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Abstract

We study a model of a branching process subject to selection, modeled by giving
each family an individual fitness acting as a branching rate, and mutation, modeled by
resampling the fitness of a proportion of offspring in each generation. For two large classes
of fitness distributions of Gumbel type we determine the growth of the population, almost
surely on survival. We then study the empirical fitness distribution in a simplified model,
which is numerically indistinguishable from the original model, and show the emergence
of a Gaussian travelling wave.

1 Introduction

We consider the branching processes with selection and mutation introduced in [1]. These are
models of a population evolving in discrete non-overlapping generations with model parameters
given by a probability distribution g on (0, 00), which serves as a means to sample a random
fitness of a mutant, and a mutation probability 5 € (0,1). For later reference, we denote the
tail function by G(x) := p((z,00)). Note that G is a right-continuous-left-limit function that
may be discontinuous.

A brief description of the two model variants goes as follows: In each generation a population
consists of finitely many individuals each equipped with a positive fitness. Any individual lives
only for one generation. Every generation produces a random number of offspring, which is
Poisson distributed with the mean given by the sum over all the fitnesses of the individuals in
the generation. Now every offspring individual independently

e with probability 1 — 8 randomly selects a parent with a probability proportional to its
fitness. The offspring becomes an individual of the next generation with the fitness
inherited from the parent;

e otherwise, with probability 3, it is a mutant and gets a fitness randomly sampled from pu.

— In the fittest mutant model (FMM) only one mutant with largest fitness among all
mutants, if it exists, joins the next generation and the others die immediately.

— In the multiple mutant model (MMM) all mutants join the next generation.

We write X (¢) for the number of individuals in generation ¢, irrespective of what initial condition
is used and which model variant is under consideration. Further discussion of the motivation
behind this model can be found in the first paper of this series [1]. Other branching models
including selection or mutation are [2, 3, 4] or [5]. Similar models have been applied for
the description of the genetic structure of proliferating tumors and growing populations of
pathogens [6, 7, 8]



Our focus in this paper is on the case of unbounded fitness distributions p with light tails
at infinity, but to put this into context we briefly review known results first on bounded and
second on unbounded heavy-tailed random variables.

Suppose first that a :=esssup p < oo let A* := (1 — f)a. In the MMM, if § [ -2 p(dz) > 1
there is a unique A > \* such that

B
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Then, almost surely on survival, we have
log X (%)

lim
t—o0

= log \.

Otherwise, and always in the FMM, we have, almost surely on survival,

108 X(t) _ jog a.

lim
t—o0
This is shown in [9] for a continuous-time variant of the model and the proof extends to the
MMM. For the FMM note that in generation ¢ there are at most ¢ 4+ 1 families with fitness
W, ..., W, present, each growing at rate log((1 — 8)W;). The overall growth rate is therefore
bounded from above by log A* and also from below as lim sup W; = a almost surely on survival.

So, irrespective of the finer details of i, we see exponential growth of the population.

In the case of a slowly decreasing tail at infinity, i.e. when the tail function G is regularly
varying with index —q, for some a > 0, we have doubly exponential growth. We show in [1]
that, for T" the unique integer such that

(T o 1>T _ < TT+1
—_— a —
T7-1 ~(T+ 1)

in either MMM or FMM, almost surely on survival,
loglog X(t) 1. T

tliglo t T log a’
i.e. we have doubly exponential growth of the population. The present paper is concerned with
unbounded fitness distributions with light tail at infinity. In analogy to the classification of
distribution as extremal types we denote this class of fitness distributions as Gumbel type [10].
The classification of fitness distributions in terms of extreme value classes plays an important
role in the theory of evolutionary adaptation [11]. In this context it has been argued that the
Gumbel type is the most relevant case biologically [12, 13, 14].

For unbounded fitness distributions of Gumbel type the population grows at a rate between
exponential and doubly exponential. This is a wide range that cannot be easily covered by a
single functional expression. Therefore we introduce parametrised subclasses of fitness distribu-
tions and show how the population grows for these subclasses in dependence of the parameters.
Before stating our full results in Section 2 we describe an interesting example to give a flavour.

We look at fitness distributions with stretched exponential tail satisfying
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for a slowly varying function L and a > 0. In this case, for both MMM and FMM we show in
Theorem 1 that the population grows like
log X(t) 1

=—, almost surely on survival.
t—oo tlogt Q

The superexponential growth is driven by the fitness W, of the fittest mutant in generation ¢
satisfying
. Wi

lim

{00 tl/a(logt)l/a(aL(tl/a))—l/a
In Section 3 we describe the subtle interplay of population size and fittest mutant heuristically
in terms of a differential equation. Simulations demonstrated in Section 7 show that the distri-
bution of fitness in a positive proportion of the population in generation ¢ concentrates around
the value

=1.

v(t) == a~Veg/a /)

in the shape of a Gaussian travelling wave of width v(t)/vat. In Theorem 4 we prove this
phenomenon rigorously for a simplified model where the driving fitness W, is replaced by its
deterministic asymptotics.

The rest of this paper is organised as follows. Full results on the growth of the population
and the driving fitness are formulated as Theorem 1 and 2 in Section 2. The section also
formulates, as Theorem 3, the conjectured behaviour of the travelling wave for the full model.
Section 3 heuristically describes the interplay of these quantities. Section 4 contains preparation
for the proofs of Theorem 1, given in Section 5, and Theorem 2, given in Section 6. Section 7
explains the approximations needed to simulate and prove the travelling wave result restated
now in rigorous form as Theorem 4. We finish the paper with concluding remarks in Section 8.

2 Main results

In the FMM, X () is generally different from the total number of offspring of all particles in
generation t — 1. We therefore denote by Z(t) the total number of offspring of all individuals in
generation t — 1, including immediately dead ones, if there are any. By ); we denote the largest
fitness in the population in generation ¢t > 0 and by W, the largest fitness among all mutants
in generation ¢ > 1. Note that W; < ), and W; can be strictly smaller than @);. The number
of non-mutated descendants in generation s > t of the fittest mutant in generation ¢ will be
denoted by N;(s) with the convention that NV;(t) = 1. For convenience we set Ny(s) = 0,W,; =0
if there is no mutant in generation ¢ and @, = 0 if X(¢) = 0. Also set =(0) = X(0), Wy = Qo.

2.1 Tail functions

To classify the decay of the tail function G in a way that allows the description of the growth
rates of the population size, we denote by log™ the nth iterated logarithm, write fi(t) ~ fo(t)
to mean that the ratio of the two expressions converges to one as t goes to infinity, and assume

log™) (1/G(x)) ~ (log™ () )*L(log™ () ), (1)

where ny, ny are non-negative integers, « is a positive number, and L(z) is assumed to satisfy’
L 1

lim 2 _ i 2)

f L is a slowly varying function, then this condition is naturally satisfied.



for any ¢ > 0. Apart from this assumption, henceforth called (A1), we use three further
technical assumptions on L in (1), namely

L(zt
(A2) If a positive function ¢ satisfies (2), then lim Lallz))

=1.
Z—>00 L(J;)

(A3) L is four-times continuously differentiable, at least for sufficiently large argument.

(A4) lim ( dld

J
> log L(z") = 0, for nonnegative integer j and positive real .
T—r00 Og €T

Assumption (A2) will be used in Section 5. It is a stronger condition than L being a slowly
varying function. Assumption (A3) will be used in Section 7. Note that even if G is discontin-
uous, we can, in most cases, find a four-times continuously differentiable L. Assumption (A4)
will be used in the proof of Lemma 5.2 and in Section 7.2.

As an example of L satisfying all four assumptions, we consider

m

L(z) = [ [(og™ ()™ (3)

k=1

with real v;’s. Obviously, (3) cannot exhaust all functions satisfying the above four assumptions;
an example that does not take the form (3) is exp(y/logx). The proofs of the main theorems
apply to any function L that satisfies the above four assumptions.

In this paper, we are interested in Gumbel type tail functions with unbounded support,
meaning that at infinity G decays faster than polynomially, i.e., for any positive =,

lim 27G(z) = 0. (4)

T—00

We now figure out? for which parameters ny, ny and &, (4) holds. If n; < ny, then G satisfies

—E
lim

i G(a)

=0 (5)

for any positive €. As this G decays slower than any Fréchet type tail function, the long-time
evolution is dominated by the largest fitness alone as in the Fréchet type with a < 0.5, as
studied in [1]. If ny > no, then G satisfies (4), which will be our concern. We define the n-th
iterated exponential function exp™ as the inverse of log(”) with the convention exp®(x) =
log® (x) = x. In case ny > 0, we have a rough bound for sufficiently large = as

1/G(x) > exp™ (10g (I)d—e>
— exp™1—"2) (eXp <1Og<n2 (z )a_5>)

_ eXp(nl—ng) <exp(n2+1) <(d . 8) log(nz-i-l) ($)>> > eXp(m ng) (:L,a—a> :

where we have used Lemma 5.1 for the last inequality, and

1/G(z) < exp™ <10g n2-1) (x)) = exp™m 2 () (6)

2Tt is of course possible that G(x) satisfies (4) but not (1).




In this context, limiting ourselves to the case with n; > n, = 0 would give a guide for n; >
ny > 0. For example, inspecting Theorem 1 suggests that almost surely on survival

log® (X (1))

t—00 logt

for any case with n; > ny > 0. The remaining case is n; = no. If ny = ny = 0, then G does
not satisfy (4). In fact, this G becomes a Fréchet-type tail function already studied in [1]. If
ny = ng > 0, then how fast G decays is determined by &. If 0 < & < 1, then G satisfies (5).
If @ > 1, then G satisfies (4). If @ = 1, then how fast G decays depends on the explicit form
of L. For example, assume L(z) = (logz)"L(logz) with L to satisfy (2). If ¥ > 0, then G
satisfies (4), while if v < 0, then G satisfies (5). If v = 0, then how fast G decays depends on
the explicit form of L. In this sense, it is difficult, if not impossible, to write all possible tail
functions that satisfy (4). We take a rather special form of L for & > 1; see (8). We only study
the case n; = ny = 1, but the case with ny = ny > 1 can be easily studied using the techniques
developed in this paper.

In this paper, we therefore limit ourselves to two cases. The first case that corresponds to
ng=0andn=n>1witha=a>0Iis

log™ (1/G(z)) ~ gi(x) := x*L(x). (7)
The second case that corresponds to ny = ny =1 with @ > 1 is

log(1/G(x))

ogr " gi(z) == gi(log™ (z)), (8)

where n > 1 and o > 0. Note that for the second casce a =1+ a >1forn =1 and & = 1 for
n > 2. From now on, n and « are reserved for this role, with n called the tail index and « the
tail parameter. When G satisfies (7), we will say that G is of type I and when G satisfies (8),
we will say that G is of type II. Note that not only do the two types of decay not cover the
entire Gumbel class, but conversely (4) alone cannot guarantee that G falls into the Gumbel
class. For instance, consider log G(z) = —x — sin(x), which is of type I but does not belong to
the Gumbel class (see, e.g., [10]).

2.2 Statement of theorems

Our main concern is how X (t), W;, and the empirical fitness distribution (EFD) behave at
large times t on survival. The EFD is defined via its cumulative distribution function W(f,t) as

®)
V(1) = g 30U — ). )

where Fj is the fitness of ¢-th individual and ©(x) is the Heaviside step function with ©(0) = 1.
We denote the mean and the standard deviation of ¥(f,¢) by S; and oy, respectively. In case
that no individual is left at ¢, we define W(f,t) =1 for f > 0 and S; = 0, = 0. We define the
survival event 2 and survival probability ps as

A:={X(t)#0for all t}, p,;:=PA).

Needless to say, ps depends on the initial condition, but the initial condition dependence does
not play any role in what follows. Now we state the main theorems.
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Theorem 1. If G is of type I, then almost surely on survival

log X (¢ 1
lim og—() =—, lim ﬁ =1, (10)
t=oo tlog™ (1) a’ tmoo up(t)

where
Up(t) := <log(”_l) (t))l/a Wy <log("_1) (t)> : (11)
)= (B [ ey (12)

(67

with 6,1 to be the Kronecker delta symbol.

Theorem 2. If G is of type II, then almost surely on survival

log® (X (1)) el log® (W) 1
t—woo  logt B o' iseo  logt o
forn =1,
log® (X(1)) _ . log® (W) 1
————= = lim =
tmoo  logt t—oo  logt 1+a’
formn =2, and

forn > 3.

Based on simulations, we conjecture the following theorem regarding the EFD formulated
in the case of the FMM. A rigorously proved version of this result and more details on our
simulations will be given in Section 7.

Theorem 3 (Conjecture). For each type [ tail function, there are positive functions v(t) and
s(t) such that

tliglov(t) =% tlgg @ =0,

and almost surely on survival

where

T(y) := \/% /1 exp (—%:ﬁ) dz. (13)

In particular, if n =1 and o > 2 or if n > 2, then s(t) — 0 as t — oo and, fory # 0,

lim W(v(t) +y,t) =O(y) almost surely on survival.

t—o0



Remark 2.1. A similar statement is conjectured for the MMM where a fraction 1 — B of the
mass in the EFD enters the travelling wave and a fraction 5 remains in the bulk.

Corollary 2.1. Given Theorem 3 the empirical mean fitness satisfies

S,
lim —~ =1 almost surely on survival.
t—00 U(t)

Proof. Fix ¢ > 0. By Markov’s inequality, we have 1 — \I/(qu), t) < (1 +5) CAss(t)/v(t) =0
o(t) 4

T t) = 0. Therefore, almost Surely on survival, we

As ¢ was arbltrary we have, almost surely on survival, lim inf 2% > 1.
+E t—o0 (t)

as t — oo, Theorem 3 implies that hm U(=2

St
have h{n inf o0 > T

Now assume lim sup (t) > 1. Then there is ¢’ > 0 and a strictly increasing sequence (¢)52
t—o0

such that S;, > v(tx)(1 + 2¢’) for all k. As Theorem 3 implies Jim U(HZ0(t),t) = 1, we
—00
have lim \I/(%, tr) = 1, which contradicts to the definition of S;. Therefore, we conclude that
k—oo

almost surely on survival lim sup =% ( < 1, which along with the lower bound gives S; ~ v(t). [

t—o0

t)

In Section 7, we will modify our model so that a version of Theorem 3 can be proved.

3 Heuristic guide to Theorems 1 and 2

Before delving into the proofs, we first sketch the idea behind Theorems 1 and 2 by a mean-
field type analysis of the MMM for a strictly decreasing continuous G with gi(x) ~ x®. Let us
assume that at certain time ¢, the population size X (t) is very large. Once X () is given, W} is
sampled as Z = [1 — BG(W})]X® where Z is uniformly distributed on (0,1); see Lemma 4.8.
Neglecting fluctuation in the sense that —log G(W;) ~ log X (t), we have

1
log W; ~ —log™ V(X (1)) (14)
(6%
for type I and

log X ()]0 | n=1,

log W, ~ —a
S log™(x(1)] "l X(1), n>2,

(15)

for type II. Since the mean fitness S; is anticipated not to be larger than W; and log X (t 4+ 1) ~
log X (t) + log S, we have log X (t + 1) —log X (t) < log W;. Treating ¢ as a continuous variable
and setting y = log X (¢), we assume that the solutions of the differential equations

dy 1
29 T loe™ 16
o = e (v) (16)
for type I and
dy yl/(+a) n=1, (17)
dt | y/(og" "V (y))*, n =2



for type II give the upper bound for the corresponding log X (¢). The asymptotic behaviour of
the solution of (16) can be found as

n—1

Y K 1 1
- - / gj = ot / TR 0 el Kt vt
o log™ (x)  log™™ (y) (log™™ () log™ () log™™ (y)

k=1

which gives
t t
~ —log™ (y) ~ —log™ (¢
y~ —log™ (y) = —log™ (1),
where we have used (A2) for L(z) = log™ (). In a similar manner, we find the asymptotic

solution of (17) as y ~ t"tV/* if n = 1, y ~ exp(t'/179)) if n = 2 and y ~ exp(t(log™ 2 (t))~)
if n > 3. Accordingly, we anticipate

1
log X (t) < —tlog™(t)
(6]
for type I and
t1+1/a, n=1,
log X () 5 { exp (t/0F), n=2,

exp (t(log("d) (t))_a), n>3
for type IL.

Theorems 1 and 2 actually state that to treat the above inequalities as equalities gives a
good approximation. If the inequalities are indeed equalities, then we expect

W, ~ (log("fl)(t log™ (t)))l/a
for type I and
exp (tl/o‘) , n=1,
W, ~ { exp (t’“/(”o‘) exp (tl/(Ha))) , n=2,
exp ((log("*z) (t))_a exp (t(log("fz) (t))_o‘)), n >3,

for type II. In the following sections, we make the above heuristics rigorous.

4 Preparations

In this section, we collect some tools to be used in the proofs of the Theorems 1 and 2. To be
self-contained, we begin by restating Lemma 2 of Ref. [1] without repeating the proof.

Lemma 4.1. On survival, (W) is almost surely an unbounded sequence.

Other than in Ref. [1] the gap between the generation where a mutant type first appears
and the generation where it may become dominant is unbounded. Therefore we need tight
bounds on the Galton-Watson process with Poisson offspring distribution, which become the
focus of the rest of this section. We prepare this with some bounds on the Poisson series.

Lemma 4.2. If0<b<1,0>1, [b0] > 1, and (1 —0)0 > 1, then

1b6] -

Z e 07 < get(-btblogh)
m!

m=0



Proof. Let ¢ := |b0] and a,, := 6™/m!. Note that £ < b < 6 — 1 by the assumption. Since
U [ m—1 = 0/m, we have a,, < a, for all m < ¢ < 6 and, therefore,

m /4 /4

/
0 9 9
Z—' £+1£ eﬁ

m=0

3

Using m! > m™e™™ (m > 1), we find logi—f < llogh — llogl + ¢. Observing that xlogf —
xlogx + x is an increasing function in the region 0 < x < 6, we finally have

y4
om
Z e=07 < e 0+001080—b0log(b0) 00 _ g —6(1-b+blogh)
m!
m=0

as claimed. n

Lemma 4.3. If B> 1 and 6 > 0, then

e k

S 6—99_§ B -60-B+B1gB)
k! B-1

k= B0]

Proof. Let m := [B#]. Since (m + k)! > m!m* and §/m < 1/B < 1, we have

Xk m k m
0_ < 0 (9) _ 0 1 B 6mlog@—mlogm—&—m < B 6BG—B@logB

i — = — < )
— k!~ ml m m!1—(0/m) — B—1 ~ B-1

where we have used m! > m™e™™ and that xlogf — xlogx + x is a decreasing function in the
region § < x. Multiplying by e~?, we get the desired inequality. O

Definition. By (X});>0, we mean a classical Galton-Watson process with Poisson offspring
number distribution with mean 6, starting in generation 0 with a single individual.

Remark 4.1. Conditioned on X,y = m for a nonnegative integer m, X; is a Poisson-
distributed random variable with mean mé.

Lemma 4.4. If0<b<1,0> f>1/(1—0b+blogh), and x > 1, then,
P(X, > bz f|X,_y > x) > 1 — xfe @/(-btblogt), (18)
Proof. By assumption, (1 —b)f > 1. If m > x, Remark 4.1 with Lemma 4.2 gives

[bmb |
P(X, < brf| Xy =m) <P(X, <bmfl Xy =m) < ) e

k=0

Since ze ¢ < ye ¥ forall z>y>1/c>0and md > xf > 1/(1 — b+ blogb) > 0, we get

—mé (me)k
k!

< mee—mQ(l—b—I—blog b)

P(Xt < b:L‘let_l = m) < xfe—xf(l—b+blogb)’
which does not depend on m as long as m > x. Now, the proof is completed. []

Lemma 4.5. Let Ay = {a; < X, < b}, where 0 < a; < by —1 < oo forallt > 0. Let
B, = ﬂZZT Ag for 0 < 17 < t. Assume P(A;) > 0 and P(A|X;—1 = m) > f, > 0, where m is
any integer satisfying a;_1 < m < b;_1 and f; depends on a;, by, a;_1, and b;_1 but not on m.
Then

t

P(E) >P(A;) [] f+

k=7+1



Proof. For t =7+ 1, the proof is trivial. So we assume t > 7 4+ 2. Note that
[be—1]

Et = At N At,1 N Et,Q = U (At N {Xt,1 = m} N Etfg) .

m=[at_1]
Using the countable additivity of the probability measure and the Markov property of X;,

[be—1]
P(E)= Y PAX =mP{X =m}NE_,)
m=[at—1]
[be—1]
> fi Z P({Xi—1 =m} N E_3) = fiP(E_,).
m=[a¢—1]

Iterating the above inequality, we get the desired inequality. O]
Lemma 4.6. If0<b<1,0>f>1/(1—0b+blogh), and bf > 1, then

P (X, > b f* for all t > 7| X, > T f7) > 1 = f(1+ gy ) e 00400080,

log( f)

for any nonnegative integer T. Note that the right hand side does not depend on T.

Proof. For any event E, we write P.(E) := P(E|X, > b7 f7) in this proof. Define

t

Ay={x>0f"}, Ci= (] A C_ﬂAk

k=7+1 k=141

Note that
P(A;) =1, P (X >bf forallt>7)=P/(C)= 1tlirn P.(CY).
—00

Using (18) with z — (bf)"!, we have
P(AJA1) = 1= f(bf) exp [~ F(bf) (1 = b+ blogh)] =: 1 —d.
By Lemma 4.5 we can write
P.(C) = lim Po(Cy) > H (1—dy)>1— Z dt>1—2dt
t=7+1 t=7+1

Since (¢! exp(—ac'™1));>1 is a decreasing sequence for a > 1 and ¢ > 1, we have

Z exp (—actfl) =e "4 Z exp (—act’l)
t=1 =2
—a < t—1 1 1 u
<e "+ lexp (—ac)dt = 1+ e I+—)e™ (19)
1 alogc log ¢
Plugging ¢ = bf and a = f(1 — b+ blogb) into (19), we have the desired result. O

Remark 4.2. If we restrict the condition of parameters in Lemma 4.6 to be bf > e and
0 <b<b.<1/2, where b, satisfies 1 — b, + b.logb. = 1/2, then we can use

P (X, > ' f! forallt > 7|X, > b f7) >1—2fe /2 (20)
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Lemma 4.7. If B> 1, f >0 >0, and x > 1, then

B
P(Xt < BZL’f|Xt_1 < x) > 1— ﬂe—rfB(logB—l)‘

Proof. Set X;_1 = m. If m = 0, the above inequality is trivially true. So we only consider
1 <m <z Let B':= Bxf/(m#) > B. Then, Remark 4.1 together with Lemma 4.3 gives

> mo k B/ —mbB'(log B —
P(X, > Baf|X,_1 =m) = P(X, > Bmb|X,_1 =m) < [Z | ( k!) <o (log 5'~1),
k=[B'm#@

where we have used e¥ < 1 for y > 0. Since xfB = m#B’, log B’ > log B, and y/(y — 1) is a
decreasing function of y > 1, we have

B

which is valid for any m < z. Now the proof is completed. ]

Remark 4.3. In case B > e? > 2, we can use
P(X, < Baf|X_1 <x)>1—2e". (21)
We next describe the distribution of W;, conditioned on =(t) = N.
Lemma 4.8. For any x > 0,
P(W; < z|=(t) = N) = (1 - 5G())" .

Proof. First fix a positive integer m and by W™ is denoted the largest of m independently
sampled fitnesses with convention W,” = 0. Then P(W,™ < z) = (1 — G(z))™. Let g, be the
probability that m mutants arise out of N. Then,

Il
WE

P(W, < z[=(t) = N) P(W™ < )gm = Y (1= G(2))"gm

=S 6 ())ama - Y = 1= 56w,
as claimed. n

Remark 4.4. In case X(t) < Z(t) <y, we will use the inequality
P(Wy < z[=(t) <y) > 1 - ByG(z), (22)

where we have used (1 —2)">1—mz for0 < z<1andm > 1. In case Z(t) > X(t) >y >0
we will use the inequality

P(W; > @ X(t) > y) > 1 — e @), (23)

where we have used e ¥* > (1 — 2)¥ for 0 < z < 1.
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5 Proof of Theorem 1

We first provide a heuristic argument for a more accurate estimate of W; than in Section 3. As
in Theorem 1 we assume

t
log X (t) ~ — log™ ().
«Q
Then, we approximate

On,1
log™ (X (1)) &~ log™ ™ () (—) .

Now using the mean-field type approximation g;(W;) ~ log™ (1/G(W,)) ~ log™ (X(t)), we
get an approximate W; by a solution z of the equation

fel (n—1) 1Og 4 on1
z*L(z) = gr(z) = log (1) - .
We can find an approximate solution of the above equation as

1/a (oot bn1/a
x = L(z)™ Y <10g(”_1) (t)) (ﬁ)

a
5n 1/04 —
n— 1/ 10 3 7 n— «@ 1/e
~ (1og" V)" (FE) ™ [2(ox )] = w0
where we have used (A2). By construction, we have
_ log ¢ !
91(un (1)) ~ log" =V (1) (Tg> ’ (24)

which will play an important role in proving Theorem 1. In the proof, no distinction between
MMM and FMM is necessary. For the proof, we begin with estimating G/(W;) using an inequal-
ity relating the iterated exponential function exp™ (z) and the iterated logarithm log!™ (z).

Lemma 5.1. For any positive integer n and for any positive x,
exp™ (x log™ (t)> > 17, (25)

as long as log™ (t) > 1.

Proof. For n = 1, the inequality is trivially valid as an equality. Now assume that the inequality
is satisfied for n = ¢. Consider ¢t with log“*" (¢) > 1, which gives log®” (t) > e > 1 and t > 1.
Abbreviate y := (log"¥ (¢))*! for > 0. Since log” (t) > e, we have y > ¢*~' > z. By
assumption, we have

exp!“+Y) <$ log!“+V (t)) = exp” <<log(é) (t)>x> = exp” <y log® (t)) >t >t

so that the claimed inequality is also valid for n = ¢ 4 1. Induction completes the proof. O
Lemma 5.2. Fix e such that 0 < € < 3a+8+\/§§+48a+64, and let €1 = m. Then there

is 7o (depending on n) such that, for all t > 19,

1—2¢

log G((1 — e1)un(t) > — tlog™ (1),

1+ 2¢

log G((1 + e1)un(t)) < — tlog™ (t).

12



Proof. First note that ¢ < 1/2 for any a > 0, 0 < ¢y < 1, and
(1—25)[1+a(1—5)1+g]:1+25, 42 o1 9 (26)

1+aei(1—¢)

By (24), there is 71 such that

0, 5 n— 0, On,1
L2 Jog 1) (1) (21)° < g (un(1)) < 52 1og™ D (1) (1224)™ (27)

for all ¢ > 7. Now we show that there is m such that, for all t > 7,

—

log Y (1422 115" (1)) < (1+22) log™ Y (1) (224)™"

log "V (122 t10g™ (1)) > (1 - 22) log""™) (1) (1=4)™" . (28)

—

For n = 1, this is obvious. For n > 2, existence of 7, follows from

lim m log("fl) (%tlog(") (t)) =1.

t—o00

By the mean value theorem, there is 4 such that 0 < ey < e; and

dg]

ar((1 % 21)un(1)) = () & exualt) |

(29)

=(1te+)un(t)

We do not make the t-dependence of €4 explicit, as in the following we will only use the
inequality 0 < e < &1. By (A4) with j =~ =1 and (7),

— I dlog gr()
= lim —=———~.
z—o0 gr(x) dx z—o0  dlogx

Hence there is x; such that, for all 2’ > x > x;, we have g;(2’) > g;(x) and

gr(x) _ dgs
a(l —¢) " d:z;

and

exp (—exp™ ) (14 €)gs(2))) < Gla) < exp (~exp™ D (1 - )gaw)) . (3)

Hence, if (1 — €1)u,(t) > x1, then we have

({14 20 ) = gn{u () + 1y (a1 - 2) 2]
> gl(un(t)) + 1 j_lgl a(l — 5)91((1 + 5+>Un(t))

> g1(un(t)) |1+ a(l —¢)

?

1+€1

where we have used (29), (30), 1/(1+¢e4) > 1/(1+¢1) and g;((1 + e )un(t)) > gr(un(t)); and

91((1 — e )ua(t))
gf((l - 61)Un(t)) S gI(“ﬂ(t>> - 51un(t)a(1 - ) (1 e ) (t)
< g91(un(t)) —era(l — £)gr((1 — er)un(t)), (32)

13



where we have used (29), (30), —1/(1—e_) < —1 and —gr((1 —e_)u,(t)) < —gr((1 —e1)un(t)).
We can rewrite (32) as g7((1 — e1)un(t)) < [1 4 ae1(1 — )] gr(un(t)). Therefore, there is 73
such that for all ¢ > 73 we have

(1= )gr((1+ e0)un() > (1 — )gr(un() [1 fo(l o2 }

1+ €1
€ log ¢ !
> (1—2¢) [1 +a(l - 5)1 +1 } log™ ™ (1) <_g)

&1 (6%

log t !
= (14 2¢)log™D (1) (£> > log™ Y (%tlog(") (t)> , (33)
(8%

and

(1+€)gr((1 = en)un(t)) < (1+)gr(ua(t)) [L+ aes(1 — )]

1+ 2¢ N log £\ "
log"™ ™V (¢) [ —==
1+ ag(l—¢) ©8 ®) a

log ) ot
< (1—2¢)log™D (1) (—g) < log™~Y (%tlog(”) (t)> , (34)

a
where we have used (26), (27), and (28). To sum up, there is 7y such that for all ¢ > 7,
log G((1 + £1)un(t)) < —E2¢10g® (1)
where we have used (31) and (33); and
log G((1 — e1)un (1)) > —Etlog™ (1),
where we have used (31) and (34). Now, the proof is completed. O

Lemma 5.3. Assume X (0) < 0o and Qo < co. Fize and ey as in Lemma 5.2 and let, fort > 0,
A, = {1og =(t) < B2+ m) log™ (¢ + m>} . By =W, < (1+e) up(t+m)},

where m s assumed large enough for the definition to make sense. We use the convention
log 0 = —oo throughout the paper. We define a sequence of events (Dy)i>o iteratively as

DOIA[)HE(), Dt:AtmEtﬂthl.

Let D :=(\,2 D¢. Then,

lim P(D)=1.

m—00
Proof. Since lim infy_,o u,(t) = oo and log™ (t) is an unbounded and increasing function, there
is 1 such that u,(m) > 1, (14¢&)mlog™ (m) > a(m+1), (14¢)mlog™ (m) > alog X (0) and
(14 e1)un(m) > Qo for all m > t;. Let

1+¢ 1+¢

H(z) := > (z+1)log™ (x4 1) —

zlog™ (x) —log (un(t)) — log(1 +&1)
z+1

log(™
— 27 Nog™ (2 + 1) — log™ (z)| + 50g—($)
e e

~log (s (log™ (2))) —log(1 + 1),

14



where o := /(1 + ¢). Since liminf, ,,, H(xz) = oo, there is t; such that H(x) > 2 for all
x > ty. By Lemma 5.2, we can choose t3 such that

1+ 2¢

log G((1 +&1)uy (7)) < — zlog™ (x), (35)

for all z > t3. From now on, we only consider large m such that m > t; := max{t,ts,t3}.
For convenience, we define 7 := ¢t + m. Let E} := {Q: < (1 +&1)un(m)}. Since Ey = Ejj and
Ei1 N E; = E; N E] even though E; can be a proper subset of E;, we have

t t
() E:=[)E (36)
k=0 k=0
We have, for £ > 1, that
P (AxlAr-1 N E} 1) > 1—2exp(—e™) = 1 — &,
where we have used (21) with f +— (1 +&1)up(16-1) > 1, 2 — €Xp(1+87'k 1 log™ (Tk—1)) > €™,
and B — ef1(-1) > ¢2 and the fact S, < Q;.

Observe that P(D;) = P(E;|A; N Dy—1)P(A¢|Di—1)P(D;—1). Using Lemma 4.5 and (36), we
have
P (Ag|Dyp-1) > 1 =&

Since W}, is purely determined by =Z(k), Ej is independent of Dy_; and, accordingly, we have
€
P(Ek|Ak N Dk_1> = P(Ek|Ak) Z 1-— ﬁexp <—a7’k IOg(n) (Tk)> =:1- Nk

where we have used (22) with alogy — (1 + &)7xlog™ (1),  — (1 4 &1)un(73,), and (35).
Therefore,

Hl—sk (L—m) = 1= (& +m). (37)
k=1 k=1

Note that lim, oo (& + 7x) = 0. Since limg o (& + nx)72 = 0, there is a constant ¢ that is
independent of m such that & +ny, < 7% < ck™2 for all k. Hence, the series in (37) converges
uniformly for all m >ty and, therefore, lim,, ., P(D) = 1, which completes the proof. O

Lemma 5.4 (Upper bound). If X(0) < co and Qy < 0o, then almost surely,
log X (%) < 1

limsup ————— < —, limsup <
t—oo  tlog (n) ()  « too Up(t)

Proof. Choose € and ¢; as in Lemma 5.2. Let
log X (¢ 1
C(e) = {hmsup og X (1) < +€},
t—o0 tlog( )(t) «
(t +m)log™ (t +m)
a

C(m,e) == {logX(t) <(1+¢) for all t}.

We use D in Lemma 5.3 with m to be the same meaning as in this lemma. Since D C é( ) C
C/(e) for any m > 0, Lemma 5.3 gives P(C(¢)) = 1. Defining £ = (,~, E; we get lim IED(E) 1,

because D C E. Therefore, e
. Wi .
P ( lim sup <1l4e¢ | > lim P(E)=1.
t—oo Un (t> m—ro0
Since ¢ is arbitrary, the proof is completed. n
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Definition (Initial condition for Lemma 5.6). Choose € as in Lemma 5.2. Let

€

— S e (= log™ (1)

b fr = exp (log(;ﬂ + log (oJW <10g(”) (l{:)))) : (38)

1

a = a (1 - g>_1, foi= (1= Bun(k), by =

where k is assumed sufficiently large in order for the definition to make sense. We also define

og™ (m
H(m,z) = %(x —m) + (z — m) log (ww(log(") <m))) ,
h(m,z) := H(m,x) — L= Exlog(”) (x),
7;(m) := exp™ ((1 + jeo) log(”) (m)) o — 8(16_ 5 < Z, (39)

where j = 1,2 and we assume log™ (m) > 1, wy(log™ (m)) > 0, and = > m. Note that
(1—¢/2)/(1+2e) >1—e. Since

1—c¢

(bmfmyrim exp <— xlog(") (@) _ eh(m,x)’

Q@
h(m,x) > 0 implies (b, fin)*~™ > exp (%xlog(") (a:))

We choose an integer ky as in Lemma 5.5. Once ky is fixed, we define an initial condition
for any integer tg > ko. In generation 0, there are tqg — kg + 1 different mutant types with
fitness Fy, = fi/(1 — B) (ko < k < ty) and the number M (0) of individuals with fitness Fj, is

M(0) = [f{27"] > (b fr)?*. We denote the number of nonmutated descendants of M (0) in
generation ¢ by M(t).

For convenience, we denote the largest fitness among mutants at generation k£ > 1 by Fj,,
and its nonmutated descendants at generation ¢ > k by My, (t). Note that Wy, = Fj4y, and
Ni(t) = My, (t) for k > 1. We set Fyyy, = 0 if there are no new mutants at generation k. If
Fitt, = 0, we write Mgy, (t) = 0 for all t. If Fiy, > 0, we set Myi4,(k) = 1. That is, even if
there are many mutants with the same largest fitness £}, which may frequently happen in the
MMM if discrete fitness values are allowed to be sampled, My, (t) only concerns descendants
of a single individual among them. Finally, we define

t+to

V(t) =Y M(t).

k=ko
Note that Y(t) < X(t) and equality holds for the FMM.

Lemma 5.5. For by, fr in (38) and for H, h, 71, 72 in (39), there is an integer ko, which is
larger than exp™ (1), such that for all m > kg

(Condition 1) 0 < b, < b, (1 = by, + by logby,) fon > 1, and by, frn > € (see Remark 4.2 for
the motivation of this condition);

(Condition 2) h(m,z) > 0 with any x satisfying 7 (m) <z < 7o(m).
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Proof. 1t is obvious that there is an integer k; such that (Condition 1) is satisfied for all
m > k. For any sequence (xm)mz[exp(m(m such that 7 (m) < z,, < m(m), we have

— _ (n) _
i inf aH(m,xy,) > 1—¢/2 lim inf (X, —m)log'™ (m) 1 e/2
m—oo g Jog™ () — 1+2e9 m—oo T log™ (m) 14 2e9

>1—¢, (40)

where we have used log™ (z,,,) < (1 4 2¢5)1log™ (m) by assumption, z,, > 71 (m) > m!*e for
m > exp™ (1) (Lemma 5.1), and wyy is a slowly varying function. Therefore, there is an integer
ko such that h(m,x) > 0 for all m > ko with any x satisfying 71 (m) < z < 75(m). Now we set
ko = max{[exp™ (1)], k1, k2} and the proof is completed. O

Remark 5.1. Inequality (40) is valid even if we relaz the lower bound of xz,, as long as
lim,, oo m/x, = 0. For example, replacing 7(m) by my/logm still gives h(m,x) > 0 for
sufficiently large m.

Lemma 5.6. We fiz € and 1 as in Lemma 5.2. We also use the initial conditions defined
above with tog > ko and define

1 B o0
E, = {logy(t) > Tg(t +t9) log™ (t + to)} , b= ﬂEt’
t=1

Joi= AW, > (1= e)un(t + 1)}, T =[]
t=1

Then,
lim P(F) = lim P(J)=1.

to—o0 to—o0

Proof. We define a sequence (my)s>o as

me = Lexp("_l) (ﬁ + log™ (mtg_ot()))J .

We first work out how large ¢y should be. Obviously, there exists ¢; such that ky < mg < ¢, for
all tg > t;1. Since
to OéH(mo,t(] + 1)

lim =0, lim
to—00 To(1my) to—oe (o + 1) log™ (o + 1)

=1>1-—¢,

there is t such that m(mg) > to + 1 and h(mg,to + 1) > 0 for all ty > t5. In fact, h(mg,x) >0
for all to+ 1 < x < m(my); see Remark 5.1. Since

log(") () log(”) (my)

= lim

—1,
to—o0 log(n) (mé—l) {—00 ]_Og(n) (mz_1>

there is t3 such that m(my_1) > 71(my) for all ¢y > t3 and for all £ > 1. By Lemma 5.2, there
is t4 such that

1—2¢
«

log G (1 — &1)un(t + o)) > — (t + to) log™ (t + o), (41)

for all ty > t4 and for all £ > 0. For later references, we define sequences (&;)s>0 and (7;)i>0 as

Ny 1= exp (—ﬁ exp (2(t + 1) log™ (t+ to))> ,
& = 2(1 — B)u,(my) exp (—%un(mg)) :
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Since log™ (z) is unbounded and increasing function for large z, there is 5 such that & log™ (o) >
« for all tg > t5 and all £ > 0. Therefore, we have 7, < exp (—fe"), for all ty > t5. This implies
that >, m is uniformly convergent for all ¢, and therefore,

t(}l_fgo Z e = Z hm ne = 0. (42)
Since 4ze™® < e7*/2 for x > 10, we have & < exp(—%un(mg)), for (1 — B)u,(mg) > 10. Since

1 (tog™ ) (2) e

lim = 07
w00 (1= Blun()
there is tg such that (1 — 8)u,(my) > 10 for any ¢ > 0 and

1-p

1/
U () > <log( )(m5)> lzgl/m’

for all tg > tg. Note that, under this assumption, we have & < exp (—61/ 0‘1), which shows that
> oo &e converges uniformly for all large ¢, and therefore,

i 36 =3 60 )
£=0 =0

In the following, we assume ¢y > max{ty, ta, t3, ty, 5, ts}.

Now we are ready for the proof. We first define two sequences (ay)s>o and (ug)s>o such that
ap =0, ag = 1 (my) — to for £ > 1, and uy = 75(my) — to for £ > 0. Note that a,yq < uy for all
¢ >0 and my <ty + ay. Notice also that for a, <t < apy1 < uy

1—-¢

(t +to — me) log(bm, fm,) > (t + to) log™ (¢ + o), (44)

which also implies Fj is an almost sure event. For t > 0, we define

At = {Mmg/ Z ( mélfmy)t—’—to me,}?
where ¢’ is (uniquely) determined by the condition ay <t < ap,;. Note that A; C E;. Define
to B [e%¢]
) {Fn > fu/(1=B)}, Co=AnJ, Cii=J,NANC, C:=()C.
m=mg t=1
Note that J and Ag are sure events and so is Cy. Observe that
P(Ct) = ]P)(Jt|At N thl)IED(AACt,l)P(Ct,l).

Since W, is solely determined by Z(t) and alogZ(t) > (1 — &)(t + to)log™ (t +t,) in the
event A; N Cy_1, we have P(J;|A; N Cy—1) > 1 — n, where we have used (23) with alogy —
(1 —&)(t +to)log™ (t +to),  — (1 — e1)uy(t) with (41). Therefore, we have

t A apy1—1
P(Cy) > (H 1—77¢)>HPZ, Pr= ][ P(AC-),
=1 =0 T=ay
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where we have used the fact that probability cannot be larger than 1.

Let us find the lower bound of P,. Assume a, < 7 < ayy1. Note that A, is independent of
Ji for ay < k < 7 (this is because my, < ay + ty) and of Ay for k < a, (this is because M,,(t)’s
for different m’s are mutually independent branching processes). Therefore,

(N A) )

k=ap

P(A,|C,_;) = P(AT

where J,,,_4, for my <ty should be interpreted as J. By simple algebra, we get

apy1—1 -1 art1—1
P, = H ]P)(AT ( m Ak) N ngto> = P( ﬂ AT ngt0>
k=ay

T=ay T=ay

=P (My, > (bng frng)ET07™ for all ap < k < agrq — 1 Ep, > f, /(1 — 3))
> P (M, > (byng frag) 707 for all k > 0|F, > frn, /(1= B)) > 1= &,
where we have used (20) with f — f,,,. Therefore,

P(Cy) > (H(l - m)) <H<1 —&)) >1=> =) &

T=1 =0

By (42) and (43), we have

lim P(C) = 1.
to—00
Since C' C E and C' C J, the proof is completed. n
Lemma 5.7 (Lower bound). Almost surely on survival,
log X (t 1
lminf 22850 S 1 e W sy
t=oe tlog™ (t) T « =00 Up(t)

In other words,
log X (t 1 4%
P liminng—() > =) =P (liminf —~ > 1) = P(A) = p,.
t—o0 tlog(”) ()  « 100 Uy (1)
Proof. Fix € and ¢; as in Lemma 5.2. For any 0 < &', Lemma 5.6 implies the existence of ¢
such that
1—
P (log V() > —e(t + to) log™ (t +to) for all t > 0) >1-¢,
a

P(W, > (1 —e&1)u,(t+1to) forallt >0) >1—¢".

Since W, as well as X () is unbounded on survival (Lemma 4.1), there should be 7 and k£ > 1
almost surely on survival such that W, > (1 —¢e1)u,(ty) and N > Y(0), where N is the number
of individual with fitness W, at generation 7 + k. Now couple X (¢ + 7 + k) with Y(¢), which
gives X (t+7+k) > Y(t) for all t > 0. We denote the event that has such 7 and k by D. Note
that P(D N2A) = ps by Lemma 4.1 and, obviously, P(D) > ps. Therefore,

log X (t 1—
ps > P (hm inf og X (1) > 6)
t—oo tlog™ (t) a

log X(1)  1-—
ZP(liminf og X(t) J1-¢
t—o0 tlog(”) (t) le%

1—
> P (log V() > ——S(t+ o) log™ (t + to) for all ¢ > 0) P(D) > (1 — £)ps,
(0%
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where we have used the Markov property. By the same token, we have

. W /
> —>1- > — .
ps > P (h{ggf () = 1 51) > (1 —€")ps
Since ¢’ and ¢ are arbitrary, the proof is completed. O

By Lemma 5.4 and Lemma 5.7, Theorem 1 is proved.

6 Proof of Theorem 2

This section presents two lemmas, which will prove Theorem 2. Needless to say, G is always of
type II throughout this section. For convenience, we define

tv, n =1,

x(t,n,v) = { exp(t”), n =2,
exp (t( log™ 2 (t) )_V), n >3,

—a a

. Glz,n,a) = 10g33<10g(”) (x)) :

with an appropriate domain. Again, the distinction between the MMM and the FMM does not
play any role in the proof of Theorem 2.

U(t,n,v,a) = x(t,n,v) <log(max{0’"’2}) (t))

Lemma 6.1 (Variation of Lemma 5.3). Assume X(0) < 0o and Qy < 00, fix e > 0 and let

(1+2)(1+a)/a, n=1, 1+e, n=1,
Vp =1 e+1/(14a), n=2 a,:=a/(l+a), n=2,
a/(1+¢)? n >3, a/(1+¢), n>3.

Then
lim P(logZ(t) < x(t +m,n,v,), logW, < U(t +m,n,v,,ay,) for allt) = 1.

m—r0o0

Proof. We first make a precise criterion as to the meaning of large m. Obviously, there is m,
such that x(m,n,v,) > log X(0) and U(m,n, vy, a,) > log Qo for all m > m;. Let H(x) :=
x(@x+1,n,v,) = x(z,n,v,) —U(x,n,v,,a,). By the mean value theorem, there is zg (x < z¢ <
x + 1) such that

9 n
X(l’ + 17”7 Vn) - X(xana l/n) = M
ox —
UnTg, n < 2,
= U(xg, N, Uy, ap) X ( evn n2 1
T 10(”_2)x> 1—-v — |, n>3
eriw)” (- lligiey) o2

which gives lim, ,,, H(x) = oo. Therefore, there is my such that H(z) > 2 for all > ma.
Let g = ¢/(1 4 ¢). By definition, there is mg such that log G(z) < —G(x,n,a/(1 + ¢&;)) for all
x > mg. Since (11 —ay)a > a1(1+¢€p), raar > as(l +¢p), and a > a, (1 +¢g) for n > 3, we have

lim G (exp (U(t,n,vp,a,)),n, /(14 £g))

t—00 X(t7 n? VTL)

= lim <10g(max{0’”72}) (t))
t—o00

a/(14¢o)
<10g(n71) (U(t, n, Vn, an))) ’ = 00.

—an
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Therefore, there is my4 such that G (exp (U(t,n, vy, an)),n, /(1 +&¢)) > 2x(t,n,v,) and, ac-
cordingly,

G (exp (U(t,n, vy, ay))) < e~ 2XEnw0), (45)

for all ¢ > max{mg, ms}. We set my = max{my, ms, ms, mys} and we assume m > my in what
follows. For given m, we define 7, :=t + m and

Ey = {logW, < U(m,n,vp,a,)}, E,:={logQ; <U(,n,Vn,an)},

A= {log=(t) < x(mm, )}, A=) A

We can repeat (36) for E; and Ej.

t t
() E: =) Ei- (46)
k=0 k=0
We also define, for t > 1, Dy = AgNEy, Dy = A;NE,ND;_1,and D = ﬂzozl D;.. Observe that
P(D;) = P(E:|A: N Dy—1)P(A¢|Dy—1)P(D;—1). Using Lemma 4.5 and (46), we have
P(AR|Dy1) = P(Ag| A1 N Ej_y) > 1 = 2exp (—eV(eovmomanixTeimin)) —. 1 — ¢,

where we have used (21) with f s eV(-vmvnan) gy eX(Te1mvn) and B s eHmk-1) > ¢2
Since W, is purely determined by =Z(¢), we have

P(E| Ay N Dy—y) = P(EA) > 1 — Bexp (—x(Th, s U, an)) = 1 — g,
where we have used (22) with y + eX(em¥n) g U(menvnan) and (45). Therefore, we have
> ] - &)@ —m) = 1= (& +m). (47)
k=1 k=1

Since limy 00 (& + k)7 = 0 and 7, 2 < k72, the series in (47) converges uniformly for large m.
Since lim,, 00 (& + %) = 0 for all k, we have lim,,_,o, P(D) = 1, which completes the proof. [

Definition (Initial condition for Lemma 6.3). Fix 0 <& < 1/a and let

(14 a)/[a(l+2¢)], n=1, 1+a)/0l+a+ae), n=1,
vp = 1/[(14+a)(1+2)], n=2, an:=<a/(l+a), n=2,
a(l+ 3e), n >3, a(l+ 2¢), n >3,

which should not be confused with v,, and a,, defined in Lemma 6.1. Note that v; > a; because
e < 1/a. Define

fr =0 —=pB)exp (U(k,n,vn,a,)), by:= 1%eXp <— 2 U(k,n, Vn,an)) )

1+e¢
U(k‘,n,vn,an))

o - (L2

Once ky is determined as in Lemma 6.2, we define the initial condition with an integer ¢, larger

than kg in exactly the same way as in the previous section. We use My (t), Fy, Fyi+,, and V()
with an appropriate modification of the meaning.
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Lemma 6.2. For ¢, v,, a,, by, fr defined above there is an integer ko, which is larger than
exp™ (0), such that for all m > ko we have

(Condition 1) 0 < b, < b, (1 = by, + by logby,) frn > 1, and by, frr, > €
(Condition 2) G (exp(U(m,n,vy,a,))) > exp (—ix(m,n,vy)).

Proof. Obviously, there is an integer k; that satisfies (Condition 1) for all m > ky. By
definition, we have logG(z) > —G(z,n,a(l + ¢)) for all sufficiently large x. Since (v, —
ar)a(l+e¢) < ay, vea(l +¢) < ag, and a, > a(l +¢) for n > 3, we have

G(exp(U(y,n, Vn, an)))

lim
y—oo X(y,n, vn)
- max{on-21) (1) """ (101 ol
— 1im (log®™ =2 (4)) " (10g ™) (U(y, m. vy a))) =0,
Yy—00
which guarantees the existence of an integer ks such that
1
IOgG(exp(U(y7n7Vman))) > _EX(?/’na Vn) (48)

for all y > ko. Now we set ko := max{ky, k2 }, which completes the proof. ]

Lemma 6.3 (Variation of Lemma 5.6). For the initial conditions defined above with ty > ko,
we define two events

E, = {log Y(t) = x(t +to,n,v)}, E:=[E,
t=1

Ji = {logW, > U(t + to,n,vp,ar)}, J:i= ﬂ i
t=1

Then,
m P(E) = lim P(J) =1
Proof. Let
[3(t+10)], n =1,
my =4 [t +to — 2+ 1), n=2,

[t +to — 3(log"™ P (t+t0))™" |, n>3.

Assume t is so large that my > ko and (my):>0 is an non-dereasing sequence of t. Since 1 > ay,
1> 15 + as, and v,, > a, for n > 3, we have

t t n . t taan
lim X(t+to,n, vp) X(t +to,n, vp)

=1 = 0.
to—oo (t + to — my)U(my, n, vy, ay) d (t+to — my)U(my, n, vy, ay)

So there is t; such that (t +to — me)U(me, n, v, an) > (1 +¢€)x(t + to, n, v,,) for all ty > ¢, and
t > 0. In the following, we assume ty > t;. Define

to
Ar = { My (8) 2 (b fr) ™}, T o= () {Fe 2 i/ (1= B)},
k=myg
Co=ANJ, Ci=ANJNC, C=[()C.

t=1

22



Note that .J and Ay are sure events (by the initial condition) and so is Cy. Also note that A, C
E;. Observe that P(Cy) = P (J;|]A; N Ci_1) P (A|Ci_1) P(Cy_1). Since W, is solely determined
by Z(t) and log Z(t) > x(t + to, n,v;,) on the event A, N Cy_1, we have

P(JA N1 Ciot) 2 1 — exp (—BetHomel2) i1y,

where we have used (23) with y — exp(x(t + to,n,v)), © — exp(U(mys, n, vy, ay)), (48), and
X(myg, n,v,) < x(t + to,n,v,). Therefore, we have

P(C) > (ﬁ 1—777)HIP’A 1C_1)

Note that A, is independent of J; for m, < k < 7 and of Ay for k < a, (this is because
M,,(t)’s for different m’s are mutually independent branching processes). Since my1 —m; < 1,
all Fj, with k > mg should affect a certain A, at least once. Therefore,

3

ﬁ]P)(AT\CT_l) > T] B (M, (k) = (bun, fin )07 for all k > 0|F, > frn, /(1 — 5))

T=1

,’:]8

(1_57' >1_Z€T7

T=1
where we have used (20) with f — f,,.. Therefore,

t

P(C)>1-> (n:+&). (49)

=1

Since limy o0 (& + 11 ) (k +t9)? = 0, there is a constant ¢ that is independent of ¢y such that
&+ < c(k+ty)"? < ck™? for all k. Therefore, the series in (49) converges uniformly. Since
limy, 00 (& + M) = 0 for any k, we have limy, ,., P(C') = 1. Since C C E and C' C J, we get
the desired result. O

By the same logic as in Lemma 5.4 and Lemma 5.7, Lemma 6.1 and Lemma 6.3 now prove
Theorem 2.

7 The empirical fitness distribution

In this section, we introduce two variants of the FMM that (completely or partially) neglect
fluctuations in the original model with the type I tail function. These variants will be called
the deterministic FMM (DFMM) and semi-deterministic FMM (SFMM) and will be defined in
Section 7.2 and Section 7.3, respectively. As we will see presently, neglecting some fluctuations
will facilitate rigorous proofs for the limit behaviour of the EFD.

To explain the motivation of introducing the DFMM and SFMM, we begin by finding in
Lemma 7.3 tighter bounds for &; of the Galton-Watson process, which show that the fluctua-
tions of Ng(t) become smaller and smaller over time.
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7.1 Fluctuations of Ni(t) and W,

Lemma 7.1. If B>1,0>0, and 1 <z, < x5 — 1, then

B
P(Xt S Bx20|:v1 S Xt—l S fL’Q) Z 1-— ﬁe—mle(BlogB—B—&—l)‘

Proof. Let m > xy and B’ = Bxs/m > B. By Lemma 4.3 together with Remark 4.1, we have

P(Xt > BI2¢9|X1§_1 = m) = P(Xt > B/m9|Xt_1 = m)
B’ _—mO(B'log B'—B'+1 B _—m0(Blog B—B+1
< Le (B'log ) < Le (Blog )’

where we have used the fact that y/(y — 1) and y(1 — logy) are decreasing functions in the
region y > 1. Since m > x1, we have the desired result. O]

Lemma 7.2. [f1<B<%, 0<b<l1l,(1—=b+blogh)d>1, and 1 <z <z9—1, then

B
P(bz10 < X, < Baoflx; < Xy <x9) > 11— x19e_x19(1_b)2/2 _ = e mb(B-1)?/3,

B-1
Proof. Using Lemma 4.4 with f = 6 and Lemma 7.1, we have
B
P(b:ﬁ@ < Xt < BSL’29|I1 < thl < .1’2) >1— $19€7m10(17b+b10gb) o ﬁ67w19(1fB+BlogB).
l-2)? 0<z<l1
Since 1 — z + xlogx > f( x)z, TS the proof is completed. O
s(r—1)%, 1<x<3/2,

Lemma 7.3. Fiz 0 < £ < 1 and abbreviate ¢ := (1 —€)/2. Let a, := §~1729/2(1 — =) and

l—a 0°—1 !
b, = t -1 —efct7(1725)/2 b =1 — a,.
' I —a; 1 —a; ’ 1!_[1 F @
1+a 0c—1 i
B, — t 1+ efct7(172€)/27 B.=1+a ’
Tl a, I+a; kl_[l " !

where 0 is assumed so large that for all t > 1

3
O<a; <1, 1<B< > ot > ect—(l—2a)/2’

(=02 1 (-a)1-6°?_1 Bll+a.)

- z <1 50

2(1 —a;q) — 4 314 ar—q) — 4’ fc—1 - (50)

02& 025 1 12 025

V) < s t _lpen) ) o 24 _Y
4Hexp( 4>_exp< 5), Hexp< 49 )_WQtQQGXp( 4)
Then,
X 02&
P (’0—; — 1‘ < 2070212 for qll t) >1—exp (—?> ) (51)
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Proof. Let Ay = {(1 —ay)f" < X < (14 a)0'} and A := 2, 4. Abbreviating z; =
(1 —a;_1)0" " and zy := (1 + a;_1)0""!, we can write

]P)<At’At—1) = ]P)<bt$10 <A < Btﬂf29|ﬂf1 <X < 332) .

By Lemma 7.2, we have

1 t _ (1 — 8_6)2 e(t+1)
]P)(At|At,1) Z 1 (1 G/tfl)e exp 2(1 a )9
- -1

Bi(14ai-1) o (1—2¢) (I —a)(1—07°)
Tt e €)/2 _ 95—:(t+1)
e 1 P 31+ ar1)

>1—26"exp (—;195(““1)) ,

where we have used (50). Using the last condition of (50), we have

12 0%\ = 1 6%
ZHtexp( t“)) Sﬁeexp( )Zt—g—%exp< 4)

t=1

Hence,

b 95(t+1) 028 025

t=1

where we have used Lemma 4.5. Since 1 — 6~ < 2 and, therefore, a;, < 20~(1729)/2 the
probability in (51) is larger than P(A) and the proof is completed. O

Definition. By 6y(¢) we denote the infimum over all # that satisfy (50).

Remark 7.1. If we are given a weaker condition in Lemma 7.3 such that there are x and y

such that x > 0 >y > 0y(g), then we have
y2€
S | y<0<$)21—exp<—?>.

X,
“(
Lemma 7.4. For a discrete-time stochastic process Z; and a nonzero function f(t), define

o < 20722 for all t
. Zy, _ }
J =< lim =1 Dy =< |——-1| <27},
{HOO f(t) } g {‘f(k‘)
O = O

Then, O = J and

for any positive integer m.

Proof. First note that O,,; C O, 41 C O, and O C Oy C O,,. Consider any outcome
w € J and fix m. Under w, for any 0 < &’ < 27™ there is ko such that |Z/f(k) —1] <& <27™
for all k£ > kg, which implies w € O,,. Since m is arbitrary, we have J C O.

Now consider w’ ¢ J. Then under w’ there is ¢’ > 0 such that |Z/f(k)—1| > £ for infinitely
many k’s. Hence, w’ cannot be an outcome in O,, if 27 < &’. Hence, w’ ¢ O and, accordingly,
O C J. Even if J is empty, the proof of O C J is still applicable and the rest of the statement
is trivially valid.

Since O C Oy, and P(O,,) = lim,_,, P(O,, ;) for any m, the proof is completed. O
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Lemma 7.5. If G is of the type I withn =1 or withn =2 and o < 1, then let
J::{limit)zl}. (52)

t—o00 un(t

If G is of the type II, then let

form=1,

forn =2, and

forn > 3. For the type II tail function or for the type I tail function withn =1, fiz an arbitrary
e satisfying 0 < € < 1/2. For the type I tail function with n = 2 and o < 1, fiz an arbitrary ¢
satisfying o < 2e < 1. Abbreviate 0y, := (1 — )W}, and let

N [ Ne(t) —(1-2¢)/2 ~ =
Ch ::ﬂ{‘ prts —1‘32% , E. ::an, E::UET,
t==k k k=1 T=1

where we assume Ni(t)/0L" =1 and 6,;(1_26)/2 = o0 if Wy =0. Then P(E|J) = 1.
Proof. Let U(x,m) := (1 —27™)u,(x) for the type I tail function and

U(x,m) := exp (m(l_T"L)/O‘) ,
Ulz,m) := exp® <x<1—2*m>/<1+a>> 7

U(z,m) := exp® (x exp (—a(l +27™) log" ™V (SL‘))) ,

for the type II tail function with n = 1, n = 2, and n > 3, respectively. In the above definition,
x is assumed sufficiently large that U(z,m) is well defined. With the fixed ¢, for any positive

m there is 79(m) such that
a-p=, . . I
—~ "7 Ut €l <
exp( 5 U(t,m) ST (53)

Dm,k = {
for the type I tail function and

alog® (W)
Dpp =1 |——— 1
ok { log k

for all t > m9(m). Let

1 (3)
D, = (1 +a)log™ (Wy)
’ log k

<o),
1 log® (W)
Dppi=3 | ———F——log| ———— | +1
* { alog™ Y (k) & ( log k
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for the type II tail function with n =1, n = 2, and n > 3, respectively. Let
e 1S Ne®)
Cy = U {‘ gk

t=k k

00 oo
Om,T = ﬂ Dm,k; Om = U Om,Ty
k=1 =1

- 1‘ > 29,;“‘28)/2} . Es=|
k=1

where 7 is assumed large enough such that u,(7), log 7, and log" " () are well defined. Note
that, for all sufficiently large 7, E. C E.;; C E. Now, consider P(E¢ N O,, ;) for m > 1. By
the sub-additivity of the probability measure, we have

k=1 k=1 k=1

P(ESNO,,,) =P < U @in om,T)> <Y P(CENOpmy) <Y P(CiN Dyy),

where we have used O,, ; C D,,, for any & > 7. Now fix an integer m > 1 and consider large
enough 7 such that 7 > 79(m) as in (53) and (1 — B)U(k,m) > 6y(e) for all k& > 7. Since
P(Cs N Dyi) <P(C| D) =1 —P(Cy|Dpi), Remark 7.1 with y — (1 — B)U(k, m) gives

1
IP) . Dm T < ?
(C’k:+7'ﬂ K+ ) = (k?+T)(k?+T+1)

for all k£ > 0, where we have used (53). Therefore, we have

. . R = N 1
lim P(E; N Opr) < lim §P(CT+k N Dpprig) < lim = = 0. (54)

T—00 T

Since P(O,, ) < ps for all sufficiently large 7, P(.J) = p,, and P(E. N O,, ) = P(O,, ;) —P(ESN
Om.r), Lemma 7.4 gives

lim P(E; N Oy,,) = lim P(O,, ;) = ps. (55)

T—00 T—00

Since E; C E and O, C O, we have p; > P(ENO,,) > lim, . P(E;NO,, ) = ps, for all m.
Therefore, P(E|J)P(J) = P(ENJ) = limy, 00 P(E N O,,) = ps. Since P(J) = ps, the proof is
completed. n

Remark 7.2. In the proof, (53) plays the decisive role. If G is of type I with n > 3 or with
n =2 and a > 1, (53) is not applicable. Within the tools we are equipped with, we are not
aware of a similar result to Lemma 7.5 for fast decaying tail functions.

Remark 7.3. We can rewrite Lemma 7.5 as follows. For any type II tail function and for a
type I tail function withn =1 or withn =2 and a < 1, for any € >0

lim P | ———=—1|<¢ forall s >0 and for all k > 7 | = ps.
oo (‘(1 — B Wy

Remark 7.4. If G is of the Fréchet type in [1], then setting

J = {lim M = V(a)}

t—o00 t
in Lemma 7.5 gives P(E|J) = 1.
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The following two lemmas, which will not be directly used later, are for explaining at
what point the proof of Theorem 3 becomes difficult and also for providing a more compelling
rationale of introducing DFMM and SFMM.

Lemma 7.6. For the FMM, define two random sequences (n;) and (&) as
X(t) = 1=BE(M) + =, (1-P)E) = X(0) +&X ()"
In case X (t) = Z(t) = 0, we define & = n, = 0. Then almost surely
tllglo = tlggo & =0

Proof. Let
A= {|(L=B)E(t) - X(t)| < X(1)**}, Bi:=()A B:= U B,
Co={1X(t)— (1-B)=(t)] < 11 - B)*PEW)??}, D,:= ﬂ Cy, D:= U D,

Eo={(1-B)E®) > (t+1)%t+2)°%}, ﬂEk, J—UJt

By Theorems 1 and 2, we have P(J) = p,. For positive z, let y;(z) and y2(z) be the (unique)
positive solution of the equations z = y; + y;’* and z = y, — 5/, respectively. Using y; and ¥,
we write

AN E = {y (1= B)E(1) < X(t) < w2 (1 = A=)} N Er.

Note that if z > 2 we have y; < z — 22/3/3 < 2 + 22/3/3 < y,. Hence, C; N E, C A, N E; and,
accordingly, D; N J; C By N J;. By Chebyshev’s inequality we have

) s =(+)~1/3
P(Ci|=(t) 21— 9W~(t) 7
which gives
96
P(CYE) < ——m———. 26
For t > 7, we have
P(D§ N J,) P(CENJ) <) PCENE) <Y P(CSIE,) < ,

where used the definition of D, for the first inequality, J, C Ej for the second inequality,
P(E)) < 1 for the third inequality, and (56) for the last inequality. Therefore, for any 7, we
have P(D° N J;) = limy,0o P(D{ N J;) = 0 and, accordingly, P(DNJ) =P(BNJ) = ps. As
2?3 = 34 3=1/12 and X (t) diverges almost surely on survival, the proof is completed. O

Remark 7.5. Lemma 7.6 is applicable even if the support of pu is bounded because Z(t) grows
at least exponentially on survival. Therefore, regardless of the type of G we have almost surely
on survival X (t) ~ (1 — B)Z(t) and the relative error of the approvimation is at most Z(t)~*/*,
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Definition (for Lemma 7.7). We define positive sequences (a;);>1 and (y;)i>1 as

1 1 log a;
a = — :
Y log(t+2)  log(t+3) v

= loall - 5)

Note that a; is monotonically decreasing with 1/a; ~ t(logt)? and y; is monotonically increasing.
For Y > y;, we define

WI(Y,t) := inf {x >0:1—[1-BG(x)" < at} ,
Wi(Y,t) :=sup {x >0:[1—BG)] < at} —¢,

where ¢ is an arbitrary small positive number. Since a; < 3, we have Wi(Y,t) > W,(Y,t). For
Y <y, we define Wi(Y,t) = W;(Y,t) = 0.

Remark 7.6. Since G(x) is a right-continuous-left-limit function, the purpose of introducing

e is to guarantee (1 — BGW,))" < a,. Without e, (1 — BGW,))" may be larger than ay. In
the case that G(x) is a strictly decreasing continuous function, we rather define, for'Y > y,,

1-pG (W1(Y, t)) = (1 _ at)l/Y’
1 —BG (WY, 1)) = (at)l/Y‘

Lemma 7.7. For the type I tail function, define

For the type II tail function, define

2 (=
J:{mn§iﬁﬁﬁz1+l}
t—00 logt «

form =1,

3) (=
J =< lim log™™ (=(2)) = ! )
t—o00 logt 1+ o

forn =2, and

forn > 3. We have proved P(J) = ps. Let
Ay = {W(E®), 1) < W SWIEW), 1)}, Bi=()A, B:=|]JB.
k=t t=1

Then, P(BNJ) = ps.
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Proof. Let Cy := {Z(t) > y;}, Dy := (e, Ck, and D := | J22, D,. Since J C D, it is enough
to prove P(B N D) = pg, because P(BNJ) =P(BND)—-P(BN(D\J)) and P(D \ J) =
For any integer Y > y;, we have
B(ASE(E) = Y) = B(W; < WY) + 1 — B(W, < WiIY)
= (1= BGW)) +1—(1—BGMW))" < 24,

where we have used Lemma 4.8. Accordingly, P(A¢|C}) < 2a;. If t > 7, then we have

o)

P(BS N D,) Z]P’ (A, N D;) Z (AN Cy) < ZIP’A;le Z2ak logt+2)

k=t
Therefore, for any 7, we have P(B°N D, ) = lim;_,o. P(Bf N D,;) = 0 and so P(B°N D) = 0 and
the proof is completed. O

Remark 7.7. Assume G is a strictly decreasing continuous function. Let wo(Y,t) and wi(Y, 1)
be the solution of

—log G(wp) = logY + log B + log® <ait> '

For sufficiently large t and Y, we have 1 — (1 —a,)"Y > a,/(2Y) and 1 — a’" < —(log a)/Y,
which gives G(wy) < GOM) < GWs) < G(wy). Since G is a decreasing function, we have
wy < Wy < W, < wy. Hence, even if we define A; by the condition wy < W, < wy with
Y =Z(t), Lemma 7.7 remains valid.

Now consider G(x) = exp(—z®), which entails W ~ tlogt. Then, we have
log(28/a,)]"*
log =(t) ’

1/«
log 5 + log(z) (1/ay) /
log =(%) '

w, = [log Z(t)]V* {1 +

= [logZ2()]Y* |1+

We define a random sequence (by)y>1 by Wy = [log X ()] exp(by/t). Then, the above discussion
together with Lemma 7.6 shows that, almost surely on survival,

0< hm 1nf by < limsupb; < 1.

t—o00

Writing Wy = uy(t)e® we see from Theorem 1 that, almost surely on survival, tlim a = 0.
— 00

Hence,
log X (t) = ui () exp (e, — %), W, = uy(t)e. (57)
Unfortunately, (57) does not give an accurate estimate of X (t), because

X(t)exp(—uq(t)*) > exp (aul(t)act _ aul(t)a%t)

and it is unclear whether the right hand side will diverge or not. Since X (t) rather than log X (t)
is necessary to study the EFD and we do not have a tool to tame ¢; and by, (57) is too coarse
to give a proof for Theorem 3 even for this special G. So we are forced to introduce simplified
models, the DFMM and the SFMM, to prove variants of Theorem 3.
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7.2 Deterministic FMM and its EFD

Lemma 7.5 shows that if G is of type I with n = 1 or with n = 2 and a < 1 then almost surely

on survival
lim L — lim —Nk(k + 5)
t—00 Uy, (1) koo (1—p5)sWg
for any nonnegative integer s. Hence, setting Wy, = u, (k) and Ni(t) = (1 — 8)"*u, (k)" for
all large k and t > k gives a good approximation of the models on survival. This approxima-

tion is especially convenient for the FMM. In this context, we are motivated to introduce the
deterministic FMM as follows.

Definition of the DFMM. At each generation k£ > 0 a new mutant with fitness W}, = w,, (k)
appears. In case u,(k) is ill defined, we set W), = 1/(1 — ). The number of non-mutated
descendants of W), grows deterministically as

NP () :== (1 - B3) ! Wi*. (58)

=1,

where we neglect not only stochasticity but also the error due to the discreteness of Ni(t).
Note that in the DFMM only type I tail functions are under consideration and we make no
restriction on n and a.

Notice that we added the superscript D in NP to discern them from their stochastic coun-
terparts. Since no fluctuation is present, the limit behavior of the EFD for the DFMM becomes
a problem of calculus. In what follows, we will find a limit theorem of the EFD for the DFMM.
To this end, we begin with the following elementary lemma.

Lemma 7.8. Assume f is a positive continuous function that has a unique local mazimum at
ze in a domain [a — 1,b + 1], where a,b are integers and xz. need not be an integer. That is,
fl)< fly) fa—1<z<y<z.and f(z)> fly) ifz. <z <y<b+1. Assumea <z, <b.
Let

Then, for any a < x <b,
ro) - [ ] <15

Proof. Define f_(z) := f(|x]) and fi(x) = f([x]). Then, for a <z <,

lz]+1 )
Fa) = [ = [ rdy

Note that f_(z) < f(x) < fi(x) if @ < |z.] and f_(z) > f(z) > fi(z) if 2 > [z.]. We
abbreviate m. := |x.] and m := |z]. If m < m,, then

Fa)= [ iz [ s [ o= [ i

and
m+1 T m+1
Fa) = [ rwas [ wirs [T 5w,
which gives

ro - [ 1] <216
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For m = m,, we use

/aa1 fy)dy + /x fy)dy — /;1 fly)dy < F(m —1) < /;f(y)dy - /x fy)dy

m

and F(z) = F(m — 1)+ f(m), to get |F(z) — [” f(y)dy| < 4f(z.). If m > m., we consider

m m—+1 m
Fa) - Fl) = 3 f(k) = / )y = F(me+ 1) + / £ (9)dy.

me+1 me+1

Tc

F(z) = F(ze) = [, f(y)dy

and, therefore, < 3f(z.). Since

Fo) - [ ] < |Fe) - [7 ) |Fe - P~ [ i) <@,
we have the desired result for any a < x < b. O
Definition. We define
(1= B)un(2))™",  h(w,t) :=log H(x,1),
(1= pBww <log(”71) (.CL')) ,

H(z,t):

wy(z) :

L) = (1! (%)jlogw (0), Oyfa) = (1)t (y%)jlogww@)

)

y=log" V) (x)

where x < t and x is assumed large enough so that the above definition makes sense. Note that
(1 — Bup(z) = (log" Y (2))ew, (x) and NP(t) = H(k,t). Also note that

d d
%logwl(x) = Ly () (x), %Q](l’) = —L1(2)Qj41(x).

We assume lim,_,, ©2;(2) = 0 for any integer j > 1; see (A4).
Lemma 7.9. There are xg and ty such that

2 3 4
O°h(z,t) <0 O°h(z,t) 0 O*h(z,t)

Ox? T 913 e Oxt <0, (59)
forall x > xg— 1 and for all t > ty > xqg — 1 with x < t.
Proof. First observe that
n—1 -1
i (i)
k=0
-1
G=D'a@) _ G=D' (77100 Liw)
L ~ - = - 1 ~ — 60
]<x> .I'j_l 2 IH Og (SC) 3 LJ+1<I) j7 ( )



where we use the convention szl := 1. We define

2
1(,0) 1= 1+ afu(a) + @i () + % Flaramen (1 -1) - aftow) .
Lo O L3 0
balint) = a(o ) = S galat) = dalant) - 202

We write down the derivatives

oh 1 N
9 o log( ) (z) —logwi(z) + (t — z) L1 () (a + Ql($)> 92 —a[@(l’)%(fcyt);
Ph ot 0*h t
G 5L3($)¢2($7t)7 I
As, by (60), ¢;(z,t) is positive for all sufficiently large x and ¢ existence of zy and ¢, follows. [

Remark 7.8. We fiz such xy and ty in the following and treat xo as the initial generation and
we consider only t > ty.

Lemma 7.10. Let z.(t) be the location of the mazimum of h(x,t) for given t and let

1 &3h
) dt::_a

_%h 0%h
3! Oz3

T=x,

Then,

tH e (62)

log

. " 0™ 0e™ (4) 1 2
iy~ % T 102® (1) ~ log(t) ;e (®) 11 (log(k) <t>) ' (63)

ax at?
k=1 ¢ 3

Proof. From (61) and (59), we have

0= —é log(n) (xc) - log wl(xc) + (t - $C)L1($C) (% + Ql(xc)) ?

for given t. Obviously, the solution of the equation diverges with ¢, so . satisfies

1
t~ og —xcnlog k) () -
Therefore,
g ze) g
Considering ¢;(z.) ~ 1 and using ( 0), we get the desired result. O

Remark 7.9. In the following, ty is further assumed so large that x. > xq for all t > 1.

Lemma 7.11.

h(z,t) — h(ze,t)| < %(m —z,)? (1 + - xc|) .
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Proof. By (59), we have

o il — 2 S B 8) — ht) < (o )

for zo < z < z. and

—THa— 2’ + di(w — )" 2 he,t) = hlae,t) = = (0 — x.)? (64)
for x > x., and, therefore, we get the desired result. O

Lemma 7.12. We define

(1) = SONP(@H), B(fi1) = —— 3 NP(OO(F — un(k)),

= Xt &=,
, . . . 1/2
SP = yop> un(K)NP(1), 0P = <%k:zzo(un(k) — SPY2NL (t)> . (65)

where we only consider t > ty. Then,

SP ~u,(t), op ~s,(t), lim ®(v,(t) + 5,()y,t) = hm ®(SP + 0Py, t) = Y(y),

t—o00

where

0a(t) = o~/ (log" D (t))l/ L (<log("_1) (t))l/ “) , (66)
n—1 —1/2
5, (1) == 71;(07’? (g log®) (t)) . (67)

Proof. First note that (63) gives, for any 0 < & < 1,

2d; _
lim 2%, (1 /2

t—o00 K't

=0,

If |z — x| <k (1 2 in Lemma 7.11 for some 0 < £ < 1 and ¢ is sufficiently large that
2y, 3)/2/Ii < 1 then |h(x,t) — h(x.,t)| < k5, which approaches zero as t goes to infinity;

see (63). Therefore, h(m,t) ~ h(z,,t), as t — oo for |m — x| < K, ~0792 which gives

e TP B
for any £ > 0. In other words, for any £ > 0 there is ¢, such that X (¢) > H (., t)x, [0 for
all t > ty, which, along with Lemma 7.8, gives
lim | ®(u, (2), 1) — — /ZH( Byl = 0 (68)
1 Unp\Z), - = Yy, Yyl =V,
t—00 X(t) 0

where z should be regarded as a certain monotonically increasing function of ¢ with o < 2z < t.
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Now consider the other case. Fix 0 < ¢ < 1 and define x4 = x, &+ Ii;(1+€)/2 and also

2y =z & 26, T2 By (59), we always have h(z,t) < h(zs,t) + Eu(z — 22), where

Oh

b=

- —é log™ () — logw (z+) + (t — x+) L (z) (é + Ql(xi)) :

T=x4

(1+€)/2/

Since limy_, o K, x. = 0, Taylor’s theorem gives

0?h
§x ~ £ <6m2

> e AN R T PV

Now consider

L) = - H(y,t) dy < / _eh(y,t)fh(:v_,t)dy
o

X0 H('r07 t)
</ 5 (y—z— dy ~ K, —(1 6)/2€Xp (_Ht—a)7
t (y:t)—h(z+.t)
h(y,t)—h(z4,t d
H (2ort / Y
< / e “)dy ~ K, —(1-¢)/2 exp (—/@'t’g) , (69)
Z4

where we have used H(z,t) < H(z.,t). Since X(t) > H(z.,t) for all sufficiently large ¢ and
lim [;(t) = lim Ir(¢) = 0, (68) yields, for any € > 0,

t—o0 t—o0

0, <z, — —(1+5)/2,

1, z2>2x.+ K St/

lim @ (u,(2),t) = {

t—o00

—(

Hence, it is enough to consider ®(u,(2),t) for |z, — z| < K, /2 for a certain positive e.

Abbreviate z := z. + y/\/ry and assume |y| < Ky /® (in a sense, we have set ¢ = 1/4). By
Taylor’s theorem, there is yo such that |yo| < |y| and

h(t) = h(zet) — Sy +Rt(c Yo )y Ril) = - Ly(@)(a. ).

2 NG 6a
Defining
r(t) = exp (p{ R, (x " yf) Pyl < /}) .
t
we have
H(z,t) Yy
= 70
ey exp( 2) (70)

where A ~, B is a shorthand notation for (1 —¢)B < A < (1+¢)B. Then,

# H(l’,t) -1/2 4 ZEQ
/ Hiae, )™ =0 1 /_,@,/sexp ) (71)
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where k; 172 is the Jacobian of the change of variables. Since R; ~ d; ~ k;/(3z.) and, accord-
ingly, lim;_,, €1(t) = 0, we have

_ ~1/8
X t / Iit o
lim M = lim e Py = / e dy = /o, (72)
t—o0 [—I(xc7 t) t—oo J_-1/8 oo
which, together with (68), gives

Jim @ (uy (ze +y/v/ki) ) = T(y). (73)

To complete the proof, we have to show

. vy T D D
tlf?oq) (un (m + \//-Tt> ,t) = }5& (S, + 0,7y, 1),

for |y| < K, T8 Let S} = u,(z.) and let y. be a function of ¢ implicitly defined as the solution
of the equation
8h2(x t) (1) 8h(a: If)
o2\ L,t) = Ly, < QW (4, ) SUASILZ) B
or |, 1(e) (V422 (ye) ) + —- .

where hy(x,t) = log u,(z)+h(z,t) = log(u,(z)H (x,t)). Notice that u,(x.) ~ v,(t). Obviously,
Ye ~ x.. Define

t

SpP 1 (ki)
p1t = T = unkN 2(
0= X(t)S{,;) (k)N ( 52;;)

Since ho(x,t) for given ¢ satisfies the condition in Lemma 7.8, we have

TH (ye: t)un(ye)

1 t
plt) = = [ ) H(. 0| < Fos

X (t)S] Jxo

Since limy_,e0 H(ye,t)/X (t) = 0 and u,(y.)/S) ~ 1, we have

=0.

1
"0 Zws

lim
t—o00

t
/ wa(y) H(y, t)dy
o
Let z4 =2z, £ /ft_5/8. Since
! H(y,t)
U (y)™ : /
/Z+ H(z.,1) rcc,
- H(y,t)
()" /
/:l;o H($C7

I, and I in (69) with e = 1/4 yield

. 1
lim —
t—00 X(t)S;

/ac: u,(y)™H(y, t)dy — /:+ un(y)™ H (y, t)dy’ -0,
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for any positive integer m. Using (70), we have
1 #+ H c t ~1/2 Rt 2
— / Uy (2)H (2, t)dz ~, ) %/ U, <xc + L) e Y 2dy.
X)) J._ X(t)S; - VEt
Since Sy ~ uy(x. + y/+/kt), we have

1 [
lim — / un(y)H (y, t)dy = 1.

SR X0,
Therefore py(t) ~ 1 or SP ~ u,(z.) ~ v,(t), as claimed.
Define
_1/9 duy, S/ 1
O'z — . 1/2 E . — \/I:/_tLl(xc) |ia -+ Ql(xc):| 5
SP— S 1 = (k) — un(z)
t) = = = H(k,t
=x0
1  up () — up (e
X(t) z O
Note that o} ~ §,(t). Assume |y| < lit_l/s. By Taylor’s theorem, there is y; with |y;| < |y| such
that _
Up (T + y/\/"{_t) — U () . Ri(w, + yl/\/’f_t) 2
/ - y + / y )
Ot Ot
where
Rue) = L) )y (Lo 0)) - )| - L i)
N o dr? | 2w Ly [\« ! 2 a ! '
Using

Rye.+y/VR)  Rilw) 1 <@_1) (74)

!/ /
(o 0y 2 /{tl'Q

for |yi] < “;1/87 ffx ye ¥ 2dy = 0, and (70), we have

-1
Ona 1‘/ ' y2e V2 dy,

«

/ft_l/zH(:vc, )y 1
X(t) 2 l{t.fﬁg

lp3(t)] ~q)

where lim;_,, £(t) = 0. Therefore,

tlggo ps(t) = 0. (75)
Since
1 = up (@) — up(e) 2un(t) L - T T
O /xo p H(z,t)dz| < o |z /xo H(x,t)dx|,
1 t Up () — Uy () 2un(t) L t T T
= / e yir) < 2| LH( t)da,
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(69) together with (75) gives

lim ps(t) = lim )N(l(t) / i+ n(2) ;éu"(xC)H(x,t)dx = 0. (76)
Define
) =2 = g 2 () = =il H 1
%0 2 S ;;un(%)fmk 0= pelt)
" =$ /i (un(x) ;;Ln(:z:c))zH(gw)daj
:% /+ ko — 70)? (1 , Bl +0?1/\/“_t)) 2 H(x, t)dz.

Using (70), (72), (74), and (76), we have

— Y20y —
lim pq(2) = Tim ps(t) \/ﬂ/ yle v Py =1,

where we have also used the same procedure to arrive at (76) using (u,(7) —u,(x.))? < 4u,(t)>.
From the above calculations, we conclude that there is a constant C' such that

¢ o -1<-Z
N A = .

lp2(t)| < (77)

for all sufficiently large t.

Let z := @, +y/\/ke and 2’ := u, *(SP + 0 y). Recall that for any small but positive 5 and
eq, X(t) >, 1™ 52)/2H(azic, t) and ke <t for all sufficiently large ¢. Since

/thda:

for any 0 < g9 < 1, we need to show that there is gy such that lim,_,, t=(1750/2|z — 2| = 0.
First observe that SD + 0Py = 5] + oy for ¥ := pa(t) + y+/pa(t). Assume ¢ is so large that

lv| < 2k, /8 By Taylor’s theorem, there is 1, such that |y1] < || < 2k, /% and

lim [D(u,(2),t) — P(u,(2'),t)] =

< hmt (1=e0)/2, — /|,
t—00 t—)ooX

O_/
d = (S)) + = Y

ul (1

n

O_/

o 1 t _
~=+ (gt~ ) v ey O

n

where z; = u, ' (S; 4+ oyy1). Using 2z ~ x, un(z.) = 0)y/ke, (77), and limy_oo t74/(Kyze) = 0
for any g4 > 0, we have |2/ — z| < K, V6 < #1/4 for all sufficiently large t. Hence, if we choose
g0 = 1/8, we have the desired result. Since pa(t) ~ 1, the proof is completed. O
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Remark 7.10. Since u,(t)/v,(t) ~ (logt)®1/* we have

SP ~ Wy n > 2, while
lim SP/W; =0 forn = 1.
t—o0

In other words, when n > 2, the mean fitness at generation t is hardly discernible from the
largest fitness at the same generation. Another interesting observation is that if n > 2 or if
n =1 and a > 2, then lim;_o, 0P = 0, which implies that the width of the traveling wave
decreases to zero and the EFD becomes a delta function in the sense that

0 <0
lim ®(SP +y,t) =4 y="
t—o0 1, y>0.

This should be compared with the case of n =1 and o < 2 in which the width of the traveling
wave increases with generation. For n = 1 and a = 2, the behaviour of oP depends on the
slowly varying function L entering the tail function in (1).

7.3 Semi-deterministic FMM and its EFD
Definition of the SFMM. At each generation £ > 0 a new mutant with fitness

O = (1 = Bun(k)

appears and (Ng(t): t > k) are mutually independent Galton-Watson processes with Poisson-
distributed offspring with mean 6 for each k. In case u, (k) is ill-defined, we set 6, = 1. By
definition, Ny (k) = 1 and Ni(7) = 0 for 7 < k and no extinction is possible in the SFMM.
Since we will use Lemma 7.5 to prove Theorem 4 below, we limit the definition of the SFMM
to the case n = 1 or the case n = 2 and «a < 1; see also Remark 7.2.

We denote the total population size of the SFMM at generation ¢ by

X5(t) =Y Ni(0).

The EFD W (f,t) of the SFMM and its mean fitness S; are defined as

VL0 = g OO (b)), SF = g > (b0,

k=0

Since Ni(t) is the number of non-mutated descendants, we put (1 — 3) in the definition of the
fitness of a new mutant in the SFMM. In a sense, the SFMM is closer to the FMM than the
DFMM due to fluctuations of Ni(t). We redefine u,(k) := 6/(1 — [3) for convenience. Now
we prove that the EFD of the SFMM in the long time limit becomes almost surely a Gaussian
traveling wave just as the DFMM.

Theorem 4. For the SFMM with n =1 or withn =2 and o < 1, almost surely

S
lim W, (vn(t) + 5a ()9, 1) = T(p),  lim 00 = 1,

t—o00 t—o0 Uy, (t)
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where

0a(t) = a0/ (10g" D (1)) vy (<log("_1) (t))l/ ”‘) ,

have been introduced previously in (66) and (67).

Proof. We define J and F as in Lemma 7.5. It is obvious that Lemma 7.5 is applicable to the
SFMM. Note that by definition J in (52) for the SEFMM can be regarded as the sample space
and, accordingly, P(£) = 1. For any 0 < ¢ < 1/2 and for any outcome w € E, there exists 7
such that (1 — )" < Ny (t) < (1 + )0 for all t > k > 7. Notice that 7; can vary from
outcome to outcome. Let

t 1

S(t, ) = ZNk XP():=> 07" XP(tm) =) 6"

k=0 k=0
Then, for ¢t > 71, we have
(1) (XP(8) — XP(t,m)) + XS(t,m) < X5(t) < (1+2) (X°(8) — XP(t, 1)) + X5(¢, 7).
Since XP(t, 1) and XP (¢, 71) grow at most exponentially and XP(¢) grows super-exponentially,

we have almost surely

it X0 s 0
N > 1 — N7
mexee =1 IR

Hence there is almost surely 7, such that (1 —2¢)XP(¢) < X5(¢) < (1+42¢)XP(¢) for all t > 7.

Now set 7 = max{m, 72} and assume ¢ > 7. Then, we have

<l+e

t

qfs(f,t)zﬁﬁ;mumu—un(k»nj—wﬁ > MOl — (k)

k= T1+1
s S MR )+ L 3 ey )
T 142 XP(?) 1+25XD
k=0 k T1+1
Hence by Lemma 7.12, we conclude
1—c¢
liminf Wy (v,(2) + 8, (t)y, t) > T(y).
iminf W, (on () + 8n(t)y, 1) 2 T—5-T(y)
By the same token, we have
1
limsup W, (v (1) + 50(1)3,) < ———1(y)
t—o0 1—2¢

Since ¢ is arbitrary, we proved the first part of the theorem.
Let

1 t
D ._ t—k
I kgzo un (k)0 ".

By Lemma 7.12, we have SP ~ v,(t). Inspecting the above proof, we can conclude that for any
0 < e < 1/2 and for any outcome w € E, there is 7 such that

(1-— 5)StD < Sts < (1 —|—5)S?,

for all t > 7. Since ¢ is arbitrary, the proof is completed. n
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Figure 1: Semilogarithmic plot of oy(F,t) vs. AF/o, for various a’s at t = 983 040. For
comparison, the normal distribution is plotted by a solid curve.

7.4 Numerical study for the MMM with n =1

Since the largest fitness is expected to dominate the evolution of the population even in the
MMM and the limiting distribution is continuous even in the FMM, we conjecture that The-
orem 3 is valid even for the MMM see Remark 2.1. For the MMM, however, we only present
some numerical results, which supports our conjecture.

For numerical feasibility we assume that the fitness of a mutant can only be one of the
discrete values f; = (ci)'/® for i > 1, where c is a constant to be determined later. Defining
Gp(z) = exp(—1 + ¢) for x > c¥/* and G,(x) = 1 for v < c'/*, we assign probabilities

pi =P = fi) = Gp(fi) — Gp(fis1) = efci(@c —1).
Since Gp(fir1) < G(x) < Gu(fi) for fi <x < firq and lim; o fiy1/fi = 1, we have

lim 286G _

T—00 T

Therefore, we can apply Theorem 1, to predict W, ~ a~'/(tlogt)'/*, almost surely on survival.

In this section, we denote the number of individuals with fitness fj at generation ¢ by N(t).
We would like to emphasize that f; should not be confused with Wj. The total population size
X (t) and the mean fitness S; are calculated as

NUEDITUNEES pe oy (78)

The standard deviation oy is naturally defined. Given Ng(t) and S;, the random variable
Ni(t+1) is drawn from the Poisson distribution with mean (1 — 8) Ny (¢) fx + 5S5: X (t)pg. Since
the accurate value of 3 is not important as long as 0 < 3 < 1, we choose 3 = 107%° to make 1— 3
indistinguishable from 1 within machine accuracy of double-precision floating-point format.
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Figure 2: Plots of ¢(F,t) vs. AF at different generations for a = 1 (left), a = 2 (middle), and
a = 3 (right) on a semi-logarithmic scale. For @« = 3 (a = 1), the width of the traveling wave
decreases (increases). For a = 2, the width of the traveling wave remains constant.

Since the total size of the population increases super-exponentially on survival and we are
mostly interested in long-time behaviour, we set X (0) very large (in the actual implementation,
we set N1(0) = X(0) = 10! and Sy = f;), which makes fluctuations of the total population
size invisible within machine accuracy. Besides, we set ¢ = 20log10 ~ 46.05, which gives

Prs1/pr = 1072, Therefore, we have only to consider k up to 35, X (t)pr > 1 with p ~ e=¢*=1),

Let 1 (t) := Ni(t)/ X (t). Since parameters are chosen such that deviation from the expected
value of 1, (t + 1) for given 1 (t) cannot be generated within machine accuracy, the actual
stochastic simulations cannot be different from the deterministic equation

Ul + 1) = (1= BOE + 5 5= Y walo)se (79)

where p = pg if BX(t+ 1)pr > 1 and 0, otherwise. In a sense, we are studying a deterministic
version of the MMM, but, as we mentioned already, even the full stochastic MMM is not
distinguishable from the deterministic version MMM for the parameters we chose. Now, we
present the numerical solution of (79).

In Figure 1, we depict o, (F,t) vs AF/o;, where AF = F — S; on a semi-logarithmic scale
at generation t =~ 10°. Here, 1(F,t) is a density that is calculated as

1

(F 1) = hi(t)

Jirj = Fr—j b i<iekij

with a suitable bin size 27, where the integer k is determined uniquely by fr < F < frr1. We
assure that dependency of ¥(F,t) on the bin size is negligible over a wide range of j (details
not shown here). For comparison, the Gaussian function with zero mean and unit variance is
also drawn by a solid curve. Just as we proved for the FMM, the EFD is again well described
by a Gaussian traveling wave.

We have found that depending on the actual form of the tail function, o; can increase,
decrease, or even remain constant in the FMM. To check if this property remains valid in MMM,
we plotted the EFD at different times for different values of «, whose result is summarized in
Figure 2. The behaviour is the same as shown for the FMM. In fact, the predicted S; and
o, for the FMM conform to numerical results (details not shown here). From the numerical
observations, we conjecture that the travelling-wave part of the MMM with type I tail function
(at least with n = 1) has the same EFD as the FMM.
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8 Concluding remarks

We provided strong analytical and numerical evidence for the emergence of a travelling wave
for the branching process with selection and mutation for unbounded fitness distributions of
Gumbel type. For type I tail functions with tail index n = 1, or in other words stretched
exponential fitness distributions, we show that if the tail parameter satisfies & > 2, the standard
deviation of the traveling Gaussian wave decreases and eventually the EFD becomes highly
peaked like a delta function. Traveling wave solutions of Gaussian form were found previously
in a study of the deterministic (infinite population) limit of the model, which amounts to solving
the recursion (79) with py, = py, see [15]. The expressions for the mean and variance of the EFD
obtained in [15] for a particular type I tail function match Eqgs. (66) and (67), see also [16].

We conjecture a similar behaviour for bounded fitness distributions of Gumbel type in the
condensation case discussed in Section 1. In that case the Gaussian wave is expected to travel
to the essential supremum of the fitness distribution, while its standard deviation goes to zero
faster than the distance of its mean to the essential supremum. For bounded fitness distributions
of Weibull type we conjecture, as in Ref. [9] for a branching model in continuous time, that the
condensate emerges in the shape of a Gamma distribution. The conjecture is justified by the
rigorous analysis of the deterministic model in Ref. [17].

In our model every individual has a Poisson number of offspring with mean given by its
fitness. It is natural to conjecture that results like emergence of the travelling wave, dou-
bly exponential growth rates or condensation also hold for other distributions with the same
mean and not too large variance. Verifying this universality conjecture rigorously would be an
interesting future project.
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