isomorphism can be extended to a K-homomorphism
ψ : E → K. By assumption E is normal, so we have ψ(E) = E. But this implies
that β = ϕ(α) = ψ(α) ∈ E. Since β was an arbitrary root of f , it follows that all
roots of f lie in E, as claimed.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious. So we are left with showing
the implication (iv) ⇒ (i). For this let ϕ : E → K be a K-homomorphism and
let α ∈ E be a generator. We define β = ϕ(α) and let µβ ∈ K[X] be the minimal
polynomial of β over K. Our goal now is to show that β ∈ E. Since ϕ is a
K-homomorphism, we have

0 = µβ(β) = µβ(ϕ(α)) = ϕ(µβ(α)),

wherefore we must have µβ(α) = 0 since ϕ is injective. Since µβ ∈ K[X] is
irreducible, µβ is also the minimal polynomial of α. By assumption we therefore
find that µβ ∈ E[X] decomposes into linear factors, so E contains all roots of µβ
and thus in particular β ∈ E.

q.e.d.

For finite extensions E/K, which is what we usually deal with, the above result
gives the following important classification of normal extensions.

Corollary 3.6.4. Let E/K be a finite field extension. Then E/K is normal if
and only if E is the splitting field of a polynomial f ∈ K[X].

Proof. Let E/K be normal. Since E/K is finite by assumption, there exist
α1, ..., αr ∈ E such that E = K[α1, ..., αr]. Every αi has a minimal polynomial
µαi ∈ K[X], which by Theorem 3.6.3 decomposes into linear factors in E. There-
fore E is the splitting field of the polynomial

f =
r∏
i=1

µαi ∈ K[X].

Now suppose E is the splitting field of a polynomial f ∈ K[X]. Then E is
generated over K by the roots α1, ..., αr of f . Furthermore, the minimal polynomial
of each αi over K must divide f and since f decomposes into linear factors in E[X],
so does each of the minimal polynomials. So it follows again by Theorem 3.6.3
that E/K is normal.

q.e.d.
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Example 3.6.5. 1. The pth root of unity ζp = e2π i /p for a prime number p
generates the field Q(ζp)/Q. By definition ζp is a root of the pth cyclotomic
polynomial Φp = Xp−1 + ... + X + 1 ∈ Q[X], which by Example 2.2.15 is
irreducible over Q. All roots of Φp are given by ζkp , k = 1, ..., p−1, according
to Lemma 1.2.2, in particular Q(ζp) is the splitting field of Φp over Q, so
that the extension Q(ζp)/Q is normal.

2. Every extension E/K of degree [E : K] = 2 is normal.

3. Normality is not transitive: Let L = Q(
√

2) and E = Q( 4
√

2). Then the
extensions L/Q and E/L have degree 2 and are therefore both normal, but
as we saw in Example 3.6.2, the extension E/Q is not normal.

3.7 Transcendental extensions∗

Topics

� Basic properties of transcendental extensions

� Rudimentary Groebner bases

In our considerations up to now we have focussed on algebraic extensions. In this
short section, we take brief detour talking a little about transcendental extensions.
The easiest example of a transcendental extension of a field K is the field of rational
functions K(X) = FracK[X]. There are several interesting interesting questions
regarding for example transcendental extensions of Q as subfields of the real or
complex numbers. We will take a look at those in Appendix B. Here, we deal with
some general questions.

Definition 3.7.1. Let L/K be a field extension. A finite set A = {a1, ..., an} ⊂
L is called algebraically dependent over K, if there exists a polynomial f ∈
K[X1, ..., Xn]\{0}, called an algebraic dependence of A, such that f(a1, ..., an) = 0.
If such a polynomial does not exist, then the set is called algebraically independent.
An arbitrary subset A ⊆ L is called algebraically independent if each of its finite
subsets is algebraically independent.

When it comes to field extensions, we need the following concept.

Definition 3.7.2. Let L/K be a field extension. An algebraically independent
set B ⊂ L is called a transcendence basis of L over K, if L/K(B) is an algebraic
extension. If there is a transcendence basis B such that L = K(B), then we call
the extension L/K purely transcendental.
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Example 3.7.3. 1. Consider the field L = K(X) of rational functions over K.
Then B = {X} is a transcendence basis of L and L is purely transcendental
over K. Note however that B′ = {X3} is a transcendence basis of L as well,
since clearly [L : K(X3)] = 3 is finite and therefore algebraic.

2. Consider the field L = K(X)[Y ]/(Y 2 − X3 + X) over K. Then we could
choose {X} as a transcendence basis and we clearly have [L : K(X)] = 2. We
might just as well choose {Y } as a transcendence basis with [L : K(Y )] = 3.

One may ask whether every field extension admits a transcendence basis. Intu-
itively, this sounds reasonable (and is indeed true), but the proof relies again on
Zorn’s Lemma 6.1.9, wherefore we postpone it again to Chapter 6. We can however
say the following.

Theorem 3.7.4. Let L/K be a field extension and let B ⊂ L be a transcendence
basis of L. If B is finite, then for all transcendence bases B′ of L/K we have #B =
#B′ and one can exchange any element in B with any transcendental element in L
and obtain a transcendence basis. If B is infinite, then every transcendence basis
is infinite.

Proof. Suppose first that B = {β1, ..., βn} is finite and let α ∈ L is transcen-
dental over K. Since L/K(B) is algebraic we must have that α is algebraic over
K(B), which means that there is a polynomial 0 6= f ∈ K[Y,X1, ..., Xn] such that
f(α, β1, ..., βn) = 0. Since α is transcendental over K, at least one of the vari-
ables Xi must occur in f with a positive exponent, and we may assume without
loss of generality that this is the case for X1. It follows that β1 is algebraic over
K(α, β2, ..., βn), wherefore L is algebraic over K(α, β2, ..., βn). We claim that the
set {α, β2, ..., βn} is algebraically independent over K:

Suppose there is a polynomial 0 6= g ∈ K[Y,X2, ..., Xn] satisfying g(α, β2, ..., βn) =
0. As in the proof of Theorem 1.1.15, we introduce a lexicographical ordering on
K[Y,X1, ..., Xn] by imposing that Y � X1 � ... � Xn and for two monomials
m,m′ ∈ K[Y,X1, ..., Xn] we say that m � m′ if the exponents of all the variables
in order agree up to a point and then the exponent of the next smaller variable in m
is larger than that in m′. With respect to this ordering, compare the leading terms
in the polynomials f from above and g. We can now multiply both f and g by
suitable monomials and constants and take their difference to obtain a polynomial
f1, which then has a smaller leading term than the least common multiple of the
leading terms of f and g. We can then subtract a suitable multiple of f or g from
f1 to obtain a polynomial f2 with a smaller leading term than f1. Continuing this
process of constructing a polynomial fj from f, g, f1, ..., fj−1 with smaller leading
term can only be repeated finitely many times and at some point, we must arrive
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at a non-zero polynomial F ∈ K[Y,X1, ..., Xn], whose degree in Y is actually 0, in
other words we have

F (Y,X1, ...., Xn) = F (X1, ..., Xn).

Since f(α, β1, ..., βn) = g(α, β2, ..., βn) = 0, the same is true for all the polyno-
mials fj (since they are all of the form pjf + qjg for some polynomials f, g ∈
K[Y,X1, ..., Xn]) and therefore we also have F (α, β1, ..., βn) = F (β1, ..., βn) = 0.
But this means that the set {β1, ..., βn} would be algebraically dependent, which
is a contradiction. Therefore, our claim that the set {α, β2, ..., βn} is algebraically
independent is proven.

Therefore, {α, β2, ..., βn} is also a transcendence basis of L/K.
From what we have shown, it follows that we obtain a bijection between any

two (finite) transcendence bases by exchanging their elements successively, so they
must have the same number of elements.

In particular, if one transcendence basis is finite, all of them have to be, there-
fore it is also true that if we have an infinite transcendence basis of L/K, then all
transcendence bases must be infinite.

q.e.d.

When we used monomial orders in the proof of Theorem 3.7.4 to argue that an al-
gebraic dependence of {α, β2, ..., βn} yields an algebraic dependence of {β1, ..., βn},
we used, in a somewhat vague fashion, the concept of Groebner bases. It is very
important, e.g. in Algebraic Geometry, to study these bases, but a thorough dis-
cussion would take us too far afield for this course. We just illustrate the concept
with an example.

Example 3.7.5. Suppose we have the two polynomials f = Y 2 + Y X1 +X3
2 , g =

Y 3 + Y X2 − X2 ∈ Q[Y,X1, X2] and we want to construct a polynomial F ∈
Q[X1, X2] of the form pf + qg, where p, q ∈ Q[Y,X1, X2]. As described in the
proof of Theorem 3.7.4, the leading terms of f and g are Y 2 and Y 3 resp., so we
first obtain the polynomial

f1 = Y f1 − g = Y 2X1 + Y X3
2 − Y X2 +X2.

This has a larger leading term than f , but

f2 = f1 −X1f = −Y X2
1 + Y X3

2 − Y X2 −X1X
3
2 +X2

has a strictly smaller leading term (−Y X2
1 ) than either f or g.

We now want to construct a polynomial with yet a smaller leading term than
that of f2. For this consider first

f3 = Y f2 +X1f1 = Y 2(X3
2 −X2) + Y (−X1X2 +X2) +X2X1,
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whose leading term can be reduced below that of f2 using a multiple of the poly-
nomial f :

f4 = f3 − (X3
2 −X2)f = Y (−X1X

3
2 +X2) +X1X2 −X6

2 + x4
2.

Continuing in this way successively yields

f5 = X1f4 −X3
2f2 = Y (X1X2 −X6

2 +X4
2 ) +X2

1X2 +X1X
4
2 −X4

2

f6 = X1f5 +X2f2 = Y (−X1X
6
2 +X1X

4
2 +X4

2 −X2
2 ) +X3

1X2 +X2
1X

4
2 − 2X1X

4
2 +X2

2

f7 = f6 + (X5
2 −X3

2 )f5 = Y (−X11
2 + 2X9

2 −X7
2 +X4

2 −X2
2 ) +X3

1X2 +X2
1X

6
2

+X9
2X1 −X7

2X1 − 2X4
2X1 −X9

2 +X7
2 +X2

2

f8 = X1f7 + (X10
2 − 2X8

2 +X6
2 +X3

2 +X2)f5

= Y (2X1X
4
2 −X16

2 + 3X14
2 − 3X12

2 +X10
2 −X9

2 +X5
2 )

+X4
1X2 +X3

1X
6
2 +X2

1X
11
2 −X2

1X
9
2 −X2

1X
4
2 +X2

1X
2
2 +X1X

14
2

− 2X1X
12
2 +X1X

10
2 −X1X

9
2 + 2X1X

7
2 +X1X

5
2 +X1X

2
2

−X14
2 + 2X12

2 −X10
2 −X7

2 −X5
2

f9 = f8 − (X5
2 −X3

2 )f7 = X4
1X2 +X3

1X
4
2 − 3X2

1X
4
2 +X2

1X
2
2 +X1X

9
2 − 2X1X

7
2

+X1X
5
2 +X1X

2
2

So we find a polynomial F = f9 in the ideal generated by f and g which is
independent of Y .

By Theorem 3.7.4, the following definition makes sense.

Definition 3.7.6. Let L/K be a field extension and letB ⊂ L be a finite transcen-
dence basis of L. Then we define the transcendence degree of L/K as trdeg(L/K) :=
#B.

We note the following corollary from Theorem 3.7.4.

Corollary 3.7.7. Let E/L and L/K be field extensions of finite transcendence
degree. Then we have

trdeg(E/K) = trdeg(E/L) + trdeg(L/K).

Proof. Exercise.
q.e.d.
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Chapter 4

Group Theory

Groups are among the most fundamental objects in Algebra. In this chapter we
establish some basic facts on groups and their actions which we will need in the
following chapter to establish Galois Theory. Many of the facts at least in the first
section are probably known from previous courses, but for the sake of completeness,
we at least sketch most of the proofs.

4.1 Normal subgroups and the homomorphy the-

orem

We begin by recalling the definition of a group.

Definition 4.1.1. A set G 6= ∅ with a map G × G → G, (g, h) 7→ gh is called a
group if the following properties are satisfied:

1. For g, h, k ∈ G we have (gh)k = g(hk) (Associativity).

2. There exists an element 1 ∈ G such that 1g = g for all g ∈ G (Existence of
1).

3. For all g ∈ G there is h ∈ G such that gh = 1 (Existence of inverses). We
usually write h = g−1.

Example 4.1.2. 1. Any ring R forms a group with respect to addition. It is
even a commutative or abelian group. With respect to multiplication, the
units of a ring form an abelian group as well.

2. We have already encountered the symmetric group Sn of all permutations of
n objects. The multiplication map is the composition of maps. For n ≥ 3,
this group is not abelian.

81
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3. For a vector space V over a field K, the linear, bijective maps V → V form
a group under composition of maps, the general linear group GL(V ) of V .
Choosing a basis of V , this yields the group GLn(K) of all invertible n × n
matrices over K, which form a group under matrix multiplication.

One usually encounters groups via their actions. In geometry, such actions
correspond to symmetries of an object.

Definition 4.1.3. Let G be a group and M be a set. Then a map G ×M →
M, (g, x) 7→ g.x is called a (left) group action if

1. 1.x = x for all x ∈M ,

2. For all g, h ∈ G and x ∈M we have g.(h.x) = (gh).x.

Example 4.1.4. There are several important actions of G on itself: One (easy)
example is via left-multiplication. Somewhat more intricate is the action of G on
itself is the action via conjugation,

(g, x) 7→ gxg−1.

For later reference we define the following concepts regarding group actions.

Definition 4.1.5. Let G be a group and M a set, such that G acts on M from
the left.

1. For x ∈M we call G.x := {g.x : g ∈ G} the orbit of x under G.

2. If there exists x ∈ M such that G.x = M , we call the action of G on M
transitive. Note that in this case, every x ∈M satisfies G.x = M .

3. For x ∈ M we call the set StabG(x) := {g ∈ G : g.x = x} the stabiliser of
x in G.

We now define maps between groups.

Definition 4.1.6. Let G,H be groups.

1. A map ϕ : G→ H is called a group homomorphism if for g1, g2 ∈ G we have

ϕ(g1g2) = ϕ(g1)ϕ(g2).

If in addition ϕ is bijective (injective, surjective), we say that ϕ is a group
isomorphism (monomorphism, epimorphism).

2. If there exists an isomorphism ϕ : G → H, we say that G and H are
isomorphic and write G ∼= H.
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3. The group of maps

Aut(G) := {ϕ : G→ G : ϕ is an isomorphism},

which is a group under composition of maps, is called the automorphism
group of G.

Remark 4.1.7. It is easy to see that each g ∈ G induces an automorphism
κg : G → G via κg(x) = gxg−1. Such an automorphism is called an inner au-
tomorphism and we write Inn(G) for the group of inner automorphisms of G. In
other words

κ : G→ Aut(G), g 7→ κg

is a homomorphism of groups.

Definition 4.1.8. Let G be a group.

1. A subset U ⊆ G is called a subgroup of G if 1 ∈ U and for u, v ∈ U we have
uv ∈ U and u−1 ∈ U . We write U ≤ G.

2. We call N ≤ G a normal subgroup if for all n ∈ N and g ∈ G we have
gng−1 ∈ N . We then write N EG.

3. We call N ≤ G a characteristic subgroup of G if α(N) = N for all α ∈
Aut(G).

4. The centre of G is the subgroup

Z(G) := {g ∈ G : gh = hg for all h ∈ G} = Ker(κ).

5. For g, h ∈ G we call [g, h] := g−1h−1gh the commutator of g and h. The
smallest subgroup of G containing all commutators of elements in G is called
the commutator subgroup or derived subgroup of G,

G′ = 〈[g, h] : g, h ∈ G〉.

Remark 4.1.9. 1. Let ϕ : G → H be a homomorphism of groups. Then
Kerϕ := {g ∈ G : ϕ(g) = 1} E G is a normal subgroup of G and
Im(ϕ) := {h ∈ H : h = ϕ(g) for some g ∈ G} ≤ H is a subgroup of
H, which is in general not normal.

2. Characteristic subgroups are in particular normal subgroups.

3. Both Z(G) and G′ are characteristic subgroups of G.



84 4.1. NORMAL SUBGROUPS AND THE HOMOMORPHY THEOREM

4. The factor group G/G′ is abelian. Indeed any normal subgroup N EG such
that G/N is abelian satisfies G′ EN .

5. If G is a group, N EG is a normal subgroup and C EN is a characteristic
subgroup of N , then CEG is a normal subgroup in G. In general this is not
true if C is just a normal subgroup of N .

Proof. Exercise.
q.e.d.

We now turn to an important structural theorem on groups, which in a similar
way also exists for rings.

Theorem 4.1.10. (Homomorphy theorem)

1. Let G be a group and N EG a normal subgroup. Then G/N := {gN : g ∈
G}, where we say gN = hN if and only if gh−1 ∈ N , is a group with the
multiplication defined (gN)(hN) := (gh)N , called the factor group of G by
N . The map ν : G → G/N, g 7→ gN defines an epimorphism, called the
canonical epimorphism.

2. Let G,H be groups and let ϕ : G→ H be a group homomorphsim. Then for
N := Kerϕ, the map ϕ : G/N → H, gN → ϕ(g) is injective and we have
ϕ = ϕ ◦ ν, i.e. the following diagram commutes:

G H

G/Kerϕ

ν

ϕ

ϕ

In particular we have that Im(ϕ) ∼= G/N .

Proof.

1. This proof is almost exactly the same as the proof of Proposition 2.1.8,
except that we have to pay attention to the fact that multiplication in G is
not necessarily commutative. First we note that the multiplication defined
above is indeed well-defined. For this let g, g̃, h, h̃ ∈ G such that gN = g̃N
and hN = h̃N , i.e. there exist n1, n2 ∈ N such that g = g̃n1 and h = h̃n2.
Then we have

gh = (g̃n1)(h̃n2) = g̃h̃ h̃−1n1h̃︸ ︷︷ ︸
∈N

n2 = (g̃h̃)n′
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for some n′ ∈ N , so we have (gN)(hN) = (g̃N)(h̃N). The group axioms
in G/N follow directly from those in G and so does the claim about the
canonical epimorphism ν.

2. First we show again that ϕ is well-defined: If we have g, g̃ ∈ G such that
there exists n ∈ N = Kerϕ with g = g̃n, then

ϕ(gN) = ϕ(g) = ϕ(g̃n) = ϕ(g̃)ϕ(n) = ϕ(g̃) = ϕ(g̃N).

Furthermore ϕ is clearly a homomorphism by the definition of the multiplica-
tion in G/N . We now note that a group homomorphism ψ : G→ H is injec-
tive if and only if Kerψ = {1} (Exercise). We have that ϕ(gN) = ϕ(g) = 1
if and only if g ∈ Kerϕ, whence gN = 1N ∈ G/N , therefore ϕ is injective.

Next we note that for g ∈ G we have

ϕ(ν(g)) = ϕ(gN) = ϕ(g),

so that the diagram does commute. Since Im(ϕ) = Im(ϕ), we also find the
claimed isomorphism.

q.e.d.

A useful corollary of the homomorpy theorem is the following “cancellation rule”
for normal subgroups.

Corollary 4.1.11. Let G be a group and N1, N2 EG normal subgroups such that
N2 ≤ N1. Then the following are true.

1. The factor group N1/N2 is a normal subgroup in G/N2.

2. We have that (G/N2)/(N1/N2) ∼= G/N1.

Proof. Exercise.
q.e.d.

In what follows, we will mainly be concerned with finite groups. From now on, all
groups G will be finite groups, unless explicitly stated otherwise. For those the
following theorem attributed to Lagrange is often important.

Theorem 4.1.12. (Lagrange’s theorem) Let G be a finite group and U ≤ G a
subgroup. Then (#U) | (#G).
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Proof. U acts on G via left-multiplication. This defines an equivalence relation
on G via g ∼ h if and only if there is u ∈ U such that ug = h. The equivalence
classes now partition G, i.e. there exist representatives 1 = g1, ..., gr ∈ G such that
for each g ∈ G there exists exactly one j ∈ {1, ..., r} such that g = ugj for some
u ∈ U . Clearly all these equivalence classes have the same cardinality #U , so that
we obtain that

#G =
r∑
j=1

#(Ugj) = r#U.

q.e.d.

When we discuss soluble groups in Section 4.2 we shall need the following rather
special result on so-called p-groups.

Proposition 4.1.13. Let G be a p-group, i.e. #G = pr for some r ≥ 1 and a
prime number p. Then the following are true.

1. The centre of G is non-trivial, Z(G) 6= {1}.

2. We have G 6= G′.

Proof.

1. Consider the action of G on itself via conjugation. As in the proof of Theo-
rem 4.1.12, this action defines an equivalence relation, where we say x ∼ y
for x, y ∈ G if there is some g ∈ G such that x = gyg−1. The orbit of
any element x ∈ G, i.e Gx := {gxg−1 : g ∈ G} has length #G/#CG(x)
where CG(x) := {g ∈ G : gxg−1 = x} denotes the centraliser of x in G.
Since CG(x) is a subgroup of G (exercise), its order must be a power of p by
Lagrange’s Theorem 4.1.12. The orbits again partition the group, i.e. there
exist x1, ..., xn ∈ G such that G =

⋃n
j=1

Gxj and any two of these orbits are
either equal or disjoint. Now we have that g ∈ Z(G) if and only if CG(g) = G
by definition, so if and only if #Gg = 1. So we have

pr = #G =
∑

gj∈Z(G)

#Ggj +
∑

gj /∈Z(G)

#Ggj = #Z(G) +
∑

gj /∈Z(G)

#Ggj.

Since #Ggj is divisible by p for gj /∈ Z(G), we must also have that #Z(G)
is divisible by p, so in particular it cannot be 1.

2. Suppose G is a counterexample of minimal order. Then, since Z(G) is non-
trivial and a normal subgroup of G, the factor group H = G/Z(G) is not
a counterexample. Therefore we must either have H = {1} or H ′ 6= H.
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In the first case, G must be abelian and G′ = {1} 6= G, so G is not a
counterexample and we have a contradiction. Therefore suppose we are in the
latter case, H 6= H ′. Since for g, h ∈ G we have [gZ(G), hZ(G)] = [g, h]Z(G)
it follows from the fact that (G/Z(G))′ 6= G/Z(G) that G′Z(G) 6= G, so in
particular G′ 6= G, so again G is not a counterexample and we arrive again
at a contradiction.

q.e.d.

4.2 Soluble groups

In this section we introduce the concept of soluble groups.

Definition 4.2.1. 1. For a group G we define its kth derived subgroup G(k)

inductively by setting

G(0) := G, G(k) = (G(k−1))′, k > 0.

The resulting series of normal subgroups

G = G(0) DG′ DG(2) D ...

is called the commutator series of G.

2. The group G is called soluble if there exists a k ∈ N such that G(k) = {1}.

Example 4.2.2. 1. Any abelian group is soluble, since G is abelian if and only
if G′ = {1}.

2. Any p-group G is soluble, since we know by Proposition 4.1.13 that G′ 6= G,
so the groups in the commutator series must become smaller in each step
and thus the series must arrive at {1} eventually.

3. Consider the group S4 of permutations of 4 elements, which we identify with
the numbers {1, 2, 3, 4}. Recall that we can represent these permutations
by cycles : For example the cycle (1, 3, 4) represents the permutation π with
π(1) = 3, π(3) = 4, π(4) = 1 and π(2) = 2.

The commutator subgroup of S4 is given by the alternating group S ′4 = A4

consisting of all even permutations. This can be seen for example by noting
that each commutator in S4 is in A4 since every commutator gives rise to an
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even permutation and one can check that every 3-cycle in S4 can be written
as a commutator,

(1, 2, 3) = [(1, 3), (2, 3)], (1, 2, 4) = [(1, 4), (2, 4)], (2, 3, 4) = [(2, 4), (3, 4)]

and the 3-cycles generate A4.

The commutator subgroup ofA4 is known as the Klein 4-group V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉,
which has order 4 and every element (except 1) has order 2. It can be realised
as the symmetry group of a rectangle and it is abelian, so we have V ′4 = {1}.
Therefore the commutator series of S4 is given by

S4 D A4 D V4 D {1}

and we see that S4 is soluble.

The following theorem gives an alternative description of soluble groups which is
sometimes easier to work with.

Theorem 4.2.3. A group G is soluble if and only if there is a subnormal series

G = G0 DG1 DG2 D ...DGr = {1}

(N.B.: we require Gi E Gi−1 but not necessarily Gi E G), such that each factor
group Gi/Gi+1, i = 0, ...r − 1, is abelian.

Proof. Since for i ≥ 1 we have G(i) = (G(i−1))′, each factor group in the commu-
tator series is abelian, so the commutator series provides a subnormal series with
the desired properties.

Suppose on the other hand we have a subnormal series

G = G0 DG1 DG2 D ...DGr = {1}

such that each factor group Gi/Gi+1 is abelian. Therefore by Remark 4.1.9 G′i E
Gi+1 for all i = 0, ..., r − 1. It follows by induction that G(i) E Gi for all i, so in
particular G(r) = {1}, wherefore G is soluble.

q.e.d.

In order to decide whether or not a given group is soluble it is often useful to rely
on the following result.

Proposition 4.2.4. Let G be a group.

1. If G is soluble and U ≤ G is a subgroup, then U is soluble.



CHAPTER 4. GROUP THEORY 89

2. If G is soluble and N EG is a normal subgroup, then the factor group G/N
is soluble.

3. Let N EG be a normal subgroup. If both N and G/N are soluble, then so is
G.

Proof.

1. Suppose G(k) = {1} for some k ∈ N. If U ≤ G, it is clear that U (i) ≤ G(i)

for all i and therefore we have U (k) = {1}, wherefore U is soluble.

2. We first note that for any homomorphism ϕ : G → H we have ϕ(G(i)) =
(ϕ(G))(i) (Exercise) for every i ≥ 0. Supposing again that G(k) = {1} for
some k ∈ N, this implies for the canonical epimorphism ν : G→ G/N that

(G/N)(k) = (ν(G))(k) = ν(G(k)) = ν({1}) = {1N},

so that G/N is soluble.

3. Suppose that we have N (k) = {1} and (G/N)(n) = {1N} for suitable k, n ∈
N. Consider again the canonical epimorphism ν : G→ G/N . Then we have

{1N} = (G/N)(n) = ν(G)(n) = ν(G(n)),

so that we must have G(n) ≤ N . But then it follows that

G(n+k) = (G(n))(k) ≤ N (k) = {1},

wherefore G(n+k) = {1} and G is soluble as claimed.

q.e.d.

Example 4.2.5. Consider the so-called dihedral group D4 ≤ S4 generated by the
4-cycle ρ = (1, 2, 3, 4) and the double transposition τ = (1, 2)(3, 4). It can be
thought of as the symmetry group of a square: Label the vertices of a square by
the numbers 1, 2, 3, 4:

1 2

34
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Then the permutation ρ corresponds to a rotation of the square around the centre
by 90◦, and τ represents the reflection at the axis marked by the dashed line. It is
easy to check that D4 is not abelian (the two generators don’t commute) and that
#D4 = 8. The subgroup N = 〈ρ〉 has order 4 and thus index 2 in D4, wherefore
we have N ED4. N is clearly abelian (as a cyclic group) and hence soluble, and
the factor group D/N ∼= 〈τ〉 has order 2 and is therefore also abelian and hence
soluble, so that by Proposition 4.2.4, D4 is soluble.

The same reasoning applies for all dihedral groups Dn ≤ Sn, n ≥ 3: It is
the symmetry group of the regular n-gon and generated by the n-cycle (1, 2, ..., n)
(corresponding to a rotation by (360/n)◦) and a transposition τ corresponding to
a reflection along a symmetry axis containing at most one vertex of the n-gon. It
has order 2n, is not abelian, but soluble.

To conclude this chapter, we consider an important example of a non-soluble
group.

Definition 4.2.6. A group G is called simple if it has no non-trivial normal sub-
groups, i.e. if N EG then either N = {1} or N = G.

Example 4.2.7. The easiest examples of simple groups are the cyclic groups of
prime order Cp: By Lagrange’s Theorem 4.1.12, the order of any subgroup of Cp
has to divide the order p of Cp, but since p is prime, this means that the order
can only be 1 or p, so in fact, Cp doesn’t have any non-trivial subgroups, let alone
normal ones. In fact all abelian simple groups are isomorphic to Cp for some prime
p.

Note that since G′ E G, any non-abelian simple group must satisfy G = G′ (i.e.
G is perfect), so that non-abelian simple groups provide examples of non-soluble
groups. The rest of this section will be devoted to establishing a whole family of
non-abelian simple groups.

For this recall the following definition.

Definition 4.2.8. Let n ∈ N. Then each permutation π ∈ Sn can be written as
a product of transpositions (2-cycles) (ij) with i, j ∈ {1, ..., n} and we call

signπ := (−1)#{transpositions in π}

the sign of π. We call π even (resp. odd) if sign(π) = 1 (resp. sign(π) = −1).
The alternating group An is defined as the group of all even permutations in

Sn.

Theorem 4.2.9. The alternating group An is simple for n ≥ 5. In particular, the
symmetric group Sn is not soluble for n ≥ 5.
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Proof. Claim 1: An is generated by 3-cycles: Each permutation π ∈ An can be
written as product of an even number of 2-cycles, say

π = (a1, b1)(c1, d1)...(ar, br)(cr, dr),

where we may always assume that ai 6= bi and ci 6= di and the transpositions
(ai, bi) and (ci, di) are not identical (otherwise they would cancel and we wouldn’t
have needed them). As one easily computes, if a, b, c, d are all distinct, we have

(a, b)(c, d) = (a, c, b)(a, c, d)

and if a, b, c are all distinct, we have

(a, b)(b, c) = (a, b, c).

Therefore, each pair of transpositions (ai, bi)(ci, di) above can be replaced by either
one or two 3-cycles. Therefore An is generated by 3-cycles.

Claim 2: All 3-cocycles are conjugate in An: Recall that the action of Sn on
cycles by conjugation is simply given by

π−1(a1, ..., ar)π = (π(a1), ..., π(ar)).

In particular, for any 3-cycle (a1, a2, a3) in An, there is some π ∈ Sn such that
(a1, a2, a3) = π−1(1, 2, 3)π. If π is even, then π ∈ An and we are done, if not then
define τ = (4, 5)π. Then τ is even and we have

τ−1(1, 2, 3)τ = π−1(4, 5)(1, 2, 3)(4, 5)π = π−1(1, 2, 3)π = (a1, a2, a3),

proving the claim.
Now let {1} 6= N E An be a normal subgroup. By Claim 2, it suffices to show

that N contains a 3-cycle to show that N = An and therefore that An is simple.
Case 1: Suppose that N contains an element of the form π = (1, ..., r)τ for some

r ≥ 4 and τ is a product of cycles containing only elements > r. For δ = (1, 2, 3)
it follows that δ−1πδ ∈ N since N E An and therefore also

π−1δ−1πδ = (r, ..., 1)(1, 3, 2)(1, ..., r)(1, 2, 3) = (2, 3, r) ∈ N.

Therefore N contains a 3-cycle and we have N = An.
Case 2: Suppose N contains an element of the form π = (1, 2, 3)(4, 5, 6)τ , where

τ is a product of cycles containing only elements > 6. Then set δ = (1, 2, 4) and
observe that by a similar computation as in Case 1 we find that

π−1δ−1πδ = (1, 3, 2)(4, 6, 5)(1, 4, 2)(1, 2, 3)(4, 5, 6)(1, 2, 4) = (1, 2, 3, 4, 5, 6) ∈ N,
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so N contains a 3-cycle by Case 1.
Case 3: Suppose N contains an element of the form (1, 2, 3)τ where τ is a

product of disjoint transpositions permuting elements≥ 4. Then π2 = (1, 3, 2) ∈ N
and we have found our 3-cycle.

Case 4: Suppose N contains an element of the form π(1, 2)(3, 4)τ , where τ is a
product of disjoint transpositions permuting elements ≥ 5. Then let δ1 = (1, 2, 3)
and δ2 = (1, 2, 5). Then we have

σ1 = π−1δ−1
1 πδ1 = (1, 4)(2, 3) ∈ N

and
σ2 = δ−1

2 σδ2 = (1, 3)(4, 5) ∈ N.

Thus we also have σ1σ2 = (1, 2, 3, 4, 5) ∈ N and we have a 3-cycle in N by Case 1.
Since it is clearly always possible to conjugate any element in An into one of

those forms, it follows that any non-trivial normal subgroup of An contains a 3-
cycle and therefore equals An, wherefore An is simple.

q.e.d.

4.3 Composition series and the Theorem of Jordan-

Hölder∗

The definition of a soluble group relies on the commutator series (see Defini-
tion 4.2.1). In this section we have a closer look at related series which we now
define.

Definition 4.3.1. Let G be a group.

1. A collection of subgroups G0 = G,G1, ..., Gr = {1} satisfying

G0 DG1 DG2 D ...DGr = {1},

i.e. GiEGi−1 for i = 1, ..., r (but not necessarily GiEG), is called a subnormal
series of G.

2. A subnormal series

G = G0 DG1 DG2 D ...DGr = {1}

is called a composition series if all its composition factors Gi−1/Gi, i =
1, ..., r, are simple.
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Note that we have already encountered this concept in Theorem 4.2.3 and that
the commutator series is an example of a subnormal series. It is however not
necessarily a composition series.

Example 4.3.2. 1. As we have seen in Example 4.2.2, the commutator series
of the group S4 is given by

S4 D A4 D V4 D {1}.

The factor groups are S4/A4
∼= C2, A4/V4

∼= C3, and V4. The first two
factors are simple, but V4 is not simple, so it is not a composition series. We
can however refine the subnormal series by introducing a non-trivial normal
subgroup of V4. Note that V4 is abelian so every subgroup is normal and a
non-trivial subgroup is cyclic of order 2. Thus a composition series of S4 is
given by

S4 D A4 D V4 D C2 D {1}

With composition factors isomorphic to C2, C3, C2, C2.

2. Let n ≥ 5. By Theorem 4.2.9, the group An is simple, and it is a normal
subgroup of index 2 in Sn. The factor group is therefore simple and

Sn D An D {1}

is a composition series for Sn for n ≥ 5.

We now want to show that any group has essentially only one composition series.
For this we need three preliminary results. The first of these is attributed to Emmy
Noether.

Theorem 4.3.3. (Noether’s Isomorphy Theorem) Let G be a group, N E G a
normal subgroup and U ≤ G an arbitrary subgroup. Then the following are true.

1. The set N · U := {n · u : n ∈ N, u ∈ U} is a subgroup of G, NU ≤ G.

2. N is a normal subgroup of NU , N ENU .

3. The group N ∩ U is a normal subgroup of U , (N ∩ U) E U .

4. The factor groups NU/N and U/(N ∩U) are isomorphic, NU/N ∼= U/(N ∩
U).
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G

NU

E

N

U

E

N ∩ U

{1}

Proof.

1. We clearly have 1 ∈ NU . Now let g1 = n1u1, g2 = n2u2 ∈ NU , i.e.
n1, n2 ∈ N and u1, u2 ∈ U . It suffices to show that g1g

−1
2 ∈ NU (exercise).

We have

g1g
−1
2 = n1u1u

−1
2 n−1

2 = n1u1u
−1
2 n−1

2 (u1u
−1
2 )−1u1u

−1
2 .

Since N is a normal subgroup in G we have u1u
−1
2 n−1

2 (u1u
−1
2 )−1 ∈ N and

hence also n1u1u
−1
2 n−1

2 (u1u
−1
2 )−1 ∈ N and since U is a subgroup we have

u1u
−1
2 ∈ U , so that indeed g1g

−1
2 ∈ NU .

2. Since N is a normal subgroup in G, it is also normal in any subgroup of G
containing N , so in particular in NU .

3. Let n ∈ N ∩U and u ∈ U . Then we have unu−1 ∈ N because n ∈ N and N
is normal in G and also unu−1 ∈ U because we assumed n ∈ U . Therefore
unu−1 ∈ N ∩ U , wherefore N ∩ U E U as claimed.

4. Consider the map ϕ : U → G/N, u 7→ uN , the restriction of the canonical
epimorphism to U . Then we have Im(ϕ) = NU/N , since for any nu ∈ NU
we have nuN = uu−1nuN = uN = ϕ(u), and clearly Ker(ϕ) = N ∩ U .
Therefore it follows from the Homomorphy Theorem 4.1.10 that

NU/N = Im(ϕ) ∼= U/Ker(ϕ) = U/(N ∩ U).

q.e.d.

The next result one was discovered by Zassenhaus.
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Theorem 4.3.4. (Butterfly lemma) Let G be a group and U, Ũ , V, Ṽ be subgroups,

such that Ũ E U and Ṽ E V . Then we have

Ũ(U∩V )/Ũ(U∩Ṽ ) ∼= (U∩V )Ṽ/(Ũ∩V )Ṽ .

U

Ũ(U ∩ V )

U ∩ V

W

Ũ ∩ V

Ũ

Ũ(U ∩ Ṽ )

V

(U ∩ V )Ṽ

U ∩ Ṽ

Ṽ

(Ũ ∩ V )Ṽ

W = (Ũ ∩ V )(U ∩ Ṽ )

Proof. By Noether’s Isomorphy Theorem 4.3.3 we know that Ũ ∩ V and U ∩ Ṽ
are both normal subgroups of U ∩ V and that we have isomorphisms

ϕ :(U ∩ V )/(Ũ ∩ V )→ (Ũ(U ∩ V ))/Ũ , ψ : (U ∩ V )/(U ∩ Ṽ )→ ((U ∩ V )Ṽ )/Ṽ .

We now claim that W = (Ũ ∩ V )(U ∩ Ṽ ) is normal in U ∩ V . Let w = w1w2 ∈ W
with w1 ∈ Ũ ∩ V and w2 ∈ U ∩ Ṽ and g ∈ U ∩ V . Then we have gwg−1 =
(gw1g

−1)(gw2g
−1) and since Ũ ∩ V and U ∩ Ṽ are both normal in U ∩ V it follows

that gw1g
−1 ∈ Ũ ∩ V and gw2g

−1 ∈ U ∩ Ṽ , wherefore gwg−1 ∈ W , whence W is
indeed normal in U ∩ V . It follows that

ϕ(W/(Ũ ∩ V )) = ŨW/Ũ = Ũ(U ∩ Ṽ )/Ũ
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and
ψ(W/(U ∩ Ṽ )) = WṼ /Ṽ = (Ũ ∩ V )Ṽ /Ṽ .

Therefore we have found that ϕ induces an isomorphism

(U ∩ V )/W ∼= ((U ∩ V )/(Ũ ∩ V ))/(W/(Ũ ∩ V )) ∼= (Ũ(U ∩ V ))/(Ũ(U ∩ Ṽ )),

where the first isomorphism is justified by Corollary 4.1.11.
Similarly, ψ induces an isomorphism

((U ∩ V )Ṽ )/((Ũ ∩ V )Ṽ ) ∼= (U ∩ V )/W,

from where the claim follows.
q.e.d.

We now apply the Butterfly Lemma to show the following important step towards
the main theorem of this section.

Theorem 4.3.5. (Refinement Theorem of Schreier-Zassenhaus) Let G be a group
and suppose we have two subnormal series

G = G0 DG1 D ...DGr = {1} and G = H0 DH1 D ...DHs = {1}.

Define the groups Gi,j := Gi(Gi−1 ∩ Hj) and Hi,j := Hj(Hj−1 ∩ Gi). Then we
obtain the following refinements of the two subnormal series above,

G = G1,0 DG1,1 D ...DG1,s = G1 = G2,0 DG2,1 D ...DGr,s = {1}

and

G = H0,1 DH1,1 D ...DHr,1 = H1 = H0,2 DH1,2 D ...DHr,s = {1},

where we have that
Gi,j−1/Gi,j

∼= Hi−1,j/Hi,j.

In particular, all the factor groups obtained from both refined subnormal series are
pairwise isomorphic afer reordering.

Proof. As we saw in the proof of the Butterfly Lemma 4.3.4, we do indeed have
Gi,j D Gi,j+1 and Hi,j D Hi+1,j. Note also that Hs = Gr = {1}, wherefore we
have Gi,s = Gi(Gi−1 ∩ {1}) = Gi and Gi+1,0 = Gi+1(Gi ∩H0) = Gi and similarly
Hr,j = Hj = H0,j+1, so the refined series are in fact refinements of the original
ones.

Looking at the factor groups we have

Gi,j−1/Gi,j = Gi(Gi−1 ∩Hj−1)/(Gi(Gi−1 ∩Hj))
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and
Hi−1,j/Hi,j = Hj(Gi−1 ∩Hj−1)/(Hj(Gi ∩Hj−1))

and these groups are isomorphic according to the Butterfly Lemma 4.3.4.
q.e.d.

We are now ready to prove the announced result, the Theorem of Jordan-Hölder,
which states that each group has in a sense just one composition series. Recall
from Definition 4.3.1 that a composition series of a group is a subnormal series
where all the factor groups are simple groups.

Theorem 4.3.6. (Jordan-Hölder) Let G be a group a with composition series

G = G0 DG1 D ...DGr = {1} and G = H0 DH1 D ...DHs = {1}

such that Gi 6= Gi+1 and Hj 6= Hj+1. Then we have r = s and there is some
permutation π ∈ Sr such that the factor groups Gi/Gi+1 and Hπ(i)/Hπ(i)+1 are
isomorphic.

Proof. We apply the Refinement Theorem of Schreier-Zassenhaus 4.3.5 to the
two composition series. Since all the factor groups Gi/Gi+1 and Hj/Hj+1 are
simple, all of the groups in the refined series must satisfy Gi,j = Gi or Gi,j = Gi+1

(resp. Hi,j = Hj or Hi,j = Hj+1 for all i, j. This shows that after elimintaing
the duplicate groups in the refined subnormal series, we must have r = s. The
isomorphy of the composition factors follows from Theorem 4.3.5 again, since the
only non-trivial factor groups in the refined series are those which occur in the
original composition series.

q.e.d.

Remark 4.3.7. It is because of the Theorem of Jordan-Hölder that one sometimes
makes the comparison of simple groups to primes. In a way, all groups can be
built from simple groups in an essentially unique way. The analogy is however
not perfect, since it can happen that two non-isomorphic groups have isomorphic
composition factors. For instance the groups S5 and A5 ×C2 have the same order
and isomorphic composition factors (namely A5 and C2), but the two groups are
not isomorphic, which can be seen for instance by noting that A5×C2 contains an
element of order 10 and S5 does not.
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Chapter 5

Galois Theory

In this chapter we collect the results both on fields and groups we have collected
so far to introduce some of the main results of Galois Theory, which aims to
understand field extensions by understanding subgroups of the so-called Galois
group.

5.1 Galois extensions

5.1.1 Galois groups

Recall the following definitions and results from Chapter 3:
A field extension E/K is called normal if every K-homomorphism ϕ : E → K

for an algebraic closure K of K satisfies ϕ(E) = E (see Definition 3.6.1), or
equivalently, if the minimal polynomial of any element α ∈ E decomposes into
linear factors in E[X] (Theorem 3.6.3).

A field extension E/K is called separable if the minimal polynomial µα ∈ K[X]
of any element α ∈ E decomposes into distinct linear factors in its splitting field
(or in K) (Definition 3.5.1), or equivalently if gcd(µα, µ

′
α) = 1 (Lemma 3.4.4).

We begin by noting the following.

Lemma 5.1.1. A finite field extension E/K is separable if and only if [E : K] =
#{ϕ : E → K K-homomorphism}.

Proof. Let α ∈ E and µα ∈ K[X] be its minimal polynomial over K. Then any
K-homomorphism ϕ : K(α)→ K satisfies µα(ϕ(α)) = 0 (which follows essentially
from Theorem 3.2.7). On the other hand, if β ∈ K is any root of µα, then we
obtain a K-isomorphism K(α) ∼=K K(β) ⊆ K, so that any root of µα. Therefore
we have

#{ϕ : K(α)→ K K-homomorphism} = #{β ∈ K : µα(β) = 0}.

99
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The right-hand side now equals the degree of µα and thus [K(α) : K] if and only
if µα is separable, which is true if and only if K(α)/K is separable.

Iterating this argument with K(α) instead of K yields the claim for E.
q.e.d.

As an immediate corollary we obtain the following (recall the definition of AutK(E)
in Definition 3.2.3).

Corollary 5.1.2. Let E/K be a finite field extension. Then we have # AutK(E) =
[E : K] if and only if E/K is both normal and separable.

Proof. By Lemma 5.1.1, we have [E : K] = #{ϕ : E → K K-homomorphism} if
and only if E/K is separable and by definition we have

{ϕ : E → K K-homomorphism} = AutK(E)

if and only if E/K is normal.
q.e.d.

We now come to the central definition of this chapter.

Definition 5.1.3. Let K be a field.

1. For G ≤ Aut(K) we set

KG := {a ∈ K : σ(a) = a for all σ ∈ G}

the fixed subfield of G.

2. A field extension E/K is called Galois if there is a finite subgroup G ≤
Aut(E) such that K = EG. In this case we call G =: Gal(E/K) the Galois
group of E/K.

The concepts of Galois extensions and Galois groups is named after the 19th
century French mathematician Évariste Galois.

Remark 5.1.4. Note that KG is indeed a subfield of K by the same argument as
in Lemma 3.2.6.

Example 5.1.5. 1. Let E = C and K = R. Then R is the fixed subfield of
the automorphism of complex conjugation z 7→ z in C, wherefore C/R is a
Galois extension with Galois group

Gal(C/R) = 〈z 7→ z〉 ∼= C2.
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2. Let E = Q( 3
√

2) and K = Q. Then any automorphism of E has to fix Q since
Q is the prime field contained in E. In particular it is uniquely determined
by its image of the generator 3

√
2, which must be a root of the minimal

polynomial X3− 2 in E. But 3
√

2 is the only root of X3− 2 in E, so we have
Aut(E) = {id} is trivial. In particular there is no subgroup of Aut(E) whose
fixed subfield is Q, so that E/Q is not Galois. Consider on the other hand
the field L = Q( 3

√
2, ζ3) and the extension L/Q. Then L is the splitting field

of X3 − 2 and admits several automorphsims, which we may define on the
generators by σ : 3

√
2 7→ ζ3

3
√

2 and τ : ζ3 7→ ζ−1
3 . Note that τ is just complex

conjugation. It turns out that these generate the automorphisms of L and
one checks without too much difficulty that E = L〈τ〉 and Q = L〈σ,τ〉, so the
extension L/E is Galois with Gal(L/E) = 〈τ〉 ∼= C2 and L/Q is Galois as
well with Galois group 〈σ, τ〉 ∼= S3.

3. It follows directly from Theorem 3.4.5 and Remark 3.4.6 that a finite exten-
sion E/K of a finite field K is Galois, where the Galois group is generated
by the Frobenius automorphism (see Definition 3.4.3).

We first want establish a description of Galois extensions which usually makes it
not too hard to recognize them. Before that, we need the following result.

Proposition 5.1.6. Let E be a field, G ≤ Aut(E) a finite group, and K := EG

the fixed field of G. Then we have

[E : K] = #G.

Proof. It follows exactly as in the proof of Lemma 5.1.1 that #G ≤ [E : K],
so we are left with proving that #G ≥ [E : K]. For this assume #G = n,
G = {σ1, ..., σn} and let α1, ..., αn+1 ∈ E be arbitrary. We want to show that
α1, ..., αn+1 are linearly dependent over K, thus showing that [E : K] ≤ n. To see
this consider the n linear equations over E,

n+1∑
j=1

σi(αj)uj = 0, i ∈ {1, ..., n}. (5.1)

Since this is an underdetermined homogeneous linear systems, there must be a
nontrivial solution (u1, ..., un+1) ∈ En+1, where not all uj are zero. By reordering,
we may assume without loss of generality that u1, ..., ur 6= 0 and ur+1 = ... =
un+1 = 0 and we may choose r minimal with this property. Furthermore we may
multiply our solution by any constant in E, so we may further assume that u1 = 1.

Now let τ ∈ G. It follows that for any i ∈ {1, ..., n} we have

0 = τ

(
n+1∑
j=1

σi(αj)uj

)
=

n+1∑
j=1

(τσi)(αj)τ(uj).
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Note that τ just permutes the σi, so that (τ(u1), ..., τ(un+1)) ∈ En+1 is also a
solution of the linear system in (5.1). But since we assumed u1 = 1, we have
τ(u1) = 1, so that

(u1, ..., un+1)− (τ(u1), ...τ(un+1)) = (0, u2 − τ(u2), ..., un+1 − τ(un+1)) ∈ En+1

is a solution with at most r − 1 non-zero entries, so by our assumption on r, it
must be the trivial solution. Therefore we find that τ(uj) = uj for all j and τ ∈ G,
which by definition ensures uj ∈ K.

Therefore we have found our desired linear dependence
∑n+1

j=1 ujαj = 0 over K
and we find dimK(E) ≤ n, as we wanted to show.

q.e.d.

With this result we can now show the following classification of Galois extensions.
In most examples this classification is used to show that an extension is Galois.

Theorem 5.1.7. A field extension E/K is Galois if and only if it is finite, normal,
and separable. In this case we have Gal(E/K) = AutK(E).

Proof. Fist let E/K be finite, normal, and separable. Then we know by Corol-
lary 5.1.2 that G = AutK(E) ≤ Aut(E) has order #G = [E : K]. Consider the
field EG ≤ E. By definition, every σ ∈ G fixes K, so K is a subfield of EG. On
the other hand, each σ ∈ G defines an EG-automorphism of E, so, since E/EG is
still normal and separable, we have #G = [E : EG] = [E : K], so that EG = K,
making the extension E/K Galois with Galois group Gal(E/K) = AutK(E).

Now suppose that E/K is a (finite) Galois extension with Galois group G ≤
Aut(E), i.e. K = EG. We know by Proposition 5.1.6 that [E : K] = #G. Since
G is certainly a subgroup of AutK(E) and we know that # AutK(E) ≤ [E : K]
by Lemma 5.1.1, we find that G = AutK(E) and [E : K] = #G = # AutK(E),
whence by Corollary 5.1.2 the extension E/K is both normal and separable.

q.e.d.

5.1.2 The Main Theorem of Galois Theory

We now have all the necessary tools to prove the Main Theorem of Galois Theory.

Definition 5.1.8. 1. For a group G let U(G) := {U ≤ G} denote the collection
of all subgroups of G.

2. For a field extension E/K let F(E/K) := {L ≤ E : K ≤ L} the collection
of all subfields of E containing K or intermediate fields of E/K.
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Note that both sets U(G) and F(E/K) are partially ordered by inclusion.

Remark 5.1.9. Let E/K be a Galois extension with Galois group G. Then G
acts on U(G) by conjugation, and on F(E/K) by application, i.e. for any U ≤ G
and σ ∈ G we have σUσ−1 := {σuσ−1 : u ∈ U} ≤ G and for L ∈ F(E/K) we
have σ(L) ∈ F(E/K).

Theorem 5.1.10. (Main Theorem of Galois Theory) Let E/K be a Galois exten-
sion with Galois group G. Consider the map

Φ : U(G)→ F(E/K), U 7→ EU .

Then the following are true.

1. Φ is bijective with inverse map

Ψ : F(E/K)→ U(G), L 7→ AutL(E).

2. Φ is inclusion inverting, i.e. if U ≤ V , then we have Φ(V ) ≤ Φ(U).

3. Φ is G-equivariant, i.e. for any σ ∈ G and U ∈ U(G) we have Φ(σUσ−1) =
σ(Φ(U)).

Proof.

1. We see easily that Φ is a well-defined map, since for a subgroup U ≤ G, the
fixed field EU is a subfield of E and since K = EG, we have in particular
σ(a) = a for all a ∈ K and σ ∈ U , so K is a subfield of EU . Similarly, the
map Ψ is well-defined since for L ∈ F(E/K) each σ ∈ AutL(E) satisfies by
definition σ(α) = α for all α ∈ L, so in particular σ(a) = a for all a ∈ K ≤ L.
Hence AutL(E) ≤ AutK(E) = G.

We now need to verify that Φ and Ψ are inverses of one another. Let U ∈
U(G). Then E/EU is a Galois extension and by Theorem 5.1.7, we have

U = Gal(E/EU) = AutΦ(U)(E) = Ψ(Φ(U)).

Now let L ∈ F(E/K) be an intermediate field of E/K. Then the extension
E/L is Galois with Galois group Ψ(L) = AutL(E), and therefore

F = EΨ(F ) = Φ(Ψ(F )).

Thus Ψ is an inverse of Φ which therefore is bijective as claimed.

2. Now let U ≤ V ≤ G. It is clear that any element of E that is fixed by V is
in particular fixed by U , so that indeed Φ(V ) = EV ≤ EU = Φ(U).
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3. Let σ ∈ G and U ∈ U(G). Then we have Φ(σUσ−1) = EσUσ−1
and we find

that α ∈ EσUσ−1
if and only if σuσ−1(α) = α = σ(σ−1(α)) for all u ∈ U ,

which is equivalent to u(σ−1(α)) = σ−1(α) for all u ∈ U , i.e. σ−1(α) ∈ EU

or in other words α ∈ σ(EU). Therefore we have indeed

Φ(σUσ−1) = σ(Φ(U))

as claimed.

q.e.d.

We can say the following about the action of Galois groups on the roots of poly-
nomials.

Proposition 5.1.11. Let E/K be a Galois extension with Galois group G and
choose α ∈ E. Then for every root β of µα,K(X) ∈ K[X] there exists σ ∈ G such
that σ(α) = β. Furthermore, we have that the stabilisor subgroup StabG(α) :=
{σ ∈ G : σ(α) = α} is the Galois group of E/K(α).

Proof. Since E/K is Galois and hence in particular normal, all roots of µα lie in
E. Furthermore we know by the definition of normality that we can extend the K-
homomorphism K(α)→ E sending α to a different root β to a K-automorphism
of E, i.e. an element in Gal(E/K). Since clearly Φ(StabG(α)) = K(α), the second
claim follows from the Main Theorem 5.1.10.

q.e.d.

Using the insight from the previous proposition we can also verify the following
result.

Proposition 5.1.12. Let E/K be a Galois extension with Galois group G =
Gal(E/K) and assume the notation from Theorem 5.1.10. Then the extension
L/K for a field L ∈ F(E/K) is normal if and only if Ψ(L) = AutL(E) is a
normal subgroup of G. In this case we have Gal(L/K) ∼= G/Ψ(L).

Proof. Exercise.
q.e.d.

Let us now consider some examples how we can use the Main Theorem to determine
all intermediate fields of a given Galois extension.

Example 5.1.13. Let K = Q and E be the splitting field of the polynomial
X4− 2. As we have seen in Example 3.2.2 we have E = Q( 4

√
2, i) and [E : K] = 8.



CHAPTER 5. GALOIS THEORY 105

Since E is the splitting field of a polynomial over a perfect field, E/K is normal
and separable and hence Galois with Galois group G. Since G permutes the 4
roots of

X4 − 2 = (X − 4
√

2)(X − i
4
√

2)(X +
4
√

2)(X + i
4
√

2) ∈ E[X],

G must be a subgroup of S4 of order 8. The two endomorphisms of E defined by

σ :

{
4
√

2 7→ i 4
√

2

i 7→ i
and τ :

{
4
√

2 7→ 4
√

2

i 7→ − i

clearly fix Q, so we have σ, τ ∈ G. We now label the roots of X4 − 2 by the
numbers 1, 2, 3, 4 in the order listed above and realise σ and τ as permutations
represented by cycles. We find that

σ ←→ (1, 2, 3, 4) and τ ←→ (2, 4).

As one sees without difficulty, these two permutations generate the group D4

introduced in Example 4.2.5, which has order 8, so we have G ∼= D4.
The subgroups of D4 are given in the following diagram, where larger groups

are towards the top. The relative indices of each subgroup in the next larger is
always 2.

〈σ, τ〉

〈σ〉

〈σ2〉

{1}

〈σ2, τ〉

〈τ〉 〈σ2τ〉

〈σ2, στ〉

〈στ〉〈σ3τ〉

By the Main Theorem, we can find the intermediate fields of E/Q as the fixed
subfields of each of the subgroups, where the inclusions are reversed. We therefore
obtain the following diagram, where now the larger fields are at the bottom.
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Q

Q(i)

Q(
√

2, i)

E

Q(
√

2)

Q( 4
√

2) Q(i 4
√

2)

Q(i
√

2)

Q(α)Q(α)

In the above diagram, we have used the shorthands α = (1 + i) 4
√

2 and an overline
to denote complex conjugation.

We see that quite a few properties of a Galois extension depend on properties of
the associated Galois group. This motivates the following definition.

Definition 5.1.14. Let E/K be a Galois extension with Galois group G :=
Gal(E/K). We say that E/K is abelian resp. cyclic if G has that property.

5.2 The Normal Basis Theorem

Recall the Primitive Element Theorem 3.5.6: This implies that for any finite,
separable field extension E/K there is an element α ∈ E such that E = K(α), or
in other words if [E : K] = n, then the set {1, α, α2, ..., αn−1} forms a basis of E
as a K-vector space. In this section, we want to show a related theorem for Galois
extensions, where instead of powers of a single element we take Galois conjugates
of a single element. A basis obtained in this way is called a normal basis.

As for the primitive element theorem we treat finite fields separately. Recall
from Example 5.1.5, that any extension of finite fields is a Galois extension where
the Galois group is cyclic and generated by the Frobenius automorphism.

Theorem 5.2.1. (Normal basis Theorem (finite fields))
Let q = pn be a prime power, K = Fq be a finite field, and E = Fqm a finite
extension of K. Further let Φ = Φq : E → E, a 7→ aq denote the Frobenius
automorphism of E. Then there exists an element β ∈ E such that the set

{Φj(β) : 0 ≤ j < m} = {β, βq, βq2 , ..., βqm−1}
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forms a K-basis of E.

Proof. Each map Φj : E → E may be viewed as a group homomorphism of E× to
itself, a so-called character. An important theorem of Artin (see Theorem 5.4.2)
implies that the maps Φ0 = id,Φ, ...,Φm−1 : E → E are linearly independent over
E and hence also over K as K-linear endomorphisms of E as a K-vector space.
Since Φm = id, it follows that the minimal polynomial of Φ as a K-vector space
endomorphism if Xm − 1 ∈ K[X].

Denote by K[G] the K-vector space spanned by the K-linear maps Φj : E → E.
This naturally becomes a module over the polynomial ring K[X] by defining the
multiplication X.Φj := Φj+1. Since the minimal polynomial of Φ is Xm − 1, we
therefore see that

K[G] ∼= K[X]/(Xm − 1)

as K[X]-modules and hence as K-vector spaces.
Similarly, E becomes a K[X]-module via X.α = Φ(α). Since any finite K[X]-

module is isomorphic to a direct sum
⊕

iK[X]/(fi) for some (unique) polynomials
fi of positive degree such that fi | fi+1 (known as the Elementary Divisors Theo-
rem) and E is clearly annihilated by the minimal polynomial of Φ, it follows for
reasons of dimension that E ∼= K[X]/(Xm − 1) as K[X]-modules. Note that this
is not an isomorphism of rings or K-algebras. It follows therefore that

K[G] ∼= K[X]/(Xm − 1) ∼= E

as K[X]-modules. Under this isomorphism the K-basis {1, X, ..., Xm−1} of the
middle module is mapped to a K-basis of E with the desired property.

q.e.d.

Even though the above proof does offer a way to find a normal basis for a finite
field, it is a bit implicit. In some cases however it is not so hard to produce such
a basis anyway.

Example 5.2.2. Consider the field F8 = F2(α) over F2, where α3+α+1 = 0. As a
first attempt to find a normal basis of F8, one may consider {α,Φ(α) = α2,Φ2(α)},
but since Φ2(α) = α4 = α2 + α, this is linearly dependent and hence not a basis.
However one finds that

{α + 1,Φ(α + 1) = α2 + 1,Φ2(α) = α4 + 1 = α2 + α + 1}

is linearly independent and thus forms a normal basis.

For infinite fields, it is also possible to find such a basis and the proof is slightly
more explicit.
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Theorem 5.2.3. (Normal Basis Theorem (infinite fields))
Let K be an infinite field and E/K be a finite Galois extension of degree [E : K] =
n with Galois group G. Then there exists an element β ∈ E such that the set
{σ(β) : σ ∈ G} forms a K-basis of E.

Proof. Since E/K is a Galois extension, it is in particular a separable extension
by Theorem 5.1.7, so by the Primitive Element Theorem 3.5.6 there exists some
α ∈ E, such that {1, α, ..., αn−1} forms a K-basis of E. Let µα ∈ K[X] denote the
minimal polynomial of α over K and write

µα =
n∏
i=1

(X − αi) ∈ E[X],

where α1 = α and σi ∈ G is determined by σi(α) = αi. So in particular σ1 = 1 ∈ G.
Define the polynomials

g =
n∏
i=2

X − αi
α− αi

∈ E[X]

and

gj = σj(g) =
n∏
i=1
i 6=j

X − αi
αj − αi

∈ E[X].

and consider the matrix G ∈ E[X]n×n with

Gij = σi(σj(g)).

Then clearly Gij = gk where k is determined by σk = σiσj ∈ G. Since by con-
struction we have

gi(αj) = δij =

{
1 if i = j,

0 otherwise.

we find that G(α) ∈ En×n is a permutation matrix, i.e. an invertible matrix such
that each column has exactly one entry equal to 1 and all others equal 0. Such a
matrix has determinant ±1. This implies that the determinant D ∈ E[X] of the
polynomial matrix G is not the zero polynomial. Since K is infinite, there must be
some element a ∈ K such that D(a) 6= 0. Define β := g(a) and βi = gi(a) = σi(β)
(so β = β1). We claim that the set B = {β1, ..., βn} forms a K-basis of E, which
would be what we want to show. It suffices of course to show that B is linearly
independent over K, so suppose there are a1, ..., an ∈ K such that

n∑
j=1

ajβj = 0.
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It follows that for any σi ∈ G we have

0 = σi

(
n∑
j=1

ajβj

)
=

n∑
j=1

ajσi(σj(g(a)))

for all i. In other words we see that

G(a) · (a1, ..., an)tr = 0.

But since detG(a) = D(a) 6= 0, this is only possible if a1 = ... = an = 0, so the
claim follows.

q.e.d.

Example 5.2.4. The extension E = Q(
√

2,
√

3)/Q is Galois, since E is easily
seen to be the splitting field of f = X4 − 10X2 + 1 ∈ Q[X], which factors as

(X − (
√

2 +
√

3))(X − (
√

2−
√

3))(X − (−
√

2 +
√

3))(X − (−
√

2−
√

3)) ∈ E[X].

It is also not hard to see that α =
√

2 +
√

3 is a primitive element of E and f is
the minimal polynomial of α. A little computation yields, in the notation of the
proof of Theorem 5.2.3,

g =
1

96

[
(5α3 − 49α)X3 + (α2 − 5)X2 + (−49α3 + 485α)X + (−5α2 + 49)

]
.

The matrix G is given by

G =


g1 g2 g3 g4

g2 g1 g4 g3

g3 g4 g1 g2

g4 g3 g2 g1

 ,

where g2 is obtained by replacing α in g by α2 = α3 − 10α =
√

2 −
√

3, g3 by
α 7→ α3 = −α2, and g4 via α 7→ α4 = −α. The resulting determinant D is given
by

D = − 1

48

[
X8 − 25X6 + 199X4 − 495X2

]
.

Since D(1) = 20/3 6= 0 we find that the Galois conjugates of

β = g(1) = − 1

24

[
11α3 + α2 − 109α− 11

]
= − 1

12

[
6
√

2− 5
√

3 +
√

6− 3
]

form a normal basis of E/K.
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5.3 Cyclotomic extensions

Apart from some relatively elementary preliminaries we now have everything in
place to complete the proof of Theorem 3.3.12, Gauß’s famous classification of
those regular n-gons constructible with compass and straightedge. Recall that we
have already shown (see Section 3.3.3) that if the regular n-gon is constructible,
then n must be of the form n = 2rp1 · ... · p`, where r is some non-negative integer
and p1, ..., p` are pairwise distinct Fermat primes.

Also recall the definition of the nth cyclotomic polynomial

Φn =
n−1∏
k=0

gcd(k,n)=1

(X − ζkn),

with ζn = e2π i /n. Recall that it has degree ϕ(n), where ϕ denotes the Euler totient
function (see Lemma 1.2.2).

We begin with the following result.

Lemma 5.3.1. Let n ∈ N be arbitrary. We have the identity∏
d|n

Φd = Xn − 1,

where the product runs over all positive divisors of n, and Φn ∈ Z[X].

Proof. Each root of Xn − 1 in C is a primitive dth root of unity for some divisor
d | n, so it coincides with one of the roots of Φd. Therefore (Xn − 1) |

∏
d|n Φd.

On the other hand we know from Lemma 3.3.11 that
∑

d|n ϕ(d) = n, so that

deg
∏

d|n Φd =
∑

d|n ϕ(d) = n, hence it follows that the left- and right-hand side
must be equal up to a constant. Since each of the Φd is clearly monic, so is their
product, and hence that constant is 1 and the first claim follows.

The second follows by induction: We have Φ1 = X − 1 ∈ Z[X]. Assume that
for some n > 1 Φm ∈ Z[X] for all m < n, then it follows from the identity just
proven that

Φn =
Xn − 1∏
d|n,d<n Φd

.

By induction hypothesis, each Φd in the denominator is a monic polynomial with
integer coefficients, and their product divides Xn − 1, so that the quotient again
must be a monic polynomial with integer coefficients, as claimed.

q.e.d.

We have shown in Example 2.2.15 and Example 2.2.16 using the Eisenstein cri-
terion that for a prime p, the cyclotomic polynomials Φp and Φp2 are irreducible
over Q. We now extend this to the following result.
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Theorem 5.3.2. Let n ∈ N.

1. The cyclotomic polynomial Φn ∈ Q[X] is irreducible.

2. The extension Q(ζn)/Q is Galois of degree ϕ(n) with Galois group Gal(Q(ζn)/Q) ∼=
(Z/nZ)×. In particular, the extension Q(ζn)/Q is abelian.

Proof.

1. By Gauß’s Lemma 2.2.7, it is enough to show that Φn is irreducible in Z[X].
Assume that g ∈ Z[X] is a monic, irreducible divisor of Φn such that g(ζ) = 0
for some primitive nth root of unity ζ and let p be any prime number such
that p - n. We claim that g(ζp) = 0. By repeatedly applying this result (note
that any k with gcd(n, k) = 1 is a product of primes p that don’t divide n),
it follows that g = Φn, wherefore Φn is irreducble.

We now prove the claim. Write Φn = g · h with h ∈ Z[X] monic and assume
that g(ζp) 6= 0. Then we must have h(ζp) = 0. Therefore ζ is a root of the
polynomial h(Xp). Since g is a product of factors of the form X− ζ ′ and the
above reasoning is true for any ζ ′ it follows that h(Xp) = g ·f for some monic
f ∈ Z[X]. We now reduce modulo p and find that h(X)p ≡ h(Xp) = g · f .
Therfore the reduced polynomials h, g ∈ Fp[X] cannot be coprime, so that
Φn ∈ Fp[X] is not separable. But since (Xn − 1)′ = nXn−1 6= 0 ∈ Fp[X], we
see that gcd(Xn − 1, (Xn − 1)′) = 1 ∈ Fp[X], i.e. Xn − 1 ∈ Fp[X], which
is a multiple of Φn ∈ Fp[X], is separable by Lemma 3.4.4. This is clearly a
contradiction, so that the claim follows.

2. It is clear that Q(ζn) is the splitting field of Φn, which has degree ϕ(n)
and by Part 1. is irreducible over Q. Therefore the extension Q(ζn)/Q
is normal and also separable since Q is perfect, and thus Galois. Now let
σ ∈ Gal(Q(ζn)/Q) =: G. Then σ(ζn) = ζkn for some k = k(σ) ∈ {0, ..., n− 1}
with gcd(n, k) = 1 and σ is uniquely determined by this image, so that there
is an injective map

G→ (Z/nZ)×, σ 7→ k(σ).

Since Q(ζn)/Q is Galois we have

#G = [Q(ζn) : Q] = ϕ(n) = #(Z/nZ)×,

so that this map must be bijective. Since we have for any σ, τ ∈ G that

ζk(στ)
n = σ(τ(ζn)) = σ(ζk(σ)

n ) = ζk(τ)k(σ)
n

we find that this map is an isomorphism of groups.
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q.e.d.

Now it is easy to complete the proof of Gauß’s theorem.

Proof of Theorem 3.3.12, Part II Let n = 2rp1 · · · p` where p1, ..., p`
are pairwise distinct Fermat primes. Then the extension Q(ζn)/Q has degree
ϕ(n) = 2m for some m and is Galois with Galois group isomorphic to (Z/nZ)×

by Theorem 5.3.2. By the main theorem on finitely generated abelian groups,
an abelian group of order N contains a subgroup of order d for any divisor d
of N , so in particular in our case (Z/nZ)× contains a subgroup Ua of order 2a

for any a ≤ m which we can additionally choose so that Ua ≤ Ua+1. It follows
by the Main Theorem of Galois Theory 5.1.10 that there exists a tower of fields
Q = K0 ≤ K1 ≤ ... ≤ Km = Q(ζn) with Kj = Q(ζn)Um−j with [Kj : Kj+1] = 2 for
all j = 0, ...,m− 1. Therfore we find by Theorem 3.3.5 that ζn and therefore also
the regular n-gon, is constructible with compass and straightedge.

q.e.d.

To conclude this section we mention a famous theorem by Kronecker and Weber
classifying all abelian extensions of Q. This is a deep result in Algebraic Number
Theory and goes far beyond what we can show in this course.

Theorem 5.3.3. (Kronecker-Weber) Let K/Q be a (finite) abelian extension of
Q. Then there exists some n ∈ N such that K is a subfield of Q(ζn).

5.4 Cyclic extensions

In this short section we take a closer look at cyclic Galois extensions.
We begin by discussing an important example of cyclic extensions. Note that

we have already encountered it in a different formulation in Remark 1.2.3, at least
in part.

Proposition 5.4.1. Let K be a field of characteristic 0 and suppose that K con-
tains primitive nth roots of unity. Further let a ∈ K× and α ∈ K a root of the
polynomial Xn − a ∈ K[X]. Then the extension K(α)/K is cyclic — thus in
particular Galois— and its Galois group has order d for some d | n. Furthermore
we have αd ∈ K.

Proof. Let ζ ∈ K be a primitive nth root of unity. Then all roots of Xn − a are
given by α, ζα, ..., ζn−1α ∈ K(α), so K(α) is the splitting field of that polynomial,
so K(α)/K is a normal extension. Since it is a finite extension in characteristic
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0 it is also separable and hence Galois. Now let σ ∈ G = Gal(K(α)/K) be a
K-automorphism of K(α). Then σ(α) must be a root of Xn− a, so we must have
σ(α) = ζσα for some ζσ ∈ {1, ζ, ..., ζn−1} = 〈ζ〉 ∼= Cn. The map

G→ 〈ζ〉, σ → ζσ

is clearly a group homomorphism and also injective, so G is isomorphic to a sub-
group of Cn, which is then cyclic of order d for some d | n. In particular each ζσ
is a (not necessarily primitive) dth root of unity.

It follows that for any σ ∈ G we have

σ(αd) = (σ(α))d = (ζσα)d = ζdσα
d = αd

since ζdσ = 1. Thus αd ∈ K(α)G = K as we claimed.
q.e.d.

We want to show that, at least for fields of characteristic 0 with sufficiently many
roots of unity, all cyclic extensions have this particular shape. For this we need
two preliminary results which are in themselves quite famous. The first one is due
to Emil Artin.

Theorem 5.4.2. (Artin) Let K be a field and G a group. Then for n ≤ #G, any
collection of n distinct characters of G over K, i.e. homomorphisms σ : G→ K×,
is linearly independent as elements of the vector space of all maps G→ K.

Proof. We use induction over n. Since σ cannot be the zero-map, the case n = 1
is clear. Now suppose the claim has been shown for n characters for some n ≥ 1
and consider the n + 1 characters σ1, ..., σn+1. Assume that these are linearly
dependent, so there exist a1, ..., an+1 ∈ K not all 0 such that we have

a1σ1(g) + ...+ an+1σn+1(g) = 0 for all g ∈ G. (5.2)

Since any n of the n + 1 characters are linearly independent by the induction
hypothesis, we conclude that all aj 6= 0. We now choose any g0 ∈ G. Plugging in
g0g in (5.2) yields

a1σ(g0)σ1(g) + ...+ an+1σn+1(g0)σn+1(g) = 0 for all g ∈ G, (5.3)

and by multiplying (5.2) by σ1(g0) 6= 0 we obtain

a1σ1(g0)σ1(g) + ...+ an+1σ1(g0)σn+1(g0)σn+1(g) = 0 for all g ∈ G. (5.4)

Subtracting (5.4) from (5.3) the yields

a2(σ2(g0)− σ1(g0))σ2(g) + ...+ an+1(σn+1(g0)− σ1(g0))σn+1(g) = 0 for all g ∈ G.
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But again by the induction hypothesis the n characters σ2, ..., σn+1 are linearly
independent, so this implies that

aj(σj(g0)− σ1(g0)) = 0 for all j = 2, ..., n+ 1

and since aj 6= 0, it follows that σj(g0) = σ1(g0) for all j. But since g0 has been
chosen arbitrarily this means that σj = σ1 for all j which is a contradiction, since
the characters are assumed to be distinct.

q.e.d.

For the next result we need the following concept.

Definition 5.4.3. Let E/K be a separable extension of degree n and let σ1, ..., σn :
E ↪→ K denote the n distinct embeddings of E into the algebraic closure of K
(see Remark 3.5.8). For α ∈ E we define its norm over K by

NmE/K(α) :=
n∏
i=1

σi(α)

and its trace as

TrE/K(α) :=
n∑
i=1

σi(α).

Remark 5.4.4. 1. For a general field extension E/K, one can define the norm
and trace of an element α as the determinant and trace resp. of the K-linear
map induced by multiplication by α on E as a K-vector space. It is not very
hard to show that for separable extensions, these two definitions coincide.

2. The norm map is multiplicative, i.e. NmE/K(αβ) = Nm(α) Nm(β).

We now use Artin’s Theorem to prove another famous theorem which often just
referred to as Hilbert’s Theorem 90. The name is due to the fact that it is the
90th theorem in Hilbert’s influential Zahlbericht. It is however not due to David
Hilbert, but already occurs in earlier works by Ernst Eduard Kummer.

Theorem 5.4.5. (Hilbert’s Theorem 90) Let E/K be a cyclic extension with Ga-
lois group G = Gal(E/K) = 〈σ〉 of order n. Then for every α ∈ E with
NmE/K(α) = 1 there exists some β ∈ E such that α = β

σ(β)
.

Proof. To avoid cluttered notation, we write Nm instead of NmE/K in this proof.
First we note that since σ extends to an embedding into K by Lemma 3.2.11,

it follows that Nm(σ(β)) = Nm(β) for any β ∈ E, so that indeed Nm(β/σ(β)) = 1
as desired.
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Now we show the existence of β ∈ E such that α = β/σ(β). By Artin’s Theo-
rem 5.4.2 the maps id = σ0, σ, ..., σn−1 are linearly independent over E. Therefore
the map

τ := id +ασ + ασ(α)σ2 + ...+ ασ(α) · · ·σn−2(α)σn−1

is not identically zero, so there must exist some γ ∈ E such that τ(γ) 6= 0. For
such γ, define β := τ(γ). Then we compute

σ(β) = σ
[
γ + ασ(γ) + ασ(α)σ2(γ) + ...+ ασ(α) · · ·σn−2(α)σn−1(γ)

]
= σ(γ) + σ(α)σ2(γ) + σ(α)σ2(α)σ3(γ) + ...+ σ(α)σ2(α) · · ·σn−1(α)σn(γ).

With this we find using that σn(γ) = γ and the definition of Nm(α)

ασ(β) = ασ(γ) + ασ(α)σ2(γ) + ασ(α)σ2(α)σ3(γ) + ...+ ασ(α)σ2(α) · · · σn−1(α)︸ ︷︷ ︸
=Nm(α)=1

γ

= γ + ασ(γ) + ασ(α)σ2(γ) + ασ(α)σ2(α)σ3(γ) + ...+ ασ(α) · · ·σn−2(α)

= τ(γ)

= β,

wherefore we have α = β/σ(β) as claimed.
q.e.d.

We can now describe cyclic extensions of fields of characteristic 0.

Theorem 5.4.6. Let K be a field of characteristic 0 containing a primitive nth
root of unity. Furthermore let E/K be a cyclic extension of degree n. Then there
exists some α ∈ E such that αn ∈ K and E = K(α).

Proof. Let ζ ∈ K be a primitive nth root of unity and let σ be a generator of the
Galois group Gal(E/K) = G = 〈σ〉. As before we write Nm = NmE/K .

We clearly have Nm(ζ−1) = 1, so that by Hilbert’s Theorem 90 (Theorem 5.4.5)
there is some α ∈ E such that ζ−1 = α/σ(α) or equivalently σ(α) = ζα. It follows
that σj(α) = ζjα, so in particular, all images σj(α) are pairwise distinct. Therefore
we have [K(α) : K] ≥ n = [E : K], so that E = K(α).

By direct computation we find

σ(αn) = (ζα)n = αn,

so that αn ∈ EG = K as we claimed.
q.e.d.
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5.5 Solvability of polynomial equations

In this final section of this chapter we return to the original motivating question of
this whole course. As we have mentioned several times, there are solution formulas
for the roots of polynomials of degrees 2, 3, and 4 in terms of their coefficients
using only basic arithmetic and n-th roots, but it is not possible to find such a
formula in any higher degrees.

5.5.1 Solutions by radicals and soluble extensions

We begin with the following definition.

Definition 5.5.1. Let K be field of characteristic 0.

1. We call an extension L/K solvable by radicals if there exist subfields

K = L0 ≤ L1 ≤ ... ≤ Lk = L,

such that there exists some αj ∈ Lj with Lj = Lj−1(αj) and α
nj
j ∈ Lj−1 for

some nj ∈ N.

2. We call an extension L/K soluble if there exists a Galois extension E/K
such that L ≤ E and Gal(E/K) is soluble.

In more informal terms, an extension that is solvable by radicals is obtained by
successively adjoining njth roots.

Example 5.5.2. Consider a generic cubic polynomial f = X3 +3pX+2q ∈ Q[X]
and assume that f is irreducible. Let L be the splitting field of f . Define D =
p3 + q2 and consider the following tower of fields,

Q ≤ Q(i
√

3) = L1 ≤ L1(
√
D) = L2 ≤ L2

(
(

3

√
−q +

√
D

)
= L3

≤ L3

(
3

√
−q −

√
D

)
= L4.

By the Cardano formula (Theorem 1.3.2) we see that any root α is certainly
contained in L4, so that L/Q is solvable by radicals.

Before coming to the main result of this subsection we need the following two
Lemmata.

Lemma 5.5.3. Let L = K(α)/K be solvable by radicals and let E be the Galois
closure of L/K, i.e. splitting field of the minimal polynomial of α over K. Then
E/K is solvable by radicals as well.
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Proof. Since L/K is solvable by radicals, there is a tower of subfields

K = L0 ≤ L1 ≤ ... ≤ Lk = L,

such that there exists some αi ∈ Li with Li = Li−1(αi) and αnii ∈ Li−1 for some
ni ∈ N. Denote by µi = µαi the minimal polynomial of αi over K. Then E must
be the splitting field of f =

∏
j µj ∈ K[X] since E must certainly contain all the

roots of the µj and is minimal with that property. Write

µi =

ni∏
j=1

(X − βij) ∈ E[X]

and define E0 = K, E1 = K(β1,1, ..., β1,n1), and Ei+1 = Ei(βi+1,1, ..., βi+1,ni+1
).

Since E/K is normal, for every j there is a K-homomorphism σ : E → E such
that σ(αi) = βij, whence βniij = σ(αi)

ni ∈ σ(Li−1) ≤ σ(Ei−1). But since Ei−1 is
again a splitting field of a polynomial over K, we have that Ei−1/K is normal and
hence σ(Ei−1) = Ei−1. Therefore each extension Ei/Ei−1 is solvable by radicals
and thus also the extension E/K.

q.e.d.

Lemma 5.5.4. Let n ∈ N and E/K be a Galois extension where K has charac-
teristic 0. Let F/E resp. L/K denote the splitting field of Xn − 1 over E and K
resp. Then the extension F/K is Galois. Furthermore we have that Gal(F/K) is
soluble if and only if Gal(E/K) is soluble if and only if Gal(F/L) is soluble.

Proof. Since E/K is Galois and hence in particular normal, it follows from
Corollary 3.6.4 that there is a polynomial f ∈ K[X] such that E is the spitting
field of f . Therefore, F is the splitting field of the polynomial (Xn−1) ·f ∈ K[X],
so that F/K is Galois.

Since both E/K and L/K are normal extensions and contained in F/K,
it follows from Proposition 5.1.12 that Gal(F/E) E Gal(F/K) and Gal(F/L) E
Gal(F/K) and

Gal(E/K) ∼= Gal(F/K)/Gal(F/E).

Since Gal(F/E) is abelian and hence soluble, it follows from Proposition 4.2.4
that Gal(E/K) is soluble if and only if Gal(F/K) is soluble. Since also Gal(L/K) ∼=
Gal(F/K)/Gal(F/L) is abelian, it follows again from Proposition 4.2.4 that Gal(F/K)
is soluble if and only if Gal(F/L) is soluble.

q.e.d.

We now show the key result about the solvability of polynomials.
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Theorem 5.5.5. Let K be a field of characteristic 0 and L/K a finite extension.
Then L/K is solvable by radicals if and only if L/K is soluble.

Proof. “⇒”: Assume that L/K is solvable by radicals, i.e. we have a tower of
fields

K = L0 ≤ L1 ≤ ... ≤ Lk = L,

such that there exists some αj ∈ Lj with Lj = Lj−1(αj) and α
nj
j ∈ Lj−1 for some

nj ∈ N. Then Lemma 5.5.3 yields that also the Galois closure of L/K, which we
call E, is solvable by radicals, so there is a similar tower of fields leading to E and
we call the subfields Ej. Let n := [E : K] and consider the extension E(ζ)/K,
where ζ is a primitive nth root of unity. By Lemma 5.5.4, this extension is again
Galois with Galois group G. Now consider the tower

K(ζ) ≤ E1(ζ) ≤ ... ≤ E`(ζ) = E(ζ).

By Theorem 5.4.6, each one of the extensions Ei(ζ)/Ei−1(ζ) is cyclic, so by the
Main Theorem of Galois Theory 5.1.10 together with Proposition 5.1.12 it follows
that there is a subnormal series

GDG1 D ...DG` = {1}

of G, where each factor group Gi/Gi−1 is cyclic, so in particular abelian. Therefore
Theorem 4.2.3 tells us that Gal(E(ζ)/K(ζ)) is soluble and thus by Lemma 5.5.4
also Gal(E/K) is soluble.

“⇐”: Assume that L/K is soluble, i.e. there exisits some extension field
E/L such that the extension E/K is Galois with soluble Galois group G. By
Lemma 5.5.4 we may assume without loss of generality that E contains sufficiently
many roots of unity. It follows from Theorem 4.2.3 that there exists a subnormal
series

G = G0 DG1 D ...DGk = {1}
where each factor group Gi/Gi+1 is abelian. Indeed by refining the subnormal
series, we may (and do) assume that each of these factors is cyclic. By Proposi-
tion 5.1.12, there exists therefore a tower of cyclic extensions

K = E0 ≤ ... ≤ Ek = E.

By our classification of cyclic extensions in Theorem 5.4.6 we see that each of
these fields Ej is obtained by adjoining some njth root, so that L/K is solvable
by radicals as we claimed.

q.e.d.

This implies abstractly, independently from the formulas of Cardano and Ferrari,
that solution formulas for polynomials of degree 3 and 4 must exist.
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Corollary 5.5.6. Any extension K/Q of degree ≤ 4 is solvable by radicals. In
other words there is a solution formula for roots of polynomials of degree ≤ 4 in
terms of radicals.

Proof. A field K/Q of degree n is a subfield of a finite Galois extension E/Q.
Since any Galois automorhism of E permutes the roots of the minimal polynomial
of an element of K in E, it follows that the Galois group embeds into the symmetric
group Sn. Since Sn is soluble for n ≤ 4, so is any of its subgroups and the claim
follows from Theorem 5.5.5.

q.e.d.

We conclude this subsection with an example.

Example 5.5.7. Since cyclotomic extensions are abelian and thus in particular
soluble, it follows that any primitive root of unity ζn = e2π i /n must be expressible
only in terms of radicals. As an illustration, we list the expressions for Re(ζn) =
cos(2π/n) for the first few n, since the imaginary part is easily obtained from it
using the relation cos2 θ + sin2 θ = 1.

cos(2π/3) = −1

2
cos(2π/4) = 0

cos(2π/5) =
−1 +

√
5

4

cos(2π/6) =
1

2

cos(2π/7) =
−1 + 3

√
14 + 21−1+

√
−3

2
+ 3

√
14− 21−1+

√
−3

2

3

cos(2π/8) =
1√
2

Note that some care must be taken in applying the above formula for cos(2π/7)
because the third root of a complex number (or even a negative real number) is
not uniquely determined. Even though we are expressing real numbers by radicals,
the complex numbers in the above expressions cannot be avoided.

5.5.2 Insolubility of the quintic

Since the group S5 is not soluble, as it contains the non-abelian simple group A5

as a normal subgroup, it immediately follows from the above discussion that there
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cannot be a solution formula for a polynomial f of degree 5 whose splitting field
over Q has Galois group S5, so we need to show that such a polynomial exists.

The remainder of this section is devoted to showing a little more (except for
the proof of Proposition 5.5.18, which requires some background in commutative
algebra which would take too long to develop), namely that for any n, there exists
an irreducible polynomial of degree n such that its splitting field over Q has Galois
group Sn. It follows directly that there can’t be a solution formula for polynomials
of any degree ≥ 5. The proof we present here is an adaptation of the proof given
in the book by van der Waerden mentioned in the introduction, as posted by user
Mako Kato on Math Stackexchange1.

We begin by making the following observations.

Lemma 5.5.8. Let K be field, f ∈ K[X] a separable polynomial and E/K be the
splitting field of f . Then G := Gal(E/K) acts transitively on the roots of f if and
only if f is irreducible.

Proof. Suppose f is irreducible and that α ∈ E is a fixed root of f . For any root
β ∈ E of f , we have seen that the rupture fields K(α) and K(β) are isomorphic, so
in other words the K-homomorphism ϕ defined by ϕ(α) = β defines an embedding
of K(α) into K. By Lemma 3.2.11, this extends to an embedding σ : E ↪→ K,
and since E is normal, this extension is an endomorphism of E. Therefore we
have found σ ∈ AutK(E) = Gal(E/K) such that σ(α) = β, and therefore G acts
transitively on the roots of f .

If f = gh ∈ K[X], where g ∈ K[X] irreducible and deg h ≥ 1, then G acts on
the roots of g in E, and thus cannot act transitively on the roots of f .

q.e.d.

This immediately implies the following.

Corollary 5.5.9. Let K be a field, f ∈ K[X] be a separable polynomial over K
and E/K be the splitting field of f . Write f = f1 · · · fr for distinct irreducible
polynomials fj ∈ K[X]. Denote by S the set of roots of f in E and similarly let Sj
denote the set of roots of fj. Then S =

⋃
j Sj and each Sj is a Gal(E/K)-orbit.

We now have to make a quick detour to finite fields. Recall from Example 5.1.5
that for a finite field K any finite extension E/K is Galois, where the Galois group
is cyclic and generated by the Frobenius automorphism of E/K. This leads to the
following remark.

1https://math.stackexchange.com/questions/165675/constructing-a-galois-

extension-field-with-galois-group-s-n

https://math.stackexchange.com/questions/165675/constructing-a-galois-extension-field-with-galois-group-s-n
https://math.stackexchange.com/questions/165675/constructing-a-galois-extension-field-with-galois-group-s-n
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Remark 5.5.10. If K is a finite field and E/K has degree n and f ∈ K[X]
is an irreducible polynomial such that E is its splitting field, then the Frobenius
endomorphism viewed as a permutation on the roots of f defines an n-cycle.

Together with Corollary 5.5.9 this implies the following.

Lemma 5.5.11. Let K be a finite field and f ∈ K[X] a separable polynomial.
Write f = f1 · · · fr for pairwise distinct irreducible polynomials fj ∈ K[X] of
degree nj and let E/K be the splitting field of f . Then the Frobenius automorphism
of E/K viewed as permutation on the roots of f is a product of disjoint cycles of
lengths n1, ..., nr.

We illustrate this with an example.

Example 5.5.12. Let K = F5, f = (X2 − 2)(X3 + X + 1) ∈ F5[X] and E/K
be the splitting field of f . Then there is some α, β ∈ E such that α2 = 2 and
β3 + β + 1 = 0. The roots of the quadratic factor of f are then clearly given by
α = α1 and 4α = α2, while the roots of the cubic factor can be checked to be given
by β = β1, 4β2 + β + 1 = β2, β

2 + 3β + 4 = β3.
Under the Frobenius map Φ5 : E → E, a 7→ a5 we see that

Φ5(α) = α5 = α · α4 = 4α = α2,

and

Φ5(β) = β5 = 4β2 + β + 1 = β2, Φ5(β2) = β25 = β2 + 3β + 4 = β3, Φ5(β3) = β.

Therefore if we number the roots α1, α2, β1, β2, β3 by 1, 2, 3, 4, 5, then Φ5 induces
the permutation

(1, 2)(3, 4, 5).

Now we discuss two lemmas on the symmetric group Sn. Recall that Sn is generated
by transpositions (i, j), 1 ≤ i < j ≤ n, that makes

(
n
2

)
= n(n−1)

2
generators. Indeed

we can reduce this set of generators by quite a bit to only n− 1 generators.

Lemma 5.5.13. The group Sn is generated by transpositions (k, n) for 1 ≤ k ≤
n− 1.

Proof. Let (a, b), 1 ≤ 1 < b ≤ n be a transposition. If b = n, then it is already
in our alleged set of generators. If b 6= n we can write (a, b) = (a, n)(b, n)(a, n),
so any known generator can be expressed in terms of the new ones, and the claim
follows.

q.e.d.

Using this we can show the following.
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Lemma 5.5.14. Let G be a finite permutation group on a finite set M with #M =
n. Suppose that

1. G acts transitively on M ,

2. G contains a transposition,

3. G contains an (n− 1) cycle.

Then G is isomorphic to Sn.

Proof. Me may assume without loss of generality that M = {1, ..., n} and that
G contains the cycle c = (1, ..., n − 1) as well as the transposition (i, j). Since
G acts transitively on M , there is some g ∈ G such that g.j = n. Set h = g.i.
Then G contains the transpose g(i, j)g−1 = (g.i, g.j) = (h, n). Conjugating (h, n)
by powers of c we see that G contains every transposition (k, n) with 1 ≤ k < n.
Therefore, by Lemma 5.5.13, G contains a full set of generators of Sn and therefore,
since it is a subgroup of Sn, it must be the full symmetric group.

q.e.d.

This is essentially enough to give an example of a polynomial over Q of degree 5
with Galois group S5.

Corollary 5.5.15. Let G be a subgroup of S5 acting transitively on {1, ..., 5} and
containing a transposition (i, j). Then G = S5.

Proof. By Lemma 5.5.14 it is enough to show that G contains a 4-cycle. As-
sume without loss of generality that (i, j) = (1, 2). Since G acts transitively on
{1, 2, 3, 4, 5}, for every k ∈ {1, 2, 3, 4, 5}, there is some g ∈ G such that g.2 = k.
Setting j = g.1, we see that the transposition (j, k) = g(1, 2)g−1 ∈ G. Furthermore
at least one k ∈ {1, 2, 3, 4, 5} occurs in at least two such transpositions, because
there are clearly at least 3 transpositions in G, and since they can contain only the
numbers 1, 2, 3, 4, 5, there must be at least two transpositions in G that overlap.
The product of these overlapping transposition gives us a 3-cycle (a, b, c) ∈ G. By
renumbering, we may assume that (a, b, c) = (1, 2, 3).

Now we claim that there is a transposition (j, 4) ∈ G with j ∈ {1, 2, 3}, so that
(1, 2, 3)(j, 4) ∈ G defines a 4-cycle in G, so we are finished by Lemma 5.5.14. To
show the claim we notice that there must be two transpositions containing 4, since
by trasitivity, there is g ∈ G such that g.1 = 4 and since (1, 2, 3)(1, 2)(1, 3, 2) =
(2, 3) ∈ G, the same is true for g′ = g(2, 3). We thus obtain g(1, 2)g−1 = (g.2, 4)
and g′(1, 2)g′−1 = (g.3, 4). Since g.2, g.3 6= 4, at least one of them must lie in
{1, 2, 3} and the claim follows, completing the proof.

q.e.d.
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With this, we can give an example of a quintic polynomial over Q with Galois
group S5.

Example 5.5.16. Consider the polynomial f = X5 − 6X + 3 ∈ Q[X]. By Eisen-
stein’s criterion (see Theorem 2.2.12), this polynomial is irreducible over Q. Let
E/Q be its splitting field. Looking at the graph below (see Figure 5.1), we see that
f has exactly three real roots (approximately −1.6709..., 0.50550..., 1.4016) and
therefore a pair of complex conjugate roots (approximately −0.1181...±1.5874... i).

−2 −1 1 2

−20

−10

10

20

Figure 5.1: Graph of the polynomial function x 7→ x5 − 6x+ 3

Complex conjugation, restricted to E, induces an automorphism of E, flipping
the two complex roots and leaving the real ones invariant. Therefore the Galois
group Gal(E/Q) acts transitively on the five roots of f and contains a transpo-
sition. Thus we know from Corollary 5.5.15 that Gal(E/Q) ∼= S5, which is not
soluble. Therefore, by Theorem 5.5.5, there can’t be a formula for the roots of f
in terms of radicals, so the general quintic is insoluble.

Indeed this enough to show that there cannot be solution formulae in terms of
radicals for polynomials of any degree ≥ 5, since if there were such a formula in
degree n, then it would express the roots of Xn−5f , and hence those of f in terms
of radicals.
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Having solved the solubility problem for the quintic in particular, we return to
the main objective of this section, constructing Galois extensions of Q with Galois
group Sn. We continue with the following easy observation.

Remark 5.5.17. Let f ∈ Z[X] be a monic polynomial. Suppose the reduction f
of f modulo a prime number p is separable. Then f is separable over Q.

Proof. Suppose f ∈ Q[X] is not separable. Since Q has characteristic 0, this
implies that there must be some non-constant monic polynomial g ∈ Z[X] such
that g2 | f . But this implies that f is divisible by g2 in Fp[X] and is therefore not
separable.

q.e.d.

The following proposition will turn out to be the key to the theorem we wish to
prove here.

Proposition 5.5.18. Let f ∈ Z[X] be a separable, monic polynomial and p a
prime number such that the reduction f modulo p is again separable. Write f =
f 1 · · · f r for pairwise distinct irreducible polynomials overlinefj ∈ Fp[X] of degree
nj. Let E/Q be the splitting field of f , G := Gal(E/Q) its Galois group, and
S ⊂ E be the set of roots of f in E. Further let E/Fp denote the splitting field of
f with Galois group G := Gal(E/Fp) and denote the set of roots of f in E by S.
Then G contains an element which is a product of disjoint cycles of lengths nj.

Even though there is a fairly elementary proof for this (actually for a more general
statement), it requires some basic results and concepts in commutative algebra
which we cannot develop here, so we take this for granted.

With this result, we come to the main result of this section.

Theorem 5.5.19. For every n ≥ 1 there exists a Galois extension E/Q such that
Gal(E/Q) ∼= Sn.

Proof. The claim is of course obvious for n ≤ 2, so we assume n ≥ 3.
Let f2 ∈ F2[X] be an irreducible polynomial of degree n (the minimal polyno-

mial of any generator of F×2n works, according to Remark 3.4.6).
Let g0 ∈ F3[X] be a monic polynomial of degree 1 and g1 ∈ F3[X] a monic,

irreducible polynomial of degree n− 1 (if n = 2, pick g1 6= g0) and set f3 = g0g1 ∈
F3[X], which is separable by construction.

Let h0 ∈ F5[X] be a monic, irreducible polynomial of degree 2. If n− 2 is odd,
then let h1 ∈ F5[X] be a monic irreducible polynomial of degree n − 2 and set
f5 = h0h1 ∈ F5[X]. If n−2 is even, then choose h1 ∈ F5[X] be a monic polynomial
of degree 1 and h2 and irreducible, monic polynomial of degree n− 3 (if n− 3 = 1,
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then choose h2 6= h1) and set f5 = h0h1h2 ∈ F5[X], which is again separable by
construction in both cases.

Now lift the polynomials f2, f3, f5 to monic polynomials in Z[X], which we
also call f2, f3, f5, and define f = −15f2 + 10f3 + 6f5. Note that f ∈ Z[X] is
again monic of degree n. Clearly we have the congruences f ≡ fp (mod p) for
p ∈ {2, 3, 5}.

Since f2 is irreducible it follows that f is irreducible over Q (see Theorem 2.2.10
and Gauß’s Lemma 2.2.7). Let E/Q be the splitting field of f , G := Gal(E/Q) its
Galois group, and S ⊂ E the set of roots of f in E.

Since f is irreducible, G acts transitively on S by Lemma 5.5.8.
Since f ≡ f3 (mod 3), it follows from Proposition 5.5.18 that G contains an

(n− 1)-cycle.
Since f ≡ f5 (mod 5), it follows by the same proposition that G contains a

permutation which is a product of disjoint cycles of lengths 2, n − 2 if n is odd
and of lengths 2, 1, n − 3 if n is even, call it g. If n is odd, it follows that gn−2

is a transposition, if n is even, then gn−3 is a transposition, so in either case, G
contains a transposition.

Therefore we find by Lemma 5.5.14 that G ∼= Sn as we claimed.
q.e.d.

Example 5.5.20. The polynomial f = X5 − 6X + 3 from Example 5.5.16 is an
example for a polynomial with Galois group S5, but, as one easily checks, it does
not arise from the construction in the proof of Theorem 5.5.19.

It is however not too hard to find using trial and error that

f2 = X5 +X2 + 1 ∈ F2[X]

is irreducible (if it were reducible, it would have to have an irreducible factor of
degree 1 or 2 and there is only one irreducible polynomial of degree 2 over F2).
Similarly,

f3 = X(X4 +X2 +X + 1) = X5 +X3 +X2 +X ∈ F3[X]

and

f5 = (X2 +X + 1)(X3 +X + 1) = X5 +X4 + 2X3 + 2X2 + 2X + 1 ∈ F5[X]

are polynomials satisfying the conditions in the proof. Therefore another degree 5
polynomial with Galois group S5 over Q is given by

f = −15f2 + 10f3 + 6f5 = X5 + 6X4 + 22X3 + 7X2 + 22X − 9 ∈ Q[X].
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We conclude this section with a few remarks.

Remark 5.5.21. If one orders monic polynomials in Z[X] of degree n ≥ 2 by their
largest coefficient in absolute value, the famous Irreducibility Theorem of Hilbert,
a result in Analytic Number Theory, implies that asymptotically 100% of them are
irreducible and have Galois group Sn.

This means that if one picks a monic, integer polynomial “at random”, one
should expect that it is irreducible and has the largest possible Galois group and
it is essentially impossible to find other polynomials purely by chance (although of
course they do of course exist).

Remark 5.5.22. Theorem 5.5.19 solves the so-called inverse Galois problem for
the groups Sn and the field Q: Given a finite group G and a field K, is there a
Galois extension E/K such that Gal(E/K) ∼= G?. For K = Q, this has been
studied extensively. It is known for instance that every soluble group arises as a
Galois group over Q (Shafarevich), so does every alternating group An (Hilbert),
as well as several others, for instance the famous Monster group, the largest of the
so-called sporadic simple groups (Thompson). It is however not known whether or
not every finite group is realized as a Galois group over Q. At the time of writing
the smallest order of a group not known2 to occur as a Galois group of a finite
extension over Q is 8160, the group being a semidirect product of the simple group
PSL2(F16) and C2.

Remark 5.5.23. Regarding solution formulas for the quintic and higher degree
polynomials, it should be pointed out that such formulas do exist, but they involve
more complicated functions than nth roots. For example, it is possible to transform
a general quintic polynomial to a polynomial of the form

X5 −X + t.

Hermite was the first to realise that one could use so-called elliptic functions to
express the solutions of this equation. In a sense this is analogous to, but quite
a bit more involved than, a classical solution formula for the cubic in terms of
trigonometric functions.

2This information was retrieved from Jürgen Klüners’s database of number fields at http:

//galoisdb.math.upb.de/.

http://galoisdb.math.upb.de/
http://galoisdb.math.upb.de/


Chapter 6

Algebraic closure∗

In this chapter we want to take one more look at the algebraic closure of a field.
In particular, we would like to show that every field has an algebraic closure and
that it is essentially unique. However, this fact actually depends on the so-called
Axiom of Choice in Set Theory which we will discuss first.

6.1 The Axiom of Choice∗

In Mathematics an axiom is a fundamental fact that is “self-evident” and is there-
fore to be accepted. This terminology goes back to Euclid who in his treatise The
Elements derived essentially all facts in geometry known at the time from only
five such axioms:

1. There is exactly one straight line through any two given points in the plane.

2. Any finite straight line can be extended to a straight line of arbitrary length.

3. For any given point P and given radius r, there exists exactly one circle with
midpoint P and radius r.

4. All right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which the angles are less than two right
angles.

The fifth axiom is clearly much more complicated than the others and not as self-
evident. An informal way to state it is that two non-parallel lines always intersect.
This axiom has been a point of debate for centuries and it has been shown in the

127
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early 19th century by Bolyai and independently Lobachevsky, that without the fifth
axiom, one still arrives at valid geometries (spherical and hyperbolic geometry). It
has also been attempted multiple times to derive the fifth axiom from the others,
but this turned out to be impossible, since the fifth axiom is logically independent
from the others.

A similar, but in the details much more complicated, situation arises when one
tries to axiomatise Set Theory. There are several “actual” axioms, that one can
regard as self-evident. These include for instance that two sets are equal if and
only if they contain the same elements, one can form the union of two sets, any
set has a power set (the set of all its subsets), and some others. The axiom which
is much less self-evident (and is therefore not universally accepted) is the Axiom
of Choice.

Axiom 6.1.1. (Axiom of choice) Let Λ 6= ∅ be any set and suppose we have a set
Xλ 6= ∅ for each λ ∈ Λ. Then the Cartesian product∏

λ∈Λ

Xλ := {(xλ)λ∈Λ : xλ ∈ Xλ}

is not empty.

Remark 6.1.2. Another, less formal, way to formulate the Axiom of Choice is
that it is possible to choose xλ ∈ Xλ for each λ ∈ Λ simultaneously.

It has been shown that this axiom is also logically independent of the standard
Zermelo-Frenkel axioms of Set Theory, meaning that one can assume that the
Axiom of Choice is true or false without generating any logical inconsistencies.

There are two other important variants of this axiom, which look completely
unrelated. To state them, we require the following definition.

Definition 6.1.3. Let X be a set. A relation � on X is called an ordering or
order if it satisfies the following properties:

(i) It is reflexive, i.e. we have x � x for all x ∈ X.

(ii) It is antisymmetric, i.e. if x � y and y � x for some x, y ∈ X, then x = y.

(iii) It is transitive, i.e. if x � y and y � z for x, y, z ∈ X, then we also have
x ≤ z.

The pair (X,�) is then called an ordered set.

The definition of an ordering is of course an abstraction from the familiar ≤-
relation on the real numbers. In this generality however, there are some special
properties that one wishes to distinguish.
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Definition 6.1.4. Let (X,�) be an ordered set.

1. We call (X,�) totally ordered, if for any x, y ∈ X we have a � b or b � a.

2. The ordered set (X,�) is called well-ordered if every non-empty subset ∅ 6=
Y ⊆ X contains a smallest element, i.e. there exists some y0 ∈ Y such that
y0 � y for all y ∈ Y .

3. The ordered set (X,�) is ordered inductively if any totally ordered subset
Y ⊆ X has an upper bound in X, i.e. there exists some x ∈ X (possibly
depending on Y ) such that y � x for all y ∈ Y .

4. An element m ∈ X such that we know for every x ∈ X that if m � x then
x = m, is called a maximal element of X.

5. A subset S ⊆ X is called a segment if for any x ∈ X we have that if there
exists some s ∈ S such that x � s, then x ∈ S.

Example 6.1.5. 1. The set of natural numbers N is totally ordered and well-
ordered with respect to the usual ≤ ordering. It is however not ordered
inductively, as any infinite subset of N is not bounded above by any natural
number.

2. The ordered set (R,≤) is totally ordered, but not well-ordered, as for instance
the interval (0, 1] has no smallest element.

3. The ordered set ((0, 1],≤) is totally ordered and ordered inductively (any
subset is bounded above by 1), but again not well-ordered.

4. Let X be any set and P(X) := {Y ⊆ X} its power set. Then (P(X),⊆) is
an ordered set, but as soon as X has more than one element, it is not totally
ordered.

5. Any interval of the form (−∞, a] is a segment in (R,≤).

Remark 6.1.6. Let X be a set.

1. A well-ordering on X is also a total ordering on X, since for any x, y ∈ X,
the set {x, y} has a smallest element.

2. Let � be an ordering on X. Then for any x ∈ X the set

X≤x := {y ∈ X : y � x}

is a segment.
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3. If (X,�) is totally ordered and S ⊂ X, so gilt S ⊂ X≤x for any x ∈ X \ S.

The first variant of the axiom of choice is the so-called Well-ordering Theorem.

Axiom 6.1.7. (Well-ordering Theorem) For any set X there is an ordering � on
X such that (X,�) is well-ordered.

Remark 6.1.8. For some sets it is possible to construct such an ordering explic-
itly (for instance the ordering ≤ on the natural numbers works). But for other sets,
such as (probably) the real numbers, finding this well-ordering explicitly is impos-
sible, it is just known to exist through the Well-ordering Theorem (if we assume it
to be true).

The second variant is known as Zorn’s Lemma. This is the version of the axiom
of choice that is most widely used in the context of algebra.

Axiom 6.1.9. (Zorn’s Lemma) Let (X,�) be a non-empty ordered set. If (X,�)
is ordered inductively, then (X,�) contains maximal elements. So if every totally
ordered subset, a chain, in M has an upper bound in M , then there exists some
m ∈ X such that we have for every x ∈ X that if m � x then x = m.

We now formulate the main theorem of this section.

Theorem 6.1.10. The three axioms 6.1.1, 6.1.7, and 6.1.9 are equivalent.

As already mentioned, it has been shown that the Axiom of Choice is independent
of the other axioms of Set Theory, so one has to assume it, and therefore also the
Well-ordering Theorem and Zorn’s Lemma, as an additional axiom if one wants to
use them.

Before proceeding to the proof of Theorem 6.1.10, we give two immediate ap-
plications.

Theorem 6.1.11. Assuming the Axiom of Choice, every vector space V over a
field K has a basis.

Proof. Let V be a vector space over a field K and define

B := {B ⊆ V : B is linearly independent}.

Then the usual subset relation ⊆ defines an ordering on B. Now let C ⊆ B be any
chain in B, i.e. a totally ordered subset of B and consider the set

C :=
⋃
B∈C

B.
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Then C ⊆ V is a linearly independent set, for if it were not, there would be finitely
many v1, ..., vn ∈ C and α1, ..., αn ∈ K not all 0 such that

∑n
i=1 αivi = 0. But

since C is totally ordered, there must be some B ∈ C such that v1, ..., vn ∈ B, so
that B is linearly dependent, which is a contradiction.

Therefore we have C ∈ B and it is clearly an upper bound for the chain
C. By Zorn’s Lemma 6.1.9 B contains maximal elements, i.e. maximal linearly
independent subsets X ⊆ V . It remains to show that any such X generates V .
If we have v ∈ V \ 〈X〉, then the set X ∪ {v} is a proper superset of X and is
therefore linearly dependent, so, since X itself is linearly independent, v ∈ 〈X〉,
which is again a contradiction. Thus X is a linearly independent generating set
for V , therfore by definition a basis.

q.e.d.

Remark 6.1.12. It is in general not possible to find such a basis, e.g. for the
R-vector space of continuous functions f : [0, 1]→ R or the space of formal power
series KJXK over a field K.

Theorem 6.1.13. Let R be a ring. Then, assuming the Axiom of Choice, every
proper ideal I ER, I 6= R, is contained in a maximal ideal.

Proof. Let I ER, I 6= R, be a proper ideal. Consider the set I of all ideal J ER,
J 6= R, containing I. This set is ordered inductively, since the union of a chain of
ideals is again an ideal (see the proof of Lemma 2.1.18). By Zorn’s Lemma 6.1.9
I contains maximal elements and any such maximal element is clearly a maximal
ideal in R containing I.

q.e.d.

Remark 6.1.14. Since the Axiom of Choice or equivalently Zorn’s Lemma is es-
sential in Algebra to prove results such as Theorems 6.1.11 and 6.1.13, we will
assume the Axiom of Choice to be true from now on without stating it explicitly.

It remains to prove Theorem 6.1.10. For this we require the following two lemmata.

Lemma 6.1.15. Let (Xλ : λ ∈ Λ) a family of subsets of a given set M and for
each λ ∈ Λ let �λ be a well-ordering on Xλ such that for Xµ ⊆ Xλ we have that
Xµ is a segment in Xλ and the ordering �µ is the restriction of �λ to Xµ.

If for λ, µ ∈ Λ we always have either Xµ ⊆ Xλ or Xλ ⊆ Xµ, then the orderings
�λ, λ ∈ Λ, induce a well-ordering � on X :=

⋃
λ∈ΛXλ.
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Proof. Let x, y ∈ X. Then there are λ, µ ∈ Λ such that x ∈ Xλ and y ∈ Xµ.
Since we have Xµ ⊆ Xλ or Xλ ⊆ Xµ, we may assume without loss of generality
that x and y are both in Xµ. We then set x � y if and only if x �µ y. Thus �
defines an ordering on X, such that the restriction to a subset Xλ is �λ.

We need to show that � defines a well-ordering on X. For this let ∅ 6= Y ⊆ X.
Then there must be some λ ∈ Λ such that Yλ := Y ∩Xλ 6= ∅. Let y0 be a smallest
element of Yλ, which exists because �λ is a well-ordering on Xλ. Now take an
arbitrary y ∈ Y . If y ∈ Xλ, then we have y0 � y by construction. Otherwise we
have y ∈ Xµ for some µ 6= λ. Since we have y /∈ Xλ we cannot have Xµ ⊆ Xλ,
wherefore it follows from the assumption that Xλ ⊆ Xµ and Xλ is a segment in
Xmu. By Remark 6.1.6 this implies that Xλ consists only of elements � y, so in
particular we have y0 � y. It therefore follows that y0 is a smallest element in Y ,
wherefore � defines a well-ordering on X.

q.e.d.

Lemma 6.1.16. (Bourbaki’s Fundamental Lemma) Let M be a set and T ⊆
P(M) a set of subsets of M such that ∅ ∈ T . Further suppose there is a map
p : T → M with p(T ) /∈ T for all T ∈ T . Then there is a subset X ⊆ M and a
well-ordering � on X such that the following properties are satisfied:

1. For every x ∈ X we have X�x ∈ T (see Remark 6.1.6 for the notation) and
p(X�x) = x.

2. X /∈ T .

Proof. Let F denote the family of all ordered sets (Xλ,�λ), λ ∈ Λ, satisfying the
following properties.

(a) Xλ ∈ T .

(b) (Xλ,�λ) is well-ordered.

(c) For every x ∈ Xλ we have (Xλ)�λx ∈ T and p((Xλ)�λx) = x.

Note that F trivially contains the empty set.
Furthermore we claim that F satisfies the conditions of Lemma 6.1.15:
For λ, µ ∈ Λ let

V :=
{
x ∈ Xλ ∩ Xµ : ((Xλ)�λx,�λ) = ((Xµ)�µx,�µ)

}
.

Then V is a segment both in (Xλ,�λ) and (Xµ,�µ). For this let x ∈ Xλ such that
there exists some v ∈ V such that x �λ v. By definition of V this means that we



CHAPTER 6. ALGEBRAIC CLOSURE∗ 133

also have x �µ v and in particular x ∈ Xλ ∩Xµ. Now any x′ ∈ Xλ with x′ �λ x
also satisfies x′ �λ v. But again by the definition of V this implies x′ �µ v and
since (Xλ)�λv and (Xµ)�µv are equal as ordered sets, we must have x′ �µ x. It
therefore follows that (Xλ)�λx = (Xµ)�µx as ordered sets, so x ∈ V , wherefore V
is a segment in Xλ and for symmetry reasons also in Xµ.

Indeed much more is true. We have V = Xλ or V = Xµ. If not, there would be
smallest elements xλ ∈ Xλ \ V and xµ ∈ Xµ \ V . Then we have V = (Xµ)�µxµ =
(Xλ)�λxλ and thus because of condition (c) above

xµ = p(V ) = xλ ∈ Xλ ∩Xµ

and thus xλ = xµ ∈ V , which is a contradiction.
Therefore the conditions of Lemma 6.1.15 are satisfied and we obtain a well-

ordering � on X =
⋃
Xλ∈F Xλ induced by the well-orderings �λ, λ ∈ Λ. For every

x ∈ X there is some λ ∈ Λ such that x ∈ Xλ and we have

X�x = (Xλ)�λx ∈ T

by condition (c) above, and by the same condition we have p(X�x) = x. The set
X therefore satisfies point 1. of the lemma.

If we have X /∈ T , then X also satisfies point 2. and we are done. Otherwise
we have X ∈ T and x0 := p(X) /∈ X. Consider the set X0 := X ∪ {x0} with the
ordering �0 defined by x � x0 for all x ∈ X and �0=� on X. Then the segments
of X0 are either segments of X or X0, so that X0 again satisfies point 1. of the
lemma. Furthermore we have X0 /∈ T , otherwise X0 would be one of the sets Xλ

since (X0,�0) is well-ordered and therefore a subset of X which is a contradiction.

q.e.d.

We now conclude this section with the proof of Theorem 6.1.10.

Proof of Theorem 6.1.10 We start by showing that the Axiom of Choice 6.1.1
implies Zorn’s Lemma 6.1.9. Let (M,�) be an inductively ordered set and set

T := {T ⊆M : T has an upper bound t′ ∈M \ T}.

For T ∈ T let

XT := {t′ ∈M \ T : t′ is an upper bound for T}.

By the Axiom of Choice there is a map

p : T →M, p(T ) ∈ XT for all T ∈ T .

By Lemma 6.1.16 there is a subset X ⊆M with a well-ordering �X such that
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1. For x ∈ X we have X�Xx ∈ T and p(X�Xx) = x,

2. X /∈ T .

Note that the well-ordering �X on X a priori has nothing to do with the ordering �
onM . We show now that (X,�) (with the ordering fromM) is totally ordered. Let
x1, x2 ∈ X. Since (X,�X) is well-ordered and thus by Remark 6.1.6 in partiular
totally ordered, we may assume that x1 �X x2, so x1 ∈ X�Xx2 . Since X�Xx2 ∈ T
and p(X�Xx2) = x2, we find that x2 is an upper bound for X�Xx2 with respect to
the ordering �. In particular we have x1 � x2, so (X,�) is totally ordered.

Since (M,�) is ordered inductively, the totally ordered set (X,�) has an upper
bound mX ∈M . Since we have X /∈ T , X cannot have an upper bound in M \X,
whereforemX ∈ X. ThenmX is a maximal element of (M,�) because every y ∈M
satisfying mX � y would also be an upper bound for (X,�), thus contained in X
and thus � mX .

We now show that Zorn’s Lemma 6.1.9 implies the Well-ordering Theorem
6.1.7.

Let M 6= ∅ and consider

M := {(T,�T ) : T ⊆M, � is a well-ordering on T}.

We define the following ordering on M,

(S,�S) � (T,�T ) ⇔


S ⊆ T and

�S= (�T )|S and

s �T t for all s ∈ S, t ∈ T \ S.

With respect to this orderingM is ordered inductively, so by Zorn’s Lemma there
is a maximal element (X,�X) ∈M.

We claim that X = M as a set. Otherwise there exists m ∈M \X and we can
extend the ordering �X to and ordering �0 on X0 := X ∪ {m} by setting x �0 m
for all x ∈ X. But then (X0,�0) ∈M is strictly larger than (X,�X) with respect
to �, which is a contradiction to the maximality of (X,≺X). Thus �X defines a
well-ordering on M .

Lastly we give the comparibly simple proof that the Well-ordering Theorem
6.1.7 implies the Axiom of Choice 6.1.1.

Let Λ be a set and (Xλ : λ ∈ Λ) a family of non-empty sets. By the Well-
ordering Theorem, the set

⋃
λ∈ΛXλ has a well-ordering, and in particular each set

Xλ contains a smallest element xλ with respect to said ordering. But this means
the cartesian product of the Xλ contains at least the element (xλ : λ ∈ Λ) and is



CHAPTER 6. ALGEBRAIC CLOSURE∗ 135

therefore not empty.
q.e.d.

6.2 The algebraic closure∗

In this section we study the algebraic closure of an arbitrary field and in particular
provide a proof for Lemma 3.2.11, which we have taken for granted at several
occasions throughout this course, for example when we showed that the Galois
group of the splitting field of an irreducible separable polynomial acts transitively
on the roots of said polynomial (see Lemma 5.5.8) or in the proof of Hilbert’s
Theorem 90 (see Theorem 5.4.5).

Before moving on, recall the definition of an algebraically closed field (Defini-
tion 3.2.9) and the definition of the algebraic closure of a field (Definition 3.2.10)

Definition 6.2.1. Let E/K be a field extension. Then we call

AlgE(K) := {α ∈ E : α is algebraic over K}

the algebraic closure of K in E.

Remark 6.2.2. It is straightforward to see that AlgE(K) is a subfield of E, namely
the largest extension field of K in E which is algebraic over K.

The following remark perhaps seems clear intuitively.

Remark 6.2.3. Let E/K be a field extension such that E is algebraically closed.
Then AlgE(K) is an algebraic closure of K.

Proof. Let f =∈ AlgE(K)[X] be an irreducible polynomial. Since E is al-
gebraically closed, we know that f has a root α ∈ E. We have to show that
α ∈ AlgE(K), i.e. that α is algebraic over K. Since all the coefficients of f are al-
gebraic over K, there is a finite extension L/K containing all of them, so f ∈ L[X].
Thus the extensions L(α)/L and L/K are finite, wherefore L(α)/K is finite and
hence algebraic. Since f is irreducible over AlgE(K) and it has a root in AlgE(K),
it must have degree 1, hence AlgE(K) is algebraically closed and algebraic over K
by construction.

q.e.d.

Since the field C of complex numbers is algebraically closed by the Fundamental
Theorem of Algebra (Theorem A.1.1), we obtain immediately that for instance
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any algebraic extension of Q and in particular Q itself has an algebraic closure.
For a general field it is much less clear that there is an algebraically closed field
containing it. This is however the case.

Theorem 6.2.4. Let K be an arbitrary field. Then there exists an algebraic clo-
sure of K.

Proof. Let P := {f ∈ K[X] \K : f is monic and irreducible} and

X := {ξ(f)
1 , ..., ξ

(f)
deg f : f ∈ P}

be an (infinite) set of variables, which we will now link to the roots of each f ∈ P :
Recall from Corollary 1.1.13 that the coefficients of a monic polynomial are given
by the elementary symmetric polynomials in its roots. With this in mind we define
for f = Xn − a1X

n−1 + a2X
n−2 − ...+ (−1)nan ∈ P the set

Rf := {
∑

i1<...<ik

ξ
(f)
i1
· · · ξ(f)

ik
− a− k : k = 1, ..., n}

and let
I := 〈

⋃
f∈P

Rf〉EK[X ]

be the ideal in the polynomial ring K[X ] (which has infinitely many variables)
generated by all the sets Rf for f ∈ P . Assuming for the moment that I 6= K[X ],
we have seen in Theorem 6.1.13, as a consequence of Zorn’s Lemma 6.1.9, that I
is contained in a maximal ideal J EK[X ]. The factor ring E := K[X ]/J is then a
field (see Proposition 2.1.11) which contains K via the embedding K ∼= 1 ·K+J ⊆
K[X ]/J .

Now every element in E is the root of an irreducible polynomial over K by
construction (or a polynomial therein), so that E/K is algebraic. Furthermore,
every irreducible polynomial f ∈ P of degree n ≥ 1 splits into linear factors

f =
n∏
i=1

(X − ξ(f)

i ) ∈ E[X].

This implies that E is also algebraically closed, since if α is algebraic over E,
it is also algebraic over K and thus a root of a polynomial in K[X]. Since this
polynomial splits into linear factors in E[X] we have α ∈ E.

It remains to show that I 6= K[X ]. If we had I = K[X ], then we would
have 1 ∈ I, so we could write 1 =

∑
i aixi for finitely many ai ∈ K and xi

finite products of expressions of the form
∑

i1<...<ik
ξ

(f)
i1
· · · ξ(f)

ik
−ak. Replacing the

occuring ξ
(f)
i to roots of f , all of these expressions become 0 and since only finitely
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many polynomials, say f1, ..., fk can occur, all of these roots lie in a finite field
extension L/K, the splitting field of

∏k
i=1 fi. Therefore we have

1 =
∑
i

aixi = 0 ∈ L

which is a contradiction.
This completes the proof.

q.e.d.

We now come to the proof of Lemma 3.2.11 which we restate here.

Lemma 6.2.5. Let K ⊆ L ⊆ E ⊆ K be algebraic extensions. Suppose we have
a ring homomorphism ϕ : L → K such that ϕ(a) = a for all a ∈ K. Then there
exists a ring homomorphism ψ : E → K such that ψ(α) = ϕ(α) for all α ∈ L, i.e.
ψ is an entension of ϕ from L to E.

Proof. Consider the set

mathcalA := {(E ′, ϕ′) : L ≤ E ′ ≤ E,ϕ′|L = ϕ}.

Then A is ordered with respect to the ordering � defined by

(E1, ϕ1) � (E2, ϕ2) if and only if E1 ≤ E2 and ϕ2|E1 = ϕ2.

This ordering is in fact inductive, i.e. every chain has an upper bound in A:
Let {(Ei, ϕi) : i ∈ I} be some totally ordered subset of A, then we have the
upper bound (Ẽ, ϕ̃) ∈ A with Ẽ =

⋃
i∈I Ei and ϕ̃|Ei = ϕi. By Zorn’s Lemma 6.1.9

there exists a maximal element (E ′, ϕ′) ∈ A. We claim that E ′ = E. If not, then
choose α ∈ E \ E ′ and extend ϕ′ to E ′(α) in the following way: By assumption
α is algebraic over E ′, so it has a minimal polynomial µα ∈ E ′[X]. This minimal
polynomial splits into linear factors in K[X], so we can set ϕ′(α) = β for any
β ∈ K satisfying µα(β) = 0. But this contradicts the maximality of (E ′, ϕ′), so
the claim follows.

q.e.d.

Corollary 6.2.6. Let K and K̃ be algebraic closures of a field K. Then K and
K̃ are isomorphic over K.

Proof. This follows immediately from Lemma 3.2.11 by choosing L = K, E = K̃
and ϕ the identity map.

q.e.d.
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Remark 6.2.7. It is important to note that even though the formulation “ the
algebraic closure” of a field K is justified through Corollary 6.2.6, two algebraic
closures of the same field are not necesssarily physically identical. This is why it
is formally necessary to fix an algebraic closure K of a field K and an embedding
K ↪→ K, which we have done implicitly throughout theses notes whenever we talked
about it.



Appendix A

The Fundamental Theorem of
Algebra∗

A.1 Some history

Throughout especially Chapter 1, we have assumed the famous Fundamental The-
orem of Algebra.

Theorem A.1.1. (Fundamental Theorem of Algebra) The field of complex num-
bers C is algebraically closed, i.e. every polynomial f ∈ C[X] has a root in C.

There are at least 100 known proofs of this result. The first attempted proof is due
to d’Alembert (1746), a different approach was due to Gauß (1798). It was later
noticed that both these proofs had gaps (the gap in Gauß’s proof was closed in
1920 by Ostrowski). The first rigorous proof was given by Argand in 1806 and two
further (essentially complete) proofs were presented by Gauß in 1816. With the
study of complex analysis in the 19th century, it was realised that the Fundamental
Theorem of Algebra can be derived in various very easy ways from basic principles
in complex analysis, as we have seen in the exercises.

A.2 The proof

Here, we give a relatively elementary proof of the Fundamental Theorem, based
on that by d’Alembert.

We begin by recording some basic facts which should be known from a basic
course in Calculus or Analysis.

Lemma A.2.1. 1. Let f ∈ C[X] be a polynomial. Then the function f : C→
C, z 7→ f(z) is continuous.

139
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2. For every z ∈ C and m ∈ N, there exists w ∈ C such that wm = z.

3. (Minimum principle) Every continuous, real-valued function on a compact
set S ⊂ C attains its minimum in S.

The key to the proof lies in the following result, which is sometimes referred to as
d’Alembert’s Lemma or Argand’s inequality.

Lemma A.2.2. Let f =
∑n

j=0 cjX
j ∈ C[X] be a polynomial of degree n ≥ 1 and

a ∈ C. If f(a) 6= 0, then every open disk Br(a) := {z ∈ C : |z − a| < r} around a
contains a point b such that |f(b)| < |f(a)|.

Proof. Let r > 0 be arbitrary. Then every point in Br(a) can be written as a+w
for some w ∈ C with |w| < r. Then we have

f(a+ w) =
n∑
j=0

cj(a+ w)j =
n∑
j=0

cj

j∑
k=0

(
j

k

)
ak−jwj =

n∑
k=0

(
n∑
j=k

(
j

k

)
cja

k−j

)
wk.

Extracting the coefficient of w0, we see that we can write

f(a+ w) = f(a) + sumn
k=1

(
n∑
j=k

(
j

k

)
cja

k−j

)
wkf(a) + Cwm(1 + g(w))

for a suitable constant C ∈ C \ {0}, 1 ≤ m ≤ n, and a polynomial g ∈ C[X] of
degree n−m satisfying g(0) = 0.

We now want to find upper bounds for |Cwm| and |g(w)|. For |w| < ρ1 :=
m
√
|f(a)|/C. Therefore we have |Cwm| < |f(a)|. Since g(0) = 0 and g is continu-

ous, there must be some ρ2 > 0 such that |g(w)| < 1 for |w| < ρ2. If we now set
ρ := min{ρ1, ρ2}, we have for all w with |w| < ρ the inequalities

|Cwm| < f(a) and |g(w)| < 1. (A.1)

Now let ζ ∈ C be an mth root of − f(a)/C
|f(a)/C| and 0 < ε < min{r, ρ}. We claim

that b := a + w0 with w0 := εζ lies in the disk Br(a) and satisfies |f(b)| < |f(a)|.
First note that |ζ| = 1 and thus |w0| = ε < r, so that indeed b ∈ Br(a).

We have
|f(b)| = |f(a+ w0)| = |f(a) + Cwm0 (1 + g(w0))|.

Defining δ := εm

|f(a)/C| , we find by construction that

Cwm0 = Cεmζm = − epsm

|f(a)/C|
f(a) = −δf(a).
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Notice that since ε < ρ, we obtain from (A.1) that 0 < δ < 1. We thus obtain
using the triangle inequality

|f(b)| = |f(a) + Cwm0 (1 + g(w0))| = |f(a)− δf(a)(1 + g(w0))|
= |(1− δ)f(a)− δf(a)g(w0)|
≤ (1− δ)|f(a)|+ δ|f(a)||g(w0)|.

By (A.1) we have |g(w0)| < 1, so we obtain

|f(b)| � (1− δ)|f(a)|+ δ|f(a)| = |f(a)|,

as we claimed.
q.e.d.

We are now ready to prove the Fundamental Theorem of Algebra A.1.1.
Proof of Theorem A.1.1. Since we clearly have lim|z|→∞ f(z)z−n = cn,

it must be true that |f(z)| → ∞ as |z| → ∞. Therefore there must be some
R > 0 such that |f(z)| > |f(0)| for all z ∈ C with |z| = R. Now it follows
from the minimum principle in Lemma A.2.1 that the continuous, real-valued
function z 7→ |f(z)| attains its minimum in some point z0 in the compact set
BR(0) = {z ∈ C : |z| ≤ R}. Since |f(z)| > |f(0)| ≥ |f(z0)|, so that z0 cannot lie
on the boundary of the disk, i.e. z0 ∈ BR(0). If f(z0) were not zero, then there
would be an r > 0 such that Br(z0) ⊂ BR(0) and by d’Alembert’s Lemma A.2.2
we could find z1 ∈ Br(z0) satisfying |f(z1)| < |f(z0)|, contradicting the choice of
z0. Therefore we must have f(z0) = 0 and the theorem is proven.

q.e.d.
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Appendix B

Existence of transcendental
numbers∗

In Section 3.7 we have considered general properties of transcendental field ex-
tensions. In Number Theory, it is an important and generally very hard ques-
tion, whether a given real (or complex) number is algebraic or transcendental
over Q. The two most famous transcendental numbers are very probably π =
3.1415926..., the ratio of a circle’s circumference to its diameter, and Euler’s num-
ber e = 2.718281828..., the base of the natural logarithm. It is however not known
whether for instance whether or not e+ π is transcendental.

The full proof that these numbers are transcendental was first found by Hermite
(1873) for e and by von Lindemann (1882) for π, but they are both far too involved
to sketch here. We will give two different proofs that transcendental numbers exist.

B.1 An abstract counting argument∗

It is a well-known fact that the set of rational numbers Q is countably infinite, i.e.
there exists a bijective map N→ Q, and that the real numbers R are uncountable.
Both of these facts were first noticed by Cantor. We now show that transcendental
numbers exist by showing that there are “more” transcendental numbers than
algebraic ones. For this we need a small preparatory lemma.

Lemma B.1.1. Let (Mi)i∈I be a family of sets, where I is some index set. If all
Mi are at most countable and I is countable, then

⋃
i∈IMi is countable.

Proof. We may assume without loss of generality that the sets Mi are pairwise
disjoint, i.e. Mi∩Mj = ∅ if i 6= j. Since each Mi is countable, we can enumerate all
elements in Mi by (ai1, ai2, ...). Since I is also countable, we may assume without
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loss of generality that I = N. We now arrange the elements in the sets Mi in a
grid

a11 a12 a13 ...
a21 a22 a23 ...
a31 a32 a33 ...
...

...
...

. . .

.

Since all the aij are distinct by assumption, we obtain a well-defined map

φ : M =
⋃
i∈N

Mi = {aij} → N× N, aij 7→ (i, j).

Clearly, φ is bijective and since N×N is countable, it follows that M is countable.

q.e.d.

Proposition B.1.2. The set Q of algebraic numbers is countably infinite.

Proof. Every algebraic number α ∈ Q is the root of a non-zero polynomial
f ∈ Q[X]. Therefore we may write

Q =
⋃

f∈Q[X]
deg f≥1

{α ∈ C : f(α) = 0}.

Since each of the sets {α ∈ C : f(α) = 0} is finite and therefore countable, it
suffices to show that Q[X] is countable. We can write

Q[X] = {0} ∪
⋃
n∈N0

{f ∈ Q[X] : deg f = n}.

Now each set {f ∈ Q[X] : deg f = n} can be mapped bijectively to the fi-
nite cartesian product Q× × Qn−1. Since Q× and Qn−1 are both countable, since
Cartesian products of countable sets are countable, we find that each of the sets
{f ∈ Q[X] : deg f = n} is countable. Therefore Q[X] is a countable union of
countable sets and thus itself countable. This completes the proof.

q.e.d.

As an immediate corrollary we obtain the following.

Corollary B.1.3. There exist uncountably many transcendental numbers in R.
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B.2 Liouville’s construction∗

The arguments for the existence of transcendental numbers given in the previ-
ous section may be a bit unsatisfactory, since they cannot be used to produce an
explicit example of a transcendental number. In this section, we want to give a con-
struction of transcendetal numbers due to Liouville, which produces the first real
number which was ever shown to be transcendental. It all relies on the following
important result.

Theorem B.2.1. (Liouville’s approximation theorem) Let α ∈ C be an algebraic
number of degree n. Then there exists an effective constant c = c(α) > 0 such that
for all p, q ∈ Z, q > 00, with α 6= p

q
we have the inequality∣∣∣∣α− p

q

∣∣∣∣ < c(α)q−n.

Proof. By assumption the minimal polynomial of α (over Q) has degree n. By
multiplying by the common denominator, we obtain a polynomial f = anX

n +
...+ a0 ∈ Z[X] of degree n satisfying f(α) = 0. Since f is essentially the minimal
polynomial of α, it is irreducible over Q, so in particular we have f(p

q
) 6= 0.

Therefore we have that

qnf(
p

q
) = anp

n + ...+ a0q
n ∈ Z \ {0}

is at least 1 in absolute value.
From the binomial formula we obtain

− f(
p

q
) = f(α)− f(

p

q
) =

n∑
j=1

aj

(
αj − (

p

q
)j
)

=

(
α− p

q

) n∑
j=1

aj

(
αj−1 + αj−2p

q
+ ...+ α(

p

q
)j−2 + (

p

q
)j−1

)
.

Therefore, if 0 < |α − p
q
| < 1, so that in particular |p

q
| < 1 + |α| by the triangle

inequality, we find that

q−n ≤ | − f(
p

q
)| ≤

∣∣∣∣α− p

q

∣∣∣∣ n∑
j=1

|aj|
j−1∑
i=0

|α|i(1 + |α|)j−1−i.

Defining 1/c(α) :=
∑n

j=1 |aj|
∑j−1

i=0 |α|i(1 + |α|)j−1−i, which is permitted, since the
sum is a real number ≥ 1. Thus all those p, q satisfying 0 < |α − p

q
| < 1 satisfy

the inequality

c(α)q−n ≤ |α− p

q
|,
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while all those with |α− p
q
| ≥ 1 satisfy the stronger inequality |α− p

q
| ≥ q−n. Note

that in either case we have c(α) ≤ 1.
q.e.d.

More informally speaking, Liouville’s approximation theorem says that irrational
algebraic numbers (in particular real algebraic numbers) cannot be approximated
very well by rational numbers. Liouville himself used this to show the following.

Theorem B.2.2. Let h : N→ N be strictly increasing and satisfying the following
gap condition,

lim sup
n→∞

h(n+ 1)

h(n)
=∞.

Then for any choice of digits cn ∈ {0, ..., 9}, n = 1, 2, 3, ..., such that infinitely
many are non-zero, the number

∑∞
n=1 cn10−h(n) is transcendental. In particular

this is true for the number

λ =
∞∑
n=1

10−n! = 0.1100010000000000000000010....

Proof. Let α ∈ R be a number as described in the theorem and suppose that α
is algebraic of degree d. By truncating the series defining α at a given point N ,
we obtain integers

pN =
N∑
n=1

cn10h(N)−h(n), qN = 10h(N),

whose quotient clearly approaches α as N →∞. We have

0 < α− pN
qN

=
∞∑

n=N+1

cn10−h(n) ≤
∞∑

n=N+1

9

10h(n)
≤ 9

10h(N+1

∞∑
n=0

10−n = 101−h(N+1)

by the geometric series. By Liouville’s Theorem B.2.1 however we find that for a
suitable constant c(α) we have

c(α)10−dh(N) ≤ α− pN
qN
.

It follows that we must have c(α)10−dh(N) ≤ 101−h(N+1), which can only be satisfied
for all sufficiently large N if

lim sup
N→∞

h(N + 1)

h(N)
≤ d,
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contradicting the hypothesis that this limit superior should be ∞. Therefore α
must be transcendental.

Since (n+1)!
n

= n + 1, which goes to infinity as n goes to infinity, h(n) = n!
satisfies the gap condition, and λ is indeed transcendental.

q.e.d.

Remark B.2.3. 1. There is nothing special about using base 10 here, one can
do the same proof for any basis.

2. It is not hard to see that there are in fact uncountably many transcenden-
tal numbers of the shape described in Theorem B.2.2. However in a sense
“most” transcendental numbers are not of this shape, meaning that the tran-
scendental numbers from Liouville’s Theorem form a set of Lebesgue-measure
0 in the interval [0, 1]. To see this however requires some very deep insights
in Analytic Number Theory.
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