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Abstract
The Chinese restaurant process is a stochastic process closely related to the Dirichlet process that
groups sequentially arriving objects into a variable number of classes, such that within each class
objects are cyclically ordered. A popular description involves a restaurant, where customers arrive
one by one and either sit down next to a randomly chosen customer at one of the existing tables
or open a new table. The full state of the process after n steps is given by a permutation of the
n objects and cannot be represented in sublinear space. In particular, if we only need specific
information about a few objects or classes it would be preferable to obtain the answers without
simulating the process completely.

A recent line of research [15, 28, 5, 12] attempts to provide access to huge random objects
without fully instantiating them. Such local access implementations provide answers to a sequence of
queries about the random object, following the same distribution as if the object was fully generated.
In this paper, we provide a local access implementation for a generalization of the Chinese restaurant
process described above. Our implementation can be used to answer any sequence of adaptive queries
about class affiliation of objects, number and sizes of classes at any time, position of elements within
a class, or founding time of a class. The running time per query is polylogarithmic in the total size
of the object, with high probability. Our approach relies on some ideas from the recent local access
implementation for preferential attachment trees by Even et al. [12]. Such trees are related to the
Chinese restaurant process in the sense that both involve a “rich-get-richer” phenomenon. A novel
ingredient in our implementation is to embed the process in continuous time, in which the evolution
of the different classes becomes stochastically independent [21]. This independence is used to keep
the probabilistic structure manageable even if many queries have already been answered. As similar
embeddings are available for a wide range of urn processes [2], we believe that our approach may be
applicable more generally. Moreover, local access implementations for birth and death processes
that we encounter along the way may be of independent interest.
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1 Introduction

Random objects are often used to model how data is generated. Examples include Gaussian
mixture models, random graph models such as the preferential attachment model [3], Erdős-
Renyi graphs [11] and the stochastic block model [19]. Usually, the process to generate such
an object is fairly easy to describe and implement. However, if we think of these objects as
modelling very large data sets it may be time and space consuming to generate an instance
of the model. In particular, if we want to evaluate a sampling based algorithm on such
a model or we want to study some local properties of the generated object, it would be
interesting to provide local access to the object without fully instantiating it immediately.
For example, can we easily determine the neighbourhood of a vertex in a webgraph taken
from the preferential attachment model without first fully computing the graph? Can we
compute the nearest neighbour of a point in a Gaussian mixture model without generating
all data points? If we were able to provide consistent and efficient answers to such queries,
we could, for example, run sampling algorithms on very large input graphs without fully
generating them. Of course, such a local access must provide to all sequences of queries and
answers the same distribution as if the object was immediately fully instantiated.

The challenge is that answers to queries must be correlated in the right way, i.e. the
distribution of the answer for a query must be a conditional distribution that takes into
account all answers given to previous queries. In a Gaussian mixture model, for instance,
revealing the location x of one point makes it more likely that additional points are located
close to x.
The Chinese restaurant process. An intuitive description of the Chinese restaurant
process (CRP) as generalised in [6] involves a restaurant with round tables of unbounded
capacity, corresponding to classes of objects, and customers, corresponding to the objects.
We imagine that every dish has an objective tastiness and a distribution Φ on (0,∞) captures
how tasty a random dish from the menu is. In every round one customer arrives, and the
n-th customer has n options. She may sit down next to one of the n− 1 earlier customers
and order the same dish as him, or she sits at a new table and orders a random dish from
the menu. She makes each choice with a probability proportional to how appealing it is.
The appeal of sitting next to customer c is the tastiness of the dish of c and the appeal of
sitting at a new table is 1. Applications in biology motivate us to speak of fitness rather
than tastiness in the following. Instead of being assigned to dishes, we may instead assume
that fitness values are assigned to the customers themselves or simply to the tables, as all
customers at a table always order the same dish.

The CRP is closely related to Dirichlet processes and the Pólya urn model. Its easy
iterative definition has contributed to its popularity as a model for clustering in Bayesian
statistics, for example for gene expression data [27, 29] or in image analysis [25]. The
random partition induced by the CRP is the Ewens distribution that describes the allelic
partition of DNA in the infinite alleles models under assumptions of neutrality and no
recombination [10, 8].
Our Contribution. In this paper we provide a local access implementation of the N -round
CRP and several related processes. The number of steps required to compute the answer to
a query is polylogarithmic in N . An informal version of our main theorem is as follows.

I Theorem 1 (Main, informal). Let Φ be a distribution on (0,∞) with some means of
sampling from Φ, and let N ∈ N. A local access implementation of the N -round CRP with
parameter Φ can be achieved such that any (possibly adaptive) sequence of queries from the
list below can be answered in polylog(N) time per query whp.
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Which customer sits right/left of customer c after n ≤ N rounds?
What is the fitness of customer c’s table?
Who founded customer c’s table?
How many customers are at each of the tables after n ≤ N rounds?

A formal version of this theorem can be found in Section 2.2.

1.1 Related Work
The problem of providing local access to a random object has appeared in several earlier works.
Goldreich, Goldwasser and Nussboim [15] define a framework to study implementations of
random objects. They assume the random object can be described as a function and require
that queries to the function are answered in polylogarithmic time. They discuss perfect imple-
mentations (which have the same distribution as the original object), close implementations
(which have approximately the same distribution) and pseudoimplementations (which cannot
be efficiently distinguished from the original object). They also consider the truthfulness
of implementations meaning that if every random object has property T then also every
object in the implementation is required to have property T . They give several examples of
implementations and further examples are found in [28]. Perfect implementations are also
known as local access implementations or local access generators. These have been developed
for preferential attachment trees by Even et al. [12], for Erdős-Renyi graphs and Dyck paths
by Biswas et al. [5], and for random walks by Biswas et al. [4].

A related line of research includes partitioning oracles [17, 23, 22] that provide sublinear
time access to a random partition of an input graph. While the partition is also a random
object, randomness is used to guarantee that the partition cuts only few edges and that
queries can be answered efficiently.

Yet another related direction is local computation algorithms developed by Rubinfeld
et al. [30] and Alon et al. [1] that give sublinear time local access to the solution of a
computational task. Examples for problems for which local computation algorithms are
known include sparse spanning graphs [24], set cover [16], mechanism design [18], clustering
[13] and maximum matching [26].

1.2 Technical Overview
In our pursuit of a local access implementation of the CRP we develop local access imple-
mentations of several related processes that may be of independent interest. An overview is
given in Figure 1. Two aspects of the CRP are captured separately. In the following, we
outline some difficulties in dealing with them as well as how we overcome these difficulties.

CRP

STPRRT.
Prop. 3, s.a. [12] Prop. 7

TGPCT-TGPSBPSDP. Prop. 10 Lem. 11 Prop. 12 Lem. 13
Thm. 2

Section 3 Section 4

Section 5 Section 6
Section 7

Figure 1 Random processes that capture aspects of the CRP. The picture indicates the theorem,
proposition or lemma that establishes a local access implementation of these processes, the sections
where they are found, as well as what each result builds upon.
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The Single Table Process (STP). The simpler aspect concerns the order of customers
at a single table, i.e. we have to answer who sits left or right of whom. Let us ignore other
tables for now and simply assume customers [n] := {1, . . . , n} join a table one by one, and
each i ∈ {2, . . . , n} sits down to the right of a customer sampled uniformly at random from
[i− 1].

The final ordering of the customers is given by a uniformly random cyclic permutation
π : [n]→ [n], with π(c) being c’s final right neighbour. A local access implementation of π
would be easy to come by but is insufficient for our purposes. This is because we permit queries
regarding earlier points in time, i.e. a query may request the right neighbour of customer
c after n′ ∈ {c, . . . , n} steps of the process. Within the sequence (π(c), π2(c), π3(c), . . . ) of
customers towards the right of c in the final ordering, the query asks for the first element c′
with c′ ≤ n′, i.e. the first customer who was already present at time n′. Doing this naively
by generating the sequence may be too costly.

To allow computing c′ quickly, we consider the random recursive tree (RRT), which
is a rooted tree T with vertex set [n] generated as customers arrive. We begin with just
customer 1 as a root vertex. When customer c ≥ 2 arrives and takes her seat to the right of
customer p, then c is prepended to the list of children of vertex p in T . As it turns out, a
depth first search of T then visits the vertices in the order (1, π(1), . . . , πn−1(1)), reflecting
the final ordering of customers. Since T has logarithmic depth and logarithmic maximum
degree whp we can determine the predecessor and successor of a given vertex in the DFS
ordering by issuing a logarithmic number of neighbourhood queries to T whp. Moreover –
and crucially – information about the order of customers at any time step n′ < n is naturally
contained in T within the subtree T ′ induced by vertex set [n′]. In other words, to find the
right neighbour of a vertex c at time n′ we find its DFS successor in T ′.

We therefore have to implement local access to a random recursive tree T . This has
already been achieved by Even et al [12]. We simplify their implementation in two ways.
Firstly, we always reveal the neighbourhood of any requested vertex in its entirety instead
of revealing only the “next child” in its adjacency list. This simplifies the structure of the
residual probability space without negatively impacting running time. Secondly, we employ
what we call the “harmonic sampling trick” which allows sampling a set X ⊆ [N ] in O(|X|)
steps that contains each i ∈ [N ] independently with probability 1/i. The algorithm is quite
simple: Sample x uniformly from [N ], then recursively sample a set X ′ ⊆ [x−1] that contains
each i ∈ [x− 1] independently with probability 1/i, and return X = {x} ∪X ′. The intuition
why the trick is useful is that vertex 1 in T has vertices 2, 3, 4, . . . as children with probability
1
1 ,

1
2 ,

1
3 , . . . , respectively. When combined with rejection sampling, the trick remains useful

also when vertices other than 1 are concerned and when partial information about T has
been revealed.

The Table Growth Process (TGP). The more difficult aspect concerns the number of
customers at each of the tables over time. The growth of a single table T is correlated with the
other tables. This is true for the obvious reason that after n steps all table sizes add to n, but
also because the creation of a new table with high fitness can significantly hamper the ability
of other tables to attract customers in the future. Even in the absence of table creations and
with identical fitness values a considerable challenge remains: Assume we have revealed that
at times n1 and n2 with n1 < n2 there are ` tables with fitness value 1 each and that the
numbers of customers at these tables has risen from a1, a2, . . . , a` to a1+d1, a2+d2, . . . , a`+d`.
Assume further that the customer counts a1 + d′1, a2 + d′2, . . . , a` + d′` at an intermediate
time n ∈ {n1, . . . , n2} is requested. Then (d′1, . . . , d′`) has a multivariate hypergeometric
distribution, i.e. d′i is the number of balls of colour i when drawing n − n1 balls from an
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urn without replacement where the urn contains dj balls of colour j for each j ∈ [`]. The
intimidating prospect of having to efficiently sample from such a distribution prompted us
to choose a different path. While we have since been made aware that fast approximate
sampling from multivariate hypergeometric distributions has been achieved in [5, Appendix
D], we still do not know how table creations and fitness values could be incorporated into
such an approach.

We dodge these complications by adopting a continuous time view of the table growth
process where each table gains customers independently of all other tables. More precisely,
every table gains additional customers with a rate proportional to both its fitness and size,
and new tables are founded with a rate of 1. Properties of the exponential distribution ensure
that the next customer to arrive will always be destined for a specific (new or old) table with
a probability proportional to that table’s rate, as required. A complication is that the times
at which customers arrive are now random. In particular, if we are interested in the state of
the process after n customers have arrived, we first have to locate a corresponding point in
time using binary search in the time dimension.

In our continuous time table growth process (CT-TGP), the growth of a single table with
fitness 1 is governed by a simple birth process (SBP, also called Yule process) that begins
with a single element and from then on gains elements with a rate equal to its size. A fitness
6= 1 merely amounts to rescaling time. A SBP can be seen as a simple death process
(SDP) played in reverse, where a SDP starts with some number N of elements and each
element dies independently of the others with a rate of 1, i.e. it has an Exp(1)-distributed
lifetime.

Our most fundamental problem is therefore that of providing a local access implementation
to the SDP, which can answer for a given time t ∈ R≥0 how many elements die until time t.
The rough idea for dealing with the first query is as follows. Let m be the median of the
exponential distribution. The number of elements dying at a time in [0,m] has distribution
N ′ ∼ Bin(N, 1

2 ) and if t < m we need only obtain further information on those N ′ elements to
answer the query. In that case, let 0 < m′ < m be the median of the exponential distribution
when conditioned on attaining values in [0,m]. The number N ′′ of elements dying within
[0,m′] has distribution N ′′ ∼ Bin(N ′, 1

2 ) and depending on whether t ≤ m′ or t > m′ we
would have to continue worrying about the precise death times of only N ′′ or N ′ − N ′′
elements – roughly half in expectation. To fully answer the query at hand and further queries
like it we lazily construct a binary tree where inner nodes record numbers of elements (such
as N ′ and N ′′) with death times falling within respective ranges. The elements themselves
are represented in leafs which are at depth O(logN) whp. To sample the necessary Binomial
random variables in O(logN) time whp we use a result by [7].

2 Preliminaries and formal statement of main result

2.1 The Chinese restaurant process with table fitness
The variant of the Chinese restaurant process considered in this paper was proposed in [6]
and is parametrised by a distribution Φ on (0,∞). An outcome of the CRP is given by a
(random) mapping

S : N→ N such that S(n) ∈ [n]

where n := {1, . . . n}. It can be interpreted as follows. In a Chinese restaurant an unbounded
number of circular tables are initially empty and customers arrive one by one. If S(i) < i then
the i-th customer takes her place at an existing table directly to the right of customer S(i).

APPROX/RANDOM 2021



28:6 A Sublinear Local Access Implementation for the Chinese Restaurant Process

1
5

4
7

2
3

8
6c 1 2 3 4 5 6 7

π7(c) 5 3 2 7 4 6 1

π7 = (1 5 4 7)(2 3)(6)

i 1 2 3 4 5 6 7
S(i) 1 2 2 1 1 6 4

Figure 2 Some values for S, the permutation π7 they give rise to, the cycle representation of
π7 and a visualisation. In the interpretation of the CRP the elements 1, 2 and 6 are founders and
thereby representatives of three tables. In green we show the effect on the second table if S(8) = 2.

If S(i) = i then customer i is understood to become her own right neighbour by becoming
the founder of a new table (customer 1 is necessarily a founder). This process gives rise to a
sequence (πn)n∈N of permutations πn in the symmetric group Symn, where πn indicates for
a customer i ∈ [n] the customer πn(i) sitting directly to the right of customer i at time n.
An example is given in Figure 2. The figure also visualises the cycles of πn as the connected
components in the graph ([n], {(i, π(i)) | i ∈ [n]}) and showcases the well-subscribed cycle
notation.

The distribution of S involves fitness values f1, f2, . . . ∈ (0,∞) assigned to customers
(say the tastiness of their dish). Formally, when n− 1 customers have entered the restaurant,
and S(1), . . . , S(n− 1), f1, . . . , fn−1 and π1, . . . , πn−1 are given, the n-th customer enters.

She either chooses S(n) = i ∈ [n− 1] at random with probability

P(S(n) = i) = fi

1+
∑n−1

j=1
fj

.

In this case fn = fi (customer n orders the same dish as her neighbour) and πn(i) =
n, πn(n) = πn−1(i) and πn(k) = πn−1(k) for k ∈ [n] \ {i, n}.
Otherwise she chooses S(n) = n with probability

P(S(n) = n) = 1
1+
∑n−1

j=1
fj

.

In this case customer n occupies a new table. We sample fn ∼ Φ and let πn(n) = n and
πn(k) = πn−1(k) for k ∈ [n− 1]. This always occurs for customer 1.

Further quantities of interest are easily derived from S and (πn). The set F of founders
is precisely the set of fixed points of S, i.e.

F =
{
n ∈ N : S(n) = n

}
.

The founders F = {n1 < n2 < . . .} can act as representatives of their tables, i.e. by the k-th
table we mean the table at which nk is placed. The number of non-empty tables at time n is
kn = |F ∩ [n]|, which is also the number of cycles in the permutation πn. The customers at
table nk at time n are the elements of the cycle of πn containing nk. To find the customer
founder(n) who founded the table at which customer n is sitting we can iteratively apply S
starting with the argument n, until (after at most n iterations) we find a fixed point.
Related Objects. The classical single type Chinese restaurant process has only a single
parameter θ > 0, which is a weight for the probability of founding a new table. It arises as a
special case of our variant when Φ is the trivial distribution putting all probability mass on
the value θ−1. Several aspects of the CRP are known under different names.

If ai denotes the number of tables of size i after n steps of the CRP with parameter θ
then the distribution of (a1, . . . , an) is known as the Ewens distribution.
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If we treat all fitness values as though they were 1 and reinterpret fi as the dish ordered
by customer i (with all dishes having the same quality) then f1, f2, . . . is the Dirichlet
process with base distribution Φ.
If we initialise the CRP with some customers at some of the tables, all of which have
the same fitness, and condition on the event that no further tables are created, then the
number of customers at the tables over time is a Pólya urn model.
Call a directed graph with vertex set V = [n], where each v ∈ V has exactly one outgoing
edge towards p(v) ≤ v (loops are allowed) a recursive forest. If θ = 1 then the graph
T = ([n], {(i, S(i)) | i ∈ [n]}) generated from the outcome S of the CRP is a uniformly
random recursive forest. If we condition on the event {∀i > 1 : S(i) 6= i} then T is a
uniformly random recursive tree.

2.2 Formal statement of main result
In this paper, an event En occurs with high probability (whp) if for any constant c > 0 we
have 1− P(En) = O(n−c). We allow the constant hidden by O-notation to depend on c. For
a random variable Xn and a function g we say Xn = O(g(n)) whp if

∀c > 0 : ∃n0, C : ∀n ≥ n0 : P(Xn > C · g(n)) ≤ n−c,

in particular C may depend on c. Conveniently, whenever we have a polynomial number
of events that individually occur whp, then these events jointly occur whp. We say Xn is
polylog(n) whp if Xn = O(logb(n)) whp for some constant b > 0.
Local Access Implementation. Our goal is known under several different names. We
loosely follow the terminology of local access implementation by [5], which is a stateful
implementation in the sense of [15] and a random access generator in the sense of [12].

Assume we are given a huge random object X by a distribution D on a set X. A local
access implementation of a family F1, . . . , Fq : X→ R of attributes (random variables) with
values in some set R is a data structure that answers a sequence of (possibly adaptive) queries
i1, i2, . . . with a sequence of results r1, r2, . . . such that (r1, r2, . . . ) has the same distribution
as (Fi1(X), Fi2(X), . . . ). If, for every x ∈ X, the attributes F1(x), . . . , Fq(x) determine the
object x completely we also speak of a local access implementation of X.

We can now formally state our main result.

I Theorem 2 (Local Access Implementation of the CRP). Let Φ be a distribution on (0,∞)
with some means of sampling from Φ (e.g. using an oracle), and let N ∈ N. A local access
implementation of the N-round CRP with parameter Φ providing access to the attributes
listed in Table 1 can be achieved such that each (possibly adaptive) query takes polylog(N)
time whp.

Note that the family of attributes grows with N . For instance, we can query the Chinese
restaurant process for πn(c) for any 1 ≤ c ≤ n ≤ N . In the flat view used above this
constitutes a separate attribute for every valid pair (n, c). Our implementation must be given
a parameter N ∈ N beforehand and then one can query all attributes arising from rounds
with index n ≤ N .
Model of Computation. Since we use an embedding of the CRP in continuous time,
our algorithms involve uniform sampling from [0, 1] ⊆ R and arithmetic operations on real
numbers as would be allowed in the real RAM model. We suspect that our construction
could be adapted for the word RAM model with moderate technical complications regarding
the content of Section 6, but we do not pursue such a result.

APPROX/RANDOM 2021



28:8 A Sublinear Local Access Implementation for the Chinese Restaurant Process

attribute parameters interpretation

πn(c) and π−1
n (c) 1 ≤ c ≤ n ≤ N customer sitting right and left of customer c after

n rounds
fc 1 ≤ c ≤ N fitness of customer c, i.e. weight for the probability

with which customers are seated next to c.
founder(c) 1 ≤ c ≤ N founder of customer c’s table

tableSizes(n) 1 ≤ n ≤ N number of customers at each of the kn tables after
n rounds in the order in which tables were founded

F ∩ [N ] — set of all kN founders within the first N rounds
Table 1 Attributes that can be queried by our local access implementation of the CRP and

corresponding parameters.

3 Local access implementation of Random Recursive Trees

The random recursive tree TN is the N -th element in a random sequence (Tn)n∈N where Tn
is a rooted tree with vertex set [n] and Tn+1 arises from Tn by assigning the new vertex n+ 1
a single neighbour parent(n+ 1) ∈ [n] uniformly at random. In this section, we provide a
random access generator for TN in the following sense.

I Proposition 3 (Local access implementation of the RRT). Let N ∈ N. A local access
implementation of TN that provides for any given vertex v ∈ [N ] access to all neighbours of v
can be achieved such that each query takes polylog(N) time whp.

A proof of this proposition is implicit in the work of Even et al. [12]. We still provide our
own construction, which uses a slightly simplified invariant and exploits what we call the
harmonic sampling trick. We begin with two facts that are also stated in [12].

I Lemma 4. (i) The maximum degree of TN is O(log(N)) whp.
(ii) The height of TN is O(log(N)) whp.

Proof. (i) Let ci be the number of children of vertex i. We have ci =
∑N
j=i+1Xj where

Xj is the indicator that i is the parent of j. These indicators are independent and Xj

is Bernoulli distributed with parameter 1
j−1 , hence E[ci] = O(log(N)). Moreover, ci is

Poisson binomial distributed and simple Chernoff bounds for this case suffice to show
that ci = O(log(N)) whp. A more fine-grained analysis is provided in [9, Thm 1].

(ii) A proof can be found in [14, Thm 6.32]. J
To prove Proposition 3 we need two simple ideas presented in the following two lemmas.
I Lemma 5 (Harmonic Sampling Trick). For i ∈ [N ] let
Xi ∼ Ber( 1

i ) be independent Bernoulli random variables and
X = {i ∈ [N ] | Xi = 1}. The algorithm HST on the right
samples X in O(logN) time whp.

Proof. First note that Pr[max(X) = i] = Pr[Xi = 1, Xi+1 =
. . . = XN = 0] = 1

i ·
i
i+1 · . . . ·

n−1
n = 1

n . Hence max(X)
is uniformly distributed in [N ] and is correctly sampled
in the first iteration of the while-loop. The remaining set
X \ {max(X)} = {j ∈ [max(X) − 1] | Xj = 1} can then
be sampled using the same method since no information on
X1, . . . , Xmax(X)−1 has been revealed.

Algorithm HST(N ∈ N):
X ← ∅
while N ≥ 1 do

sample i ∈ [N ]
uniformly
X ← X ∪ {i}
N ← i− 1

return X
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To bound the running time of HST, we use a connection to random recursive trees. In
TN+1, the parent of a vertex v ∈ [N + 1] \ {1} is uniformly distributed in [v − 1]. Therefore
the set X ′ of ancestors of vertex N + 1 in TN+1 can be sampled using HST and X ′ therefore
has the same distribution as X. We can now use Lemma 4 (ii) to conclude that X has size
O(logN) whp and thus HST runs in time O(logN) whp. J

I Lemma 6 (Auxiliary Set Data Structure). There is a data structure for representing a
dynamic set Q ⊆ [N ] (initialised with Q = ∅) and its complement Q̄ := [N ] \Q that uses
O((|Q|+ 1) logN) bits and supports the following operations in O(logN) time.
(i) Deciding for v ∈ [N ] whether v ∈ Q.
(ii) Adding an element v ∈ Q̄ to Q.
(iii) Computing for v ∈ Q̄ the number rankQ̄(v) = |Q̄ ∩ [v]|.
(iv) Selecting for r ∈ [N ] the unique element v ∈ Q̄ with rankQ̄(v) = r, if it exists.

Proof. Simply store Q in a balanced search tree data structure (e.g. an AVL tree) where
subtrees are annotated with the number of elements they contain (see e.g. [31]). Implementing
the operations as stated is then straightforward. J

Proof of Proposition 3. The tree TN is determined by a family (parent(v))2≤v≤N of inde-
pendent random variables. Whenever we reveal the neighbourhood of some v0 ∈ [N ] then
this fully reveals parent(v0) and parent(c1), . . . ,parent(ck) for the children c1, . . . , ck of v0.
It also reveals that parent(v) 6= v0 for all v ∈ {v0 + 1, . . . , N} \ {c1, . . . , ck}. Since every
piece of information relates only to one random variable, the family (parent(v))2≤v≤N is still
independent conditioned on that information (this would not be true if we only revealed
deg(v0) for instance).

In contrast to Even et al. [12] we always reveal the entire neighbourhood of a requested
vertex v0. At any point in time let Q be the set of vertices that were previously queried and
Q̄ := [N ] \Q. Our invariant is very simple:

Conditioned on the information we have revealed, the family (parent(v))2≤v≤N is still
independent. For each 2 ≤ v ≤ N , either parent(v) is known (and not random any
more) or uniformly distributed in Q̄ ∩ [v − 1].

We use the data structure from Lemma 6 to store Q and Q̄. Moreover we store all edges
that were previously revealed.

We now explain how a query for v ∈ [N ] is handled. If v ∈ Q then we simply reproduce
the answer previously returned for v. Now assume v ∈ Q̄. If parent(v) is not yet revealed we
have to select it uniformly from Q̄∩ [v− 1]. To this end we compute rankQ̄(v) = |Q̄∩ [v− 1]|,
then sample r′ uniformly from [rankQ̄(v) − 1] and select as parent(v) the element v′ with
rankQ̄(v′) = r′ using the O(logN) time operations from Lemma 6. Some vertices from Q

may already be known children of v. Moreover, every vertex v′ ∈ {v + 1, . . . , N} ∩ Q̄ where
parent(v′) is not yet known has a probability of 1

rank(v′)−1 to have v as its parent. Call
such vertices potential children of v. It is important to note that two potential children
v′1 < v′2 have distinct unit fractions from { 1

1 ,
1
2 , . . . ,

1
N } as a probability for having v as parent

because the potential parents of v′2 include all potential parents of v′1 and v′1 itself. We
sample X ⊆ [N ] using Lemma 5, which contains each i ∈ [N ] with probability 1

i . We then
make a potential child v′ of v an actual child of v if rank(v′)− 1 ∈ X. To do this quickly,
we iterate over the (small) set X and check for each i ∈ X with a select-query whether a
corresponding potential child of v exists (and ignoring i if this is not the case). As a last
step we add v to Q and return v’s parent and children.
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Note that (adaptive) queries can affect the way in which TN is sampled but not its
distribution. Since a query for v ∈ [N ] takes time deg(v) · O(logn) its running time is
polylog(N) whp by Lemma 4 (i). J

4 Local access implementation of the Single Table Process

The single table process (STP) is the CRP conditioned on the event {F = {1}}, i.e. no
tables are founded after the first. This makes the parameter Φ irrelevant. In simple terms,
the STP generates a sequence (τn)n∈N of cyclic permutations where τ1 = (1) and where
τn+1 ∈ Symn+1 is obtained from τn by inserting n+ 1 into the cycle at a uniformly random
position. Clearly this makes τn a uniformly random cyclic permutation. We now implement
fast random access to this process in the following sense by exploiting a close correspondence
between the STP and the random recursive trees (Tn)1≤n≤N from the previous section.

I Proposition 7 (Local access implementation of the STP). Let N ∈ N. A local access
implementation of the N -round STP that provides access to τn(c) and τ−1

n (c) for any given
1 ≤ c ≤ n ≤ N can be achieved such that queries take polylog(N) time whp.

Proof of Proposition 7. While Tn is defined as an unordered tree, we may assume that
the children of a vertex are implicitly decreasingly ordered. The unique depth first search
traversal of Tn produces a vertex list Ln = (v1 = 1, v2, . . . , vn). We can associate this list
with a cyclic permutation τ ′n via

τ ′n(vi) = vi+1 for i ∈ [n− 1] and τ ′n(vn) = v1.

By definition Tn+1 is obtained from Tn by prepending the vertex n+ 1 to the child list of
a uniformly random vertex from [n]. Thus, the list Ln+1 is obtained from Ln by inserting
n + 1 after a uniformly random element, and τ ′n+1 is obtained from τ ′n by inserting n + 1
into a uniformly random position of the cycle. So clearly the sequence (τ ′n)1≤n≤N has
the same distribution as the sequence (τn)1≤n≤N from the STP. A query for τn(i) and
τ−1
n (i) concerning the STP corresponds to a query for the preorder successor and preorder
predecessor of the vertex i in Tn (where v1 is regarded as the successor of vn in Tn).

By Proposition 3 we have access to adjacencies in TN in polylogarithmic time. This also
gives us access to adjacencies in the subtree Tn of TN simply by ignoring any incidences
to vertices v > n. To determine preorder successors and predecessors in Tn as required,
we need only follow a path in Tn which comes with an additional O(log(N)) factor by
Lemma 4 (ii). J

5 Local access implementation of the Simple Birth Process

In this section we provide a random access generator for simple death processes. By reversing
time, we then extend the result to (bounded) simple birth processes.
Simple Death Process. In a simple death process (SDP) with N elements and parameter
f > 0, each element i ∈ [N ] is assigned a lifetime `i ∼ Exp(f) independently. The SDP is
then (Yt)t≥0 where Yt := |{i ∈ [N ] | `i ≥ t}| is the number of elements surviving until time t
and the duration τ of the process is defined as τ := inf{t ≥ 0 | Yt = 0}.

Recall four simple facts abouts exponentially distributed random variables.

I Fact 8. (i) P(X ≥ t) = e−λ·t for λ > 0, t ≥ 0 and X ∼ Exp(λ).
(ii) P(X ≥ t | X ≥ t0) = P(X ≥ t− t0) for λ > 0, t ≥ t0 ≥ 0 and X ∼ Exp(λ).

This property is known as the memorylessness of the exponential distribution.
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(iii) For k ∈ N, λ1, . . . , λk > 0 and independent Xi ∼ Exp(λi) for i ∈ [k] we have

min
i∈[k]

Xi ∼ Exp(
∑
i∈[k]

λi) and P(j = arg min
i∈[k]

Xi) = λj∑
i∈[k]

λi

for j ∈ [k].

In the lemma that follows we need to quickly sample binomial random variables and use the
following theorem from [7], which even works in the word RAM model.

I Theorem 9 ([7, Section A.2 Thm 5]). On a word RAM with word size Ω(logN) it is
possible to sample from Bin(N, 1

2 ) in expected time O(1) and whp in time O(logN).

I Proposition 10 (Local access implementation of the SDP). Let N ∈ N and f > 0. A local
access implementation of a SDP (Yt)t≥0 with parameters N and f that provides access to τ
and Yt for given t ∈ [0, τ ] can be achieved such that queries take polylog(N) time whp.

Proof. If (Yt)t≥0 and (Y ′t )t≥0 are SDPs with parameters 1 and f , respectively, and both
with N elements, then (Yft)t≥0

d= (Y ′t )t≥0. In other words, the parameter f only rescales
time so we may assume f = 1 without loss of generality. The proof idea is to first describe
how an outcome of a SDP can be represented using a binary tree. Second, we show how
queries can be answered quickly using the tree. Lastly, we argue that the tree can be lazily
generated.

Rather than sampling the lifetimes (`i)i∈[N ] from Exp(1), we sample (`′i)i∈[N ] uniformly
from the interval (0, 1) and define `i := − ln(`′i). This works because for t ≥ 0

P(`i > t) = P(− ln(`′i) > t) = P(ln(`′i) < −t) = P(`′i < e−t) = e−t, (1)

meaning `i ∼ Exp(1) as desired. We may assume that the set L = {`′1, . . . , `′N} has size N
(values are pairwise distinct). Instead of L we consider a binary tree T = T (L) that is defined
recursively. The root of T is responsible for [0, 1). If a vertex v of T is responsible for an
interval [a, b) ⊆ [0, 1) then the subtree rooted at v stores L∩ [a, b). Let s(v) := |L∩ [a, b)|. If
s(v) ≥ 2 then v has two children v1 and v2 responsible for [a, a+b

2 ) and [a+b
2 , b), respectively.

If s(v) ≤ 1 then v is a leaf and if s(v) = 1 then v is annotated with the unique element from
L ∩ [a, b).

Note that we need not store the values a and b because they are implicit in the location
of v in T . More precisely we have a = i

2d and b = i+1
2d where d is the depth of v in T and i is

the binary number obtained when encoding the path from the root of T to v as a sequence
of left (0) and right (1) choices. We do however store the value s(v) explicitly in v.

It is quite clear that T has height O(logN) whp because an inner vertex at depth d

means that two values x, y ∈ L fall within the same interval of size 2−d. The expected
number of such pairs is O(N22−d), which is O(N−c) for d ≥ (c+ 2) log2N . It is also clear
that T allows us to answer any query in time proportional to the depth of T : To compute τ
it suffices to find the left-most leaf of τ (with minimal `′i, hence corresponding to maximal
`i). To compute Yt, observe that

Yt = |{i ∈ [N ] | `i ≥ t}| = |{i ∈ [N ] | − ln(`′i) ≥ t}| = |{i ∈ [N ] | `′i ≤ e−t}|.

It therefore suffices to locate where e−t would be in T and compute, using the values s(v)
along the path, the number of leafs that lie left of the path towards e−t.

We now describe how T can be generated on the fly (or more precisely a tree with the
same distribution). We generate the children of a vertex only when the vertex is first looked
at. Initially there is only the root r annotated with s(r) = N . Now assume a vertex is
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reached for the first time. If s(v) = 0 then there is nothing to do. If s(v) ≥ 2 then we create
its two children v1 and v2. Since each child is responsible for exactly half the interval that
v is responsible for, we have s(v1) ∼ Bin(s(v), 1

2 ) and s(v2) = s(v)− s(v1). We can sample
s(v1) in O(logN) time whp by Theorem 9. If s(v) = 1, then we instantiate the single value
` ∈ L that is represented in v by sampling it uniformly from the interval that v is responsible
for.

During a single query one descending path in T has to be generated in this way, which
takes O(log(N) ·height(T )) = O(log2(N)) time whp. Note again that the (possibly adaptive)
queries may affect the way in which T is generated, but not its distribution. J

Simple Birth Process. Consider a Markov process (Xt)t≥0 with Xt ∈ N0 for t ∈ R≥0
that is monotonic in t. Let ti := inf{t ≥ 0 | Xt ≥ i + 1} be the time when it jumps from
≤ i to ≥ i+ 1 for i ∈ N0. If X0 = 1 and the waiting times ∆i := ti − ti−1 are independent
random variables with distribution Exp(i · f) for some f > 0, then (Xt)t≥0 is called a simple
birth process (SBP) or Yule-process with parameter f . Intuitively a SBP is just a SDP that
is run in reverse. The following lemma makes this precise.

I Lemma 11. Let N ∈ N and f > 0. Let (Xt)t≥0 be a SBP with parameter f and
(Yt)t≥0 a SDP with parameters N and f . Let τ denote the random duration of (Yt)t≥0 and
tN := inf{t ≥ 0 | Xt > N}. Then

(τ, (Yt)t>0) d= (tN , (XtN−t)t>0) where we define Xt = 0 for t < 0.

Proof. The amount of time that (Yt)t≥0 lingers at value N is mini∈[N ] `i ∼ Exp(N · f) by
Fact 8 (iii). Using the memorylessness of the exponential distribution (Fact 8 (ii)) and
induction we can say more generally that (Yt)t≥0 lingers at value i for an Exp(i·f)-distributed
time, independently for each i ∈ [N ]. By definition, the same is true for (Xt)t≥0, except in
reverse order and for all i ∈ N. The claimed distributional equality follows easily. Note that
we had to remove the exceptional case t = 0 due to Y0 = N 6= N + 1 = Xτ . J

6 Local access implementation of the Table Growth Process

In this section we capture the aspects of the CRP that remain if customers are indistinguish-
able, i.e. those aspects related only to the sizes of tables.
The Table Growth Process. The table growth process (TGP) is, like the CRP, paramet-
rised by a distribution Φ on (0,∞). For n ∈ N0, the n-th state Sn has the form

Sn =
(

(a(1)
n , . . . , a(kn)

n ), (f (1), . . . , f (kn))
)

where kn ≤ n is a number of tables, (a(1)
n , . . . , a(kn)

n ) are table sizes with
∑kn

j=1 a
(j)
n = n, and

(f (1) , . . . , f (kn)) are table fitness values. The process begins with k0 = 0, i.e. S0 = ((), ()).
Given the n-th state, there are kn + 1 possibilities for the (n+ 1)-th state: Either for some
j ∈ [kn] the j-th table gains a customer or a new table is created. With the normalisation
factor Z = 1 +

∑kn

j=1 a
(j)
n f (j) we have: With probability a(j)

n f (j)/Z the j-th table grows to
size a(j)

n+1 = a(j)
n + 1 while all other table sizes are unchanged. With the remaining probability

1/Z a new table is founded, meaning that kn+1 = kn + 1, a(kn+1)
n+1 = 1 and f (kn+1) is sampled

from Φ. We prove the following.

I Proposition 12 (Local access implementation of the TGP). Let Φ be a distribution on (0,∞)
with some means of sampling from Φ, and let N ∈ N. A local access implementation of the
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N -round TGP that provides access to Sn for any given 1 ≤ n ≤ N can be achieved such that
queries take polylog(N) time whp.

Note that this implies that the total number kN of tables is at most polylog(N) whp simply
because a query’s output size is a lower bound on its running time.

Continuous Time TGP. We now describe the continuous-time table growth process
(CT-TGP), which is closely linked to the TGP with parameter Φ. Let δj ∼ Exp(1) for j ∈ N
be independent random variables, let sj :=

∑j
i=1 δj be the creation time of the j-th table, let

f (j) ∼ Φ be the fitness of the j-th table and let (X(j)
t )t≥0 be a SBP with parameter f (j) that

describes the size X(j)
t−sj

of the j-th table at any time t ≥ sj . The state S′(t) of the CT-TGP
at time t ≥ 0 describes the fitness and sizes of all tables at time t, formally defined as

S′(t) :=
(

(X(1)
t−s1

, . . . , X
(k(t))
t−sk(t)

), (f (1), . . . , f (k(t)))
)

where k(t) := max{j ∈ N0 | sj ≤ t} is the number of tables created at time t. The number
count(t) :=

∑k(t)
j=1X

(j)
t−sj

of customers at time t is clearly monotone in t. Let us define the
n-th state S′n of the CT-TGP as S′n = S(tn) where tn := inf{t ≥ 0 | count(t) ≥ n}. With
probability 1 all tn are distinct and count(tn) = n for all n ∈ N0.

We now show that the sequence of states in the CT-TGP and in the TGP have the same
distribution. This type of argument, known as Athreya-Karlin embedding in the literature
on urn processes, is well suited for the study of processes with type or fitness dependent
progression rules, see for example [20].

I Lemma 13. Let Φ be as in Proposition 12. The sequences (Sn)n∈N0 and (S′n)n∈N0 of
states traversed by the TGP and the CT-TGP, respectively, have the same distribution.

Proof. The sequences of fitness values are independently sampled from Φ in both cases,
so it suffices to show that the distribution of the table sizes coincide for the TGP and
the CT-TGP, when both processes are conditioned on using any fixed sequence (f (j))j∈N
of fitness values. We may then suppress fitness values when writing states, i.e. we write
Sn = (a(1)

n , . . . , a(kn)
n ) and S′n = (X(1)

t−s1
, . . . , X(k(t))

t−sk(t)
). We shall consider the probabilities

for all possible state transitions. Let therefore Y = (y(1), . . . , y(k)) ∈ Nk be any state with
k ∈ N and

∑
j∈[k] y

(j) = n. Morever let Yj := (y(1), . . . , y(j) + 1, . . . , y(k)) for j ∈ [k] and
Y0 := (y(1), . . . , y(k), 1) be possible successor states of Y . Since both the TGP and the
CT-TGP are Markov processes starting with S0 = S′0 = (), it suffices to show that

P(Sn+1 = Yj | Sn = Y ) = P(S′n+1 = Yj | S′n = Y ) for all Y and all j = 0, . . . , k. (2)

In the TGP we have with Z = 1 +
∑
j∈[k] y

(j) · f (j) by definition

P(Sn+1 = Yj | Sn = Y ) =
{
y(j) · f (j)/Z for j ∈ [k]
1/Z for j = 0.

For the CT-TGP the situation is similar: Conditioned on S′n = Y being the state at
time tn the delay until the next time t(j) > tn when table j ∈ [k] grows has distribution
t(j) − tn ∼ Exp(y(j) · f (j)) by the definition of SBPs and by the memorylessness of the
exponential distribution (see Fact 8 (ii)). Similarly the delay until the time t(0) = sk+1 when
the (k + 1)-th table is founded has distribution t(0) − tn ∼ Exp(1). Whichever of these k + 1
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events occurs first determines S′n+1, i.e.

P(S′n+1 = Yj | S′n = Y ) = P( arg min
i∈{0,...,k}

t(i) − tn = j | S′n = Y )

Fact 8(iii)=
{
y(j) · f (j)/Z for j ∈ [k]
1/Z for j = 0.

This establishes Equation (2). J

This equivalence is the first crucial step for local access to the TGP.

Proof of Proposition 12. We promised a local access implementation of the TGP with
parameters Φ and N . By Lemma 13 we may instead give a local access implementation of
the CT-TGP that provides access to S′n for given n ∈ [N ].

We begin by describing the setup phase where we determine the parameters of all relevant
tables, i.e. those tables that are created before the sum of table sizes exceedsN . Using the same
trick as in Equation (1) on Page 11, we sample δ′1, δ′2, . . . uniformly from [0, 1) and define the
delays δ1, δ2, . . . between table creations as δk = − ln(δ′k), which ensures δ1, δ2, . . . ∼ Exp(1).
We can then compute the creation times s1, s2, . . . of tables as sk :=

∑k
j=1 δj and sample the

fitness values f (1), f (2), . . . ∼ Φ. For the k-th table we would instantiate, by definition of the
CT-TGP a SBP with parameter f (k). However, we are interested in this SBP only until its
size reaches N and may, by Lemma 11, instead instantiate a SDP with parameters f (k) and
N + 1. Let τk be the duration of the SDP. The size of table k for any time t ∈ [sk, sk + τk)
can be assessed by querying the SDP for time sk + τk − t.

To decide after the creation of the first k tables whether a (k + 1)-th table is needed, we
consider its designated birth time sk+1. If sk+1 ≥ sj + τj for some j ∈ [k] then the birth of
the (k + 1)-th table would occur after the j-th table has grown to size N + 1, so it is not
needed. Otherwise we determine the size of the first k tables at time sk+1. Let Nk be the
sum of these sizes. If Nk < N then the (k + 1)-th table is created, otherwise it is not needed.

We now argue that at most a polylogarithmic number of tables is created whp. This
implies that the setup just described can be carried out in polylog(N) time by Proposition 10.
We begin with a simple tail bound on the duration τ of a SDP with parameters f and N
(recall that `i ∼ Exp(f) is the lifetime of the i-th element):

P(τ > t) = P(max
i∈[N ]

`i > t) ≤ N · P(`1 > t) = N · e−ft. (3)

In particular τ = O( logN
f ) whp. Since we made no assumptions on Φ, we may occasionally

see very small fitness values, but since we do not permit Φ to depend on N there is a
constant ε > 0 such that Pf∼Φ(f ≥ ε) ≥ 1

2 . Therefore there is whp at least one table j
with parameter f (j) ≥ ε among the first O(logN) tables, which guarantees τj = O(logN)
whp. The total number of tables is then at most j + X where X is the number of tables
scheduled for creation within [sj , sj + τj). Though we have not yet stated it in this way,
table creation is governed by a Poisson process with parameter 1 and hence X ∼ Po(τj). A
simple concentration argument implies that X is O(logN) whp. Hence, the total number of
tables is j +X = O(logN) whp.

We now describe how queries to the CT-TGP are answered. Reporting fitness values
is straightforward as all of them have been determined during setup. The challenge is to
report for any given n ∈ [N ] the sizes of each table at some point in time when the sum of
these sizes is n. The idea is quite simple: First determine the number of tables k = k(n) that
exist at such times by iterating over the numbers N0 = 0, N1, N2, . . . encountered during
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setup. Typically, k is characterised by Nk−1 < n ≤ Nk and we should focus on the time
interval I = [sk, sk+1) when k tables exist. In the special case where n > Nk−1 and the
(k + 1)-th table was never created, we may not have computed Nk and we use the time
interval I = [sk,minj∈[k] sj + τj). In both cases we use binary search to find a time point
t ∈ I where table sizes add up to n and answer the query with the corresponding state S′(t)
of the CT-TGP.

It should be clear that this approach yields the correct result. Moreover, we have already
argued that the relevant number of tables is k = O(logN) whp and by Proposition 10 a single
table’s size can be determined in polylog(N) time whp for any t ∈ I. To obtain polylog(N)
running time overall whp the only thing left to consider is the number of rounds needed by
the binary search. For this let f̂ := maxj∈[k] f

(j). Because I ⊆ [sj , sj + τj ] for every j ∈ [k]
and using τj = O( logN

f(j) ) by Equation (3), the size |I| of I satisfies

|I| ≤ min
j∈[k]

τj = O(min
j∈[k]

logN
f(j) ) = O( logN

f̂
) whp.

We also need a lower bound on the delays ∆i = ti+1 − ti between the arrival times of
two consecutive customers. Recall that in the “flat view” of the CRP fc for c ∈ [N ]
is the fitness of customer c. Given the state at time ti we have ∆i ∼ Exp(ri) where
ri = 1 +

∑
c∈[i] fc. We say the i-th delay is p-long if ∆i ≥ p

ri
, which is the case with

probability Pr[∆i ≥ p
ri

] = Pr[Exp(ri) ≥ p
ri

] = e−p ≥ 1 − p. In particular, for any c > 0
any i ∈ [N − 1] the i-th delay is N−c-long with probability 1−N−c. By union bound, all
N − 1 delays are (simultaneously) N−c−1-long with probability 1−N−c. In this sense all
delays are N−O(1)-long whp. Let now ∆̂ be the smallest delay between any two consecutive
arrivals within I. Assuming that all delays are N−O(1)-long we have ∆̂ ≥ N−O(1)/r̂ where r̂
is the largest arrival rate (ri above) that occurs within I. Since the number of customers is
bounded by N and the fitness of any customer is bounded by f̂ we have r̂ ≤ Nf̂ . Hence

∆̂ = N−O(1)

r̂ = N−O(1)

Nf̂
= N−O(1)

f̂
.

Using our bounds on |I| and ∆̂ we conclude that the binary search takes at most

log2(|I|/∆̂) = log2

(
logN
N−O(1)

)
= log2(NO(1)) = O(logN)

steps whp as desired.
So far we have not explicitly worried about the fact that queries can be adaptive. Could an

attacker, after collecting some information, concoct a specific query that is – while generally
fast whp – exceptionally difficult conditioned on the information that has been revealed?
Luckily this worry can be dispelled for the reason that the number of distinct attributes is
small enough: Our bounds on query time relate only to circumstances regarding the random
processes that the attacker does not control. Since these circumstances are favourable whp
for any fixed query, they are – using our definition of “whp” – also simultaneously favourable
for each of the polynomially many possible queries. This concludes the argument. J

7 Local access implementation of the Chinese Restaurant Process

We are finally ready to prove Theorem 2 based on Propositions 7 and 12.

Proof of Theorem 2. The setup is straightforward: To provide a local access implementation
of the N -round CRP with parameter Φ, we use our local access implementation the N -round
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TGP with parameter Φ, which determines how customers are distributed to tables. This
yields the correct distribution because customers that share a table in the CRP process also
share the same fitness value, so the way in which fitness is assigned to tables in the TGP is
adequate. We query the TGP for n = N to learn the final table sizes (a(1)

N , . . . , a
(kN )
N ) and

instantiate kN copies of the STP with these sizes as parameters. The j-th STP provides
access to a sequence (τ (j)

n )1≤j≤a(j)
N

of permutations and is responsible for the ordering of the
customers at the j-th table. Note that fitness parameters are not needed since whenever a
customer joins a specific table in the CRP all positions at that table are equally likely due to
shared fitness values. Any query to the TGP takes polylog(N) time whp by Proposition 12
and any query to a STP takes polylog(N) time whp by Proposition 7. In particular the
described setup takes polylog(N) time whp.

To answer CRP queries (see below), we have to translate between the two distinct ways in
which customers are referenced by the TGP and the STPs. If the c-th customer overall joins
the j-th table and is the c′-th customer at that table, then we call (c′, j) the local identity of
the customer while c is her global identity. Given the global identity c of a customer we can
obtain her local identity by querying the TGP for round c− 1 and round c. Let j be the
index of the unique table that either grew in size or was newly created in round c. Then
(a(j)
c , j) is the local identity of c. Conversely, given the local identity (c′, j) of a customer, her

global identity is the unique number c with a(j)
c = c′ and a(j)

c−1 = c′ − 1 (assuming a(j)
c has

an implicit value of 0 when kc < j). This number can be determined with binary search in
O(logN) queries to the TGP since a(j)

c is monotonic in c. Any translation operation takes
polylog(N) time whp.

We now show how any query to the CRP can be answered by issuing an at most
polylogarithmic number of queries to the kN + 1 processes we have instantiated. In that
context, we may freely translate between local and global identities as explained in the
previous paragraph.

πn(c), π−1
n (c). Let (c′, j) be the local identity of customer c and n′ = a(j)

n the size of her
table after round n. The query asks for the global identities of the customers with local
identities (τ (j)

n′ (c′), j) and ((τ (j)
n′ )−1(c′), j), respectively. We obtain the values τ (j)

n′ (c′) and
(τ (j)
n′ )−1(c′) by querying the j-th STP.

fc. Simply return f (j) where (c′, j) is the local identity of customer c.
founder(c). Let (c′, j) be the local identity of customer c. Then founder(c) is the global

identity of the customer with local identity (1, j).
F ∩ [N ]. This asks for the global identities of the customers with local identities (1, j) for

all 1 ≤ j ≤ kN .
tableSizes(n). This query can simply be forwarded to the TGP, the correct answer being

(a(1)
n , . . . , a(kn)

n ). J

For reasons already discussed in the proof of Proposition 12, the fact that queries can be
chosen adaptively poses no problem.
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