Holomorphic Projection and Mock Modular Forms

Michael H. Mertens

Emory University

San Antonio, January 11, 2015
(1) Introduction

- Mock modular forms
- Holomorphic projection
(2) Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values

Table of Contents

(1) Introduction

- Mock modular forms
- Holomorphic projection
(2) Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values

Ramanujan's deathbed letter

S. Ramanujan (1887-1920)

The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}\left(\Gamma_{0}(N)\right)$, the shadow of f, s.t. $\mathcal{M}=f+g^{*}$ with

$$
g^{*}(\tau):=\int_{-\bar{\tau}}^{\infty} \frac{\overline{g(-\bar{z})}}{(z+\tau)^{k}} d z
$$

transforms like a modular form of weight k under $\Gamma_{0}(N)$.

The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}\left(\Gamma_{0}(N)\right)$, the shadow of f, s.t. $\mathcal{M}=f+g^{*}$ with

$$
g^{*}(\tau):=\int_{-\bar{\tau}}^{\infty} \frac{\overline{g(-\bar{z})}}{(z+\tau)^{k}} d z
$$

transforms like a modular form of weight k under $\Gamma_{0}(N)$.
Appear in

The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}\left(\Gamma_{0}(N)\right)$, the shadow of f, s.t.
$\mathcal{M}=f+g^{*}$ with

$$
g^{*}(\tau):=\int_{-\bar{\tau}}^{\infty} \frac{\overline{g(-\bar{z})}}{(z+\tau)^{k}} d z
$$

transforms like a modular form of weight k under $\Gamma_{0}(N)$.
Appear in

- combinatorial q-series (e.g. partition ranks)

The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}\left(\Gamma_{0}(N)\right)$, the shadow of f, s.t.
$\mathcal{M}=f+g^{*}$ with

$$
g^{*}(\tau):=\int_{-\bar{\tau}}^{\infty} \frac{\overline{g(-\bar{z})}}{(z+\tau)^{k}} d z
$$

transforms like a modular form of weight k under $\Gamma_{0}(N)$.
Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing

The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}\left(\Gamma_{0}(N)\right)$, the shadow of f, s.t.
$\mathcal{M}=f+g^{*}$ with

$$
g^{*}(\tau):=\int_{-\bar{\tau}}^{\infty} \frac{\overline{g(-\bar{z})}}{(z+\tau)^{k}} d z
$$

transforms like a modular form of weight k under $\Gamma_{0}(N)$.
Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing
- umbral moonshine

The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}\left(\Gamma_{0}(N)\right)$, the shadow of f, s.t.
$\mathcal{M}=f+g^{*}$ with

$$
g^{*}(\tau):=\int_{-\bar{\tau}}^{\infty} \frac{\overline{g(-\bar{z})}}{(z+\tau)^{k}} d z
$$

transforms like a modular form of weight k under $\Gamma_{0}(N)$.
Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing
- umbral moonshine

Table of Contents

(1) Introduction

- Mock modular forms
- Holomorphic projection
(2) Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values

Idea of holomorphic projection

- $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_{0}(N)$, moderate growth at cusps (Attention for $k=2$!).

Idea of holomorphic projection

- $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_{0}(N)$, moderate growth at cusps (Attention for $k=2$!).
- The map $f \mapsto\langle f, \Phi\rangle$ defines a linear functional on $S_{k}\left(\Gamma_{0}(N)\right)$.

Idea of holomorphic projection

- $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_{0}(N)$, moderate growth at cusps (Attention for $k=2$!).
- The map $f \mapsto\langle f, \Phi\rangle$ defines a linear functional on $S_{k}\left(\Gamma_{0}(N)\right)$.
- $\Rightarrow \quad \exists!\tilde{\Phi} \in S_{k}\left(\Gamma_{0}(N)\right)$ s.t. $\langle\cdot, \Phi\rangle=\langle\cdot, \tilde{\Phi}\rangle$

Idea of holomorphic projection

- $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_{0}(N)$, moderate growth at cusps (Attention for $k=2$!).
- The map $f \mapsto\langle f, \Phi\rangle$ defines a linear functional on $S_{k}\left(\Gamma_{0}(N)\right)$.
- $\Rightarrow \quad \exists!\tilde{\Phi} \in S_{k}\left(\Gamma_{0}(N)\right)$ s.t. $\langle\cdot, \Phi\rangle=\langle\cdot, \tilde{\Phi}\rangle$
- This $\tilde{\Phi}$ is (essentially) the holomorphic projection of Φ.

Idea of holomorphic projection

- $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_{0}(N)$, moderate growth at cusps (Attention for $k=2$!).
- The map $f \mapsto\langle f, \Phi\rangle$ defines a linear functional on $S_{k}\left(\Gamma_{0}(N)\right)$.
- $\Rightarrow \quad \exists!\tilde{\Phi} \in S_{k}\left(\Gamma_{0}(N)\right)$ s.t. $\langle\cdot, \Phi\rangle=\langle\cdot, \tilde{\Phi}\rangle$
- This $\tilde{\Phi}$ is (essentially) the holomorphic projection of Φ.
- same reasoning works for regularized Petersson inner product \rightsquigarrow regularized holomorphic projection.

Fourier coefficients

Definition 2

If $\Phi(\tau)=\sum_{n \in \mathbb{Z}} a_{\Phi}(n, y) q^{n},(y=\operatorname{Im}(\tau))$, then
$\left(\pi_{\text {hol }} f\right)(\tau):=\left(\pi_{h o l}^{(k)} f\right)(\tau):=\sum_{n=0}^{\infty} c(n) q^{n}$, where

$$
c(n)=\frac{(4 \pi n)^{k-1}}{(k-2)!} \int_{0}^{\infty} a_{\Phi}(n, y) e^{-4 \pi n y} y^{k-2} d y, \quad n>0
$$

Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{h o l} \Phi=\Phi$.

Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{h o l} \Phi=\Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2} \mathbb{Z}, k>2$, on some group $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$, then $\pi_{h o l} \Phi \in M_{k}(\Gamma)$.

Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{h o l} \Phi=\Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2} \mathbb{Z}, k>2$, on some group $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$, then $\pi_{h o l} \Phi \in M_{k}(\Gamma)$.
- The operator $\pi_{h o l}$ commutes with all the operators $U(N), V(N)$, and $S_{N, r}$ (sieving operator).

Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{h o l} \Phi=\Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2} \mathbb{Z}, k>2$, on some group $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$, then $\pi_{\text {hol }} \Phi \in M_{k}(\Gamma)$.
- The operator $\pi_{h o l}$ commutes with all the operators $U(N), V(N)$, and $S_{N, r}$ (sieving operator).

Remark

- For $k=2, \pi_{h o l} \Phi$ is a quasi-modular form of weight 2 .

Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{h o l} \Phi=\Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2} \mathbb{Z}, k>2$, on some group $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$, then $\pi_{\text {hol }} \Phi \in M_{k}(\Gamma)$.
- The operator $\pi_{h o l}$ commutes with all the operators $U(N), V(N)$, and $S_{N, r}$ (sieving operator).

Remark

- For $k=2, \pi_{h o l} \Phi$ is a quasi-modular form of weight 2 .
- For the regularized holomorphic projection, weakly holomorphic forms are possible images

Table of Contents

(1) Introduction

- Mock modular forms
- Holomorphic projection
(2) Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values

A modification of holomorphic projection

Lemma 1 (S. Zwegers)

For any translation-invariant function $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ and $1<k \in \frac{1}{2} \mathbb{Z}$ we have

$$
\begin{equation*}
\pi_{h o l}^{(k)}(\Phi)(\tau)=\frac{(k-1)(2 i)^{k}}{4 \pi} \int_{\mathbb{H}} \frac{\Phi(z) y^{k}}{(\tau-\bar{z})^{k}} \frac{d x d y}{y^{2}}, \tag{1}
\end{equation*}
$$

provided that the right-hand side converges absolutely.

A modification of holomorphic projection

Lemma 1 (S. Zwegers)

For any translation-invariant function $\Phi: \mathbb{H} \rightarrow \mathbb{C}$ and $1<k \in \frac{1}{2} \mathbb{Z}$ we have

$$
\begin{equation*}
\pi_{h o l}^{(k)}(\Phi)(\tau)=\frac{(k-1)(2 i)^{k}}{4 \pi} \int_{\mathbb{H}} \frac{\Phi(z) y^{k}}{(\tau-\bar{z})^{k}} \frac{d x d y}{y^{2}}, \tag{1}
\end{equation*}
$$

provided that the right-hand side converges absolutely.

Lemma 2 (S. Zwegers)

Provided the rhs of (1) converges absolutely for $k \in \frac{1}{2} \mathbb{Z}$, then we have

$$
\left.\left(\pi_{h o l}^{(k)} \Phi\right)\right|_{k} \gamma=\pi_{h o l}^{(k)}\left(\left.\Phi\right|_{k} \gamma\right)
$$

for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.
In particular this holds if $|\Phi(\tau)| y^{r}$ is bounded on \mathbb{H} for some r and $k>r+1>1$.

The ξ-operator

Lemma

Let

$$
\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{\tau}}} .
$$

Then it holds

- $\xi_{2-k} g^{*} \doteq g$

The ξ-operator

Lemma

Let

$$
\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{\tau}}} .
$$

Then it holds

- $\xi_{2-k} g^{*} \doteq g$
- $\left.\left(\xi_{2-k} g\right)\right|_{k} \gamma=\xi_{2-k}\left(\left.g\right|_{2-k} \gamma\right)$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

The ξ-operator

Lemma

Let

$$
\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{\tau}}} .
$$

Then it holds

- $\xi_{2-k} g^{*} \doteq g$
- $\left.\left(\xi_{2-k} g\right)\right|_{k} \gamma=\xi_{2-k}\left(\left.g\right|_{2-k} \gamma\right)$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

Proposition 1 (S. Zwegers)

Let Φ be as in Lemma 2. If $\pi_{h o l}^{(k)} \Phi=0$ and $\xi_{k} \Phi$ is modular of weight $2-k$ for some $\Gamma_{0}(N)$, then Φ is modular of weight k.

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M_{k}^{!}\left(\Gamma_{0}(N)\right)(k \neq 1)$ is the shadow of a mock modular form of weight $2-k$.

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M_{k}^{!}\left(\Gamma_{0}(N)\right)(k \neq 1)$ is the shadow of a mock modular form of weight $2-k$.

Proof.

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M_{k}^{!}\left(\Gamma_{0}(N)\right)(k \neq 1)$ is the shadow of a mock modular form of weight $2-k$.

Proof.

- multiply the Eichler integral g^{*} of g by a sufficiently large power of $\Delta(\tau)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$, say h with weight ℓ, to ensure weight and growth conditions

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M_{k}^{!}\left(\Gamma_{0}(N)\right)(k \neq 1)$ is the shadow of a mock modular form of weight $2-k$.

Proof.

- multiply the Eichler integral g^{*} of g by a sufficiently large power of $\Delta(\tau)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$, say h with weight ℓ, to ensure weight and growth conditions
- by Proposition $1, M:=\pi_{h o l}^{(2-k+\ell)}\left(g^{*} h\right)-g^{*} h$ is modular of weight $2-k+\ell$ for $\Gamma_{0}(N)$.

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M_{k}^{!}\left(\Gamma_{0}(N)\right)(k \neq 1)$ is the shadow of a mock modular form of weight $2-k$.

Proof.

- multiply the Eichler integral g^{*} of g by a sufficiently large power of $\Delta(\tau)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$, say h with weight ℓ, to ensure weight and growth conditions
- by Proposition $1, M:=\pi_{h o l}^{(2-k+\ell)}\left(g^{*} h\right)-g^{*} h$ is modular of weight $2-k+\ell$ for $\Gamma_{0}(N)$.
- $\widetilde{M}=\frac{1}{h} M+g^{*}$ is the desired mock modular form.

Table of Contents

(1) Introduction

- Mock modular forms
- Holomorphic projection
(2) Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values

Class number relations

$$
\begin{gathered}
\sigma_{k}(n):=\sum_{d \mid n} d^{k}, \quad \lambda_{k}(n):=\frac{1}{2} \sum_{d \mid n} \min \left(d, \frac{n}{d}\right)^{k} . \\
\sum_{s \in \mathbb{Z}} H\left(4 n-s^{2}\right)+2 \lambda_{1}(n)=2 \sigma_{1}(n),
\end{gathered}
$$

Class number relations

$$
\sigma_{k}(n):=\sum_{d \mid n} d^{k}, \quad \lambda_{k}(n):=\frac{1}{2} \sum_{d \mid n} \min \left(d, \frac{n}{d}\right)^{k}
$$

$$
\begin{aligned}
& \sum_{s \in \mathbb{Z}} H\left(4 n-s^{2}\right)+2 \lambda_{1}(n)=2 \sigma_{1}(n) \\
& \sum_{s \in \mathbb{Z}}\left(s^{2}-n\right) H\left(4 n-s^{2}\right)+2 \lambda_{3}(n)=0
\end{aligned}
$$

Class number relations

$$
\sigma_{k}(n):=\sum_{d \mid n} d^{k}, \quad \lambda_{k}(n):=\frac{1}{2} \sum_{d \mid n} \min \left(d, \frac{n}{d}\right)^{k} .
$$

$$
\sum_{s \in \mathbb{Z}} H\left(4 n-s^{2}\right)+2 \lambda_{1}(n)=2 \sigma_{1}(n),
$$

$$
\sum_{s \in \mathbb{Z}}\left(s^{2}-n\right) H\left(4 n-s^{2}\right)+2 \lambda_{3}(n)=0,
$$

$$
\sum_{s \in \mathbb{Z}}\left(s^{4}-3 n s^{2}+n^{2}\right) H\left(4 n-s^{2}\right)+2 \lambda_{5}(n)=0,
$$

Class number relations

$$
\sigma_{k}(n):=\sum_{d \mid n} d^{k}, \quad \lambda_{k}(n):=\frac{1}{2} \sum_{d \mid n} \min \left(d, \frac{n}{d}\right)^{k} .
$$

$$
\sum_{s \in \mathbb{Z}} H\left(4 n-s^{2}\right)+2 \lambda_{1}(n)=2 \sigma_{1}(n),
$$

$$
\sum_{s \in \mathbb{Z}}\left(s^{2}-n\right) H\left(4 n-s^{2}\right)+2 \lambda_{3}(n)=0,
$$

$$
\sum_{s \in \mathbb{Z}}\left(s^{4}-3 n s^{2}+n^{2}\right) H\left(4 n-s^{2}\right)+2 \lambda_{5}(n)=0,
$$

Class number relations

$$
\sigma_{k}(n):=\sum_{d \mid n} d^{k}, \quad \lambda_{k}(n):=\frac{1}{2} \sum_{d \mid n} \min \left(d, \frac{n}{d}\right)^{k} .
$$

n odd

$$
\begin{aligned}
& \sum_{s \in \mathbb{Z}} H\left(n-s^{2}\right)+\lambda_{1}(n)=\frac{1}{3} \sigma_{1}(n) \\
& \sum_{s \in \mathbb{Z}}\left(4 s^{2}-n\right) H\left(n-s^{2}\right)+\lambda_{3}(n)=0, \\
& \sum_{s \in \mathbb{Z}}\left(16 s^{4}-12 n s^{2}+n^{2}\right) H\left(n-s^{2}\right)+\lambda_{5}(n) \\
& \quad=-\frac{1}{12} \sum_{n=x^{2}+y^{2}+z^{2}+t^{2}}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right),
\end{aligned}
$$

Connection to mock modular forms

Theorem (D. Zagier)

The function

$$
\mathscr{H}(\tau):=\sum_{n=0}^{\infty} H(n) q^{n}
$$

is a mock modular form of weight $\frac{3}{2}$ for $\Gamma_{0}(4)$. Its shadow is (up to a constant factor) the classical theta function

$$
\vartheta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}
$$

Connection to mock modular forms

Theorem (D. Zagier)

The function

$$
\mathscr{H}(\tau):=\sum_{n=0}^{\infty} H(n) q^{n}
$$

is a mock modular form of weight $\frac{3}{2}$ for $\Gamma_{0}(4)$. Its shadow is (up to a constant factor) the classical theta function

$$
\vartheta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}
$$

All the above relations can be formulated as

$$
c_{\nu}[\mathscr{H}(\tau), \vartheta]_{\nu} \left\lvert\, U(4)+2 \sum_{n=1}^{\infty} \lambda_{2 \nu+1}(n) q^{n} \in \begin{cases}\widetilde{M}_{2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) & \text { if } \nu=0 \\ S_{2+2 \nu}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) & \text { if } \nu>0\end{cases}\right.
$$

Connection to mock modular forms

Theorem (D. Zagier)

The function

$$
\mathscr{H}(\tau):=\sum_{n=0}^{\infty} H(n) q^{n}
$$

is a mock modular form of weight $\frac{3}{2}$ for $\Gamma_{0}(4)$. Its shadow is (up to a constant factor) the classical theta function

$$
\vartheta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}
$$

All the above relations can be formulated as
$\tilde{c}_{\nu}[\mathscr{H}(\tau), \vartheta]_{\nu} \left\lvert\, S_{2,1}+\sum_{n=0}^{\infty} \lambda_{2 \nu+1}(2 n+1) q^{2 n+1} \in \begin{cases}M_{2}\left(\Gamma_{0}(4)\right) & \text { if } \nu=0, \\ S_{2+2 \nu}\left(\Gamma_{0}(4)\right) & \text { if } \nu>0 .\end{cases}\right.$

Mock theta functions

Definition 3

A mock modular form f is called a mock theta function if its shadow is a linear combination of unary theta functions either of the form

$$
\vartheta_{s, \chi}(\tau):=\sum_{n \in \mathbb{Z}} \chi(n) q^{s n^{2}}
$$

($s \in \mathbb{N}, \chi$ an even character) of weight $\frac{1}{2}$ (i.e., f has weight $\frac{3}{2}$) or of the form

$$
\theta_{s, \chi}(\tau):=\sum_{n \in \mathbb{Z}} \chi(n) n q^{s n^{2}}
$$

($s \in \mathbb{N}, \chi$ an odd character) of weight $\frac{3}{2}$ (i.e. f has weight $\frac{1}{2}$).

Class number type relations for mock modular forms

Theorem 1 (M., 2014)

Let f be a mock theta function of weight $\kappa \in\left\{\frac{1}{2}, \frac{3}{2}\right\}$ and $g \in M_{2-\kappa}(\Gamma)$ be a l.c. of theta functions with $\Gamma=\Gamma_{1}(4 N)$ for some $N \in \mathbb{N}$ and fix $\nu \in \mathbb{N}$. Then there is a finite linear combination $L_{\nu}^{f, g}$ of functions of the form

$$
\begin{gathered}
\Lambda_{s, t}^{\chi, \psi}(\tau ; \nu)=\sum_{r=1}^{\infty}\left(2 \sum_{\substack{s m^{2}-t n^{2}=r \\
m, n \geq 1}} \chi(m) \overline{\psi(n)}(\sqrt{s} m-\sqrt{t} n)^{2 \nu+1}\right) q^{r} \\
+\overline{\psi(0)} \sum_{r=1}^{\infty} \chi(r)(\sqrt{s} r)^{2 \nu+1} q^{s r^{2}}
\end{gathered}
$$

with $s, t \in \mathbb{N}$ and χ, ψ are characters as in Definition 3 of conductors $F(\chi)$ and $F(\psi)$ respectively with $s F(\chi)^{2}, t F(\psi)^{2} \mid N$, such that $[f, g]_{\nu}+L_{\nu}^{f, g}$ is a (quasi)-modular form of weight $2 \nu+2$ (possibly weakly holomorphic).

Table of Contents

(1) Introduction

- Mock modular forms
- Holomorphic projection
(2) Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values

Notation

- Let $f_{1} \in S_{k_{1}}\left(\Gamma_{0}(N)\right)$ and $f_{2} \in S_{k_{2}}\left(\Gamma_{0}(N)\right)$ with

$$
f_{i}(\tau)=\sum_{n=1}^{\infty} a_{i}(n) q^{n} .
$$

Notation

- Let $f_{1} \in S_{k_{1}}\left(\Gamma_{0}(N)\right)$ and $f_{2} \in S_{k_{2}}\left(\Gamma_{0}(N)\right)$ with

$$
f_{i}(\tau)=\sum_{n=1}^{\infty} a_{i}(n) q^{n}
$$

- shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

$$
D\left(f_{1}, f_{2}, h ; s\right):=\sum_{n=1}^{\infty} \frac{a_{1}(n+h) \overline{a_{2}(n)}}{n^{s}}
$$

Notation

- Let $f_{1} \in S_{k_{1}}\left(\Gamma_{0}(N)\right)$ and $f_{2} \in S_{k_{2}}\left(\Gamma_{0}(N)\right)$ with

$$
f_{i}(\tau)=\sum_{n=1}^{\infty} a_{i}(n) q^{n}
$$

- shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

$$
D\left(f_{1}, f_{2}, h ; s\right):=\sum_{n=1}^{\infty} \frac{a_{1}(n+h) \overline{a_{2}(n)}}{n^{s}}
$$

- symmetrized shifted convolution Dirichlet series

$$
\widehat{D}^{(0)}\left(f_{1}, f_{2}, h ; s\right):=D\left(f_{1}, f_{2}, h ; s\right)-D\left(\overline{f_{2}}, \overline{f_{1}},-h ; s\right),
$$

Notation

- Let $f_{1} \in S_{k_{1}}\left(\Gamma_{0}(N)\right)$ and $f_{2} \in S_{k_{2}}\left(\Gamma_{0}(N)\right)$ with

$$
f_{i}(\tau)=\sum_{n=1}^{\infty} a_{i}(n) q^{n}
$$

- shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

$$
D\left(f_{1}, f_{2}, h ; s\right):=\sum_{n=1}^{\infty} \frac{a_{1}(n+h) \overline{a_{2}(n)}}{n^{s}}
$$

- symmetrized shifted convolution Dirichlet series

$$
\widehat{D}^{(0)}\left(f_{1}, f_{2}, h ; s\right):=D\left(f_{1}, f_{2}, h ; s\right)-D\left(\overline{f_{2}}, \overline{f_{1}},-h ; s\right)
$$

- generating function of special values

$$
\mathbb{L}^{(0)}\left(f_{1}, f_{2} ; \tau\right):=\sum_{h=1}^{\infty} \widehat{D}^{(0)}\left(f_{1}, f_{2}, h ; k_{1}-1\right) q^{h}
$$

Notation

- Let $f_{1} \in S_{k_{1}}\left(\Gamma_{0}(N)\right)$ and $f_{2} \in S_{k_{2}}\left(\Gamma_{0}(N)\right)$ with

$$
f_{i}(\tau)=\sum_{n=1}^{\infty} a_{i}(n) q^{n}
$$

- shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

$$
D\left(f_{1}, f_{2}, h ; s\right):=\sum_{n=1}^{\infty} \frac{a_{1}(n+h) \overline{a_{2}(n)}}{n^{s}}
$$

- symmetrized shifted convolution Dirichlet series

$$
\widehat{D}^{(0)}\left(f_{1}, f_{2}, h ; s\right):=D\left(f_{1}, f_{2}, h ; s\right)-D\left(\overline{f_{2}}, \overline{f_{1}},-h ; s\right)
$$

- generating function of special values

$$
\mathbb{L}^{(0)}\left(f_{1}, f_{2} ; \tau\right):=\sum_{h=1}^{\infty} \widehat{D}^{(0)}\left(f_{1}, f_{2}, h ; k_{1}-1\right) q^{h}
$$

- There is also a $\widehat{D}^{(\nu)}$ and $\mathbb{L}^{(\nu)}$ for $\nu \in \mathbb{N}_{0}$ (more complicated).

A numerical conundrum

$$
\begin{aligned}
& \mathbb{L}^{(0)}(\Delta, \Delta ; \tau) \\
= & -33.383 \ldots q+266.439 \ldots q^{2}-1519.218 \ldots q^{3}+4827.434 \ldots q^{4}-\ldots
\end{aligned}
$$

A numerical conundrum

$$
\begin{aligned}
& \mathbb{L}^{(0)}(\Delta, \Delta ; \tau) \\
= & -33.383 \ldots q+266.439 \ldots q^{2}-1519.218 \ldots q^{3}+4827.434 \ldots q^{4}-\ldots
\end{aligned}
$$

- define real numbers $\alpha=106.10455 \ldots$ and $\beta=2.8402 \ldots$, and the weight 12 weakly holomorphic modular form

$$
\sum_{n=-1}^{\infty} r(n) q^{n}:=-\Delta(\tau)\left(j(\tau)^{2}-1464 j(\tau)-\alpha^{2}+1464 \alpha\right)
$$

A numerical conundrum

$$
\begin{aligned}
& \mathbb{L}^{(0)}(\Delta, \Delta ; \tau) \\
= & -33.383 \ldots q+266.439 \ldots q^{2}-1519.218 \ldots q^{3}+4827.434 \ldots q^{4}-\ldots
\end{aligned}
$$

- define real numbers $\alpha=106.10455 \ldots$ and $\beta=2.8402 \ldots$, and the weight 12 weakly holomorphic modular form

$$
\sum_{n=-1}^{\infty} r(n) q^{n}:=-\Delta(\tau)\left(j(\tau)^{2}-1464 j(\tau)-\alpha^{2}+1464 \alpha\right)
$$

- play around a bit and find

$$
\begin{aligned}
& -\frac{\Delta}{\beta}\left(\frac{65520}{691}+\frac{E_{2}}{\Delta}-\sum_{n \neq 0} r(n) n^{-11} q^{n}\right) \\
= & -33.383 \ldots q+266.439 \ldots q^{2}-1519.218 \ldots q^{3}+4827.434 \ldots q^{4}-.
\end{aligned}
$$

The theorem

Theorem 2 (M.-Ono)

If $0 \leq \nu \leq \frac{k_{1}-k_{2}}{2}$, then

$$
\mathbb{L}^{(\nu)}\left(f_{2}, f_{1} ; \tau\right)=-\frac{1}{\left(k_{1}-2\right)!} \cdot\left[\mathcal{M}_{f_{1}}^{+}, f_{2}\right]_{\nu}+F,
$$

where $F \in \widetilde{M}_{2 \nu+2-k_{1}+k_{2}}^{!}\left(\Gamma_{0}(N)\right)$. Moreover, if $\mathcal{M}_{f_{1}}$ is good for f_{2}, then $F \in \widetilde{M}_{2 \nu+2-k_{1}+k_{2}}\left(\Gamma_{0}(N)\right)$.

The theorem

Theorem 2 (M.-Ono)

If $0 \leq \nu \leq \frac{k_{1}-k_{2}}{2}$, then

$$
\mathbb{L}^{(\nu)}\left(f_{2}, f_{1} ; \tau\right)=-\frac{1}{\left(k_{1}-2\right)!} \cdot\left[\mathcal{M}_{f_{1}}^{+}, f_{2}\right]_{\nu}+F
$$

where $F \in \widetilde{M}!{ }_{2 \nu+2-k_{1}+k_{2}}\left(\Gamma_{0}(N)\right)$. Moreover, if $\mathcal{M}_{f_{1}}$ is good for f_{2}, then $F \in \widetilde{M}_{2 \nu+2-k_{1}+k_{2}}\left(\Gamma_{0}(N)\right)$.

- $\mathcal{M}_{f_{1}}$ is a harmonic Maaß form with shadow $f_{1} . \mathcal{M}_{f_{1}}$ is good for f_{2} if [$\left.\mathcal{M}_{f_{1}}^{+}, f_{2}\right]_{\nu}$ grows at most polynomially at all cusps (very rare phenomenon).

The theorem

Theorem 2 (M.-Ono)

If $0 \leq \nu \leq \frac{k_{1}-k_{2}}{2}$, then

$$
\mathbb{L}^{(\nu)}\left(f_{2}, f_{1} ; \tau\right)=-\frac{1}{\left(k_{1}-2\right)!} \cdot\left[\mathcal{M}_{f_{1}}^{+}, f_{2}\right]_{\nu}+F
$$

where $F \in \widetilde{M}_{2 \nu+2-k_{1}+k_{2}}^{!}\left(\Gamma_{0}(N)\right)$. Moreover, if $\mathcal{M}_{f_{1}}$ is good for f_{2}, then $F \in \widetilde{M}_{2 \nu+2-k_{1}+k_{2}}\left(\Gamma_{0}(N)\right)$.

- $\mathcal{M}_{f_{1}}$ is a harmonic Maaß form with shadow $f_{1} . \mathcal{M}_{f_{1}}$ is good for f_{2} if $\left[\mathcal{M}_{f_{1}}^{+}, f_{2}\right]_{\nu}$ grows at most polynomially at all cusps (very rare phenomenon).
- $\widetilde{M}_{k}^{!}\left(\Gamma_{0}(N)\right)$ is the weakly holomorphic extension of

$$
\widetilde{M}_{k}\left(\Gamma_{0}(N)\right)= \begin{cases}M_{k}\left(\Gamma_{0}(N)\right) & \text { if } k \geq 4 \\ \mathbb{C} E_{2} \oplus M_{2}\left(\Gamma_{0}(N)\right) & \text { if } k=2\end{cases}
$$

An example

$$
\text { Let } f_{1}=f_{2}=\Delta=\frac{1}{\beta} P(1,12,1 ; \tau)
$$

An example

$$
\text { Let } f_{1}=f_{2}=\Delta=\frac{1}{\beta} P(1,12,1 ; \tau)
$$

$$
\beta:=\frac{(4 \pi)^{11}}{10!} \cdot\|P(1,12,1)\|^{2}=1+2 \pi \sum_{c=1}^{\infty} \frac{K(1,1, c)}{c} \cdot J_{11}(4 \pi / c)=2.8402 \ldots
$$

An example

$$
\begin{aligned}
& \text { Let } f_{1}=f_{2}=\Delta=\frac{1}{\beta} P(1,12,1 ; \tau) \\
& \beta:=\frac{(4 \pi)^{11}}{10!} \cdot\|P(1,12,1)\|^{2}=1+2 \pi \sum_{c=1}^{\infty} \frac{K(1,1, c)}{c} \cdot J_{11}(4 \pi / c)=2.8402 \ldots
\end{aligned}
$$

$$
Q(-1,12,1 ; \tau)=Q^{+}(-1,12,1 ; \tau)+Q^{-}(-1,12,1 ; \tau) \in H_{-10}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)
$$ the canonical preimage of $P(1,12,1 ; \tau)$ under ξ_{-10} (up to a constant factor), is good for Δ

An example

$$
\text { Let } f_{1}=f_{2}=\Delta=\frac{1}{\beta} P(1,12,1 ; \tau)
$$

$$
\beta:=\frac{(4 \pi)^{11}}{10!} \cdot\|P(1,12,1)\|^{2}=1+2 \pi \sum_{c=1}^{\infty} \frac{K(1,1, c)}{c} \cdot J_{11}(4 \pi / c)=2.8402 \ldots
$$

$$
Q(-1,12,1 ; \tau)=Q^{+}(-1,12,1 ; \tau)+Q^{-}(-1,12,1 ; \tau) \in H_{-10}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)
$$ the canonical preimage of $P(1,12,1 ; \tau)$ under ξ_{-10} (up to a constant factor), is good for Δ

$$
\begin{aligned}
& \mathbb{L}^{(0)}(\Delta, \Delta ; \tau)=\frac{Q^{+}(-1,12,1 ; \tau) \cdot \Delta(\tau)}{11!\cdot \beta}-\frac{E_{2}(\tau)}{\beta} \\
= & -33.383 \ldots q+266.439 \ldots q^{2}-1519.218 \ldots q^{3}+4827.434 \ldots q^{4}-\ldots
\end{aligned}
$$

Thank you for your attention.

