Partitions, singular moduli, and irreducible polynomials

Michael H. Mertens joint work with Larry Rolen

Emory University

$30^{\text {th }}$ Automorphic Forms Workshop
Winston-Salem, March 09, 2016
(2) Ingredients for the proof

- Masser's formula
- N-systems
M. H. Mertens (Emory University)

Partitions

Definition

A partition of a positive integer n is a non-increasing sequence of positive integers summing up to n. The number of partitions of n is denoted by $p(n)$.

Partitions

Definition

A partition of a positive integer n is a non-increasing sequence of positive integers summing up to n. The number of partitions of n is denoted by $p(n)$.

Example

The partitions of 10 are

```
(10), (9, 1), (8, 2), (8, 1, 1), (7, 3), (7, 2, 1), (7, 1, 1, 1), (6, 4), (6, 3, 1), (6, 2, 2), (6, 2, 1, 1), (6, 1, 1, 1, 1),
(5,5), (5, 4, 1), (5, 3, 2), (5, 3, 1, 1), (5, 2, 2, 1), (5, 2, 1, 1, 1), (5, 1, 1, 1, 1, 1), (4, 4, 2), (4, 4, 1, 1), (4, 3, 3),
(4,3,2, 1), (4, 3, 1, 1, 1), (4, 2, 2, 2), (4, 2, 2, 1, 1), (4, 2, 1, 1, 1, 1), (4, 1, 1, 1, 1, 1, 1), (3, 3, 3, 1), (3, 3, 2, 2),
(3, 3, 2, 1, 1), (3, 3, 1, 1, 1, 1), (3, 2, 2, 2, 1), (3, 2, 2, 1, 1, 1), (3, 2, 1, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2),
(2, 2, 2, 2, 1, 1), (2, 2, 2, 1, 1, 1, 1), (2, 2, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
```


Partitions

Definition

A partition of a positive integer n is a non-increasing sequence of positive integers summing up to n. The number of partitions of n is denoted by $p(n)$.

Example

The partitions of 10 are

```
(10), (9, 1), (8, 2), (8, 1, 1), (7, 3), (7, 2, 1), (7, 1, 1, 1), (6, 4), (6, 3, 1), (6, 2, 2), (6, 2, 1, 1), (6, 1, 1, 1, 1),
(5,5), (5, 4, 1), (5, 3, 2), (5, 3, 1, 1), (5, 2, 2, 1), (5, 2, 1, 1, 1), (5, 1, 1, 1, 1, 1), (4, 4, 2), (4, 4, 1, 1), (4, 3, 3),
(4,3,2, 1), (4, 3, 1, 1, 1), (4, 2, 2, 2), (4, 2, 2, 1, 1), (4, 2, 1, 1, 1, 1), (4, 1, 1, 1, 1, 1, 1), (3, 3, 3, 1), (3, 3, 2, 2),
(3, 3, 2, 1, 1), (3, 3, 1, 1, 1, 1), (3, 2, 2, 2, 1), (3, 2, 2, 1, 1, 1), (3, 2, 1, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2),
(2,2,2, 2, 1, 1), (2, 2, 2, 1, 1, 1, 1), (2, 2, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
```

So $p(10)=42$.

Formulas for $p(n)$

- L. Euler (1749):

$$
p(n)=\sum_{m=1}^{\infty}(-1)^{m+1}\left[p\left(n-\frac{3 m^{2}-m}{2}\right)+p\left(n-\frac{3 m^{2}+m}{2}\right)\right]
$$

Formulas for $p(n)$

- L. Euler (1749):

$$
p(n)=\sum_{m=1}^{\infty}(-1)^{m+1}\left[p\left(n-\frac{3 m^{2}-m}{2}\right)+p\left(n-\frac{3 m^{2}+m}{2}\right)\right]
$$

- G. H. Hardy - S. Ramanujan (1918):

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}}, \quad n \rightarrow \infty
$$

Formulas for $p(n)$

- L. Euler (1749):

$$
p(n)=\sum_{m=1}^{\infty}(-1)^{m+1}\left[p\left(n-\frac{3 m^{2}-m}{2}\right)+p\left(n-\frac{3 m^{2}+m}{2}\right)\right]
$$

- G. H. Hardy - S. Ramanujan (1918):

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}}, \quad n \rightarrow \infty
$$

- H. Rademacher (1937):

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{k=1}^{\infty} \frac{A_{k}(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) .
$$

An algebraic formula for $p(n)$

Theorem (Bruinier-Ono, 2013)

We have

$$
p(n)=\frac{1}{24 n-1} \sum_{Q \in \mathcal{Q}_{D}} P\left(\tau_{Q}\right)
$$

where

An algebraic formula for $p(n)$

Theorem (Bruinier-Ono, 2013)

We have

$$
p(n)=\frac{1}{24 n-1} \sum_{Q \in \mathcal{Q}_{D}} P\left(\tau_{Q}\right)
$$

where

- \mathcal{Q}_{D} : representatives of positive definite binary quadratic forms $Q(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant $D=1-24 n$ modulo $\Gamma_{0}(6)$, where $6 \mid a$ and $b \equiv 1(\bmod 12)$,

An algebraic formula for $p(n)$

Theorem (Bruinier-Ono, 2013)

We have

$$
p(n)=\frac{1}{24 n-1} \sum_{Q \in \mathcal{Q}_{D}} P\left(\tau_{Q}\right)
$$

where

- \mathcal{Q}_{D} : representatives of positive definite binary quadratic forms $Q(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant $D=1-24 n$ modulo $\Gamma_{0}(6)$, where $6 \mid a$ and $b \equiv 1(\bmod 12)$,
- $P(\tau)$ is a certain Maaß form for $\Gamma_{0}(6)$ of weight 0 ,

An algebraic formula for $p(n)$

Theorem (Bruinier-Ono, 2013)

We have

$$
p(n)=\frac{1}{24 n-1} \sum_{Q \in \mathcal{Q}_{D}} P\left(\tau_{Q}\right)
$$

where

- \mathcal{Q}_{D} : representatives of positive definite binary quadratic forms $Q(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant $D=1-24 n$ modulo $\Gamma_{0}(6)$, where $6 \mid a$ and $b \equiv 1(\bmod 12)$,
- $P(\tau)$ is a certain Maaß form for $\Gamma_{0}(6)$ of weight 0 ,
- $\tau_{Q} \in \mathbb{H}$ such that $Q\left(\tau_{Q}, 1\right)=0$.

An algebraic formula for $p(n)$

Theorem (Bruinier-Ono, 2013)

We have

$$
p(n)=\frac{1}{24 n-1} \sum_{Q \in \mathcal{Q}_{D}} P\left(\tau_{Q}\right)
$$

where

- \mathcal{Q}_{D} : representatives of positive definite binary quadratic forms $Q(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant $D=1-24 n$ modulo $\Gamma_{0}(6)$, where $6 \mid a$ and $b \equiv 1(\bmod 12)$,
- $P(\tau)$ is a certain Maaß form for $\Gamma_{0}(6)$ of weight 0 ,
- $\tau_{Q} \in \mathbb{H}$ such that $Q\left(\tau_{Q}, 1\right)=0$.

Remark

The numbers $P\left(\tau_{Q}\right)$ above are algebraic numbers with denominators dividing D (Larsson-Rolen, 2013).

A polynomial related to partitions

Consider the polynomial

$$
H_{D}(x):=\prod_{Q \in \mathcal{Q}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x] .
$$

A polynomial related to partitions

Consider the polynomial

$$
H_{D}(x):=\prod_{Q \in \mathcal{Q}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x] .
$$

Question: Is this polynomial irreducible over \mathbb{Q} ?

A polynomial related to partitions

Consider the polynomial

$$
H_{D}(x):=\prod_{Q \in \mathcal{Q}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x] .
$$

Question: Is this polynomial irreducible over \mathbb{Q} ?
Answer: Usually not,

$$
H_{D}(x)=\prod_{\substack{f>0 \\ f^{2} \mid D}} \varepsilon(f)^{h\left(\frac{D}{f^{2}}\right)} \widehat{H}_{\frac{D}{f^{2}}}(\varepsilon(f) x)
$$

- $h(d)$ denotes the class number of discriminant d,
- $\varepsilon(f)=1$ if $f \equiv \pm 1(\bmod 12)$ and $\varepsilon(f)=-1$ otherwise,

Another polynomial related to partitions

Letting \mathcal{P}_{D} denote the set of primitive forms in \mathcal{Q}_{D} (i.e., $\operatorname{gcd}(a, b, c)=1$), define

$$
\widehat{H}_{D}(x):=\prod_{Q \in \mathcal{P}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x]
$$

Another polynomial related to partitions

Letting \mathcal{P}_{D} denote the set of primitive forms in \mathcal{Q}_{D} (i.e., $\operatorname{gcd}(a, b, c)=1$), define

$$
\widehat{H}_{D}(x):=\prod_{Q \in \mathcal{P}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x]
$$

Question (Bruinier-Ono-Sutherland): Is this irreducible over \mathbb{Q} ?

Another polynomial related to partitions

Letting \mathcal{P}_{D} denote the set of primitive forms in \mathcal{Q}_{D} (i.e., $\operatorname{gcd}(a, b, c)=1$), define

$$
\widehat{H}_{D}(x):=\prod_{Q \in \mathcal{P}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x] .
$$

Question (Bruinier-Ono-Sutherland): Is this irreducible over \mathbb{Q} ?

Theorem (M.-Rolen, 2015)

The polynomial $\widehat{H}_{D}(x)$ is irreducible over \mathbb{Q}. Moreover we have that Ω_{t}, the ring class field of the order of conductor t in $K:=\mathbb{Q}(\sqrt{d})$, is exactly the splitting field of $\widehat{H}_{D}(x)$ over K.

Table of Contents

(1) Introduction
(2) Ingredients for the proof

- Masser's formula
- N-systems
(3) Proof of the Theorem

Non-holomorphic modular functions

Define

$$
\begin{aligned}
F(\tau): & =\frac{E_{2}(\tau)-2 E_{2}(2 \tau)-3 E_{2}(3 \tau)+6 E_{2}(6 \tau)}{2 \eta(\tau)^{2} \eta(2 \tau)^{2} \eta(3 \tau)^{2} \eta(6 \tau)^{2}} \\
& =q^{-1}-10-29 q-104 q^{2}-\ldots \in M_{-2}^{!}\left(\Gamma_{0}(6)\right)
\end{aligned}
$$

and

$$
P(\tau):=R_{-2}(F)(\tau)=\left(\frac{1}{2 \pi i} \frac{\partial}{\partial \tau}-\frac{(-2)}{4 \pi \operatorname{Im}(\tau)}\right) F(\tau)
$$

Non-holomorphic modular functions

Define

$$
\begin{aligned}
F(\tau): & =\frac{E_{2}(\tau)-2 E_{2}(2 \tau)-3 E_{2}(3 \tau)+6 E_{2}(6 \tau)}{2 \eta(\tau)^{2} \eta(2 \tau)^{2} \eta(3 \tau)^{2} \eta(6 \tau)^{2}} \\
& =q^{-1}-10-29 q-104 q^{2}-\ldots \in M_{-2}^{!}\left(\Gamma_{0}(6)\right)
\end{aligned}
$$

and

$$
P(\tau):=R_{-2}(F)(\tau)=\left(\frac{1}{2 \pi i} \frac{\partial}{\partial \tau}-\frac{(-2)}{4 \pi \operatorname{Im}(\tau)}\right) F(\tau)
$$

Write $P=A+B \cdot C$ with

- $A(\tau), B(\tau)$ explicit meromorphic modular functions for $\Gamma_{0}(6)$,
- $C(\tau)$ is an explicit real-analytic modular function for $\mathrm{SL}_{2}(\mathbb{Z})$.

Singular moduli

Lemma

For every non-special discriminant $D<0$ (i.e., $D \neq-3 \cdot \square$), there exists a (meromorphic) modular function M_{D} for $\Gamma_{0}(6)$ such that

$$
P\left(\tau_{Q}\right)=M_{D}\left(\tau_{Q}\right)
$$

for all quadratic forms Q of discriminant D.

Singular moduli

Lemma

For every non-special discriminant $D<0$ (i.e., $D \neq-3 \cdot \square$), there exists a (meromorphic) modular function M_{D} for $\Gamma_{0}(6)$ such that

$$
P\left(\tau_{Q}\right)=M_{D}\left(\tau_{Q}\right)
$$

for all quadratic forms Q of discriminant D.

Proof.

- Consider the modular polynomial $\Phi_{-D}(x, y) \in \mathbb{Z}[x, y]$ defined by $\Phi_{-D}(j(\tau), y):=\prod_{M \in \mathcal{V}_{-\mathcal{D}}}(y-j(M \tau))$.

Singular moduli

Lemma

For every non-special discriminant $D<0$ (i.e., $D \neq-3 \cdot \square$), there exists a (meromorphic) modular function M_{D} for $\Gamma_{0}(6)$ such that

$$
P\left(\tau_{Q}\right)=M_{D}\left(\tau_{Q}\right)
$$

for all quadratic forms Q of discriminant D.

Proof.

- Consider the modular polynomial $\Phi_{-D}(x, y) \in \mathbb{Z}[x, y]$ defined by $\Phi_{-D}(j(\tau), y):=\prod_{M \in \mathcal{V}_{-\mathcal{D}}}(y-j(M \tau))$.
- Write

$$
\Phi_{-D}(x, y)=: \sum_{\mu, \nu} \beta_{\mu, \nu}\left(\tau_{Q}\right)\left(x-j\left(\tau_{Q}\right)\right)^{\mu}\left(y-j\left(\tau_{Q}\right)\right)^{\nu}
$$

Singular moduli

Lemma

For every non-special discriminant $D<0$ (i.e., $D \neq-3 \cdot \square$), there exists a (meromorphic) modular function M_{D} for $\Gamma_{0}(6)$ such that

$$
P\left(\tau_{Q}\right)=M_{D}\left(\tau_{Q}\right)
$$

for all quadratic forms Q of discriminant D.

Proof.

- Consider the modular polynomial $\Phi_{-D}(x, y) \in \mathbb{Z}[x, y]$ defined by $\Phi_{-D}(j(\tau), y):=\prod_{M \in \mathcal{V}_{-\mathcal{D}}}(y-j(M \tau))$.
- Write

$$
\Phi_{-D}(x, y)=: \sum_{\mu, \nu} \beta_{\mu, \nu}\left(\tau_{Q}\right)\left(x-j\left(\tau_{Q}\right)\right)^{\mu}\left(y-j\left(\tau_{Q}\right)\right)^{\nu}
$$

- Write $C\left(\tau_{Q}\right)$ in terms of $\beta_{\mu, \nu}\left(\tau_{Q}\right)$ (Masser's formula).

Table of Contents

(1) Introduction
(2) Ingredients for the proof

- Masser's formula
- N-systems
(3) Proof of the Theorem

N-systems

Definition

Let $N \in \mathbb{N}$ and $D=t^{2} d<0$ be a discriminant, with $t \in \mathbb{N}$ and d a fundamental discriminant. Moreover, let $\left\{Q_{1}, \ldots, Q_{r}\right\}$
$\left(Q_{j}(x, y)=a_{j} x^{2}+b_{j} x y+c_{j} y^{2}\right)$ be a system of representatives of primitive quadratic forms modulo $\mathrm{SL}_{2}(\mathbb{Z})$. We call the set $\left\{Q_{1}, \ldots, Q_{r}\right\}$ an N-system $\bmod t$ if the conditions

$$
\operatorname{gcd}\left(c_{j}, N\right)=1 \quad \text { and } \quad b_{j} \equiv b_{\ell} \quad(\bmod N), 1 \leq j, \ell \leq r
$$

are satisfied.

N-systems and Galois orbits

Theorem (Schertz, 2002)

Let g be a modular function for $\Gamma_{0}(N)$ for some $N \in \mathbb{N}$ whose Fourier coefficients at all cusps lie in the N th cyclotomic field. Suppose furthermore that $g(\tau)$ and $g\left(-\frac{1}{\tau}\right)$ have rational Fourier coefficients, and let $Q(x, y)=a x^{2}+b x y+c y^{2}$ be a quadratic form of discriminant $D=t^{2} d, d$ a fundamental discriminant, with $\operatorname{gcd}(c, N)=1$ and $N \mid a$. Then we have that $g\left(\tau_{Q}\right) \in \Omega_{t}$ unless g has a pole at τ_{Q}.
Moreover, if $\left\{Q=Q_{1}, \ldots, Q_{h}\right\}$ is an N-system $\bmod t$, then

$$
\left\{g\left(\tau_{Q_{1}}\right), \ldots, g\left(\tau_{Q_{h}}\right\}=\left\{\sigma\left(g\left(\tau_{Q_{1}}\right)\right): \sigma \in \operatorname{Gal}_{D}\right\}\right.
$$

where Gal_{D} denotes the Galois group of $\Omega_{t} / \mathbb{Q}(\sqrt{d})$.

$\widehat{H}_{D}(x)$ is a perfect power

Proposition

Let P be as in as in the introduction, $D=-24 n+1=t^{2} d$ with d a fundamental discriminant. Then $P\left(\tau_{Q_{0}}\right) \in \Omega_{t}$ and

$$
\left\{P\left(\tau_{Q}\right): Q \in \mathcal{P}_{D}\right\}=\left\{\sigma\left(P\left(\tau_{Q_{0}}\right)\right): \sigma \in \operatorname{Gal}_{D}\right\}
$$

for all $Q_{0} \in \mathcal{P}_{D}$. In particular, the values $P\left(\tau_{Q}\right)$ for $Q \in \mathcal{P}_{D}$ generate the ring class field Ω_{t} over $\mathbb{Q}(\sqrt{d})$ and $\widehat{H}_{D}(x)$ is a perfect power of an irreducible polynomial.

$\widehat{H}_{D}(x)$ has only simple zeros I

Lemma

Let γ be a one of 12 representatives of $\Gamma_{0}(6) / \mathrm{SL}_{2}(\mathbb{Z})$ and assume that

$$
\left.F\right|_{-2} \gamma(\tau)=h \zeta q^{-\frac{1}{h}}+a_{0}+a_{1} q^{\frac{1}{h}}+\ldots
$$

where h is the width of the cusp $\gamma \infty$ and ζ is a certain 6 th root of unity. Then, for every γ and $\tau \in \mathcal{F}$ (usual fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$), we have

$$
\left.P\right|_{0} \gamma(\tau)=\zeta\left(1-\frac{h}{2 \pi \operatorname{Im}(\tau)}\right) e^{-\frac{2 \pi i \tau}{h}}+E_{\gamma}(\tau)
$$

where the error E_{γ} satisfies the uniform bound $\left|E_{\gamma}(\tau)\right| \leq \kappa:=1334.42$.

$\widehat{H}_{D}(x)$ has only simple zeros II

- $Q(x, y)=a x^{2}+b x y+c y^{2}=:[a, b, c] \mathrm{SL}_{2}(\mathbb{Z})$-reduced quadratic form of discriminant $D=1-24 n$.

$\widehat{H}_{D}(x)$ has only simple zeros II

- $Q(x, y)=a x^{2}+b x y+c y^{2}=:[a, b, c] \mathrm{SL}_{2}(\mathbb{Z})$-reduced quadratic form of discriminant $D=1-24 n$.
- Exactly one γ_{Q} as in Lemma satisfies $Q \circ \gamma_{Q}^{-1} \in \mathcal{P}_{D}$.

$\widehat{H}_{D}(x)$ has only simple zeros II

- $Q(x, y)=a x^{2}+b x y+c y^{2}=:[a, b, c] \mathrm{SL}_{2}(\mathbb{Z})$-reduced quadratic form of discriminant $D=1-24 n$.
- Exactly one γ_{Q} as in Lemma satisfies $Q \circ \gamma_{Q}^{-1} \in \mathcal{P}_{D}$.
- Define $h_{Q} \in\{1,2,3,6\}$ and ζ_{Q} a $6^{\text {th }}$ root of unity by

$$
\left.F\right|_{-2} \gamma_{Q}(\tau)=h_{Q} \zeta_{Q} q^{-\frac{1}{h_{Q}}}+O(1)
$$

$\widehat{H}_{D}(x)$ has only simple zeros II

- $Q(x, y)=a x^{2}+b x y+c y^{2}=:[a, b, c] \mathrm{SL}_{2}(\mathbb{Z})$-reduced quadratic form of discriminant $D=1-24 n$.
- Exactly one γ_{Q} as in Lemma satisfies $Q \circ \gamma_{Q}^{-1} \in \mathcal{P}_{D}$.
- Define $h_{Q} \in\{1,2,3,6\}$ and ζ_{Q} a $6^{\text {th }}$ root of unity by

$$
\left.F\right|_{-2} \gamma_{Q}(\tau)=h_{Q} \zeta_{Q} q^{-\frac{1}{h_{Q}}}+O(1)
$$

- Notice that $a \cdot h_{Q} \equiv 0(\bmod 6)$, focus on $a \cdot h_{Q}=12$.

$\widehat{H}_{D}(x)$ has only simple zeros II

- $Q(x, y)=a x^{2}+b x y+c y^{2}=:[a, b, c] \mathrm{SL}_{2}(\mathbb{Z})$-reduced quadratic form of discriminant $D=1-24 n$.
- Exactly one γ_{Q} as in Lemma satisfies $Q \circ \gamma_{Q}^{-1} \in \mathcal{P}_{D}$.
- Define $h_{Q} \in\{1,2,3,6\}$ and ζ_{Q} a $6^{\text {th }}$ root of unity by

$$
\left.F\right|_{-2} \gamma_{Q}(\tau)=h_{Q} \zeta_{Q} q^{-\frac{1}{h_{Q}}}+O(1)
$$

- Notice that $a \cdot h_{Q} \equiv 0(\bmod 6)$, focus on $a \cdot h_{Q}=12$.

Q	γ_{Q}	h_{Q}	ζ_{Q}	φ_{Q}
$[2,-1,3 n]$	$\gamma_{0,0}$	6	1	$-\frac{\pi}{12}$
$\left[4,1, \frac{3 n}{2}\right]$	$\gamma_{\frac{1}{2}, 1}$	3	ζ_{6}	$\frac{5 \pi}{12}$
$[6,-5, n+1]$	$\gamma_{\frac{1}{3}, 0}$	2	1	$-\frac{5 \pi}{12}$
$\left[12,1, \frac{n}{2}\right]$	γ_{∞}	1	1	$\frac{\pi}{12}$

Table: Quadratic forms with $a \cdot h_{Q}=12$ for n even

$\widehat{H}_{D}(x)$ has only simple zeros III

- From estimates in Lemma: For $n \geq 54$ we have

$$
|P| \gamma_{Q_{1}}\left(\tau_{Q_{1}}\right)\left|\neq|P| \gamma_{Q_{2}}\left(\tau_{Q_{2}}\right)\right|
$$

for $h_{Q_{1}} a_{1}=12 \neq h_{Q_{2}} a_{2}$ and

$$
\arg \left(P \mid \gamma_{Q_{1}}\left(\tau_{Q_{1}}\right)\right) \neq \arg \left(P \mid \gamma_{Q_{2}}\left(\tau_{Q_{2}}\right)\right)
$$

for $h_{Q_{1}} a_{1}=12=h_{Q_{2}} a_{2}$.

General theorem

Theorem (Braun-Buck-Girsch, 2015)

Let $F \in M_{-2 k}^{!}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ with rational Fourier coefficients and define the non-holomorphic modular function P by applying the Maaß raising operator k times to F and define for each fundamental discriminant $D<0$ the polynomial

$$
\widehat{H}_{D, F}:=\prod_{Q \in \mathcal{P}_{D}}\left(x-P\left(\tau_{Q}\right)\right) \in \mathbb{Q}[x] .
$$

Then $\widehat{H}_{D, F}(x)$ is irreducible over \mathbb{Q} for sufficiently large D (bound explicit, depends on the principal part of F).

Thank you for your attention.

