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Introduction

These notes are intended to briefly recall most of the prerequisites for a
course on differential equation based on the textbook Elementary Differential
Equations, 10th edition, by William E. Boyce and Richard C. DiPrima, held
in the Spring and Fall semester at Emory university.

These notes briefly go over some special functions, solving small sys-
tems of linear euations, techniques to find the roots of quadratic, cubic and
biquadratic polynomials, and basic rules and techniques of differentiation
and integration. Wherever possible, proofs and lengthy explanations will be
avoided, but to most of the covered topics, exercises are provided.

These notes are intended as an additional resource for students, they do
not aim to replace the mandatory calculus courses.

Should there be any typos or mathematical errors in this manuscript, I’d
be glad to hear about them via email (michael.mertens@emory.edu) and
correct them.

Atlanta, August 2015, Michael H. Mertens
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1 Special functions

1.1 The exponential function and the logarithm

Probably one of the most important functions in mathematics is the expo-
nential function, often denoted either by

exp(x) or ex.

The number e = exp(1) is known as Euler’s number and has the numerical
value

e = 2.71828182845904523536028747... .

The exponential function is usually defined by the following infinite series,

exp(x) :=
∞∑
k=0

xk

k!
,

where k! (read “k factorial”) is the product of all natural numbers up to k
and we set 0! := 1. It can be used to build several other special functions,
such as the trigonometric functions and the hyperbolic functions. We collect
some of the most important properties of the exponential function in the
following theorem.

Theorem 1.1. The exponential function has the following properties.

1. exp(x) > 0 for all real numbers x. In particular, exp(x) is never zero.

2. The exponential function is strictly monotonically increasing, i.e., for
x < y we have exp(x) < exp(y).

3. We have the functional equations exp(x) · exp(y) = exp(x + y) for all
real numbers x and y.

4. The exponential function is its own derivative (see Section 4), i.e., we
have exp′(x) = exp(x).

Another important fact about the exponential function is that it grows
faster than any power function.

Proposition 1.2. Let a be any real number, then we have

lim
x→∞

xa

exp(x)
= 0.
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Figure 1.1: The exponential function

Here is a plot of the exponential function.
Since it is strictly increasing, the exponential function has an inverse

function, the natural logarithm, which is denoted by log(x) or ln(x). This
means that for all real x we have log(exp(x)) = x and for all positive x we
have exp(log(x)) = x. The logarithm is only defined for positive numbers
because exp(x) assumes only positive values. It inherites its properties form
the exponential function.

Theorem 1.3. The logarithm has the following properties.

1. The expression log(x) is only defined for x > 0 and for every real y,
there is an x > 0 such that log(x) = y.

2. The logarithm is strictly monotonically increasing, i.e., for 0 < x < y
we have log(x) < log(y).

3. We have the functional equation log(x · y) = log(x) + log(y) for all
positive real numbers x and y.

Note that the analogue of Theorem 1.1.4. for the logarithm looks more
complicated.

One can also derive that the logarithm grows slower than any positive
power.
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Proposition 1.4. For any positive real number a we have that

lim
x→0

log(x)

xa
= 0.

Here is a plot of the logarithm function.

Figure 1.2: The logarithm

1.2 Trigonometric functions

The basic trigonometric functions sine and cosine are usually introduced
geometrically, see for example Figure 1.3 (note that we always measure angles
in radiants, not in degrees, so a full angle is 2π instead of 360◦). We assume
now that the two basic trigonometric functions, sin(x) and cos(x), are known.
Then we can define the following derived trigonometric functions (wherever
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Figure 1.3: The geometric definition of sine, cosine, and tangent

the denominators don’t vanish),

tan(x) :=
sin(x)

cos(x)
, the tangent

cot(x) :=
1

tan(x)
=

cos(x)

sin(x)
the cotangent ,

sec(x) :=
1

cos(x)
the secant ,

csc(x) :=
1

sin(x)
the cosecant .

It is clear from the geometric definition that each time one runs around the
unit circle in Figure 1.3, the sine and cosine functions behave in the same
way and that they are essentially shifts of each other. More precisely, we
have the following.

Theorem 1.5. 1. For all x ∈ R we have

sin(x+ 2π) = sin(x) and cos(x+ 2π) = cos(x).

2. For all x ∈ R we have

sin(x+ π) = − sin(x) and cos(x+ π) = − cos(x).
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3. For all x ∈ R we have

sin
(
x+

π

2

)
= cos(x).

In addition, the sine and cosine functions have certain symmetries.

Proposition 1.6. The sine function is point symmetric with respect to 0,
i.e., for all x ∈ R we have sin(−x) = − sin(x). The cosine function is axially
symmetric, i.e., for all x ∈ R we have cos(−x) = cos(x).

There are a lot of interesting and important identities among the trigono-
metric functions, some of which we collect in the following theorem.

Theorem 1.7. Let x and y be real numbers. Then the following are all true.

1. sin2(x) + cos2(x) = 1, where we denote sin2(x) := (sin(x))2.

2. sin(x+ y) = cos(x) sin(y) + cos(y) sin(x).

3. cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

It is handy to also recall the following special cases of the last two points.

Corollary 1.8. For all real numbers x the following are true.

1. sin(2x) = 2 cos(x) sin(x),

2. cos(2x) = cos2(x)− sin2(x) = 1− 2 sin2(x).

Apart from these algebraic relations, the trigonometric functions are also
related via differentiation.

Theorem 1.9. For all x ∈ R we have sin′(x) = cos(x) and cos′(x) =
− sin(x).

It is sometimes important to know some special values of the trigonomet-
ric functions. We give a few in the following table.

x 0 π
6

π
4

π
3

π
2

sin(x) 0 1
2

√
2
2

√
3
2

1

cos(x) 1
√
3
2

√
2
2

1
2

0
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From this and the previously mentioned properties of the sine and cosine
functions we can now find the zeros and poles of the trigonometric functions
introduced here.

Corollary 1.10. 1. We have sin(x) = 0 if and only if x = πk for some
integer k ∈ Z.

2. We have cos(x) = 0 if and only if x = π
(
k + 1

2

)
for some integer k ∈ Z.

3. The tangent function has (simple) zeros resp. poles exactly in the points
of the form kπ resp. π

(
k + 1

2

)
with k ∈ Z.

It is easy to deduce statements like this for the cotangent, secant and
cosecant function as well.

Another important fact about the sine and cosine functions is that they
are bounded.

Proposition 1.11. For all x ∈ R we have

| sin(x)| ≤ 1 and | cos(x)| ≤ 1.

In other words, both functions oscillate between +1 and −1.

Here are pictures with plots of the trigonometric functions we have dis-
cussed so far (the vertical lines are artefacts which should be ignored).

Figure 1.4: The sine (red) and cosine (blue)
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Figure 1.5: The tangent (red) and cotangent (blue)

Figure 1.6: The secant (red) and cosecant (blue)

1.3 Hyperbolic functions

The two basic hyperbolic functions are the hyperbolic sine and hyperbolic
cosine, defined by

sinh(x) :=
ex − e−x

2
and cosh(x) :=

ex + e−x

2
.

These also can be motivated geometrically, but we won’t go into this here
(they take the roles of the sine and cosine in so-called hyperbolic geometry,
hence the name). These functions are neither periodic nor can they be ex-
pressed in terms of each other by shifting the argument1, so there is not

1Note that this is only true for real numbers as arguments
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really an analogue for Theorem 1.5. But they have similar symmetries and
relations as the usual sine and cosine functions.

Proposition 1.12. The hyperbolic sine is point symmetric with respect to 0,
i.e., for all x ∈ R we have sinh(−x) = − sinh(x). The hyperbolic cosine is
axially symmetric, i.e., for all x ∈ R we have cosh(−x) = cosh(x).

Theorem 1.13. Let x and y be real numbers. Then the following are all
true.

1. cosh2(x)− sinh2(x) = 1.

2. sinh(x+ y) = cosh(x) sinh(y) + cosh(y) sinh(x).

3. cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).

Corollary 1.14. For all real numbers x the following are true.

1. sinh(2x) = 2 cosh(x) sinh(x),

2. cosh(2x) = cosh2(x) + sinh2(x) = 1 + 2 sinh2(x).

Theorem 1.15. For all x ∈ R we have sinh′(x) = cosh(x) and cosh′(x) =
sinh(x).

For the hyperbolic functions, there are not really any interesting special
values, but we can say the following.

Proposition 1.16. 1. We have sinh(x) = 0 if and only if x = 0.

2. We have cosh(x) ≥ 1 for all x ∈ R.

We conclude this section with a plot of the hyperbolic sine and cosine
functions.
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Figure 1.7: Hyperbolic sine (red) and cosine (blue)

2 Systems of linear equations

The problem of solving systems of linear equations is ubiquitous in practi-
cally all mathematical disciplines. We start by discussing systems with two
equations and two unknowns first, and then we discuss a general method to
solve systems of linear equations with arbitrarily many unknowns (focussing
on the case of three unknowns).

2.1 Two unknowns

We shall discuss a simple method to solve a system of two linear equations
with two unknowns using an example. Say we want to find x and y such that
the two equations

2x −3y = 2
x +y = −1

are simultaneaously satisfied. One method to deal with this is to isolate one
of the unknowns in one of the equations. For example we can rewrite the
second equation as

y = −x− 1.

Now we can plug this into the first equation, thus obtaining one linear equa-
tion with only one unknown, which we can easily solve,

2x− 3(−x− 1) = 2 ⇔ 5x+ 3 = 2 ⇔ x = −1

5
.
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Thus we know that the only x which solves the system is x = −1
5
. We

plug this back into the rewritten second equation for y, yielding y = −4
5
. In

general, the method works as follows.

Method 2.1.

1. Isolate one variable in one of the two equations (it doesn’t matter which
equation or which variable one chooses).

2. Plug the expression thus obtained into the other equation, which then
contains only one unknown and can be solved directly. This gives the
value for the variable which was not isolated in step 1.

3. Plug the obtained values back into equation with one isolated variable
to obtain the value for this equation.

In fact, one can give a not too complicated formula for the solution of
such a system. Let us say, our unknowns are x and y and the system we
want to solve is

ax +by = v
cx +dy = w,

where a, b, c, d, v, w are given numbers. In the above example, we would have
a = 2, b = −3, c = 1, d = 1, v = 2, w = −1. The general solution formula
is then

x =
dv − bw
ad− bc

and y =
−cv + aw

ad− bc
,

provided that the expression ad − bc is not zero (in which case the two
equations would be constant multiples of each other).

2.2 Arbitrarily many unknowns

One can easily imagine that as soon as there are more than two unknowns
in the game, the above methods become rather cumbersome and one should
therefore use a more systematic method then. The basic philosophy is that
the fewer unknowns there are in an equation the easier it is to solve. We can
do the following three basic things to a system of equation without changing
the solution,

1. Interchange two equations,
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2. Multiply one equation by a number a 6= 0,

3. Add a multiple of one equation to another.

Of course, arbitrary combinations of these operations are also allowed. Now
we want to use these operations to successively eliminate unknowns from our
equation. Let us look at the following example. Find x, y, z such that the
following equations are all satisfied.

x −y +z = 0
−2x +y −3z = −7
x +2y −z = 1.

We see that if we add 2 times the first equation to the second one, the
resulting equation won’t contain an x anymore, which is what we want to
achieve. This gives the new system

x −y +z = 0
−y −z = −7

x +2y −z = 1.

Note that we did not change the first equation. Similarly, if we add −1 times
the first equation to the third one, the result won’t contain an x either,

x −y +z = 0
−y −z = −7
3y −2z = 1.

Now the last two equations only contain two variables, so we could solve for
y and z with the methods described above, but instead we continue with the
elimination process. For convenience, we multiply the second equation by
−1 before proceeding,

x −y +z = 0
y +z = 7
3y −2z = 1.

If we now add the second equation −3 times to the third, we also eliminate
y from that equation,

x −y +z = 0
y +z = 7
−5z = −20.
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Now we divide the third equation by −5, yielding

x −y +z = 0
y +z = 7

z = 4,

so that we can already read off that z = 4. Now our system has triangu-
lar form, which is what we wanted to achieve. We can now continue the
elimination process from below and eliminate the z’s from the first and sec-
ond equation by adding the third equation −1 times to the second and first
equation,

x −y = −4
y = 3

z = 4.

Now we also know that y = 3. Now we finish by eliminating y from the first
equation by adding the second one to the first one, which gives

x = −1
y = 3

z = 4.

Now we have got our solution.
This method works in general for systems of linear equations with arbi-

trarily many variables in the same way.

Method 2.2

1. Assume that the first unknown occurs in the first equation (if not,
change the first with one that does contain it).

2. Eliminate the first variable from the all but the first equation by adding
multiples of the first equation.

3. Repeat steps 1. and 2. for each equation successively until triangular
form is achieved.

4. Starting from the last equation, eliminate the last variable from all but
the last equation by adding multiples of the last equation.

5. Repeat step 4. for each equation in reversed order.
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6. Read off solutions.

This method is known as the Gauß elimination method, named after the
famous German mathematician Carl Friedrich Gauß (1777–1855). It can
always be used to solve a system of linear equations with arbitrarily many
unknowns (or to show that there is no solution) systematically, which makes
it a very valuable tool. In the lecture Linear Algebra, this topic is covered
in much more depth than here.
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2.3 Exercises

Solve the following systems of linear equations.2

(a)
2x −4y = −8
3x +y = 2,

(b)
x −3y +2z = −15
−2x −4z = 0
3x +2y −z = 3,

(c)
−4y −z = 1

3x −2y = 5
−x +4y −2z = −11,

(d)
x +z = −3

y −t = 3
3x −2z = 16
−2y +5t = −3.

Hint: All solutions are integers.

2Upon handing in a complete and correct solution of Exercises (b) and (c) by Monday,
Feb. 22, 2016, to be put into my mail box (when you enter the Dept. Math/CS, turn right
behind the front desk and enter the first (doorless) room on your right) you can receive
up to 3 bonus points which count towards your quiz score.
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3 Roots of polynomials

3.1 Quadratic and biquadratic equations

Even though it is probably the most well-known topic among those discussed
in these notes, we begin by recalling how to solve quadratic equations. Sup-
pose we have an equation of the form

ax2 + bx+ c = 0

where a, b, c are given real numbers (with a 6= 0, otherwise we would in fact
be talking about linear equations) and we want to solve for x. Since a 6= 0,
we can divide the whole equation by it and add a clever zero on the left hand
side, giving

x2 +
b

a
x+

(
b

2a

)2

−
(
b

2a

)2

+
c

a
= 0.

The first three summands can easily be recognized to equal (x + b
2a

)2. This
procedure of adding this particular zero is called completing the square. Now
we reorder the equation to obtain(

x+
b

2a

)2

=
b2 − 4ac

4a2
.

Now there are three cases to distinguish,

1. If ∆ := b2 − 4ac > 0, then we obtain two distinct real solutions by
taking the square-root, namely

x =
−b+

√
∆

2a
or x =

−b−
√

∆

2a
. (3.1)

Note that the square-root of a positive real number a is also positive
by definition and therefore unique, while the equation x2 = a has two
solutions,

√
a and −

√
a.

2. If ∆ = 0, then there is precisely one zero,

x = − b

2a
.

In this case we speak of a double zero, since the derivative of the function
f(x) = ax2 + bx + c would also vanish in this case. The zeros in the
first case are called simple zeros.
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3. If ∆ < 0, then there is no real solution, since the square of a real
number is always non-negative.

Because the behaviour of the quadratic equation is determined entirely by
the quantity ∆ = b2−4ac, it is called the discriminant of the equation (from
Latin discriminare – to distinguish).

In the case where a = 1 (we say that the polynomial is monic in this case)
and b and c are integers, there is an easy alternative to the above formula,
which gives the solutions quicker if they are integers (and in many examples,
they will be). It is based on the following observation which goes back to the
French-Italian mathematician François Viète (1540–1603).

Lemma 3.1. Let α1 and α2 be roots of the polynomial x2 + bx+ c. Then we
have b = −(α1 + α2) and c = α1α2.

Proof. If α1 and α2 are the two zeros of our polynomial, then we must have

x2 + bx+ c = (x− α1)(x− α2) = x2 − (α1 + α2) + α1α2.

Thus a comparison of the coefficients gives the lemma.

So if one can factor the number c and combine the divisors so that they
sum to −b, one also has found the solutions to the equation. This may be
easier to do without a calculator than taking square-roots, especially if c has
very few divisors. If this factoring method doesn’t work, then we also know
that our solutions will not be integers.

Sometimes it happens that one has to deal with so-called biquadratic
equations. Those have the general form

ax4 + bx2 + c = 0.

It is not very complicated to solve these as well, one just substitutes z = x2

to obtain a quadratic equation in z, which one can solve by either one of
the above methods. Afterwards, we take the positive and negative square-
root of the solutions which are non-negative (the others don’t yield any real
solutions to the biquadratic equation).

Example 3.2. Let’s solve the biquadratic equation

x4 + x2 − 20 = 0.
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Substituting z = x2 gives us the quadratic equation

z2 + z − 20 = 0.

The discriminant of this quadratic equation is ∆ = 12−4 ·1 ·(−20) = 81 > 0,
therefore, we have two real solutions for z, according to our formula (3.1),
namely

z =
−1 +

√
81

2
= 4 or z =

−1−
√

81

2
= −5.

Since z = x2, it must be non-negative if x is a real number, so the solution
z = −5 is irrelevant for us and we obtain the two real solutions

x = 2 or x = −2.

3.1.1 Basics on complex numbers

Let us go back to the third case about solving quadratic equations, when the
discriminant of a quadratic equation is negative. The argument why there
is no solution is that the square of a real number is always non-negative.
But often it is necessary to have a solution to such an equation, even if it is
not real. So one imagines that there is a “number” which we call i with the
property i2 = −1. This number i is not a real number, but it is indeed called
imaginary. We state now that essentially all the rules of arithmetic one is
used to from working with real numbers can also be used for this number i.
With this, we can in fact solve our quadratic equation

ax2 + bx+ c = 0

even in the case when the discriminant ∆ is negative, namely by writing
∆ = (−1) · (−∆), keeping in mind that −∆ is positive, we can write our
formula (3.1) as

x =
−b+ i

√
−∆

2a
or x =

−b− i
√
−∆

2a
, (3.2)

an expression we can now make sense of. In general we call an object of the
form α = a+ bi with real numbers a and b a complex number. The number a
is called the real part of α, the number b is called the imaginary part of α (in
particular, the imaginary part of a complex number is always a real number).
Every complex number can be simplified to be of this form. We collect a few
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facts about complex numbers here. We note that one can basically calculate
with complex numbers exactly as with real numbers, but since it is not really
relevant in the course of the lecture, we won’t go into this here. The only
thing that we will need is the exponential of a complex number. We will just
give it as a definition, although it is possible to derive it properly.

Definition 3.3. For a complex number α = a+ bi with real numbers a, b we
have

exp(α) := eα := ea cos(b) + iea sin(b).

3.2 Cubic equations

3.2.1 Polynomial division

There is an easy way to divide polynomials by one another which works
basically like the long division algorithm for integers. This comes in handy if
one has guessed one zero, say α, of a polynomial because one can then divide
the polynomial by x − α to obtain a polynomial of lower degree one has to
deal with (see Lemma 3.4). We want to divide x3 − x2 − 3x − 9 by x − 3.
One only looks at the leading terms of the polynomials and divides those. In
this case, we obtain x2.

x3 − x2 − 3x− 9 =
(
x− 3

) (
x2

)
.

Then we multiply the divisor x − 3 by this result and subtract it from the
dividend x3 − x2 − 3x− 9,

x3 − x2 − 3x− 9 =
(
x− 3

) (
x2

)
− x3 + 3x2

.

We copy the next lower term downstairs and repeat the procedure with the
difference.

x3 − x2 − 3x− 9 =
(
x− 3

) (
x2

)
− x3 + 3x2

2x2 − 3x

.

Again, we only divide the leading terms, and we get +2x, which we write
next to the x2 from the previous step,

x3 − x2 − 3x− 9 =
(
x− 3

) (
x2 + 2x

)
− x3 + 3x2

2x2 − 3x

.
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We multiply this 2x again by our divisor and subtract the result from the
dividend,

x3 − x2 − 3x− 9 =
(
x− 3

) (
x2 + 2x

)
− x3 + 3x2

2x2 − 3x
− 2x2 + 6x

.

We repeat this procedure again and finsh up,

x3 − x2 − 3x− 9 =
(
x− 3

) (
x2 + 2x+ 3

)
− x3 + 3x2

2x2 − 3x
− 2x2 + 6x

3x− 9
− 3x + 9

0

.

Hence we have found our result of the division, namely x2 + 2x+ 3.
In general, it is not necessary that the polynomial division goes through

without a remainder. If there is one, it will have a degree less than the
divisor. We want to divide x4 − 3x3 + 2x2 − 5x+ 7 by x2 − x+ 1. Up to the
last step everything is the same as before,

x4 − 3x3 + 2x2 − 5x+ 7 =
(
x2 − x+ 1

) (
x2 − 2x− 1

)
− x4 + x3 − x2

− 2x3 + x2 − 5x
2x3 − 2x2 + 2x

− x2 − 3x+ 7
x2 − x+ 1

− 4x+ 8

.

We see that the last difference is a polynomial of degree 1, but not 0. This
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polynomial is our remainder, which we have to add on the right-hand side,

x4 − 3x3 + 2x2 − 5x+ 7 =
(
x2 − x+ 1

) (
x2 − 2x− 1

)
− 4x+ 8

− x4 + x3 − x2

− 2x3 + x2 − 5x
2x3 − 2x2 + 2x

− x2 − 3x+ 7
x2 − x+ 1

− 4x+ 8

.

3.2.2 Cubic and higher degree polynomials

As indicated in the last section, we can use polynomial division to find roots of
polynomials. This is based on two easy facts which we recall in the following
lemma.

Lemma 3.4. 1. The product of two numbers is 0 if and only one of the
numbers is zero,

a · b = 0 ⇒ a = 0 or b = 0.

2. A number α is the root of a polynomial p(x) if and only if x−α divides
p(x), i.e. the polynomial division of p(x) by x−α goes through without
a remainder.

So if we want to find the roots or zeros of a cubic polynomial, we can
somehow guess one zero, and use polynomial division to obtain a quadratic
polynomial, whose zeros we can determine using the formulas in Section
3.1. The question now is how we can guess a zero of a polynomial. At
least in case of a monic polynomial with integer coefficients, there is a very
easy observation with which we can check at least for integer zeros. It is a
generalization of the Theorem of Vieta (Lemma 3.1)

Proposition 3.5. If an integer a is a zero of a monic polynomial with integer
coefficients, then it divides the absolute term of the polynomial. If no divisor
of the absolute term is a zero of the polynomial, then all zeros are irrational.

So if we cannot find an integer root, then we have essentially no chance
of “guessing” one. In this case, there are numerical methods to obtain ap-
proximations for zeros, the most well-known goes back to Sir Isaac Newton
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(1642–1727), or (for polynomials of degree 3 and 4) there are even closed
formulas. None of these will be relevant in our course.

Example 3.6. We want to determine all zeros of the cubic polynomial

x3 + 4x2 − 7x− 10.

By Proposition 3.5, we have to check the divisors of the absolute term, which
is 10 in this case. By trial and error we find that that 2 is in fact a zero of
this polynomial. Now we use polynomial division,

x3 + 4x2 − 7x− 10 =
(
x− 2

) (
x2 + 6x+ 5

)
− x3 + 2x2

6x2 − 7x
− 6x2 + 12x

5x− 10
− 5x + 10

0

.

The result is x2 + 6x+ 5. The zeros of this polynomial are −1 and −5 which
one can check either using (3.1) or Lemma 3.1. Thus we have the three zeros
x = 2, x = −1, and x = −5.

23



3.3 Exercises

Carry out polynomial division for the following pairs of polynomials.

1. x2 − 4x+ 3 divided by x− 3,

2. x3 − 4x2 + 3x− 12 divided by x− 4,

3. x3 − 5x2 + 3x− 4 divided by x2 + 1,

4. x4 + 7x2 − 4x+ 2 divided by x2 + 3x− 1.

Find all zeros (real and complex) of the following polynomials.3

1. x2 − 4x+ 4,

2. x2 − 4x+ 13,

3. x4 − 25x2 + 144,

4. x3 − 2x2 − 5x+ 6,

5. x3 − 2x2 + 9x− 18.

3Upon handing in a complete and correct solution of Exercises (c) and (e) by Monday,
Feb. 22, 2016, to be put into my mail box (when you enter the Dept. Math/CS, turn right
behind the front desk and enter the first (doorless) room on your right) you can receive
up to 3 bonus points which count towards your quiz score.
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4 Differentiation

4.1 Basic rules

Here we recall the basic rules of differentiation without going into the moti-
vation and definition of the derivative of a function. We refer to the relevant
calculus textbooks for this. We denote the derivative of a function f with
respect to the variable x by

d

dx
f(x) = f ′(x).

Theorem 4.1. Let f and g be differentiable functions on an open interval
to the real numbers, and α, β be real numbers. Then the following are true.

1. The derivative in linear, i.e.

(αf(x) + βg(x))′ = αf ′(x) + βg(x).

2. The derivative obeys the Leibniz rule,

(f(x) · g(x))′ = f ′(x)g(x) + f(x)g′(x).

3. We have the chain rule,

(f(g(x)))′ = f ′(g(x)) · g′(x).

4. Wherever g(x) 6= 0, we have the quotient rule,(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
.

An important property of real functions that we are interested in is mono-
tonicity, for example because a strictly monotonic function is invertible. The
derivative is a good tool to test for this.

Theorem 4.2. Let f be a differentiable function on an open interval I. If
f ′(x) ≥ 0 (resp. f(x) ≤ 0) for all x ∈ I then f is monotonically increasing
(resp. decreasing). If the inequality is always a strict one, we also have strict
monotonicity, in particular, there is a function f−1 such that f(f−1(y)) = y
and f−1(f(x)) = x for all x ∈ I and all y in the image of f .

25



Note that f−1 does not indicate the reciprocal, but the inverse of f .
We can also say something about the derivative of that inverse.

Proposition 4.3. Let f be an invertible, differentiable function with f ′(x) >
0 and inverse f−1. Then f−1 is differentiable as well and we have

(f−1(x))′ =
1

f ′(f−1(x))
.

Proof. We know that f(f−1(x)) = x, so if we differentiate this equation,
applying the chain rule, we get

f ′(f−1(x)) · (f−1(x))′ = 1.

Rearranging this equation yields the claim.

Example 4.4. For −π
2
< x < π

2
we have, according to the quotient rule, that

tan′(x) =
cos2(x) + sin2(x)

cos2(x)
= 1 + tan2(x),

which is obviously positive. Thus the tangent function is invertible on this
interval, the inverse is called the arcus tangent, denoted by arctan(x). By
Proposition 4.3, its derivative is therefore given by

arctan′(x) =
1

1 + tan2(arctan(x))
=

1

1 + x2
.

This may at first glance be rather unexpected, for the tangent is a transcen-
dental, complicated function, and yet, the derivative of its inverse is a rational
function.

4.2 Interpretations

In various applications it is important to know interpretations for the deriva-
tive. Generally speaking, the derivative always describes a rate of change.
In the following table, we give a small dictionary how one can interpret the
derivative of a function depending on what the function describes (in most
applications, the variable stands for time, which is why we denote it by t in
this section).
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Interpretation for f(t) Interpretation for f ′(t)
abstract function slope of the graph at every point

position of a particle velocity of a particle
velocity of a particle acceleration of a particle

momentum of a particle force acting on a particle
electric charge electric current

4.3 Derivatives of some special functions

Here we give a table of the derivatives of some of the most important ele-
mentary functions. The letter x shall always denote the variable, and a a
fixed real number (if not specified otherwise).

f(x) f ′(x)
xa axa−1

ex ex

ax, a > 0 ln(a)ax

ln(x) 1
x

sin(x) cos(x)
cos(x) − sin(x)
tan(x) 1

cos2(x)
= 1 + tan2(x)

sinh(x) cosh(x)
cosh(x) sinh(x)

arcsin(x) 1√
1−x2

arccos(x) − 1√
1−x2

arctan(x) 1
1+x2
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4.4 Exercises

Find the first derivatives of the following functions.4

(a) x17 − 4x8 + 5x3 − 7x+ 5,

(b) sin(x2),

(c) e2x cos(3x),

(d) ex
2
,

(e) ln(arctan(2x)).

Use Proposition 4.3 to derive the formulas for the derivatives of the functions

(a) ln(x),

(b) arcsin(x),

(c) arccos(x).

4Upon handing in a complete and correct solution of Exercises (b), (c), and (e) by
Monday, Feb. 22, 2016, to be put into my mail box (when you enter the Dept. Math/CS,
turn right behind the front desk and enter the first (doorless) room on you right) you can
receive up to 3 bonus points which count towards your quiz score.
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5 Integration

5.1 The Principal Theorem of Calculus

Geometrically, the integral of a (let’s say continuous) function over an interval
is the sum of the oriented areas under the graph of the function. Already
from this notion, one can derive several important properties of the integral.

Proposition 5.1. Let f, g be continuous functions on a closed interval [a, b]5

and α, β be real numbers.

1. We have ∫ b

a

(αf(x) + βg(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx,

i.e., the integral is linear.

2. For any c ∈ [a, b] we have ∫ c

c

f(x)dx = 0.

3. We have ∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

4. For c ∈ [a, b] we have∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx.

At first glance it is rather surprising that this is related to derivatives.
The Principal Theorem of Calculus makes this precise.

Theorem 5.2. Let f be a continuous function on a closed interval [a, b].

1. The function F (x) :=
∫ x
a
f(t)dt for x ∈ [a, b] is an antiderivative of f ,

i.e. F ′(x) = f(x).

5By an interval [a, b] for real numbers a ≤ b we mean the set of all real numbers x such
that a ≤ x ≤ b.
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2. Let F be any antiderivative of f , i.e. a differentiable function with
F ′(x) = f(x). Then we have∫ b

a

f(x)dx = [F (x)]ba := F (b)− F (a).

At this point, we want to stress that there is more than one antiderivative
to a continuous function.

Lemma 5.3. Let F and G be two antiderivatives of a continuous function
f . Then their difference F (x)−G(x) is constant.

5.2 Basic rules and techniques

With the Principal Theorem of Calculus and the differentiation rules in The-
orem 4.1 we can derive several rules for integration as well.

Theorem 5.4. Let f and g be differentiable functions on an interval [a, b].
Then we have the following rules of integration,

1. the rule of partial integration,∫ b

a

f ′(x)g(x)dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x)dx,

2. the first substitution rule,∫ b

a

f(g(x))g′(x)dx = [F (g(x))]ba,

where F is an antiderivative of f .

3. if g is invertible, then we have the second substitution rule,∫ b

a

f(x)dx =

∫ g−1(b)

g−1(a)

f(g(t))g′(t)dt.

4. A special case of the substitution is the logarithmic integration:∫ b

a

f ′(x)

f(x)
dx = [ln |f(x)|]ba .
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We give an example for the application of these rules.

Example 5.5. 1. We use partial integration to find an antiderivative of
the logarithm function. By Theorem 5.2, one is given by∫ x

1

ln(t)dt =

∫ x

1

1 · ln(t)dt.

With partial integration it is important to make a good choice, which of
the functions one chooses for f ′(x) and which one for g(x). Theoreti-
cally, this choice doesn’t matter but for computational purposes, there
is often one good and one bad choice. In general it is a good call to
choose the function for f ′(x) of which we know an antiderivative. So
here we choose f ′(x) = 1 (and we can therefore use f(x) = x) and
g(x) = ln(x) (and therefore g′(x) = 1

x
). Thus we have∫ x

1

1 · ln(t)dt = [t ln(t)]x1 −
∫ x

1

t · 1
t
dt = x ln(x)− [t]x1 = x ln(x)− x+ 1.

Since additive constants do not matter in this context (cf. Lemma 5.3),
we can pick the function

F (x) = x ln(x)− x

as an antiderivative.

2. Using the first substitution rule, we want to find an antiderivative of the
function f(x) = xex

2
. Despite the fact that this is the product of two

functions, partial integration will not yield a closed expression for the
antiderivative. The reason for this is essentially that an antiderivative
of ex

2
– even though it certainly exists – is not expressible in terms of

so-called elementary functions. However, substitution will give us an
answer in this case. By Theorem 5.2, an antiderivative is given by∫ x

0

tet
2

dt =
1

2

∫ x

0

(2t)et
2

dt =
1

2
[et

2

]x0 =
1

2
ex

2 − 1

2
.

Again, we get rid of the additive constant, yielding the antiderivative

F (x) =
1

2
ex

2

.
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3. The function f(x) =
√

1− x2 is defined for −1 ≤ x ≤ 1 and its graph
describes the upper half of the unit circle. Thus we know from elemen-
tary geometry that ∫ 1

−1

√
1− x2dx =

π

2
.

We want to derive this with the methods of calculus, more precisely,
with the second substitution rule. We substitute x = sin(t) and use the
second substitution rule. We obtain∫ 1

−1

√
1− x2dx =

∫ arcsin(1)

arcsin(−1)

√
1− sin2(t) cos(t)dt =

∫ π
2

−π
2

cos2(t)dt.

To compute this integral, we use partial integration to obtain an an-
tiderivative of cos2(t). We have∫ t

0

cos2(s)ds = [cos(s) sin(s)]t0 +

∫ t

0

sin2(t)dt

= cos(t) sin(t) +

∫ t

0

(1− cos2(s))ds

= cos(t) sin(t) + t−
∫ t

0

cos2(s)ds.

By rearranging this equality we find∫ t

0

cos2(s)ds =
1

2
cos(t) sin(t) +

t

2
.

Thus by Theorem 5.2 we have∫ π
2

−π
2

cos2(t)dt =

[
1

2
cos(t) sin(t) +

t

2

]π
2

−π
2

=
π

4
−
(
−π

4

)
=
π

2
.

Another important technique for integrating rational functions (i.e. quo-
tients of polynomials) is the method of partial fraction decomposition. It is
also very useful in other contexts. Suppose we want to integrate a function
f(x) = p(x)

q(x)
, where p(x) and q(x) are polynomials and we assume that the

degree of p is less than that of q(x). If that assumption is not satisfied we can
use polynomial division (see Section 3.2.1) to write as a sum of a polynomial
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(which is easy to integrate) and a rational function of the assumed form. We
can write q(x) as a product of linear and quadratic polynomials and write
p(x)
q(x)

as a sum of rational functions with these factors as denominators. The
point is that one can rather easily integrate functions of this form.

We illustrate this with an example.

Example 5.6. We want to find an antiderivative for the function

f(x) =
x2 − 20x+ 39

(x− 1)(x+ 3)(x− 4)
.

As described above, we want to write this as a function of the form

f(x) =
A

x− 1
+

B

x+ 3
+

C

x− 4

for real numbers A,B,C. In order to find these numbers, we write this all
as one fraction again,

f(x) =
A(x+ 3)(x− 4) +B(x− 1)(x− 4) + C(x− 1)(x+ 3)

(x− 1)(x+ 3)(x− 4)

=
(A+B + C)x2 + (−A− 5B + 2C)x+ (−12A+ 4B − 3C)

(x− 1)(x+ 3)(x− 4)
.

By comparing coefficients we see that A,B,C have to satisfy the following
system of linear equations,

A +B +C = 1
−A −5B +2C = −20
−12A +4B −3C = 39.

Using the method discussed in Section 2.2, we can solve this and find that
A = −2, B = 4, and C = −1, wherefore we have

f(x) = − 2

x− 1
+

4

x+ 3
− 1

x− 4
.

It is now easy to find an antiderivative, for example the function

F (x) = −2 ln |x− 1|+ 4 ln |x+ 3| − ln |x− 4|

will work.
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5.3 Indefinite and improper integrals

So far, we have only considered definite integrals, i.e. integrals with specific
limits where the integrand function is continuous on the full closed interval
over which we integrate. There is also a notion of so-called indefinite integrals
which don’t have specified limits. For a continuous function f we mean by
the expression ∫

f(x)dx

the collection of all antiderivatives of f . So, strictly speaking, this expression
is a set of functions, not a single function. In particular, there is no formally
correct way to plug in an argument into this. If we want to work with a
specific antiderivative of f , we need to work with a definite integral, where
the upper limit is considered a variable, as in Theorem 5.2. Sometimes,
one is a bit sloppy though and uses the symbol

∫
f(x)dx for the “most

straightforward” antiderivative of f , i.e. one where there is no visible additive
constant. For example, one would write

∫
cos(x)dx = sin(x) instead of, e.g.

sin(x) + 17. But one should always be aware of the proper meaning of the
improper integral.

Apart from this, one also sometimes needs to consider integrals, where
one (or both) of the limits are either ∞ or −∞, or also singularities of the
function one is integrating (e.g. 0 with the function 1√

x
). The definition of

this is as follows

Definition 5.7. Let f be a continuous function on the half-open interval
[a, b), the set of all real numbers x with a ≤ x < b, where b is allowed to be
+∞. Then we define the improper integral of f(x) over the interval [a, b] by∫ b

a

f(x)dx := lim
c↗b

∫ c

a

f(x)dx

and say that it exists if the limit exists. Analogously, if f is continouous on
the half-open interval (a, b] where a is allowed to be −∞, then we define the
improper integral ∫ b

a

f(x)dx := lim
c↘a

∫ b

c

f(x)dx.

Note that in the above definition the expression
∫ c
a
f(x)dx is a proper,

definite integral as we have discussed before, while the expression
∫ b
a
f(x)dx

does not even need to make sense.
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It is a very delicate question in general whether an improper integral
exists. As a rule of thumb one can say (at least for functions without sign
changes) that the improper integral exists if f decays fast enough if the
problematic limit is ±∞ or goes to infinity slowly enough if the problematic
limit is finite.

Proposition 5.8. Let a be a positive real number.

1. The improper integral ∫ ∞
1

x−adx

exists if and only if a > 1. Its value is 1
a−1 .

2. The improper integral ∫ 1

0

x−adx

exists if and only if 0 < a < 1. Its value is 1
1−a .

3. The improper integral ∫ ∞
0

e−xdx

exists and has the value 1.

These integrals can be computed directly and then it is easy to take the
limit. But in the vast majority of cases, this is not possible. One important
criterion to decide existence of improper integrals (but not to compute them)
is given in the following theorem.

Theorem 5.9. Let f be a continuous function on the half-open interval [a, b),
where b is allowed to be +∞. If there exists a continuous function g on [a, b)
such that g(x) ≥ |f(x)| for all x ∈ [c, b) for some c ∈ [a, b) and the improper

integral
∫ b
a
g(x)dx exists, then so does the improper integral

∫ b
a
f(x)dx.

Example 5.10. We want to show that the improper integral∫ ∞
0

e−x
2

dx

exists. As pointed out before, we cannot explicitly compute an antiderivative
in order to calculate the limit, so we need to do something else. In fact we
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know that for x ≥ 1 we have e−x
2 ≤ e−x since the exponential function is

monotonically increasing and that∫ ∞
0

e−xdx = 1

exists. Thus we know by Theorem 5.9 that also the improper integral
∫∞
0
e−x

2
dx

exists. Note that this procedure does not give any clue about the actual value
of this integral (which is

√
π
2
≈ 0.8862269).
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5.4 Exercises

Compute the following integrals.

(a)
∫ 4

0
x2 − x− 3dx,

(b)
∫ π
0

sin(x)dx,

(c)
∫ 2

0
π cos(x),

(d)
∫ 3

−3 sinh(x)dx.

Find an antiderivative to each of the following functions.6

(a) (ln(x))2,

(b) sin2(x),

(c) cos(x)ex,

(d) x2−6x+12
x3−x2+4x−17 ,

(e) tan(x),

(f) cosh(x4 − x2)(2x3 − x),

(g) cos(2x− 3),

(h)
√

1 + x2.

6Upon handing in a complete and correct solution of Exercises (b), (c), and (f) by
Monday, Feb. 22, 2016, to be put into my mail box (when you enter the Dept. Math/CS,
turn right behind the front desk and enter the first (doorless) room on you right) you can
receive up to 3 bonus points which count towards your quiz score.
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