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Abstract

We study a model of a branching process subject to selection, modeled by giving
each family an individual fitness acting as a branching rate, and mutation, modeled by
resampling the fitness of a proportion of offspring in each generation. For two large classes
of fitness distributions of Gumbel type we determine the growth of the population, almost
surely on survival. We then study the empirical fitness distribution in a simplified model,
which is numerically indistinguishable from the original model, and show the emergence
of a Gaussian travelling wave.

1 Introduction

We consider the branching processes with selection and mutation introduced in [1]. These are
models of a population evolving in discrete non-overlapping generations with model parameters
given by a probability distribution µ on (0,∞), which serves as a means to sample a random
fitness of a mutant, and a mutation probability β ∈ (0, 1). For later reference, we denote the
tail function by G(x) := µ((x,∞)). Note that G is a right-continuous-left-limit function that
may be discontinuous.

A brief description of the two model variants goes as follows: In each generation a population
consists of finitely many individuals each equipped with a positive fitness. Any individual lives
only for one generation. Every generation produces a random number of offspring, which is
Poisson distributed with the mean given by the sum over all the fitnesses of the individuals in
the generation. Now every offspring individual independently

• with probability 1 − β randomly selects a parent with a probability proportional to its
fitness. The offspring becomes an individual of the next generation with the fitness
inherited from the parent;

• otherwise, with probability β, it is a mutant and gets a fitness randomly sampled from µ.

– In the fittest mutant model (FMM) only one mutant with largest fitness among all
mutants, if it exists, joins the next generation and the others die immediately.

– In the multiple mutant model (MMM) all mutants join the next generation.

We writeX(t) for the number of individuals in generation t, irrespective of what initial condition
is used and which model variant is under consideration. Further discussion of the motivation
behind this model can be found in the first paper of this series [1]. Other branching models
including selection or mutation are [2, 3, 4] or [5]. Similar models have been applied for
the description of the genetic structure of proliferating tumors and growing populations of
pathogens [6, 7, 8]
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Our focus in this paper is on the case of unbounded fitness distributions µ with light tails
at infinity, but to put this into context we briefly review known results first on bounded and
second on unbounded heavy-tailed random variables.

Suppose first that a :=esssup µ <∞ let λ∗ := (1− β)a. In the MMM, if β
∫

a
a−x

µ(dx) ≥ 1
there is a unique λ ≥ λ∗ such that

1 =

∫
βx

λ− (1− β)x
µ(dx).

Then, almost surely on survival, we have

lim
t→∞

logX(t)

t
= log λ.

Otherwise, and always in the FMM, we have, almost surely on survival,

lim
t→∞

logX(t)

t
= log λ∗.

This is shown in [9] for a continuous-time variant of the model and the proof extends to the
MMM. For the FMM note that in generation t there are at most t + 1 families with fitness
W0, . . . ,Wt present, each growing at rate log((1 − β)Wi). The overall growth rate is therefore
bounded from above by log λ∗ and also from below as lim supWt = a almost surely on survival.
So, irrespective of the finer details of µ, we see exponential growth of the population.

In the case of a slowly decreasing tail at infinity, i.e. when the tail function G is regularly
varying with index −α, for some α > 0, we have doubly exponential growth. We show in [1]
that, for T the unique integer such that

(T − 1)T

T T−1
< α ≤ T T+1

(T + 1)T
,

in either MMM or FMM, almost surely on survival,

lim
t→∞

log logX(t)

t
=

1

T
log

T

α
,

i.e. we have doubly exponential growth of the population. The present paper is concerned with
unbounded fitness distributions with light tail at infinity. In analogy to the classification of
distribution as extremal types we denote this class of fitness distributions as Gumbel type [10].
The classification of fitness distributions in terms of extreme value classes plays an important
role in the theory of evolutionary adaptation [11]. In this context it has been argued that the
Gumbel type is the most relevant case biologically [12, 13, 14].

For unbounded fitness distributions of Gumbel type the population grows at a rate between
exponential and doubly exponential. This is a wide range that cannot be easily covered by a
single functional expression. Therefore we introduce parametrised subclasses of fitness distribu-
tions and show how the population grows for these subclasses in dependence of the parameters.
Before stating our full results in Section 2 we describe an interesting example to give a flavour.

We look at fitness distributions with stretched exponential tail satisfying

lim
x→∞

log(1/G(x))

xαL(x)
= 1,
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for a slowly varying function L and α > 0. In this case, for both MMM and FMM we show in
Theorem 1 that the population grows like

lim
t→∞

logX(t)

t log t
=

1

α
, almost surely on survival.

The superexponential growth is driven by the fitness Wt of the fittest mutant in generation t
satisfying

lim
t→∞

Wt

t1/α(log t)1/α(αL(t1/α))−1/α
= 1.

In Section 3 we describe the subtle interplay of population size and fittest mutant heuristically
in terms of a differential equation. Simulations demonstrated in Section 7 show that the distri-
bution of fitness in a positive proportion of the population in generation t concentrates around
the value

v(t) := α−1/αt1/αL(t1/α)

in the shape of a Gaussian travelling wave of width v(t)/
√
αt. In Theorem 4 we prove this

phenomenon rigorously for a simplified model where the driving fitness Wt is replaced by its
deterministic asymptotics.

The rest of this paper is organised as follows. Full results on the growth of the population
and the driving fitness are formulated as Theorem 1 and 2 in Section 2. The section also
formulates, as Theorem 3, the conjectured behaviour of the travelling wave for the full model.
Section 3 heuristically describes the interplay of these quantities. Section 4 contains preparation
for the proofs of Theorem 1, given in Section 5, and Theorem 2, given in Section 6. Section 7
explains the approximations needed to simulate and prove the travelling wave result restated
now in rigorous form as Theorem 4. We finish the paper with concluding remarks in Section 8.

2 Main results

In the FMM, X(t) is generally different from the total number of offspring of all particles in
generation t− 1. We therefore denote by Ξ(t) the total number of offspring of all individuals in
generation t−1, including immediately dead ones, if there are any. By Qt we denote the largest
fitness in the population in generation t ≥ 0 and by Wt the largest fitness among all mutants
in generation t ≥ 1. Note that Wt ≤ Qt and Wt can be strictly smaller than Qt. The number
of non-mutated descendants in generation s ≥ t of the fittest mutant in generation t will be
denoted by Nt(s) with the convention that Nt(t) = 1. For convenience we set Nt(s) = 0,Wt = 0
if there is no mutant in generation t and Qt = 0 if X(t) = 0. Also set Ξ(0) = X(0), W0 = Q0.

2.1 Tail functions

To classify the decay of the tail function G in a way that allows the description of the growth
rates of the population size, we denote by log(n) the nth iterated logarithm, write f1(t) ∼ f2(t)
to mean that the ratio of the two expressions converges to one as t goes to infinity, and assume

log(n1) (1/G(x)) ∼
(
log(n2) (x)

)α̃
L
(
log(n2) (x)

)
, (1)

where n1, n2 are non-negative integers, α is a positive number, and L(x) is assumed to satisfy1

lim
x→∞

L(x)

xε
= lim

x→∞

1

L(x)xε
= 0, (2)

1If L is a slowly varying function, then this condition is naturally satisfied.
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for any ε > 0. Apart from this assumption, henceforth called (A1), we use three further
technical assumptions on L in (1), namely

(A2) If a positive function ℓ satisfies (2), then lim
x→∞

L(xℓ(x))

L(x)
= 1.

(A3) L is four-times continuously differentiable, at least for sufficiently large argument.

(A4) lim
x→∞

(
d

d log x

)j

logL(xγ) = 0, for nonnegative integer j and positive real γ.

Assumption (A2) will be used in Section 5. It is a stronger condition than L being a slowly
varying function. Assumption (A3) will be used in Section 7. Note that even if G is discontin-
uous, we can, in most cases, find a four-times continuously differentiable L. Assumption (A4)
will be used in the proof of Lemma 5.2 and in Section 7.2.

As an example of L satisfying all four assumptions, we consider

L(x) =
m∏
k=1

(log(k) (x))γk (3)

with real γk’s. Obviously, (3) cannot exhaust all functions satisfying the above four assumptions;
an example that does not take the form (3) is exp(

√
log x). The proofs of the main theorems

apply to any function L that satisfies the above four assumptions.

In this paper, we are interested in Gumbel type tail functions with unbounded support,
meaning that at infinity G decays faster than polynomially, i.e., for any positive γ,

lim
x→∞

xγG(x) = 0. (4)

We now figure out2 for which parameters n1, n2 and α̃, (4) holds. If n1 < n2, then G satisfies

lim
x→∞

x−ε

G(x)
= 0 (5)

for any positive ε. As this G decays slower than any Fréchet type tail function, the long-time
evolution is dominated by the largest fitness alone as in the Fréchet type with α < 0.5, as
studied in [1]. If n1 > n2, then G satisfies (4), which will be our concern. We define the n-th
iterated exponential function exp(n) as the inverse of log(n) with the convention exp(0)(x) =
log(0) (x) = x. In case n2 > 0, we have a rough bound for sufficiently large x as

1/G(x) ≥ exp(n1)
(
log(n2) (x)α̃−ε

)
= exp(n1−n2)

(
exp(n2)

(
log(n2) (x)α̃−ε

))
= exp(n1−n2)

(
exp(n2+1)

(
(α̃− ε) log(n2+1) (x)

))
≥ exp(n1−n2)

(
xα̃−ε

)
,

where we have used Lemma 5.1 for the last inequality, and

1/G(x) ≤ exp(n1)
(
log(n2−1) (x)

)
= exp(n1−n2+1) (x) . (6)

2It is of course possible that G(x) satisfies (4) but not (1).
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In this context, limiting ourselves to the case with n1 > n2 = 0 would give a guide for n1 >
n2 > 0. For example, inspecting Theorem 1 suggests that almost surely on survival

lim
t→∞

log(2) (X(t))

log t
= 1

for any case with n1 > n2 ≥ 0. The remaining case is n1 = n2. If n1 = n2 = 0, then G does
not satisfy (4). In fact, this G becomes a Fréchet-type tail function already studied in [1]. If
n1 = n2 > 0, then how fast G decays is determined by α̃. If 0 < α̃ < 1, then G satisfies (5).
If α̃ > 1, then G satisfies (4). If α̃ = 1, then how fast G decays depends on the explicit form
of L. For example, assume L(x) = (log x)γL̄(log x) with L̄ to satisfy (2). If γ > 0, then G
satisfies (4), while if γ < 0, then G satisfies (5). If γ = 0, then how fast G decays depends on
the explicit form of L̄. In this sense, it is difficult, if not impossible, to write all possible tail
functions that satisfy (4). We take a rather special form of L for α̃ ≥ 1; see (8). We only study
the case n1 = n2 = 1, but the case with n1 = n2 > 1 can be easily studied using the techniques
developed in this paper.

In this paper, we therefore limit ourselves to two cases. The first case that corresponds to
n2 = 0 and n1 = n ≥ 1 with α̃ = α > 0 is

log(n) (1/G(x)) ∼ gI(x) := xαL(x). (7)

The second case that corresponds to n1 = n2 = 1 with α̃ ≥ 1 is

log(1/G(x))

log x
∼ gII(x) := gI(log

(n) (x)), (8)

where n ≥ 1 and α > 0. Note that for the second case α̃ = 1 + α > 1 for n = 1 and α̃ = 1 for
n ≥ 2. From now on, n and α are reserved for this role, with n called the tail index and α the
tail parameter. When G satisfies (7), we will say that G is of type I and when G satisfies (8),
we will say that G is of type II. Note that not only do the two types of decay not cover the
entire Gumbel class, but conversely (4) alone cannot guarantee that G falls into the Gumbel
class. For instance, consider logG(x) = −x− sin(x), which is of type I but does not belong to
the Gumbel class (see, e.g., [10]).

2.2 Statement of theorems

Our main concern is how X(t), Wt, and the empirical fitness distribution (EFD) behave at
large times t on survival. The EFD is defined via its cumulative distribution function Ψ(f, t) as

Ψ(f, t) :=
1

X(t)

X(t)∑
i=1

Θ(f − Fi), (9)

where Fi is the fitness of i-th individual and Θ(x) is the Heaviside step function with Θ(0) = 1.
We denote the mean and the standard deviation of Ψ(f, t) by St and σt, respectively. In case
that no individual is left at t, we define Ψ(f, t) = 1 for f ≥ 0 and St = σt = 0. We define the
survival event A and survival probability ps as

A := {X(t) ̸= 0 for all t}, ps := P(A).

Needless to say, ps depends on the initial condition, but the initial condition dependence does
not play any role in what follows. Now we state the main theorems.
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Theorem 1. If G is of type I, then almost surely on survival

lim
t→∞

logX(t)

t log(n) (t)
=

1

α
, lim

t→∞

Wt

un(t)
= 1, (10)

where

un(t) :=
(
log(n−1) (t)

)1/α
ωW

(
log(n−1) (t)

)
, (11)

ωW (y) :=

(
log y

α

)δn,1/α [
L
(
y1/α

)]−1/α
, (12)

with δn,1 to be the Kronecker delta symbol.

Theorem 2. If G is of type II, then almost surely on survival

lim
t→∞

log(2) (X(t))

log t
= 1 +

1

α
, lim

t→∞

log(2) (Wt)

log t
=

1

α
,

for n = 1,

lim
t→∞

log(3) (X(t))

log t
= lim

t→∞

log(3) (Wt)

log t
=

1

1 + α
,

for n = 2, and

lim
t→∞

1

log(n−1) (t)
log

(
log(2) (X(t))

t

)
= lim

t→∞

1

log(n−1) (t)
log

(
log(2) (Wt)

t

)
= −α,

for n ≥ 3.

Based on simulations, we conjecture the following theorem regarding the EFD formulated
in the case of the FMM. A rigorously proved version of this result and more details on our
simulations will be given in Section 7.

Theorem 3 (Conjecture). For each type I tail function, there are positive functions v(t) and
s(t) such that

lim
t→∞

v(t) = ∞, lim
t→∞

s(t)

v(t)
= 0,

and almost surely on survival

lim
t→∞

Ψ(v(t) + ys(t), t) = Υ(y),

where

Υ(y) :=
1√
2π

∫ y

−∞
exp

(
−1

2
x2
)
dx. (13)

In particular, if n = 1 and α > 2 or if n ≥ 2, then s(t) → 0 as t→ ∞ and, for y ̸= 0,

lim
t→∞

Ψ(v(t) + y, t) = Θ(y) almost surely on survival.
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Remark 2.1. A similar statement is conjectured for the MMM where a fraction 1 − β of the
mass in the EFD enters the travelling wave and a fraction β remains in the bulk.

Corollary 2.1. Given Theorem 3 the empirical mean fitness satisfies

lim
t→∞

St

v(t)
= 1 almost surely on survival.

Proof. Fix ε > 0. By Markov’s inequality, we have 1−Ψ( v(t)
1+ε

, t) ≤ (1+ ε) St

v(t)
. As s(t)/v(t) → 0

as t → ∞, Theorem 3 implies that lim
t→∞

Ψ( v(t)
1+ε

, t) = 0. Therefore, almost surely on survival, we

have lim inf
t→∞

St

v(t)
≥ 1

1+ε
. As ε was arbitrary we have, almost surely on survival, lim inf

t→∞
St

v(t)
≥ 1.

Now assume lim sup
t→∞

St

v(t)
> 1. Then there is ε′ > 0 and a strictly increasing sequence (tk)

∞
k=1

such that Stk ≥ v(tk)(1 + 2ε′) for all k. As Theorem 3 implies lim
t→∞

Ψ(1+2ε′

1+ε′
v(t), t) = 1, we

have lim
k→∞

Ψ(
Stk

1+ε′
, tk) = 1, which contradicts to the definition of St. Therefore, we conclude that

almost surely on survival lim sup
t→∞

St

v(t)
≤ 1, which along with the lower bound gives St ∼ v(t).

In Section 7, we will modify our model so that a version of Theorem 3 can be proved.

3 Heuristic guide to Theorems 1 and 2

Before delving into the proofs, we first sketch the idea behind Theorems 1 and 2 by a mean-
field type analysis of the MMM for a strictly decreasing continuous G with gI(x) ∼ xα. Let us
assume that at certain time t, the population size X(t) is very large. Once X(t) is given, Wt is
sampled as Z = [1 − βG(Wt)]

X(t), where Z is uniformly distributed on (0, 1); see Lemma 4.8.
Neglecting fluctuation in the sense that − logG(Wt) ≈ logX(t), we have

logWt ≈
1

α
log(n+1)(X(t)) (14)

for type I and

logWt ≈

[logX(t)]1/(1+α) , n = 1,[
log(n)(X(t))

]−α

logX(t), n ≥ 2,
(15)

for type II. Since the mean fitness St is anticipated not to be larger than Wt and logX(t+1) ≈
logX(t) + log St, we have logX(t+ 1)− logX(t) ≤ logWt. Treating t as a continuous variable
and setting y = logX(t), we assume that the solutions of the differential equations

dy

dt
=

1

α
log(n) (y) (16)

for type I and

dy

dt
=

{
y1/(1+α), n = 1,

y/(log(n−1)(y))α, n ≥ 2,
(17)
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for type II give the upper bound for the corresponding logX(t). The asymptotic behaviour of
the solution of (16) can be found as

t

α
=

∫ y dx

log(n) (x)
=

y

log(n) (y)
+

∫ y 1

(log(n) (x))2

(
n−1∏
k=1

1

log(k) (x)

)
dx ≈ y

log(n) (y)
,

which gives

y ≈ t

α
log(n) (y) ≈ t

α
log(n) (t) ,

where we have used (A2) for L(x) = log(n) (x). In a similar manner, we find the asymptotic
solution of (17) as y ≈ t1+1/α if n = 1, y ≈ exp(t1/(1+α)) if n = 2 and y ≈ exp(t(log(n−2)(t))−α)
if n ≥ 3. Accordingly, we anticipate

logX(t) ⪅
1

α
t log(n)(t)

for type I and

logX(t) ⪅


t1+1/α, n = 1,

exp
(
t1/(1+α)

)
, n = 2,

exp
(
t
(
log(n−2)(t)

)−α)
, n ≥ 3.

for type II.

Theorems 1 and 2 actually state that to treat the above inequalities as equalities gives a
good approximation. If the inequalities are indeed equalities, then we expect

Wt ≈
(
log(n−1)(t log(n) (t))

)1/α
for type I and

Wt ≈


exp

(
t1/α
)
, n = 1,

exp
(
t−α/(1+α) exp

(
t1/(1+α)

))
, n = 2,

exp
((

log(n−2)(t)
)−α

exp
(
t(log(n−2)(t))−α

))
, n ≥ 3,

for type II. In the following sections, we make the above heuristics rigorous.

4 Preparations

In this section, we collect some tools to be used in the proofs of the Theorems 1 and 2. To be
self-contained, we begin by restating Lemma 2 of Ref. [1] without repeating the proof.

Lemma 4.1. On survival, (Wt)t≥1 is almost surely an unbounded sequence.

Other than in Ref. [1] the gap between the generation where a mutant type first appears
and the generation where it may become dominant is unbounded. Therefore we need tight
bounds on the Galton-Watson process with Poisson offspring distribution, which become the
focus of the rest of this section. We prepare this with some bounds on the Poisson series.

Lemma 4.2. If 0 < b < 1, θ > 1, ⌊bθ⌋ ≥ 1, and (1− b)θ ≥ 1, then

⌊bθ⌋∑
m=0

e−θ θ
m

m!
≤ θe−θ(1−b+b log b).
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Proof. Let ℓ := ⌊bθ⌋ and am := θm/m!. Note that ℓ ≤ bθ ≤ θ − 1 by the assumption. Since
am/am−1 = θ/m, we have am ≤ aℓ for all m ≤ ℓ < θ and, therefore,

ℓ∑
m=0

θm

m!
≤ (ℓ+ 1)

θℓ

ℓ!
≤ θ

θℓ

ℓ!
.

Using m! ≥ mme−m (m ≥ 1), we find log θℓ

ℓ!
≤ ℓ log θ − ℓ log ℓ + ℓ. Observing that x log θ −

x log x+ x is an increasing function in the region 0 < x < θ, we finally have

ℓ∑
m=0

e−θ θ
m

m!
≤ θe−θ+bθ log θ−bθ log(bθ)+bθ = θe−θ(1−b+b log b),

as claimed.

Lemma 4.3. If B > 1 and θ > 0, then

∞∑
k=⌈Bθ⌉

e−θ θ
k

k!
≤ B

B − 1
e−θ(1−B+B logB).

Proof. Let m := ⌈Bθ⌉. Since (m+ k)! ≥ m!mk and θ/m ≤ 1/B < 1, we have

∞∑
k=m

θk

k!
≤ θm

m!

∞∑
k=0

(
θ

m

)k

=
θm

m!

1

1− (θ/m)
≤ B

B − 1
em log θ−m logm+m ≤ B

B − 1
eBθ−Bθ logB,

where we have used m! ≥ mme−m and that x log θ − x log x+ x is a decreasing function in the
region θ < x. Multiplying by e−θ, we get the desired inequality.

Definition. By (Xt)t≥0, we mean a classical Galton-Watson process with Poisson offspring
number distribution with mean θ, starting in generation 0 with a single individual.

Remark 4.1. Conditioned on Xt−1 = m for a nonnegative integer m, Xt is a Poisson-
distributed random variable with mean mθ.

Lemma 4.4. If 0 < b < 1, θ ≥ f ≥ 1/(1− b+ b log b), and x ≥ 1, then,

P(Xt ≥ bxf |Xt−1 ≥ x) ≥ 1− xfe−xf(1−b+b log b). (18)

Proof. By assumption, (1− b)f ≥ 1. If m ≥ x, Remark 4.1 with Lemma 4.2 gives

P(Xt < bxf |Xt−1 = m) ≤ P(Xt < bmθ|Xt−1 = m) ≤
⌊bmθ⌋∑
k=0

e−mθ (mθ)
k

k!
≤ mθe−mθ(1−b+b log b).

Since ze−zc ≤ ye−yc for all z ≥ y ≥ 1/c > 0 and mθ ≥ xf ≥ 1/(1− b+ b log b) > 0, we get

P(Xt < bxf |Xt−1 = m) ≤ xfe−xf(1−b+b log b),

which does not depend on m as long as m ≥ x. Now, the proof is completed.

Lemma 4.5. Let At := {at ≤ Xt ≤ bt}, where 0 ≤ at ≤ bt − 1 ≤ ∞ for all t ≥ 0. Let
Et :=

⋂t
k=τ Ak for 0 ≤ τ < t. Assume P(Aτ ) > 0 and P(At|Xt−1 = m) ≥ ft > 0, where m is

any integer satisfying at−1 ≤ m ≤ bt−1 and ft depends on at, bt, at−1, and bt−1 but not on m.
Then

P (Et) ≥ P(Aτ )
t∏

k=τ+1

fk.
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Proof. For t = τ + 1, the proof is trivial. So we assume t ≥ τ + 2. Note that

Et = At ∩ At−1 ∩ Et−2 =

⌊bt−1⌋⋃
m=⌈at−1⌉

(At ∩ {Xt−1 = m} ∩ Et−2) .

Using the countable additivity of the probability measure and the Markov property of Xt,

P(Et) =

⌊bt−1⌋∑
m=⌈at−1⌉

P(At|Xt−1 = m)P ({Xt−1 = m} ∩ Et−2)

≥ ft

⌊bt−1⌋∑
m=⌈at−1⌉

P ({Xt−1 = m} ∩ Et−2) = ftP(Et−1).

Iterating the above inequality, we get the desired inequality.

Lemma 4.6. If 0 < b < 1, θ ≥ f ≥ 1/(1− b+ b log b), and bf > 1, then

P
(
Xt ≥ btf t for all t ≥ τ |Xτ ≥ bτf τ

)
≥ 1− f

(
1 + 1

log(bf)

)
e−f(1−b+b log b),

for any nonnegative integer τ . Note that the right hand side does not depend on τ .

Proof. For any event E, we write Pc(E) := P(E|Xτ ≥ bτf τ ) in this proof. Define

At := {Xt ≥ btf t}, Ct :=
t⋂

k=τ+1

Ak, C :=
∞⋂

k=τ+1

Ak.

Note that
Pc(Aτ ) = 1, Pc

(
Xt ≥ btf t for all t ≥ τ

)
= Pc(C) = lim

t→∞
Pc(Ct).

Using (18) with x 7→ (bf)t−1, we have

P(At|At−1) ≥ 1− f(bf)t−1 exp
[
−f(bf)t−1(1− b+ b log b)

]
=: 1− dt.

By Lemma 4.5 we can write

Pc(C) = lim
t→∞

Pc(Ct) ≥
∞∏

t=τ+1

(1− dt) ≥ 1−
∞∑

t=τ+1

dt ≥ 1−
∞∑
t=1

dt.

Since (ct−1 exp(−act−1))t≥1 is a decreasing sequence for a ≥ 1 and c > 1, we have

∞∑
t=1

ct−1 exp
(
−act−1

)
= e−a +

∞∑
t=2

ct−1 exp
(
−act−1

)
≤ e−a +

∫ ∞

1

ct−1 exp
(
−act−1

)
dt =

(
1 +

1

a log c

)
e−a ≤

(
1 +

1

log c

)
e−a. (19)

Plugging c = bf and a = f(1− b+ b log b) into (19), we have the desired result.

Remark 4.2. If we restrict the condition of parameters in Lemma 4.6 to be bf ≥ e and
0 < b ≤ bc < 1/2, where bc satisfies 1− bc + bc log bc = 1/2, then we can use

P
(
Xt ≥ btf t for all t ≥ τ |Xτ ≥ bτf τ

)
≥ 1− 2fe−f/2. (20)
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Lemma 4.7. If B > 1, f ≥ θ > 0, and x ≥ 1, then

P(Xt ≤ Bxf |Xt−1 ≤ x) ≥ 1− B

B − 1
e−xfB(logB−1).

Proof. Set Xt−1 = m. If m = 0, the above inequality is trivially true. So we only consider
1 ≤ m ≤ x. Let B′ := Bxf/(mθ) ≥ B. Then, Remark 4.1 together with Lemma 4.3 gives

P(Xt > Bxf |Xt−1 = m) = P(Xt > B′mθ|Xt−1 = m) ≤
∞∑

k=⌈B′mθ⌉

(mθ)k

k!
≤ B′

B′ − 1
e−mθB′(logB′−1),

where we have used e−y ≤ 1 for y ≥ 0. Since xfB = mθB′, logB′ ≥ logB, and y/(y − 1) is a
decreasing function of y > 1, we have

P(Xt > Bxf |Xt−1 = m) ≤ B

B − 1
e−xfB(logB−1),

which is valid for any m ≤ x. Now the proof is completed.

Remark 4.3. In case B ≥ e2 > 2, we can use

P(Xt ≤ Bxf |Xt−1 ≤ x) ≥ 1− 2e−xf . (21)

We next describe the distribution of Wt, conditioned on Ξ(t) = N .

Lemma 4.8. For any x ≥ 0,

P(Wt ≤ x|Ξ(t) = N) = (1− βG(x))N .

Proof. First fix a positive integer m and by W (m)

t is denoted the largest of m independently
sampled fitnesses with convention W (0)

t = 0. Then P(W (m)

t ≤ x) = (1−G(x))m. Let qm be the
probability that m mutants arise out of N . Then,

P(Wt ≤ x|Ξ(t) = N) =
N∑

m=0

P(W (m)

t ≤ x)qm =
N∑

m=0

(1−G(x))mqm

=
N∑

m=0

(1−G(x))m
(
N

m

)
βm(1− β)N−m = (1− βG(x))N ,

as claimed.

Remark 4.4. In case X(t) ≤ Ξ(t) ≤ y, we will use the inequality

P(Wt ≤ x|Ξ(t) ≤ y) ≥ 1− βyG(x), (22)

where we have used (1− z)m ≥ 1−mz for 0 ≤ z ≤ 1 and m ≥ 1. In case Ξ(t) ≥ X(t) ≥ y ≥ 0,
we will use the inequality

P(Wt ≥ x|X(t) ≥ y) ≥ 1− e−βyG(x), (23)

where we have used e−yz ≥ (1− z)y for 0 ≤ z ≤ 1.

11



5 Proof of Theorem 1

We first provide a heuristic argument for a more accurate estimate of Wt than in Section 3. As
in Theorem 1 we assume

logX(t) ≈ t

α
log(n) (t) .

Then, we approximate

log(n) (X(t)) ≈ log(n−1) (t)

(
log t

α

)δn,1

.

Now using the mean-field type approximation gI(Wt) ≈ log(n) (1/G(Wt)) ≈ log(n) (X(t)), we
get an approximate Wt by a solution x of the equation

xαL(x) = gI(x) = log(n−1) (t)

(
log t

α

)δn,1

.

We can find an approximate solution of the above equation as

x = L(x)−1/α
(
log(n−1) (t)

)1/α( log t

α

)δn,1/α

≈
(
log(n−1) (t)

)1/α( log t

α

)δn,1/α [
L
(
(log(n−1) (t))1/α

)]−1/α

= un(t).

where we have used (A2). By construction, we have

gI(un(t)) ∼ log(n−1) (t)

(
log t

α

)δn,1

, (24)

which will play an important role in proving Theorem 1. In the proof, no distinction between
MMM and FMM is necessary. For the proof, we begin with estimating G(Wt) using an inequal-
ity relating the iterated exponential function exp(n) (x) and the iterated logarithm log(n) (x).

Lemma 5.1. For any positive integer n and for any positive x,

exp(n)
(
x log(n) (t)

)
≥ tx, (25)

as long as log(n) (t) > 1.

Proof. For n = 1, the inequality is trivially valid as an equality. Now assume that the inequality
is satisfied for n = ℓ. Consider t with log(ℓ+1) (t) > 1, which gives log(ℓ) (t) > e > 1 and t > 1.
Abbreviate y := (log(ℓ) (t))x−1 for x > 0. Since log(ℓ) (t) > e, we have y > ex−1 > x. By
assumption, we have

exp(ℓ+1)
(
x log(ℓ+1) (t)

)
= exp(ℓ)

((
log(ℓ) (t)

)x)
= exp(ℓ)

(
y log(ℓ) (t)

)
≥ ty ≥ tx,

so that the claimed inequality is also valid for n = ℓ+ 1. Induction completes the proof.

Lemma 5.2. Fix ε such that 0 < ε < 2α
3α+8+

√
α2+48α+64

, and let ε1 :=
4ε

α(1−2ε)(1−ε)−4ε
. Then there

is τ0 (depending on n) such that, for all t ≥ τ0,

logG((1− ε1)un(t)) ≥ −1− 2ε

α
t log(n) (t) ,

logG((1 + ε1)un(t)) ≤ −1 + 2ε

α
t log(n) (t) .
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Proof. First note that ε < 1/2 for any α > 0, 0 < ε1 < 1, and

(1− 2ε)
[
1 + α(1− ε) ε1

1+ε1

]
= 1 + 2ε, 1+2ε

1+αε1(1−ε)
≤ 1− 2ε. (26)

By (24), there is τ1 such that

1−2ε
1−ε

log(n−1) (t)
(
log t
α

)δn,1 ≤ gI(un(t)) ≤ 1+2ε
1+ε

log(n−1) (t)
(
log t
α

)δn,1
, (27)

for all t ≥ τ1. Now we show that there is τ2 such that, for all t ≥ τ2,

log(n−1)
(

1+2ε
α

t log(n) (t)
)
≤ (1 + 2ε) log(n−1) (t)

(
log t
α

)δn,1
,

log(n−1)
(

1−2ε
α

t log(n) (t)
)
≥ (1− 2ε) log(n−1) (t)

(
log t
α

)δn,1
. (28)

For n = 1, this is obvious. For n ≥ 2, existence of τ2 follows from

lim
t→∞

1

log(n−1)(t)
log(n−1)

(
1±2ε
α

t log(n) (t)
)
= 1.

By the mean value theorem, there is ε± such that 0 ≤ ε± ≤ ε1 and

gI((1± ε1)un(t)) = gI(un(t))± ε1un(t)
dgI
dx

∣∣∣∣
x=(1±ε±)un(t)

. (29)

We do not make the t-dependence of ε± explicit, as in the following we will only use the
inequality 0 < ε± < ε1. By (A4) with j = γ = 1 and (7),

α = lim
x→∞

x

gI(x)

dgI(x)

dx
= lim

x→∞

d log gI(x)

d log x
.

Hence there is x1 such that, for all x′ ≥ x ≥ x1, we have gI(x
′) ≥ gI(x) and

α(1− ε)
gI(x)

x
≤ dgI

dx
, (30)

and

exp
(
− exp(n−1) ((1 + ε)gI(x))

)
≤ G(x) ≤ exp

(
− exp(n−1) ((1− ε)gI(x))

)
. (31)

Hence, if (1− ε1)un(t) > x1, then we have

gI((1 + ε1)un(t)) ≥ gI(un(t)) + ε1un(t)α(1− ε)
gI((1 + ε+)un(t))

(1 + ε+)un(t)

≥ gI(un(t)) +
ε1

1 + ε1
α(1− ε)gI((1 + ε+)un(t))

≥ gI(un(t))

[
1 + α(1− ε)

ε1
1 + ε1

]
,

where we have used (29), (30), 1/(1 + ε+) ≥ 1/(1 + ε1) and gI((1 + ε+)un(t)) ≥ gI(un(t)); and

gI((1− ε1)un(t)) ≤ gI(un(t))− ε1un(t)α(1− ε)
gI((1− ε−)un(t))

(1− ε−)un(t)

≤ gI(un(t))− ε1α(1− ε)gI((1− ε1)un(t)), (32)
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where we have used (29), (30), −1/(1− ε−) ≤ −1 and −gI((1− ε−)un(t)) ≤ −gI((1− ε1)un(t)).
We can rewrite (32) as gI((1 − ε1)un(t)) ≤ [1 + αε1(1− ε)]−1 gI(un(t)). Therefore, there is τ3
such that for all t ≥ τ3 we have

(1− ε)gI((1 + ε1)un(t)) ≥ (1− ε)gI(un(t))

[
1 + α(1− ε)

ε1
1 + ε1

]
≥ (1− 2ε)

[
1 + α(1− ε)

ε1
1 + ε1

]
log(n−1) (t)

(
log t

α

)δn,1

= (1 + 2ε) log(n−1) (t)

(
log t

α

)δn,1

≥ log(n−1)
(

1+2ε
α
t log(n) (t)

)
, (33)

and

(1 + ε)gI((1− ε1)un(t)) ≤ (1 + ε)gI(un(t)) [1 + αε1(1− ε)]−1

≤ 1 + 2ε

1 + αε1(1− ε)
log(n−1) (t)

(
log t

α

)δn,1

≤ (1− 2ε) log(n−1) (t)

(
log t

α

)δn,1

≤ log(n−1)
(

1−2ε
α
t log(n) (t)

)
, (34)

where we have used (26), (27), and (28). To sum up, there is τ0 such that for all t ≥ τ0,

logG((1 + ε1)un(t)) ≤ −1+2ε
α
t log(n) (t) ,

where we have used (31) and (33); and

logG((1− ε1)un(t)) ≥ −1−2ε
α
t log(n) (t) ,

where we have used (31) and (34). Now, the proof is completed.

Lemma 5.3. Assume X(0) <∞ and Q0 <∞. Fix ε and ε1 as in Lemma 5.2 and let, for t ≥ 0,

At :=
{
log Ξ(t) ≤ 1+ε

α
(t+m) log(n) (t+m)

}
, Et := {Wt ≤ (1 + ε1)un(t+m)} ,

where m is assumed large enough for the definition to make sense. We use the convention
log 0 = −∞ throughout the paper. We define a sequence of events (Dt)t≥0 iteratively as

D0 = A0 ∩ E0, Dt = At ∩ Et ∩Dt−1.

Let D :=
⋂∞

t=0Dt. Then,
lim

m→∞
P (D) = 1.

Proof. Since lim inft→∞ un(t) = ∞ and log(n) (t) is an unbounded and increasing function, there
is t1 such that un(m) ≥ 1, (1+ ε)m log(n) (m) ≥ α(m+1), (1+ ε)m log(n) (m) ≥ α logX(0) and
(1 + ε1)un(m) ≥ Q0 for all m > t1. Let

H(x) :=
1 + ε

α
(x+ 1) log(n) (x+ 1)− 1 + ε

α
x log(n) (x)− log (un(t))− log(1 + ε1)

=
x+ 1

α′

[
log(n) (x+ 1)− log(n) (x)

]
+ ε

log(n) (x)

α
− log

(
ωW (log(n) (x))

)
− log(1 + ε1),
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where α′ := α/(1 + ε). Since lim infx→∞H(x) = ∞, there is t2 such that H(x) > 2 for all
x > t2. By Lemma 5.2, we can choose t3 such that

logG((1 + ε1)un(x)) ≤ −1 + 2ε

α
x log(n) (x) , (35)

for all x > t3. From now on, we only consider large m such that m > t0 := max{t1, t2, t3}.
For convenience, we define τt := t +m. Let E ′

t := {Qt ≤ (1 + ε1)un(τt)} . Since E0 = E ′
0 and

Et+1 ∩ E ′
t = E ′

t+1 ∩ E ′
t even though E ′

t can be a proper subset of Et, we have

t⋂
k=0

Ek =
t⋂

k=0

E ′
k. (36)

We have, for k ≥ 1, that

P
(
Ak|Ak−1 ∩ E ′

k−1

)
≥ 1− 2 exp (−eτk) =: 1− ξk,

where we have used (21) with f 7→ (1 + ε1)un(τk−1) ≥ 1, x 7→ exp(1+ε
α
τk−1 log

(n) (τk−1)) ≥ eτk ,
and B 7→ eH(τk−1) ≥ e2 and the fact St ≤ Qt.

Observe that P(Dt) = P(Et|At ∩Dt−1)P(At|Dt−1)P(Dt−1). Using Lemma 4.5 and (36), we
have

P (Ak|Dk−1) ≥ 1− ξk

Since Wk is purely determined by Ξ(k), Ek is independent of Dk−1 and, accordingly, we have

P(Ek|Ak ∩Dk−1) = P(Ek|Ak) ≥ 1− β exp
(
− ε

α
τk log

(n) (τk)
)
=: 1− ηk,

where we have used (22) with α log y 7→ (1 + ε)τk log
(n) (τk), x 7→ (1 + ε1)un(τk), and (35).

Therefore,

P(D) ≥
∞∏
k=1

(1− ξk)(1− ηk) ≥ 1−
∞∑
k=1

(ξk + ηk). (37)

Note that limm→∞(ξk + ηk) = 0. Since limk→∞(ξk + ηk)τ
2
k = 0, there is a constant c that is

independent of m such that ξk + ηk ≤ cτ−2
k ≤ ck−2 for all k. Hence, the series in (37) converges

uniformly for all m > t0 and, therefore, limm→∞ P(D) = 1, which completes the proof.

Lemma 5.4 (Upper bound). If X(0) <∞ and Q0 <∞, then almost surely,

lim sup
t→∞

logX(t)

t log(n) (t)
≤ 1

α
, lim sup

t→∞

Wt

un(t)
≤ 1.

Proof. Choose ε and ε1 as in Lemma 5.2. Let

C(ε) :=

{
lim sup
t→∞

logX(t)

t log(n) (t)
≤ 1 + ε

α

}
,

C̃(m, ε) :=

{
logX(t) ≤ (1 + ε)

(t+m) log(n) (t+m)

α
for all t

}
.

We use D in Lemma 5.3 withm to be the same meaning as in this lemma. Since D ⊂ C̃(m, ε) ⊂
C(ε) for anym > 0, Lemma 5.3 gives P(C(ε)) = 1. Defining E =

⋂∞
t=1Et we get lim

m→∞
P(E) = 1,

because D ⊂ E. Therefore,

P
(
lim sup
t→∞

Wt

un(t)
≤ 1 + ε1

)
≥ lim

m→∞
P(E) = 1.

Since ε is arbitrary, the proof is completed.
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Definition (Initial condition for Lemma 5.6). Choose ε as in Lemma 5.2. Let

α1 := α
(
1− ε

2

)−1

, fk := (1− β)un(k), bk :=
1

1− β
exp

(
− ε

2α
log(n) (k)

)
,

bkfk = exp

(
log(n) (k)

α1

+ log
(
ωW

(
log(n) (k)

)))
, (38)

where k is assumed sufficiently large in order for the definition to make sense. We also define

H(m,x) :=
log(n) (m)

α1

(x−m) + (x−m) log
(
ωW (log(n) (m))

)
,

h(m,x) := H(m,x)− 1− ε

α
x log(n) (x) ,

τj(m) := exp(n)
(
(1 + jε2) log

(n) (m)
)
, ε2 :=

ε

8(1− ε)
<
ε

4
, (39)

where j = 1, 2 and we assume log(n) (m) > 1, ωW (log(n) (m)) > 0, and x > m. Note that
(1− ε/2)/(1 + 2ε2) > 1− ε. Since

(bmfm)
x−m exp

(
−1− ε

α
x log(n) (x)

)
= eh(m,x),

h(m,x) ≥ 0 implies (bmfm)
x−m ≥ exp

(
1−ε
α
x log(n) (x)

)
.

We choose an integer k0 as in Lemma 5.5. Once k0 is fixed, we define an initial condition
for any integer t0 ≥ k0. In generation 0, there are t0 − k0 + 1 different mutant types with
fitness Fk = fk/(1 − β) (k0 ≤ k ≤ t0) and the number Mk(0) of individuals with fitness Fk is
Mk(0) = ⌈f t0−k

k ⌉ ≥ (bkfk)
t0−k. We denote the number of nonmutated descendants of Mk(0) in

generation t by Mk(t).

For convenience, we denote the largest fitness among mutants at generation k ≥ 1 by Fk+t0

and its nonmutated descendants at generation t ≥ k by Mk+t0(t). Note that Wk = Fk+t0 and
Nk(t) = Mk+k0(t) for k ≥ 1. We set Fk+t0 = 0 if there are no new mutants at generation k. If
Fk+t0 = 0, we write Mk+t0(t) = 0 for all t. If Fk+t0 > 0, we set Mk+t0(k) = 1. That is, even if
there are many mutants with the same largest fitness Fk+t0 , which may frequently happen in the
MMM if discrete fitness values are allowed to be sampled, Mk+t0(t) only concerns descendants
of a single individual among them. Finally, we define

Y(t) :=

t+t0∑
k=k0

Mk(t).

Note that Y(t) ≤ X(t) and equality holds for the FMM.

Lemma 5.5. For bk, fk in (38) and for H, h, τ1, τ2 in (39), there is an integer k0, which is
larger than exp(n) (1), such that for all m ≥ k0

(Condition 1) 0 < bm < bc, (1 − bm + bm log bm)fm > 1, and bmfm > e (see Remark 4.2 for
the motivation of this condition);

(Condition 2) h(m,x) > 0 with any x satisfying τ1(m) ≤ x ≤ τ2(m).
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Proof. It is obvious that there is an integer k1 such that (Condition 1) is satisfied for all
m ≥ k1. For any sequence (xm)m≥⌈exp(n)(1)⌉ such that τ1(m) ≤ xm ≤ τ2(m), we have

lim inf
m→∞

αH(m,xm)

xm log(n) (xm)
≥ 1− ε/2

1 + 2ε2
lim inf
m→∞

(xm −m) log(n) (m)

xm log(n) (m)
=

1− ε/2

1 + 2ε2
> 1− ε, (40)

where we have used log(n) (xm) ≤ (1 + 2ε2) log
(n) (m) by assumption, xm ≥ τ1(m) ≥ m1+ε2 for

m ≥ exp(n) (1) (Lemma 5.1), and ωW is a slowly varying function. Therefore, there is an integer
k2 such that h(m,x) > 0 for all m ≥ k2 with any x satisfying τ1(m) ≤ x ≤ τ2(m). Now we set
k0 = max{⌈exp(n) (1)⌉, k1, k2} and the proof is completed.

Remark 5.1. Inequality (40) is valid even if we relax the lower bound of xm as long as
limm→∞m/xm = 0. For example, replacing τ1(m) by m

√
logm still gives h(m,x) > 0 for

sufficiently large m.

Lemma 5.6. We fix ε and ε1 as in Lemma 5.2. We also use the initial conditions defined
above with t0 ≥ k0 and define

Et :=

{
logY(t) ≥ 1− ε

α
(t+ t0) log

(n) (t+ t0)

}
, E :=

∞⋂
t=1

Et,

Jt := {Wt ≥ (1− ε1)un(t+ t0)} , J :=
∞⋂
t=1

Jt.

Then,
lim
t0→∞

P (E) = lim
t0→∞

P (J) = 1.

Proof. We define a sequence (mℓ)ℓ≥0 as

mℓ :=
⌊
exp(n−1)

(
ℓ+ log(n−1)

(
t0

log t0

))⌋
.

We first work out how large t0 should be. Obviously, there exists t1 such that k0 < m0 < t0 for
all t0 > t1. Since

lim
t0→∞

t0
τ2(m0)

= 0, lim
t0→∞

αH(m0, t0 + 1)

(t0 + 1) log(n) (t0 + 1)
= 1 > 1− ε,

there is t2 such that τ2(m0) ≥ t0 + 1 and h(m0, t0 + 1) > 0 for all t0 > t2. In fact, h(m0, x) > 0
for all t0 + 1 ≤ x ≤ τ2(m0); see Remark 5.1. Since

lim
t0→∞

log(n) (mℓ)

log(n) (mℓ−1)
= lim

ℓ→∞

log(n) (mℓ)

log(n) (mℓ−1)
= 1,

there is t3 such that τ2(mℓ−1) ≥ τ1(mℓ) for all t0 > t3 and for all ℓ ≥ 1. By Lemma 5.2, there
is t4 such that

logG ((1− ε1)un(t+ t0)) ≥ −1− 2ε

α
(t+ t0) log

(n) (t+ t0) , (41)

for all t0 > t4 and for all t ≥ 0. For later references, we define sequences (ξℓ)ℓ≥0 and (ηt)t≥0 as

ηt := exp
(
−β exp

( ε
α
(t+ t0) log

(n) (t+ t0)
))

,

ξℓ := 2(1− β)un(mℓ) exp
(
−1−β

2
un(mℓ)

)
.
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Since log(n) (x) is unbounded and increasing function for large x, there is t5 such that ε log(n) (t0) ≥
α for all t0 > t5 and all ℓ ≥ 0. Therefore, we have ηt ≤ exp (−βet) , for all t0 > t5. This implies
that

∑
t ηt is uniformly convergent for all t0 and therefore,

lim
t0→∞

∞∑
t=1

ηt =
∞∑
t=1

lim
t0→∞

ηt = 0. (42)

Since 4xe−x ≤ e−x/2 for x ≥ 10, we have ξℓ ≤ exp(−1−β
4
un(mℓ)), for (1− β)un(mℓ) ≥ 10. Since

lim
x→∞

4
(
log(n−1) (x)

)1/α1

(1− β)un(x)
= 0,

there is t6 such that (1− β)un(mℓ) ≥ 10 for any ℓ ≥ 0 and

1− β

4
un(mℓ) ≥

(
log(n−1) (mℓ)

)1/α1

≥ ℓ1/α1 ,

for all t0 > t6. Note that, under this assumption, we have ξℓ ≤ exp
(
−ℓ1/α1

)
, which shows that∑∞

ℓ=0 ξℓ converges uniformly for all large t0 and therefore,

lim
t0→∞

∞∑
ℓ=0

ξℓ =
∞∑
ℓ=0

lim
t0→∞

ξℓ = 0. (43)

In the following, we assume t0 > max{t1, t2, t3, t4, t5, t6}.
Now we are ready for the proof. We first define two sequences (aℓ)ℓ≥0 and (uℓ)ℓ≥0 such that

a0 = 0, aℓ = τ1(mℓ)− t0 for ℓ ≥ 1, and uℓ = τ2(mℓ)− t0 for ℓ ≥ 0. Note that aℓ+1 ≤ uℓ for all
ℓ ≥ 0 and mℓ < t0 + aℓ. Notice also that for aℓ ≤ t < aℓ+1 ≤ uℓ

(t+ t0 −mℓ) log(bmℓ
fmℓ

) ≥ 1− ε

α
(t+ t0) log

(n) (t+ t0) , (44)

which also implies E0 is an almost sure event. For t ≥ 0, we define

At :=
{
Mmℓ′

≥
(
bmℓ′

fmℓ′

)t+t0−mℓ′
}
,

where ℓ′ is (uniquely) determined by the condition aℓ′ ≤ t < aℓ′+1. Note that At ⊂ Et. Define

J̃ :=

t0⋂
m=m0

{Fm ≥ fm/(1− β)}, C0 := A0 ∩ J̃ , Ct := Jt ∩ At ∩ Ct−1, C :=
∞⋂
t=1

Ct.

Note that J̃ and A0 are sure events and so is C0. Observe that

P(Ct) = P(Jt|At ∩ Ct−1)P(At|Ct−1)P(Ct−1).

Since Wt is solely determined by Ξ(t) and α log Ξ(t) ≥ (1 − ε)(t + t0) log
(n) (t+ t0) in the

event At ∩ Ct−1, we have P(Jt|At ∩ Ct−1) ≥ 1 − ηt, where we have used (23) with α log y 7→
(1− ε)(t+ t0) log

(n) (t+ t0), x 7→ (1− ε1)un(t) with (41). Therefore, we have

P(Ct) ≥

(
t∏

τ=1

(1− ητ )

)
ℓ′∏

ℓ=0

Pℓ, Pℓ :=

aℓ+1−1∏
τ=aℓ

P(Aτ |Cτ−1),
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where we have used the fact that probability cannot be larger than 1.

Let us find the lower bound of Pℓ. Assume aℓ ≤ τ < aℓ+1. Note that Aτ is independent of
Jk for aℓ ≤ k < τ (this is because mℓ < aℓ + t0) and of Ak for k < aℓ (this is because Mm(t)’s
for different m’s are mutually independent branching processes). Therefore,

P(Aτ |Cτ−1) = P
(
Aτ

∣∣∣( τ−1⋂
k=aℓ

Ak

)
∩ Jmℓ−t0

)
,

where Jmℓ−t0 for mℓ < t0 should be interpreted as J̃ . By simple algebra, we get

Pℓ =

aℓ+1−1∏
τ=aℓ

P
(
Aτ

∣∣∣( τ−1⋂
k=aℓ

Ak

)
∩ Jmℓ−t0

)
= P

( aℓ+1−1⋂
τ=aℓ

Aτ

∣∣∣Jmℓ−t0

)
= P

(
Mmℓ

≥ (bmℓ
fmℓ

)k+t0−mℓ for all aℓ ≤ k < aℓ+1 − 1|Fmℓ
≥ fmℓ

/(1− β)
)

≥ P
(
Mmℓ

≥ (bmℓ
fmℓ

)k+t0−mℓ for all k ≥ 0|Fmℓ
≥ fmℓ

/(1− β)
)
≥ 1− ξℓ,

where we have used (20) with f 7→ fmℓ
. Therefore,

P(Ct) ≥

(
t∏

τ=1

(1− ητ )

)(
ℓ′∏

ℓ=0

(1− ξℓ)

)
≥ 1−

t∑
τ=1

ητ −
ℓ′∑

ℓ=0

ξℓ.

By (42) and (43), we have
lim
t0→∞

P(C) = 1.

Since C ⊂ E and C ⊂ J , the proof is completed.

Lemma 5.7 (Lower bound). Almost surely on survival,

lim inf
t→∞

logX(t)

t log(n) (t)
≥ 1

α
, lim inf

t→∞

Wt

un(t)
≥ 1.

In other words,

P
(
lim inf
t→∞

logX(t)

t log(n) (t)
≥ 1

α

)
= P

(
lim inf
t→∞

Wt

un(t)
≥ 1

)
= P(A) = ps.

Proof. Fix ε and ε1 as in Lemma 5.2. For any 0 < ε′, Lemma 5.6 implies the existence of t0
such that

P
(
logY(t) ≥ 1− ε

α
(t+ t0) log

(n) (t+ t0) for all t ≥ 0

)
≥ 1− ε′,

P (Wt ≥ (1− ε1)un(t+ t0) for all t ≥ 0) ≥ 1− ε′.

Since Wt as well as X(t) is unbounded on survival (Lemma 4.1), there should be τ and k ≥ 1
almost surely on survival such that Wτ > (1− ε1)un(t0) and N > Y(0), where N is the number
of individual with fitness Wτ at generation τ + k. Now couple X(t + τ + k) with Y(t), which
gives X(t+ τ + k) ≥ Y(t) for all t ≥ 0. We denote the event that has such τ and k by D. Note
that P(D ∩ A) = ps by Lemma 4.1 and, obviously, P(D) ≥ ps. Therefore,

ps ≥ P
(
lim inf
t→∞

logX(t)

t log(n) (t)
≥ 1− ε

α

)
≥ P

(
lim inf
t→∞

logX(t)

t log(n) (t)
≥ 1− ε

α

∣∣∣∣D)P(D)

≥ P
(
logY(t) ≥ 1− ε

α
(t+ t0) log

(n) (t+ t0) for all t ≥ 0

)
P(D) ≥ (1− ε′)ps,
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where we have used the Markov property. By the same token, we have

ps ≥ P
(
lim inf
t→∞

Wt

un(t)
≥ 1− ε1

)
≥ (1− ε′)ps.

Since ε′ and ε are arbitrary, the proof is completed.

By Lemma 5.4 and Lemma 5.7, Theorem 1 is proved.

6 Proof of Theorem 2

This section presents two lemmas, which will prove Theorem 2. Needless to say, G is always of
type II throughout this section. For convenience, we define

χ(t, n, ν) :=


tν , n = 1,

exp(tν), n = 2,

exp
(
t
(
log(n−2) (t)

)−ν
)
, n ≥ 3,

U(t, n, ν, a) := χ(t, n, ν)
(
log(max{0,n−2}) (t)

)−a

, G(x, n, a) := log x
(
log(n) (x)

)a
,

with an appropriate domain. Again, the distinction between the MMM and the FMM does not
play any role in the proof of Theorem 2.

Lemma 6.1 (Variation of Lemma 5.3). Assume X(0) <∞ and Q0 <∞, fix ε > 0 and let

νn :=


(1 + 2ε)(1 + α)/α, n = 1,

ε+ 1/(1 + α), n = 2,

α/(1 + ε)2, n ≥ 3,

an :=


1 + ε, n = 1,

α/(1 + α), n = 2,

α/(1 + ε), n ≥ 3.

Then

lim
m→∞

P (log Ξ(t) ≤ χ(t+m,n, νn), logWt ≤ U(t+m,n, νn, an) for all t) = 1.

Proof. We first make a precise criterion as to the meaning of large m. Obviously, there is m1

such that χ(m,n, νn) ≥ logX(0) and U(m,n, νn, an) ≥ logQ0 for all m > m1. Let H(x) :=
χ(x+1, n, νn)−χ(x, n, νn)−U(x, n, νn, an). By the mean value theorem, there is x0 (x ≤ x0 ≤
x+ 1) such that

χ(x+ 1, n, νn)− χ(x, n, νn) =
∂χ(x, n, νn)

∂x

∣∣∣∣
x=x0

= U(x0, n, νn, an)×


νnx

ε
0, n ≤ 2,(

log(n−2) (x0)
)ενn (

1− νn

n−2∏
k=1

1

log(k) (x0)

)
, n ≥ 3,

which gives limx→∞H(x) = ∞. Therefore, there is m2 such that H(x) > 2 for all x > m2.
Let ε0 = ε/(1 + ε). By definition, there is m3 such that logG(x) ≤ −G(x, n, α/(1 + ε0)) for all
x > m3. Since (ν1 − a1)α > a1(1+ ε0), ν2α > a2(1+ ε0), and α > an(1+ ε0) for n ≥ 3, we have

lim
t→∞

G (exp (U(t, n, νn, an)) , n, α/(1 + ε0))

χ(t, n, νn)

= lim
t→∞

(
log(max{0,n−2}) (t)

)−an (
log(n−1) (U(t, n, νn, an))

)α/(1+ε0)

= ∞.
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Therefore, there is m4 such that G (exp (U(t, n, νn, an)) , n, α/(1 + ε0)) ≥ 2χ(t, n, νn) and, ac-
cordingly,

G (exp (U(t, n, νn, an))) ≤ e−2χ(t,n,νn), (45)

for all t > max{m3,m4}. We set m0 = max{m1,m2,m3,m4} and we assume m > m0 in what
follows. For given m, we define τt := t+m and

Et := {logWt ≤ U(τt, n, νn, an)} , E ′
t := {logQt ≤ U(τt, n, νn, an)} ,

At := {log Ξ(t) ≤ χ(τt, n, νn)} , A =
∞⋂
k=1

Ak.

We can repeat (36) for Et and E
′
t.

t⋂
k=0

Ek =
t⋂

k=0

E ′
k. (46)

We also define, for t ≥ 1, D0 = A0 ∩E0, Dt = At ∩Et ∩Dt−1, and D =
⋂∞

k=1Dk. Observe that
P(Dt) = P(Et|At ∩Dt−1)P(At|Dt−1)P(Dt−1). Using Lemma 4.5 and (46), we have

P(Ak|Dk−1) = P(Ak|Ak−1 ∩ E ′
k−1) ≥ 1− 2 exp

(
−eU(τk−1,n,νn,an)+χ(τk−1,n,νn)

)
=: 1− ξk,

where we have used (21) with f 7→ eU(τk−1,n,νn,an), x 7→ eχ(τk−1,n,νn), and B 7→ eH(τk−1) ≥ e2.
Since Wt is purely determined by Ξ(t), we have

P(Et|At ∩Dt−1) = P(Et|At) ≥ 1− β exp (−χ(τk, n, νn, an)) =: 1− ηk,

where we have used (22) with y 7→ eχ(τk,n,νn), x 7→ eU(τk,n,νn,an), and (45). Therefore, we have

P(D) ≥
∞∏
k=1

(1− ξk)(1− ηk) ≥ 1−
∞∑
k=1

(ξk + ηk). (47)

Since limk→∞(ξk + ηk)τ
2
k = 0 and τ−2

k < k−2, the series in (47) converges uniformly for large m.
Since limm→∞(ξk+ηk) = 0 for all k, we have limm→∞ P(D) = 1, which completes the proof.

Definition (Initial condition for Lemma 6.3). Fix 0 < ε < 1/α and let

νn :=


(1 + α)/[α(1 + 2ε)], n = 1,

1/[(1 + α)(1 + 2ε)], n = 2,

α(1 + 3ε), n ≥ 3,

an :=


(1 + α)/(1 + α + αε), n = 1,

α/(1 + α), n = 2,

α(1 + 2ε), n ≥ 3,

which should not be confused with νn and an defined in Lemma 6.1. Note that ν1 > a1 because
ε < 1/α. Define

fk := (1− β) exp (U(k, n, νn, an)) , bk :=
1

1− β
exp

(
− ε

1 + ε
U(k, n, νn, an)

)
,

fkbk = exp

(
U(k, n, νn, an)

1 + ε

)
.

Once k0 is determined as in Lemma 6.2, we define the initial condition with an integer t0 larger
than k0 in exactly the same way as in the previous section. We use Mk(t), Fk, Fk+t0 , and Y(t)
with an appropriate modification of the meaning.
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Lemma 6.2. For ε, νn, an, bk, fk defined above there is an integer k0, which is larger than
exp(n) (0), such that for all m ≥ k0 we have

(Condition 1) 0 < bm < bc, (1− bm + bm log bm)fm > 1, and bmfm > e;

(Condition 2) G (exp(U(m,n, νn, an))) ≥ exp
(
−1

2
χ(m,n, νn)

)
.

Proof. Obviously, there is an integer k1 that satisfies (Condition 1) for all m ≥ k0. By
definition, we have logG(x) ≥ −G(x, n, α(1 + ε)) for all sufficiently large x. Since (ν1 −
a1)α(1 + ε) < a1, ν2α(1 + ε) < a2, and an > α(1 + ε) for n ≥ 3, we have

lim
y→∞

G(exp(U(y, n, νn, an)))
χ(y, n, νn)

= lim
y→∞

(
log(max{0,n−2}) (y)

)−an (
log(n−1) (U(y, n, νn, an))

)α(1+ε)

= 0,

which guarantees the existence of an integer k2 such that

logG (exp(U(y, n, νn, an))) ≥ −1

2
χ(y, n, νn) (48)

for all y ≥ k2. Now we set k0 := max{k1, k2}, which completes the proof.

Lemma 6.3 (Variation of Lemma 5.6). For the initial conditions defined above with t0 ≥ k0,
we define two events

Et := {logY(t) ≥ χ(t+ t0, n, νn)}, E :=
∞⋂
t=1

Et,

Jt := {logWt ≥ U(t+ t0, n, νn, an)}, J :=
∞⋂
t=1

Jt.

Then,
lim
t0→∞

P (E) = lim
t0→∞

P (J) = 1.

Proof. Let

mt :=


⌊
1
2
(t+ t0)

⌋
, n = 1,⌊

t+ t0 − 1
2
(t+ t0)

1−ν2
⌋
, n = 2,⌊

t+ t0 − 1
2

(
log(n−2) (t+ t0)

)νn⌋
, n ≥ 3.

Assume t0 is so large that m0 > k0 and (mt)t≥0 is an non-dereasing sequence of t. Since 1 > a1,
1 > ν2 + a2, and νn > an for n ≥ 3, we have

lim
t0→∞

χ(t+ t0, n, νn)

(t+ t0 −mt)U(mt, n, νn, an)
= lim

t→∞

χ(t+ t0, n, νn)

(t+ t0 −mt)U(mt, n, νn, an)
= 0.

So there is t1 such that (t+ t0 −mt)U(mt, n, νn, an) ≥ (1 + ε)χ(t+ t0, n, νn) for all t0 > t1 and
t ≥ 0. In the following, we assume t0 > t1. Define

At :=
{
Mmt(t) ≥ (bmtfmt)

t+t0−mt
}
, J̃ :=

t0⋂
k=m0

{Fk ≥ fk/(1− β)} ,

C0 = A0 ∩ J̃ , Ct = At ∩ Jt ∩ Ck−1, C =
∞⋂
t=1

Ct.
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Note that J̃ and A0 are sure events (by the initial condition) and so is C0. Also note that At ⊂
Et. Observe that P(Ct) = P (Jt|At ∩ Ct−1)P (At|Ct−1)P(Ct−1). Since Wt is solely determined
by Ξ(t) and log Ξ(t) ≥ χ(t+ t0, n, νn) on the event At ∩ Ct−1, we have

P(Jt|At ∩ Ct−1) ≥ 1− exp
(
−βeχ(t+t0,n,νn)/2

)
=: 1− ηt,

where we have used (23) with y 7→ exp(χ(t + t0, n, νn)), x 7→ exp(U(mt, n, νn, an)), (48), and
χ(mt, n, νn) ≤ χ(t+ t0, n, νn). Therefore, we have

P(C) ≥

(
∞∏
τ=1

(1− ητ )

)
∞∏
τ=1

P(Aτ |Cτ−1).

Note that Aτ is independent of Jk for mτ < k < τ and of Ak for k < aℓ (this is because
Mm(t)’s for different m’s are mutually independent branching processes). Since mt+1−mt ≤ 1,
all Fk with k ≥ m0 should affect a certain Aτ at least once. Therefore,

∞∏
τ=1

P(Aτ |Cτ−1) ≥
∞∏
τ=1

P
(
Mmτ (k) ≥ (bmτfmτ )

k+t0−mτ for all k ≥ 0|Fmτ ≥ fmτ/(1− β)
)

≥
∞∏
τ=1

(1− ξτ ) ≥ 1−
∞∑
τ=1

ξτ ,

where we have used (20) with f 7→ fmτ . Therefore,

P(C) ≥ 1−
t∑

τ=1

(ητ + ξτ ) . (49)

Since limk→∞(ξk + ηk)(k+ t0)
2 = 0, there is a constant c that is independent of t0 such that

ξk + ηk ≤ c(k + t0)
−2 ≤ ck−2 for all k. Therefore, the series in (49) converges uniformly. Since

limt0→∞(ξk + ηk) = 0 for any k, we have limt0→∞ P(C) = 1. Since C ⊂ E and C ⊂ J , we get
the desired result.

By the same logic as in Lemma 5.4 and Lemma 5.7, Lemma 6.1 and Lemma 6.3 now prove
Theorem 2.

7 The empirical fitness distribution

In this section, we introduce two variants of the FMM that (completely or partially) neglect
fluctuations in the original model with the type I tail function. These variants will be called
the deterministic FMM (DFMM) and semi-deterministic FMM (SFMM) and will be defined in
Section 7.2 and Section 7.3, respectively. As we will see presently, neglecting some fluctuations
will facilitate rigorous proofs for the limit behaviour of the EFD.

To explain the motivation of introducing the DFMM and SFMM, we begin by finding in
Lemma 7.3 tighter bounds for Xt of the Galton-Watson process, which show that the fluctua-
tions of Nk(t) become smaller and smaller over time.
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7.1 Fluctuations of Nk(t) and Wt

Lemma 7.1. If B > 1, θ > 0, and 1 ≤ x1 < x2 − 1, then

P(Xt ≤ Bx2θ|x1 ≤ Xt−1 ≤ x2) ≥ 1− B

B − 1
e−x1θ(B logB−B+1).

Proof. Let m ≥ x1 and B′ = Bx2/m ≥ B. By Lemma 4.3 together with Remark 4.1, we have

P(Xt > Bx2θ|Xt−1 = m) = P(Xt > B′mθ|Xt−1 = m)

≤ B′

B′−1
e−mθ(B′ logB′−B′+1) ≤ B

B−1
e−mθ(B logB−B+1),

where we have used the fact that y/(y − 1) and y(1 − log y) are decreasing functions in the
region y > 1. Since m ≥ x1, we have the desired result.

Lemma 7.2. If 1 < B < 3
2
, 0 < b < 1, (1− b+ b log b)θ > 1, and 1 ≤ x1 < x2 − 1, then

P(bx1θ ≤ Xt ≤ Bx2θ|x1 ≤ Xt−1 ≤ x2) ≥ 1− x1θe
−x1θ(1−b)2/2 − B

B − 1
e−x1θ(B−1)2/3.

Proof. Using Lemma 4.4 with f = θ and Lemma 7.1, we have

P(bx1θ ≤ Xt ≤ Bx2θ|x1 ≤ Xt−1 ≤ x2) ≥ 1− x1θe
−x1θ(1−b+b log b) − B

B − 1
e−x1θ(1−B+B logB).

Since 1− x+ x log x ≥

{
1
2
(1− x)2, 0 < x < 1,

1
3
(x− 1)2, 1 < x < 3/2,

the proof is completed.

Lemma 7.3. Fix 0 < ε < 1
2
and abbreviate c := (1− ε)/2. Let at := θ−(1−2ε)/2 (1− θ−ct) and

bt :=
1− at
1− at−1

= 1− θc − 1

1− at−1

θ−ct−(1−2ε)/2,
t∏

k=1

bk = 1− at.

Bt :=
1 + at
1 + at−1

= 1 +
θc − 1

1 + at−1

θ−ct−(1−2ε)/2,
t∏

k=1

Bk = 1 + at,

where θ is assumed so large that for all t ≥ 1

0 < at < 1, 1 < Bt <
3

2
, θt ≥ θct−(1−2ε)/2,

(1− θ−c)2

2(1− at−1)
≥ 1

4
,

(1− at−1)(1− θ−c)2

3(1 + at−1)
≥ 1

4
,

Bt(1 + at−1)

θc − 1
≤ 1, (50)

4θ exp

(
−θ

2ε

4

)
≤ exp

(
−θ

2ε

5

)
, θt exp

(
−1

4
θε(t+1)

)
≤ 12

π2t2
θ exp

(
−θ

2ε

4

)
.

Then,

P
(∣∣∣∣Xt

θt
− 1

∣∣∣∣ ≤ 2θ−(1−2ε)/2 for all t

)
≥ 1− exp

(
−θ

2ε

5

)
. (51)
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Proof. Let At := {(1 − at)θ
t ≤ Xt ≤ (1 + at)θ

t} and A :=
⋂∞

t=0At. Abbreviating x1 :=
(1− at−1)θ

t−1 and x2 := (1 + at−1)θ
t−1, we can write

P(At|At−1) = P (btx1θ ≤ Xt ≤ Btx2θ|x1 ≤ Xt−1 ≤ x2) .

By Lemma 7.2, we have

P(At|At−1) ≥ 1− (1− at−1)θ
t exp

(
− (1− θ−c)2

2(1− at−1)
θε(t+1)

)
− Bt(1 + at−1)

θc − 1
θct−(1−2ε)/2 exp

(
−(1− at−1)(1− θ−c)2

3(1 + at−1)
θε(t+1)

)
≥ 1− 2θt exp

(
−1

4
θε(t+1)

)
,

where we have used (50). Using the last condition of (50), we have

∞∑
t=1

θt exp

(
−1

4
θε(t+1)

)
≤ 12

π2
θ exp

(
−θ

2ε

4

) ∞∑
t=1

1

t2
= 2θ exp

(
−θ

2ε

4

)
.

Hence,

P(A) ≥ 1− 2
∞∑
t=1

θt exp

(
−θ

ε(t+1)

4

)
≥ 1− 4θ exp

(
−θ

2ε

4

)
≥ 1− exp

(
−θ

2ε

5

)
,

where we have used Lemma 4.5. Since 1 − θ−ct ≤ 2 and, therefore, at ≤ 2θ−(1−2ε)/2, the
probability in (51) is larger than P(A) and the proof is completed.

Definition. By θ0(ε) we denote the infimum over all θ that satisfy (50).

Remark 7.1. If we are given a weaker condition in Lemma 7.3 such that there are x and y
such that x ≥ θ ≥ y > θ0(ε), then we have

P
(∣∣∣∣Xt

θt
− 1

∣∣∣∣ ≤ 2θ−(1−2ε)/2 for all t

∣∣∣∣ y ≤ θ ≤ x

)
≥ 1− exp

(
−y

2ε

5

)
.

Lemma 7.4. For a discrete-time stochastic process Zt and a nonzero function f(t), define

J :=

{
lim
t→∞

Zt

f(t)
= 1

}
, Dm,k :=

{∣∣∣∣ Zk

f(k)
− 1

∣∣∣∣ ≤ 2−m

}
,

Om,τ :=
∞⋂
k=τ

Dm,k, Om :=
∞⋃
τ=1

Om,τ , O =
∞⋂

m=1

Om.

Then, O = J and

lim
τ→∞

P(Om,τ ) ≥ P(J),

for any positive integer m.

Proof. First note that Om,τ ⊂ Om,τ+1 ⊂ Om and O ⊂ Om+1 ⊂ Om. Consider any outcome
ω ∈ J and fix m. Under ω, for any 0 < ε′ ≤ 2−m there is k0 such that |Zk/f(k)−1| ≤ ε′ ≤ 2−m

for all k ≥ k0, which implies ω ∈ Om. Since m is arbitrary, we have J ⊂ O.

Now consider ω′ /∈ J . Then under ω′ there is ε′ > 0 such that |Zk/f(k)−1| > ε′ for infinitely
many k’s. Hence, ω′ cannot be an outcome in Om if 2−m < ε′. Hence, ω′ /∈ O and, accordingly,
O ⊂ J . Even if J is empty, the proof of O ⊂ J is still applicable and the rest of the statement
is trivially valid.

Since O ⊂ Om and P(Om) = limτ→∞ P(Om,τ ) for any m, the proof is completed.
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Lemma 7.5. If G is of the type I with n = 1 or with n = 2 and α < 1, then let

J :=

{
lim
t→∞

Wt

un(t)
= 1

}
. (52)

If G is of the type II, then let

J :=

{
lim
t→∞

log(2) (Wt)

log t
=

1

α

}
for n = 1,

J :=

{
lim
t→∞

log(3) (Wt)

log t
=

1

1 + α

}
for n = 2, and

J :=

{
lim
t→∞

1

log(n−1) (t)
log

(
log(2) (Wt)

t

)
= −α

}
for n ≥ 3. For the type II tail function or for the type I tail function with n = 1, fix an arbitrary
ε satisfying 0 < ε < 1/2. For the type I tail function with n = 2 and α < 1, fix an arbitrary ε
satisfying α < 2ε < 1. Abbreviate θk := (1− β)Wk and let

Ck :=
∞⋂
t=k

{∣∣∣∣Nk(t)

θt−k
k

− 1

∣∣∣∣ ≤ 2θ
−(1−2ε)/2
k

}
, Eτ :=

∞⋂
k=τ

Ck, E :=
∞⋃
τ=1

Eτ ,

where we assume Nk(t)/θ
t−k
k = 1 and θ

−(1−2ε)/2
k = ∞ if Wk = 0. Then P(E|J) = 1.

Proof. Let U(x,m) := (1− 2−m)un(x) for the type I tail function and

U(x,m) := exp
(
x(1−2−m)/α

)
,

U(x,m) := exp(2)
(
x(1−2−m)/(1+α)

)
,

U(x,m) := exp(2)
(
x exp

(
−α(1 + 2−m) log(n−1) (x)

))
,

for the type II tail function with n = 1, n = 2, and n ≥ 3, respectively. In the above definition,
x is assumed sufficiently large that U(x,m) is well defined. With the fixed ε, for any positive
m there is τ0(m) such that

exp

(
−(1− β)2ε

5
U(t,m)2ε

)
≤ 1

t(t+ 1)
, (53)

for all t ≥ τ0(m). Let

Dm,k :=

{∣∣∣∣ Wk

un(k)
− 1

∣∣∣∣ ≤ 2−m

}
,

for the type I tail function and

Dm,k :=

{∣∣∣∣∣α log(2) (Wk)

log k
− 1

∣∣∣∣∣ ≤ 2−m

}
,

Dm,k :=

{∣∣∣∣∣(1 + α) log(3) (Wk)

log k
− 1

∣∣∣∣∣ ≤ 2−m

}
,

Dm,k :=

{∣∣∣∣∣ 1

α log(n−1) (k)
log

(
log(2) (Wk)

log k

)
+ 1

∣∣∣∣∣ ≤ 2−m

}
,
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for the type II tail function with n = 1, n = 2, and n ≥ 3, respectively. Let

Cc
k :=

∞⋃
t=k

{∣∣∣∣Nk(t)

θt−k
k

− 1

∣∣∣∣ > 2θ
−(1−2ε)/2
k

}
, Ec

τ :=
∞⋃
k=τ

Cc
k,

Om,τ :=
∞⋂
k=τ

Dm,k, Om :=
∞⋃
τ=1

Om,τ ,

where τ is assumed large enough such that un(τ), log τ , and log(n−1) (τ) are well defined. Note
that, for all sufficiently large τ , Eτ ⊂ Eτ+1 ⊂ E. Now, consider P(Ec

τ ∩ Om,τ ) for m ≥ 1. By
the sub-additivity of the probability measure, we have

P(Ec
τ ∩Om,τ ) = P

(
∞⋃
k=τ

(Cc
k ∩Om,τ )

)
≤

∞∑
k=τ

P (Cc
k ∩Om,τ ) ≤

∞∑
k=τ

P(Cc
k ∩Dm,k),

where we have used Om,τ ⊂ Dm,k for any k ≥ τ . Now fix an integer m ≥ 1 and consider large
enough τ such that τ > τ0(m) as in (53) and (1 − β)U(k,m) > θ0(ε) for all k ≥ τ . Since
P(Cc

k ∩Dm,k) ≤ P(Cc
k|Dm,k) = 1− P(Ck|Dm,k), Remark 7.1 with y 7→ (1− β)U(k,m) gives

P(Cc
k+τ ∩Dm,k+τ ) ≤

1

(k + τ)(k + τ + 1)
,

for all k ≥ 0, where we have used (53). Therefore, we have

lim
τ→∞

P(Ec
τ ∩Om,τ ) ≤ lim

τ→∞

∞∑
k=0

P(Cc
τ+k ∩Dm,τ+k) ≤ lim

τ→∞

1

τ
= 0. (54)

Since P(Om,τ ) ≤ ps for all sufficiently large τ , P(J) = ps, and P(Eτ ∩Om,τ ) = P(Om,τ )−P(Ec
τ ∩

Om,τ ), Lemma 7.4 gives

lim
τ→∞

P(Eτ ∩Om,τ ) = lim
τ→∞

P(Om,τ ) = ps. (55)

Since Eτ ⊂ E and Om,τ ⊂ Om, we have ps ≥ P(E∩Om) ≥ limτ→∞ P(Eτ ∩Om,τ ) = ps, for all m.
Therefore, P(E|J)P(J) = P(E ∩ J) = limm→∞ P(E ∩ Om) = ps. Since P(J) = ps, the proof is
completed.

Remark 7.2. In the proof, (53) plays the decisive role. If G is of type I with n ≥ 3 or with
n = 2 and α > 1, (53) is not applicable. Within the tools we are equipped with, we are not
aware of a similar result to Lemma 7.5 for fast decaying tail functions.

Remark 7.3. We can rewrite Lemma 7.5 as follows. For any type II tail function and for a
type I tail function with n = 1 or with n = 2 and α < 1, for any ε > 0

lim
τ→∞

P
(∣∣∣∣ Nk(k + s)

(1− β)sW s
k

− 1

∣∣∣∣ < ε for all s ≥ 0 and for all k ≥ τ

)
= ps.

Remark 7.4. If G is of the Fréchet type in [1], then setting

J :=

{
lim
t→∞

log(2) (Wt)

t
= ν(α)

}

in Lemma 7.5 gives P(E|J) = 1.

27



The following two lemmas, which will not be directly used later, are for explaining at
what point the proof of Theorem 3 becomes difficult and also for providing a more compelling
rationale of introducing DFMM and SFMM.

Lemma 7.6. For the FMM, define two random sequences (ηt) and (ξt) as

X(t) = (1− β)Ξ(t) + ηtΞ(t)
3/4, (1− β)Ξ(t) = X(t) + ξtX(t)3/4.

In case X(t) = Ξ(t) = 0, we define ξt = ηt = 0. Then almost surely

lim
t→∞

ηt = lim
t→∞

ξt = 0.

Proof. Let

At :=
{
|(1− β)Ξ(t)−X(t)| ≤ X(t)2/3

}
, Bt :=

∞⋂
k=t

Ak, B :=
∞⋃
t=1

Bt

Ct :=
{
|X(t)− (1− β)Ξ(t)| ≤ 1

3
(1− β)2/3Ξ(t)2/3

}
, Dt :=

∞⋂
k=t

Ck, D :=
∞⋃
t=1

Dt,

Et :=
{
(1− β)Ξ(t) > (t+ 1)3(t+ 2)3

}
, Jt :=

∞⋂
k=t

Ek, J :=
∞⋃
t=1

Jt.

By Theorems 1 and 2, we have P(J) = ps. For positive z, let y1(z) and y2(z) be the (unique)
positive solution of the equations z = y1 + y2/3

1 and z = y2 − y2/3

2 , respectively. Using y1 and y2,
we write

At ∩ Et = {y1 ((1− β)Ξ(t)) ≤ X(t) ≤ y2 ((1− β)Ξ(t))} ∩ Et.

Note that if z > 2 we have y1 < z − z2/3/3 < z + z2/3/3 < y2. Hence, Ct ∩ Et ⊂ At ∩ Et and,
accordingly, Dt ∩ Jt ⊂ Bt ∩ Jt. By Chebyshev’s inequality we have

P (Ct|Ξ(t)) ≥ 1− 9
β

(1− β)1/3
Ξ(t)−1/3,

which gives

P(Cc
t |Et) ≤

9β

(t+ 1)(t+ 2)
. (56)

For t ≥ τ , we have

P(Dc
t ∩ Jτ ) ≤

∞∑
k=t

P(Cc
k ∩ Jτ ) ≤

∞∑
k=t

P(Cc
k ∩ Ek) ≤

∞∑
k=t

P(Cc
k|Ek) ≤

∞∑
k=t

9β

(k + 1)(k + 2)
=

9β

t+ 1
,

where used the definition of Dt for the first inequality, Jτ ⊂ Ek for the second inequality,
P(Ek) ≤ 1 for the third inequality, and (56) for the last inequality. Therefore, for any τ , we
have P(Dc ∩ Jτ ) = limt→∞ P(Dc

t ∩ Jτ ) = 0 and, accordingly, P(D ∩ J) = P(B ∩ J) = ps. As
x2/3 = x3/4x−1/12 and X(t) diverges almost surely on survival, the proof is completed.

Remark 7.5. Lemma 7.6 is applicable even if the support of µ is bounded because Ξ(t) grows
at least exponentially on survival. Therefore, regardless of the type of G we have almost surely
on survival X(t) ∼ (1− β)Ξ(t) and the relative error of the approximation is at most Ξ(t)−1/4.
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Definition (for Lemma 7.7). We define positive sequences (at)t≥1 and (yt)t≥1 as

at :=
1

log(t+ 2)
− 1

log(t+ 3)
, yt :=

log at
log(1− β)

.

Note that at is monotonically decreasing with 1/at ∼ t(log t)2 and yt is monotonically increasing.
For Y > yt, we define

Wl(Y, t) := inf
{
x > 0 : 1− [1− βG(x)]Y ≤ at

}
,

Ws(Y, t) := sup
{
x > 0 : [1− βG(x)]Y ≤ at

}
− ε,

where ε is an arbitrary small positive number. Since at <
1
2
, we have Wl(Y, t) > Ws(Y, t). For

Y ≤ yt we define Wl(Y, t) = Ws(Y, t) = 0.

Remark 7.6. Since G(x) is a right-continuous-left-limit function, the purpose of introducing
ε is to guarantee (1− βG(Ws))

Y ≤ at. Without ε, (1− βG(Ws))
Y may be larger than at. In

the case that G(x) is a strictly decreasing continuous function, we rather define, for Y > yt,

1− βG (Wl(Y, t)) = (1− at)
1/Y ,

1− βG (Ws(Y, t)) = (at)
1/Y .

Lemma 7.7. For the type I tail function, define

J :=

{
lim
t→∞

log Ξ(t)

t log(n) (t)
=

1

α

}
.

For the type II tail function, define

J :=

{
lim
t→∞

log(2) (Ξ(t))

log t
= 1 +

1

α

}
,

for n = 1,

J :=

{
lim
t→∞

log(3) (Ξ(t))

log t
=

1

1 + α

}
,

for n = 2, and

J :=

{
lim
t→∞

1

log(n−1) (t)
log

(
log(2) (Ξ(t))

t

)
= −α

}
,

for n ≥ 3. We have proved P(J) = ps. Let

At := {Ws(Ξ(t), t) < Wt ≤ Wl(Ξ(t), t)}, Bt :=
∞⋂
k=t

Ak, B :=
∞⋃
t=1

Bt.

Then, P(B ∩ J) = ps.
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Proof. Let Ct := {Ξ(t) > yt}, Dτ :=
⋂∞

k=τ Ck, and D :=
⋃∞

τ=1Dτ . Since J ⊂ D, it is enough
to prove P(B ∩D) = ps, because P(B ∩ J) = P(B ∩D) − P(B ∩ (D \ J)) and P(D \ J) = 0.
For any integer Y > yt, we have

P(Ac
t |Ξ(t) = Y ) = P(Wt ≤ Ws|Y ) + 1− P(Wt ≤ Wl|Y )

= (1− βG(Ws))
Y + 1− (1− βG(Wl))

Y ≤ 2at,

where we have used Lemma 4.8. Accordingly, P(Ac
t |Ct) ≤ 2at. If t ≥ τ , then we have

P(Bc
t ∩Dτ ) ≤

∞∑
k=t

P(Ac
k ∩Dτ ) ≤

∞∑
k=t

P(Ac
k ∩ Ck) ≤

∞∑
k=t

P(Ac
k|Ck) ≤

∞∑
k=t

2ak =
2

log(t+ 2)
.

Therefore, for any τ , we have P(Bc ∩Dτ ) = limt→∞ P(Bc
t ∩Dτ ) = 0 and so P(Bc ∩D) = 0 and

the proof is completed.

Remark 7.7. Assume G is a strictly decreasing continuous function. Let w0(Y, t) and w1(Y, t)
be the solution of

− logG(w1) = log Y + log 2β
at
,

− logG(w0) = log Y + log β + log(2)
(

1
at

)
.

For sufficiently large t and Y , we have 1− (1− at)
1/Y > at/(2Y ) and 1− a

1/Y
t < −(log at)/Y ,

which gives G(w1) < G(Wl) < G(Ws) < G(w0). Since G is a decreasing function, we have
w0 ≤ Ws ≤ Wl ≤ w1. Hence, even if we define At by the condition w0 ≤ Wt ≤ w1 with
Y = Ξ(t), Lemma 7.7 remains valid.

Now consider G(x) = exp(−xα), which entails αWα
t ∼ t log t. Then, we have

w1 = [log Ξ(t)]1/α
[
1 +

log(2β/at)

log Ξ(t)

]1/α
,

w0 = [log Ξ(t)]1/α
[
1 +

log β + log(2) (1/at)

log Ξ(t)

]1/α
.

We define a random sequence (bt)t≥1 byWt = [logX(t)]1/α exp(bt/t). Then, the above discussion
together with Lemma 7.6 shows that, almost surely on survival,

0 ≤ lim inf
t→∞

bt ≤ lim sup
t→∞

bt ≤ 1.

Writing Wt = u1(t)e
ct we see from Theorem 1 that, almost surely on survival, lim

t→∞
ct = 0.

Hence,

logX(t) = u1(t)
α exp

(
αct − α bt

t

)
, Wt = u1(t)e

ct . (57)

Unfortunately, (57) does not give an accurate estimate of X(t), because

X(t) exp(−u1(t)α) ≥ exp
(
αu1(t)

αct − αu1(t)
α bt

t

)
and it is unclear whether the right hand side will diverge or not. Since X(t) rather than logX(t)
is necessary to study the EFD and we do not have a tool to tame ct and bt, (57) is too coarse
to give a proof for Theorem 3 even for this special G. So we are forced to introduce simplified
models, the DFMM and the SFMM, to prove variants of Theorem 3.
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7.2 Deterministic FMM and its EFD

Lemma 7.5 shows that if G is of type I with n = 1 or with n = 2 and α < 1 then almost surely
on survival

lim
t→∞

Wt

un(t)
= lim

k→∞

Nk(k + s)

(1− β)sW s
k

= 1,

for any nonnegative integer s. Hence, setting Wk = un(k) and Nk(t) = (1 − β)t−kun(k)
t−k for

all large k and t ≥ k gives a good approximation of the models on survival. This approxima-
tion is especially convenient for the FMM. In this context, we are motivated to introduce the
deterministic FMM as follows.

Definition of the DFMM. At each generation k > 0 a new mutant with fitness Wk = un(k)
appears. In case un(k) is ill defined, we set Wk = 1/(1 − β). The number of non-mutated
descendants of Wk grows deterministically as

ND
k (t) := (1− β)t−kW t−k

k . (58)

where we neglect not only stochasticity but also the error due to the discreteness of Nk(t).
Note that in the DFMM only type I tail functions are under consideration and we make no
restriction on n and α.

Notice that we added the superscript D in ND
k to discern them from their stochastic coun-

terparts. Since no fluctuation is present, the limit behavior of the EFD for the DFMM becomes
a problem of calculus. In what follows, we will find a limit theorem of the EFD for the DFMM.
To this end, we begin with the following elementary lemma.

Lemma 7.8. Assume f is a positive continuous function that has a unique local maximum at
xc in a domain [a − 1, b + 1], where a, b are integers and xc need not be an integer. That is,
f(x) < f(y) if a− 1 ≤ x < y ≤ xc and f(x) > f(y) if xc ≤ x < y ≤ b+ 1. Assume a < xc < b.
Let

F (x) :=

⌊x⌋∑
k=a

f(k).

Then, for any a ≤ x ≤ b, ∣∣∣∣F (x)− ∫ x

a

f(y)dy

∣∣∣∣ ≤ 7f(xc).

Proof. Define f−(x) := f(⌊x⌋) and f+(x) = f(⌈x⌉). Then, for a ≤ x ≤ b,

F (x) =

∫ ⌊x⌋+1

a

f−(y)dy =

∫ ⌊x⌋

a−1

f+(y)dy.

Note that f−(x) ≤ f(x) ≤ f+(x) if x < ⌊xc⌋ and f−(x) ≥ f(x) ≥ f+(x) if x ≥ ⌈xc⌉. We
abbreviate mc := ⌊xc⌋ and m := ⌊x⌋. If m < mc, then

F (x) =

∫ m

a−1

f+(y)dy ≥
∫ a

a−1

f(y)dy +

∫ x

a

f(y)dy −
∫ x

m

f(y)dy

and

F (x) =

∫ m+1

a

f−(y)dy ≤
∫ x

a

f(y)dy +

∫ m+1

x

f(y),

which gives ∣∣∣∣F (x)− ∫ x

a

f(y)dy

∣∣∣∣ ≤ 2f(xc).
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For m = mc, we use∫ a

a−1

f(y)dy +

∫ x

a

f(y)dy −
∫ x

m−1

f(y)dy ≤ F (m− 1) ≤
∫ x

a

f(y)dy −
∫ x

m

f(y)dy

and F (x) = F (m− 1) + f(m), to get
∣∣F (x)− ∫ x

a
f(y)dy

∣∣ ≤ 4f(xc). If m > mc, we consider

F (x)− F (xc) =
m∑

k=mc+1

f(k) =

∫ m+1

mc+1

f−(y)dy = f(mc + 1) +

∫ m

mc+1

f+(y)dy,

which gives

F (x)− F (xc) ≥
∫ x

xc

f(y)dy −
∫ mc+1

xc

f(y) +

∫ m+1

x

f(y)dy,

F (x)− F (xc) ≤ f(xc) +

∫ x

xc

f(y)dy −
∫ mc+1

xc

f(y)−
∫ x

m

f(y)dy,

and, therefore,
∣∣∣F (x)− F (xc)−

∫ x

xc
f(y)dy

∣∣∣ ≤ 3f(xc). Since∣∣∣∣F (x)− ∫ x

a

f(y)dy

∣∣∣∣ ≤ ∣∣∣∣F (xc)− ∫ xc

a

f(y)dy

∣∣∣∣+ ∣∣∣∣F (x)− F (xc)−
∫ x

xc

f(y)dy

∣∣∣∣ ≤ 7f(xc),

we have the desired result for any a ≤ x ≤ b.

Definition. We define

H(x, t) := [(1− β)un(x)]
t−x , h(x, t) := logH(x, t),

ω1(x) := (1− β)ωW

(
log(n−1) (x)

)
,

Lj(x) := (−1)j−1

(
d

dx

)j

log(n) (x) , Ωj(x) := (−1)j−1

(
y
d

dy

)j

logωW (y)

∣∣∣∣∣
y=log(n−1)(x)

,

where x ≤ t and x is assumed large enough so that the above definition makes sense. Note that
(1− β)un(x) = (log(n−1) (x))1/αω1(x) and N

D
k (t) = H(k, t). Also note that

d

dx
logω1(x) = L1(x)Ω1(x),

d

dx
Ωj(x) = −L1(x)Ωj+1(x).

We assume limx→∞Ωj(x) = 0 for any integer j ≥ 1; see (A4).

Lemma 7.9. There are x0 and t0 such that

∂2h(x, t)

∂x2
< 0,

∂3h(x, t)

∂x3
> 0,

∂4h(x, t)

∂x4
< 0, (59)

for all x ≥ x0 − 1 and for all t ≥ t0 ≥ x0 − 1 with x ≤ t.

Proof. First observe that

L1(x) =

(
n−1∏
k=0

log(k) (x)

)−1

,

Lj(x) ∼
(j − 1)!L1(x)

xj−1
=

(j − 1)!

xj

(
n−1∏
k=1

log(k) (x)

)−1

,
Lj(x)

Lj+1(x)
∼ x

j
, (60)
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where we use the convention
∏0

k=1 := 1. We define

ϕ1(x, t) := 1 + αΩ1(x) + α
L2
1

L2

Ω2(x) +
x

t

[
(1 + αΩ1(x))

(
2L1

L2x
− 1

)
− α

L2
1

L2

Ω2(x)

]
,

ϕ2(x, t) := ϕ1(x, t)−
L2

L3

∂ϕ1

∂x
, ϕ3(x, t) := ϕ2(x, t)−

L3

L4

∂ϕ2

∂x
.

We write down the derivatives

∂h

∂x
= − 1

α
log(n) (x)− logω1(x) + (t− x)L1(x)

(
1

α
+ Ω1(x)

)
,
∂2h

∂x2
= − t

α
L2(x)ϕ1(x, t),

∂3h

∂x3
=

t

α
L3(x)ϕ2(x, t),

∂4h

∂x4
= − t

α
L4(x)ϕ3(x, t).

(61)

As, by (60), ϕj(x, t) is positive for all sufficiently large x and t existence of x0 and t0 follows.

Remark 7.8. We fix such x0 and t0 in the following and treat x0 as the initial generation and
we consider only t ≥ t0.

Lemma 7.10. Let xc(t) be the location of the maximum of h(x, t) for given t and let

κt :=− ∂2h

∂x2

∣∣∣∣
x=xc

, dt :=
1

3!

∂3h

∂x3

∣∣∣∣
x=xc

.

Then,

xc ∼ t
n∏

k=1

1

log(k) (t)
, (62)

κt ∼
log(n) (t)

αt

n∏
k=1

log(k) (t) ∼ log(n) (t)

αxc
, dt ∼

log(n) (t)

3αt2

n∏
k=1

(
log(k) (t)

)2
. (63)

Proof. From (61) and (59), we have

0 = − 1

α
log(n) (xc)− logω1(xc) + (t− xc)L1(xc)

(
1

α
+ Ω1(xc)

)
,

for given t. Obviously, the solution of the equation diverges with t, so xc satisfies

t ∼ log(n) (xc)

L1(xc)
= xc

n∏
k=1

log(k) (xc) .

Therefore,

xc ∼ t
n∏

k=1

1

log(k) (xc)
∼ t

n∏
k=1

1

log(k) (t)
.

Considering ϕj(xc) ∼ 1 and using (60), we get the desired result.

Remark 7.9. In the following, t0 is further assumed so large that xc > x0 for all t > t0.

Lemma 7.11.

|h(x, t)− h(xc, t)| ≤
κt
2
(x− xc)

2

(
1 +

2dt
κt

|x− xc|
)
.
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Proof. By (59), we have

−κt
2
(x− xc)

2 + dt(x− xc)
3 ≤ h(x, t)− h(xc, t) ≤ −κt

2
(x− xc)

2

for x0 ≤ x ≤ xc and

−κt
2
(x− xc)

2 + dt(x− xc)
3 ≥ h(x, t)− h(xc, t) ≥ −κt

2
(x− xc)

2 (64)

for x ≥ xc, and, therefore, we get the desired result.

Lemma 7.12. We define

X̃(t) :=
t∑

k=x0

ND
k (t), Φ(f, t) :=

1

X̃(t)

t∑
k=x0

ND
k (t)Θ(f − un(k)),

SD
t :=

1

X̃(t)

t∑
k=x0

un(k)N
D
k (t), σD

t :=

(
1

X̃(t)

t∑
k=x0

(un(k)− SD
t )

2ND
k (t)

)1/2

, (65)

where we only consider t > t0. Then,

SD
t ∼ vn(t), σD

t ∼ sn(t), lim
t→∞

Φ(vn(t) + sn(t)y, t) = lim
t→∞

Φ(SD
t + σD

t y, t) = Υ(y),

where

vn(t) := α−δn,1/α
(
log(n−1) (t)

)1/α
L

((
log(n−1) (t)

)1/α)
, (66)

sn(t) :=
vn(t)√
αt

(
n−1∏
k=1

log(k) (t)

)−1/2

. (67)

Proof. First note that (63) gives, for any 0 < ε < 1,

lim
t→∞

2dt
κt
κ
−(1−ε)/2
t = 0,

If |x − xc| ≤ κ
−(1−ε)/2
t in Lemma 7.11 for some 0 < ε < 1 and t is sufficiently large that

2dtκ
−(1−ε)/2
t /κt ≤ 1, then |h(x, t)− h(xc, t)| ≤ κεt , which approaches zero as t goes to infinity;

see (63). Therefore, h(m, t) ∼ h(xc, t), as t→ ∞ for |m− xc| ≤ κ
−(1−ε)/2
t , which gives

lim
t→∞

κ
(1−ε)/2
t

X̃(t)

H(xc, t)
= ∞.

for any ε > 0. In other words, for any ε > 0 there is t1 such that X̃(t) ≥ H(xc, t)κ
−(1−ε)/2
t for

all t ≥ t1, which, along with Lemma 7.8, gives

lim
t→∞

∣∣∣∣∣Φ(un(z), t)− 1

X̃(t)

∫ z

x0

H(y, t)dy

∣∣∣∣∣ = 0, (68)

where z should be regarded as a certain monotonically increasing function of t with x0 < z ≤ t.
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Now consider the other case. Fix 0 < ε < 1 and define x± := xc ± κ
−(1+ε)/2
t and also

z± := xc ± 2κ
−(1+ε)/2
t . By (59), we always have h(x, t) ≤ h(x±, t) + ξ±(x− x±), where

ξ± =
∂h

∂x

∣∣∣∣
x=x±

= − 1

α
log(n) (x±)− logω1 (x±) + (t− x±)L1(x±)

(
1

α
+ Ω1(x±)

)
.

Since limt→∞ κ
−(1+ε)/2
t /xc = 0, Taylor’s theorem gives

ξ± ∼ ±
(
∂2h

∂x2

∣∣∣∣
x=xc

)
κ
−(1+ε)/2
t = ∓κ(1−ε)/2

t , ξ±(z± − x±) ∼ −κ−ε
t .

Now consider

I1(t) :=

∫ z−

x0

H(y, t)

H(xc, t)
dy ≤

∫ z−

x0

eh(y,t)−h(x−,t)dy

≤
∫ z−

−∞
eξ−(y−x−)dy ∼ κ

−(1−ε)/2
t exp

(
−κ−ε

t

)
,

I2(t) :=

∫ t

z+

H(y, t)

H(xc, t)
dy ≤

∫ t

z+

eh(y,t)−h(x+,t)dy

≤
∫ ∞

z+

eξ+(y−x+)dy ∼ κ
−(1−ε)/2
t exp

(
−κ−ε

t

)
, (69)

where we have used H(x±, t) ≤ H(xc, t). Since X̃(t) ≥ H(xc, t) for all sufficiently large t and
lim
t→∞

I1(t) = lim
t→∞

I2(t) = 0, (68) yields, for any ε > 0,

lim
t→∞

Φ(un(z), t) =

{
0, z ≤ xc − κ

−(1+ε)/2
t ,

1, z ≥ xc + κ
−(1+ε)/2
t .

Hence, it is enough to consider Φ(un(z), t) for |xc − z| ≤ κ
−(1+ε)/2
t for a certain positive ε.

Abbreviate z := xc + y/
√
κt and assume |y| ≤ κ

−1/8
t (in a sense, we have set ε = 1/4). By

Taylor’s theorem, there is y0 such that |y0| ≤ |y| and

h (z, t) = h(xc, t)−
1

2
y2 +Rt

(
xc +

y0√
κt

)
y3, Rt(x) :=

t

6α
L3(x)ϕ2(x, t).

Defining

ε1(t) = exp

(
sup

{∣∣∣∣Rt

(
xc +

y0√
κt

)
y3
∣∣∣∣ : |y| ≤ κ

−1/8
t

})
− 1,

we have

H(z, t)

H(xc, t)
≃ε1(t) exp

(
−y

2

2

)
, (70)

where A ≃ε B is a shorthand notation for (1− ε)B ≤ A ≤ (1 + ε)B. Then,∫ z

xc−a
−5/8
t

H(x, t)

H(xc, t)
dx ≃ε1(t) κ

−1/2
t

∫ y

−κ
−1/8
t

exp

(
−x

2

2

)
dx, (71)

35



where κ
−1/2
t is the Jacobian of the change of variables. Since Rt ∼ dt ∼ κt/(3xc) and, accord-

ingly, limt→∞ ε1(t) = 0, we have

lim
t→∞

X̃(t)
√
κt

H(xc, t)
= lim

t→∞

∫ κ
−1/8
t

−κ
−1/8
t

e−x2/2dx =

∫ ∞

−∞
e−x2/2dx =

√
2π, (72)

which, together with (68), gives

lim
t→∞

Φ(un(xc + y/
√
κt), t) = Υ(y). (73)

To complete the proof, we have to show

lim
t→∞

Φ

(
un

(
xc +

y
√
κt

)
, t

)
= lim

t→∞
Φ(SD

t + σD
t y, t),

for |y| ≤ κ
−1/8
t . Let S ′

t := un(xc) and let yc be a function of t implicitly defined as the solution
of the equation

∂h2(x, t)

∂x

∣∣∣∣
x=yc

= L1(yc)
(
ν + Ω

(1)
2 (yc)

)
+
∂h(x, t)

∂x

∣∣∣∣
x=yc

,

where h2(x, t) := log un(x)+h(x, t) = log(un(x)H(x, t)). Notice that un(xc) ∼ vn(t). Obviously,
yc ∼ xc. Define

ρ1(t) :=
SD
t

S ′
t

=
1

X̃(t)S ′
t

t∑
k=x0

un(k)N
D
k (t) =

1

X̃(t)S ′
t

t∑
k=x0

eh2(k,t).

Since h2(x, t) for given t satisfies the condition in Lemma 7.8, we have∣∣∣∣∣ρ1(t)− 1

X̃(t)S ′
t

∫ t

x0

un(y)H(y, t)dy

∣∣∣∣∣ ≤ 7H(yc, t)un(yc)

X̃(t)S ′
t

.

Since limt→∞H(yc, t)/X̃(t) = 0 and un(yc)/S
′
t ∼ 1, we have

lim
t→∞

∣∣∣∣∣ρ1(t)− 1

X̃(t)S ′
t

∫ t

x0

un(y)H(y, t)dy

∣∣∣∣∣ = 0.

Let z± = xc ± κ
−5/8
t . Since∫ t

z+

un(y)
m H(y, t)

H(xc, t)
dy ≤ un(t)

m

∫ t

z+

H(y, t)

H(xc, t)
dy,∫ z−

x0

un(y)
m H(y, t)

H(xc, t)
dy ≤ un(t)

m

∫ z−

x0

H(y, t)

H(xc, t)
dy,

I1 and I2 in (69) with ε = 1/4 yield

lim
t→∞

1

X̃(t)S ′
t

∣∣∣∣∫ t

x0

un(y)
mH(y, t)dy −

∫ z+

z−

un(y)
mH(y, t)dy

∣∣∣∣ = 0,
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for any positive integer m. Using (70), we have

1

X̃(t)S ′
t

∫ z+

z−

un(z)H(z, t)dz ≃ε1(t)
H(xc, t)κ

−1/2
t

X̃(t)S ′
t

∫ κ
−1/8
t

−κ
−1/8
t

un

(
xc +

y
√
κt

)
e−y2/2dy.

Since S ′
t ∼ un(xc + y/

√
κt), we have

lim
t→∞

1

X̃(t)S ′
t

∫ z+

z−

un(y)H(y, t)dy = 1.

Therefore ρ1(t) ∼ 1 or SD
t ∼ un(xc) ∼ vn(t), as claimed.

Define

σ′
t := κ

−1/2
t

dun
dx

∣∣∣∣
x=xc

=
S ′
t√
κt
L1(xc)

[
1

α
+ Ω1(xc)

]
,

ρ2(t) :=
SD
t − S ′

t

σ′
t

=
1

X̃(t)

t∑
k=x0

un(k)− un(xc)

σ′
t

H(k, t),

ρ3(t) :=
1

X̃(t)

∫ z+

z−

un(x)− un(xc)

σ′
t

H(x, t)dx.

Note that σ′
t ∼ sn(t). Assume |y| ≤ κ

−1/8
t . By Taylor’s theorem, there is y1 with |y1| ≤ |y| such

that
un(xc + y/

√
κt)− un(xc)

σ′
t

= y +
R̃t(xc + y1/

√
κt)

σ′
t

y2,

where

R̃t(x) :=
1

2κt

d2un(x)

dx2
=
un(x)

2κt
L2(x)

(
L2
1

L2

[(
1

α
+ Ω1(x)

)2

− Ω2(x)

]
− 1

α
− Ω1(x)

)
.

Using

R̃t(xc + y1/
√
κt)

σ′
t

∼ R̃t(xc)

σ′
t

∼ 1

2
√
κtx2c

(
δn,1
α

− 1

)
(74)

for |y1| ≤ κ
−1/8
t ,

∫ x

−x
ye−y2/2dy = 0, and (70), we have

|ρ3(t)| ≃ε(t)
κ
−1/2
t H(xc, t)

X̃(t)

1

2
√
κtx2c

∣∣∣∣δn,1α − 1

∣∣∣∣ ∫ κ
−1/8
t

−κ
−1/8
t

y2e−y2/2dy,

where limt→∞ ε(t) = 0. Therefore,

lim
t→∞

ρ3(t) = 0. (75)

Since ∣∣∣∣∣ 1

X̃(t)

∫ z−

x0

un(x)− un(xc)

σ′
t

H(x, t)dx

∣∣∣∣∣ ≤ 2un(t)

σ′
t

∣∣∣∣∣ 1

X̃(t)

∫ z−

x0

H(x, t)dx

∣∣∣∣∣ ,∣∣∣∣∣ 1

X̃(t)

∫ t

z+

un(x)− un(xc)

σ′
t

H(x, t)dx

∣∣∣∣∣ ≤ 2un(t)

σ′
t

∣∣∣∣∣ 1

X̃(t)

∫ t

z+

H(x, t)dx

∣∣∣∣∣ ,
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(69) together with (75) gives

lim
t→∞

ρ2(t) = lim
t→∞

1

X̃(t)

∫ z+

z−

un(x)− un(xc)

σ′
t

H(x, t)dx = 0. (76)

Define

ρ4(t) :=
σD
t
2

(σ′
t)

2
=

1

X̃(t)(σ′
t)

2

∑
k

(un(k)− S ′
t − σ′

tρ2(t))
2
H(k, t)

=
1

X̃(t)

∑
k

(
un(k)− un(xc)

σ′
t

)2

H(k, t)− ρ2(t)
2,

ρ5(t) :=
1

X̃(t)

∫ z+

z−

(
un(x)− un(xc)

σ′
t

)2

H(x, t)dx

=
1

X̃(t)

∫ z+

z−

κt(x− xc)
2

(
1 +

R̃t(xc + y1/
√
κt)

σ′
t

)2

H(x, t)dx.

Using (70), (72), (74), and (76), we have

lim
t→∞

ρ4(t) = lim
t→∞

ρ5(t) =
1√
2π

∫ ∞

−∞
y2e−y2/2dy = 1,

where we have also used the same procedure to arrive at (76) using (un(x)−un(xc))2 ≤ 4un(t)
2.

From the above calculations, we conclude that there is a constant C such that

|ρ2(t)| ≤
C

√
κtxc

, |ρ4(t)− 1| ≤ C
√
κtxc

, (77)

for all sufficiently large t.

Let z := xc+ y/
√
κt and z

′ := u−1
n (SD

t +σD
t y). Recall that for any small but positive ε2 and

ε3, X̃(t) ≥ κ
−(1−ε2)/2
t H(xc, t) and κt ≤ t−1+ε3 for all sufficiently large t. Since

lim
t→∞

|Φ(un(z), t)− Φ(un(z
′), t)| = lim

t→∞

1

X̃(t)

∣∣∣∣∣
∫ z′

z

H(x, t)dx

∣∣∣∣∣ ≤ lim
t→∞

t−(1−ε0)/2|z − z′|,

for any 0 < ε0 < 1, we need to show that there is ε0 such that limt→∞ t−(1−ε0)/2|z − z′| = 0.
First observe that SD

t + σD
t y = S ′

t + σ′
ty

′ for y′ := ρ2(t) + y
√
ρ4(t). Assume t is so large that

|y′| ≤ 2κ
−1/8
t . By Taylor’s theorem, there is y1 such that |y1| ≤ |y′| ≤ 2κ

−1/8
t and

z′ = u−1
n (S ′

t) +
σ′
t

u′n(z1)
y′

= z +

(
σ′
t

u′n(z1)
− 1

√
κt

)
y +

σ′
t

u′n(z1)
[ρ2(t) + y(

√
ρ4 − 1)] ,

where z1 = u−1
n (S ′

t + σ′
ty1). Using z1 ∼ xc, un(xc) = σ′

t

√
κt, (77), and limt→∞ t−ε4/(κtxc) = 0

for any ε4 > 0, we have |z′ − z| ≤ κ
−1/6
t ≤ t1/4 for all sufficiently large t. Hence, if we choose

ε0 = 1/8, we have the desired result. Since ρ4(t) ∼ 1, the proof is completed.
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Remark 7.10. Since un(t)/vn(t) ∼ (log t)δn,1/α, we have

SD
t ∼ Wt n ≥ 2, while

lim
t→∞

SD
t /Wt = 0 for n = 1.

In other words, when n ≥ 2, the mean fitness at generation t is hardly discernible from the
largest fitness at the same generation. Another interesting observation is that if n ≥ 2 or if
n = 1 and α > 2, then limt→∞ σD

t = 0, which implies that the width of the traveling wave
decreases to zero and the EFD becomes a delta function in the sense that

lim
t→∞

Φ(SD
t + y, t) =

{
0, y < 0,

1, y > 0.

This should be compared with the case of n = 1 and α < 2 in which the width of the traveling
wave increases with generation. For n = 1 and α = 2, the behaviour of σD

t depends on the
slowly varying function L entering the tail function in (1).

7.3 Semi-deterministic FMM and its EFD

Definition of the SFMM. At each generation k ≥ 0 a new mutant with fitness

θk := (1− β)un(k)

appears and (Nk(t) : t ≥ k) are mutually independent Galton-Watson processes with Poisson-
distributed offspring with mean θk for each k. In case un(k) is ill-defined, we set θk = 1. By
definition, Nk(k) = 1 and Nk(τ) = 0 for τ < k and no extinction is possible in the SFMM.
Since we will use Lemma 7.5 to prove Theorem 4 below, we limit the definition of the SFMM
to the case n = 1 or the case n = 2 and α < 1; see also Remark 7.2.

We denote the total population size of the SFMM at generation t by

XS(t) :=
t∑

k=0

Nk(t).

The EFD Ψs(f, t) of the SFMM and its mean fitness St are defined as

Ψs(f, t) :=
1

XS(t)

t∑
k=0

Nk(t)Θ(f − un(k)), SS
t :=

1

XS(t)

t∑
k=0

un(k)Nk(t).

Since Nk(t) is the number of non-mutated descendants, we put (1− β) in the definition of the
fitness of a new mutant in the SFMM. In a sense, the SFMM is closer to the FMM than the
DFMM due to fluctuations of Nk(t). We redefine un(k) := θk/(1 − β) for convenience. Now
we prove that the EFD of the SFMM in the long time limit becomes almost surely a Gaussian
traveling wave just as the DFMM.

Theorem 4. For the SFMM with n = 1 or with n = 2 and α < 1, almost surely

lim
t→∞

Ψs(vn(t) + sn(t)y, t) = Υ(y), lim
t→∞

SS
t

vn(t)
= 1,
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where

vn(t) = α−δn,1/α
(
log(n−1) (t)

)1/α
L

((
log(n−1) (t)

)1/α)
,

sn(t) =
vn(t)√
αt

(
n−1∏
k=1

log(k) (t)

)−1/2

have been introduced previously in (66) and (67).

Proof. We define J and E as in Lemma 7.5. It is obvious that Lemma 7.5 is applicable to the
SFMM. Note that by definition J in (52) for the SFMM can be regarded as the sample space
and, accordingly, P(E) = 1. For any 0 < ε < 1/2 and for any outcome ω ∈ E, there exists τ1
such that (1 − ε)θt−k

k ≤ Nk(t) ≤ (1 + ε)θt−k
k for all t ≥ k ≥ τ1. Notice that τ1 can vary from

outcome to outcome. Let

XS(t, τ1) :=

τ1∑
k=0

Nk(t), XD(t) :=
t∑

k=0

θt−k
k , XD(t, τ1) :=

τ1∑
k=0

θt−k
k .

Then, for t ≥ τ1, we have

(1− ε)
(
XD(t)−XD(t, τ1)

)
+XS(t, τ1) ≤ XS(t) ≤ (1 + ε)

(
XD(t)−XD(t, τ1)

)
+XS(t, τ1).

Since XD
s (t, τ1) and X

D(t, τ1) grow at most exponentially and XD(t) grows super-exponentially,
we have almost surely

lim inf
t→∞

XS(t)

XD(t)
≥ 1− ε, lim sup

t→∞

XS(t)

XD(t)
≤ 1 + ε.

Hence there is almost surely τ2 such that (1− 2ε)XD(t) ≤ XS(t) ≤ (1+2ε)XD(t) for all t ≥ τ2.

Now set τ = max{τ1, τ2} and assume t > τ . Then, we have

Ψs(f, t) ≥
1

1 + 2ε

1

XD(t)

τ1∑
k=0

Nk(t)Θ(f − un(k)) +
1

1 + 2ε

1

XD(t)

t∑
k=τ1+1

Nk(t)Θ(f − un(k))

≥ 1

1 + 2ε

1

XD(t)

τ1∑
k=0

Nk(t)Θ(f − un(k)) +
1− ε

1 + 2ε

1

XD(t)

t∑
k=τ1+1

θt−k
k Θ(f − un(k)).

Hence by Lemma 7.12, we conclude

lim inf
t→∞

Ψs(vn(t) + sn(t)y, t) ≥
1− ε

1 + 2ε
Υ(y).

By the same token, we have

lim sup
t→∞

Ψs(vn(t) + sn(t)y, t) ≤
1 + ε

1− 2ε
Υ(y).

Since ε is arbitrary, we proved the first part of the theorem.

Let

SD
t :=

1

XD(t)

t∑
k=0

un(k)θ
t−k
k .

By Lemma 7.12, we have SD
t ∼ vn(t). Inspecting the above proof, we can conclude that for any

0 < ε < 1/2 and for any outcome ω ∈ E, there is τ such that

(1− ε)SD
t ≤ SS

t ≤ (1 + ε)SD
t ,

for all t ≥ τ . Since ε is arbitrary, the proof is completed.
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Figure 1: Semilogarithmic plot of σtψ(F, t) vs. ∆F/σt for various α’s at t = 983 040. For
comparison, the normal distribution is plotted by a solid curve.

7.4 Numerical study for the MMM with n = 1

Since the largest fitness is expected to dominate the evolution of the population even in the
MMM and the limiting distribution is continuous even in the FMM, we conjecture that The-
orem 3 is valid even for the MMM; see Remark 2.1. For the MMM, however, we only present
some numerical results, which supports our conjecture.

For numerical feasibility we assume that the fitness of a mutant can only be one of the
discrete values fi = (ci)1/α for i ≥ 1, where c is a constant to be determined later. Defining
Gp(x) = exp(−xα + c) for x ≥ c1/α and Gp(x) = 1 for x ≤ c1/α, we assign probabilities

pi := P(F = fi) = Gp(fi)−Gp(fi+1) = e−ci(ec − 1).

Since Gp(fi+1) ≤ G(x) ≤ Gp(fi) for fi ≤ x < fi+1 and limi→∞ fi+1/fi = 1, we have

lim
x→∞

logG(x)

xα
= −1.

Therefore, we can apply Theorem 1, to predictWt ∼ α−1/α(t log t)1/α, almost surely on survival.

In this section, we denote the number of individuals with fitness fk at generation t by Nk(t).
We would like to emphasize that fk should not be confused with Wk. The total population size
X(t) and the mean fitness St are calculated as

X(t) =
∞∑
k=1

Nk(t), St =
∞∑
k=1

Nk(t)

X(t)
fk. (78)

The standard deviation σt is naturally defined. Given Nk(t) and St, the random variable
Nk(t+1) is drawn from the Poisson distribution with mean (1−β)Nk(t)fk +βStX(t)pk. Since
the accurate value of β is not important as long as 0 < β < 1, we choose β = 10−20 to make 1−β
indistinguishable from 1 within machine accuracy of double-precision floating-point format.
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Figure 2: Plots of ψ(F, t) vs. ∆F at different generations for α = 1 (left), α = 2 (middle), and
α = 3 (right) on a semi-logarithmic scale. For α = 3 (α = 1), the width of the traveling wave
decreases (increases). For α = 2, the width of the traveling wave remains constant.

Since the total size of the population increases super-exponentially on survival and we are
mostly interested in long-time behaviour, we set X(0) very large (in the actual implementation,
we set N1(0) = X(0) = 10100 and S0 = f1), which makes fluctuations of the total population
size invisible within machine accuracy. Besides, we set c = 20 log 10 ≈ 46.05, which gives
pk+1/pk = 10−20. Therefore, we have only to consider k up to βStX(t)pk ≥ 1 with pk ≈ e−c(k−1).

Let ψk(t) := Nk(t)/X(t). Since parameters are chosen such that deviation from the expected
value of ψk(t + 1) for given ψk(t) cannot be generated within machine accuracy, the actual
stochastic simulations cannot be different from the deterministic equation

ψk(t+ 1) = (1− β)ψk(t)
fk
St

+ βp̃k, St =
∑
k

ψk(t)fk, (79)

where p̃k = pk if βX(t+ 1)pk > 1 and 0, otherwise. In a sense, we are studying a deterministic
version of the MMM, but, as we mentioned already, even the full stochastic MMM is not
distinguishable from the deterministic version MMM for the parameters we chose. Now, we
present the numerical solution of (79).

In Figure 1, we depict σtψ(F, t) vs ∆F/σt, where ∆F = F − St on a semi-logarithmic scale
at generation t ≈ 106. Here, ψ(F, t) is a density that is calculated as

ψ(F, t) =
1

fk+j − fk−j

∑
k−j≤i≤k+j

ψi(t)

with a suitable bin size 2j, where the integer k is determined uniquely by fk ≤ F < fk+1. We
assure that dependency of ψ(F, t) on the bin size is negligible over a wide range of j (details
not shown here). For comparison, the Gaussian function with zero mean and unit variance is
also drawn by a solid curve. Just as we proved for the FMM, the EFD is again well described
by a Gaussian traveling wave.

We have found that depending on the actual form of the tail function, σt can increase,
decrease, or even remain constant in the FMM. To check if this property remains valid in MMM,
we plotted the EFD at different times for different values of α, whose result is summarized in
Figure 2. The behaviour is the same as shown for the FMM. In fact, the predicted St and
σt for the FMM conform to numerical results (details not shown here). From the numerical
observations, we conjecture that the travelling-wave part of the MMM with type I tail function
(at least with n = 1) has the same EFD as the FMM.
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8 Concluding remarks

We provided strong analytical and numerical evidence for the emergence of a travelling wave
for the branching process with selection and mutation for unbounded fitness distributions of
Gumbel type. For type I tail functions with tail index n = 1, or in other words stretched
exponential fitness distributions, we show that if the tail parameter satisfies α > 2, the standard
deviation of the traveling Gaussian wave decreases and eventually the EFD becomes highly
peaked like a delta function. Traveling wave solutions of Gaussian form were found previously
in a study of the deterministic (infinite population) limit of the model, which amounts to solving
the recursion (79) with p̃k = pk, see [15]. The expressions for the mean and variance of the EFD
obtained in [15] for a particular type I tail function match Eqs. (66) and (67), see also [16].

We conjecture a similar behaviour for bounded fitness distributions of Gumbel type in the
condensation case discussed in Section 1. In that case the Gaussian wave is expected to travel
to the essential supremum of the fitness distribution, while its standard deviation goes to zero
faster than the distance of its mean to the essential supremum. For bounded fitness distributions
of Weibull type we conjecture, as in Ref. [9] for a branching model in continuous time, that the
condensate emerges in the shape of a Gamma distribution. The conjecture is justified by the
rigorous analysis of the deterministic model in Ref. [17].

In our model every individual has a Poisson number of offspring with mean given by its
fitness. It is natural to conjecture that results like emergence of the travelling wave, dou-
bly exponential growth rates or condensation also hold for other distributions with the same
mean and not too large variance. Verifying this universality conjecture rigorously would be an
interesting future project.
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