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Abstract: We investigate a class of growing graphs embedded into the d-dimensional torus

where new vertices arrive according to a Poisson process in time, are randomly placed in

space and connect to existing vertices with a probability depending on time, their spatial

distance and their relative birthtimes. This simple model for a scale-free network is called

the age-based spatial preferential attachment network and is based on the idea of preferential

attachment with spatially induced clustering. We show that the graphs converge weakly

locally to a variant of the random connection model, which we call the age-dependent random

connection model. This is a natural infinite graph on a Poisson point process where points

are marked by a uniformly distributed age and connected with a probability depending on

their spatial distance and both ages. We use the limiting structure to investigate asymptotic

degree distribution, clustering coefficients and typical edge lengths in the age-based spatial

preferential attachment network.
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1. Motivation: Scale-free networks and clustering

Networks arising in different contexts, be it social, communication, technological or biological networks,
often have strikingly similar features. The question of interest to us is why this is the case. Can these
features be explained by a few basic principles underpinning the construction of these networks?

The probabilistic methodology to approach this question is to build a network model as a growing
sequence of random graphs defined from very simple interaction principles and to prove the emerging
features in the form of limit theorems when the number of vertices is going to infinity. The purpose of
this paper is to present a tractable network model which is based on simple and natural construction
principles and for which such limit theorems can be proved rigorously. We will call this model the
age-based spatial preferential attachment model.

Potential features of networks we are interested in include:

• Networks are scale-free: For very large network size and large k the proportion µ(k) of nodes

with exactly k neighbours is of order k−τ+o(1) for some power law exponent τ .

• Networks are ultrasmall : The shortest path between two randomly chosen nodes in the graph
is doubly logarithmic in the number of vertices.

∗Communicating author.
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• Networks are robust under random attack: If an arbitrarily large proportion of links is ran-
domly removed from the network the qualitative topological features of the network remain
unchanged.

• Networks are vulnerable under targeted attack: Even if only a small number of the most
influential nodes are removed, the topological features of the network change dramatically.

• Networks show strong clustering : Nodes picked from the neighbourhood of a typical node
have a much higher chance of being connected by a link than randomly picked nodes.

These features should emerge solely from the principles on which our model rests. In this paper
the focus is on the scale-free and clustering properties of our model. We also believe that the other
properties hold in certain parameter ranges, these (harder) properties are left for future research we
will undertake.

The simple building principles for our network are:

• They are built dynamically by adding nodes successively.
• When a new node is introduced, it prefers to establish links to existing nodes that are either

– powerful or old;
– or similar to the new node.

The idea of building a network by connecting incoming nodes to existing nodes with a probability
depending increasingly on their power was introduced into network theory by Barabási and Albert [2].
They use the degree of the existing node as the indicator of its power; we speak of degree-based
preferential attachment. There is now a substantial body of work showing rigorously that the resulting
networks are scale-free [4] and, for power-law exponent τ < 3, they are ultrasmall and robust [10, 8, 9].
The key technical tool in the proofs of the latter properties is the coupling of neighbourhoods of typical
vertices to well-studied random tree models often coming from the genealogy of branching processes.
This technique rests therefore crucially on the absence of clustering, as clustering leads to presence of
short cycles that destroy the local tree structure of the graphs.

To include clustering the idea of preferential attachment has to be developed further. An attractive
approach is to include the idea that nodes have individual features and similarity of the features
of nodes is a further incentive to form links between two nodes. This is realised by embedding the
graphs into space and giving preference to short edges. We speak of spatially induced clustering. Spatial
preferential attachment models were studied by Manna and Sen [22], Flaxman, Frieze and Vera [11, 12],
Aiello, Bonato, Cooper, Janssen and Pra lat [1], Jordan [17, 18], Janssen, Pra lat, Wilson [16], Jordan
and Wade [19], and Jacob and Mörters [14, 15].

The spatial preferential attachment models studied in these papers appear to be too complicated to
fully characterise features like robustness or ultrasmallness. We therefore propose a simpler spatial
model where preferential attachment is not to vertices with high degree but to vertices with old age;
we speak of age-based preferential attachment. Age-based models are easier to study because while
the actual degree of a vertex depends in a complex way on the graph geometry, the age of a vertex
is a given quantity. At the same time there is a strong link between degree and age as the expected
degree is a simple function of the age of a vertex. Our simplification therefore removes complicated
but (on a large scale) inessential correlations between edges and allows us to focus on the important
correlations, namely those coming from the spatial embedding.
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2. The age-based spatial preferential attachment network

The age-based spatial preferential attachment model is a growing sequence of graphs (Gt)t>0 in con-
tinuous time. The vertices of the graphs are embedded in the d-dimensional torus Td1 = (−1/2, 1/2]d

of side-length one, endowed with the torus metric d defined by

d(x, y) = min
{
|x− y + u| : u ∈ {−1, 0, 1}d

}
for x, y ∈ Td1,

where here and throughout the paper |·| denotes the Euclidean norm. Vertices are denoted by y = (y, s)
and they are characterised by their birthtime s > 0 and by their position y ∈ Td1.

At time t = 0 the graph G0 has no vertices or edges. Then

• Vertices arrive according to a standard Poisson process in time and are placed independently
uniformly on the d-dimensional torus Td1.
• Given the graph Gt− a vertex x = (x, t) born at time t and placed in position x is connected

by an edge to each existing node y = (y, s) independently with probability

ϕ

(
t · d(x, y)d

β ·
(
t
s

)γ )
, (2.1)

where

(a) ϕ : [0,∞)→ [0, 1] is the profile function. It is nonincreasing, integrable and normalized in the
sense that ∫

Rd

ϕ(|x|d) dx = 1. (2.2)

The profile function can be used to control the occurrence of long edges.

(b) γ ∈ (0, 1) is a parameter that quantifies the strength of the preferential attachment mecha-
nism. We shall see that it alone determines the power-law exponent of the network.

(c) β ∈ (0,∞) is a parameter to control the edge density, which is asymptotically equal to β
1−γ ,

hence the smaller β, the sparser the graph.

Some comments on our choices in (2.1) are in order.

(i) For any r > 0, the profile function ϕ and parameter β define the same model as the profile
function x 7→ ϕ(rx) and parameter rβ. Hence the normalization convention (2.2) represents
no loss of generality. Similarly, if the intensity of the arrival process is taken as λ > 0 the
process (Gt/λ)t>0 is the original process with the same profile function ϕ and parameter βλ.

(ii) The form of the connection probability (2.1) is natural for the following reasons: To ensure
that the probability of a new vertex connecting to its nearest neighbour does not degenerate,
as t → ∞, it is necessary to scale d(x, y) by t−1/d, which is the order of the distance of a
point to its nearest neighbour at time t. Further, the integrability condition of ϕ ensures that
the expected number of edges connecting a new vertex to the already existing ones, remains
bounded from zero and infinity, as t→∞.

(iii) In the degree-based spatial preferential attachment model of Jacob and Mörters [14], the term
(t/s)γ that creates the age dependence in our model is replaced by a function of the indegree,
the number of younger vertices y is connected to at time t. If this function is asymptotically
linear with slope γ, the network is scale-free with power-law exponent τ = 1 + 1

γ . In this case,

the expected indegree is of order (t/s)γ so that the models remain comparable and this is the
natural choice to ensure that our network model will be scale-free.
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(iv) For the profile function ϕ, one has different choices. We normally assume that ϕ is either
regularly varying at infinity with index −δ, for some δ > 1, or ϕ decays quicker than any
regularly varying function, in which case we set δ =∞. In the latter case a natural choice is
to consider ϕ(x) = 1

2a1[0,a](x) for a ≥ 1/2. In this case, a vertex born at time s is linked to a
new vertex at time t with probability 1/(2a) if and only if their positions are within distance(

1
tβa (t/s)γ

)1/d
.

In the case a = 1/2, the profile function ϕ only takes the values zero and one, thus the decision
is not random and we connect two vertices whenever they are close enough. The degree-based
preferential attachment model in discrete time for this choice of ϕ was introduced in [1]
and further studied in [5] and [16]. This particular choice for the profile function helps to
get a better understanding of the problems and properties of this model, see for example
Section 5. However, for our ultimate purpose this choice is too restrictive as it does not allow
the networks to be robust or ultrasmall.

In the following sections, we use g = o(h) to indicate that g/h converges to zero, g � h if g/h is
bounded from zero and infinity and g ∼ h if g/h converges to one.

3. Weak local limit: the age-dependent random connection model

In this section, we introduce a graphical representation of the network Gt. This representation allows
a simple rescaling, and the rescaled graphs turn out to converge to a limiting graph, which is denoted
as the age-dependent random connection model. This also turns out to be the weak local limit of the
graph sequence (Gt)t>0, which enables us to achieve results for the network (Gt)t≥0 by studying the
age-dependent random connection model.

Let X denote a Poisson point process of unit intensity on Rd × (0,∞). We say a point x = (x, s) ∈ X
is born at time s and placed at position x. Observe that, almost surely, two points of X neither have
the same birth time nor the same position. We say that (x, s) is older than (y, u) if s < u. For t > 0
write Xt for X ∩ (Td1 × (0, t]), the set of vertices on the torus already born at time t. We denote by

E(X ) := {(x,y) ∈ X × X : x younger than y}
the set of potential edges in X . Given X we introduce a family V of independent random variables,
uniformly distributed on (0, 1), indexed by the set of potential edges. We denote these variables by
Vx,y or V(x,y). A realization of Xt and Vt, defined as the restriction of V to indices in Xt×Xt, defines
a network G(Xt,Vt) with vertex set Xt placing an edge between x = (x, u) and y = (y, s) with s < u,
if and only if

V(x,y) ≤ ϕ

(
u · d(x, y)d

β
(
u
s

)γ
)
. (3.1)

Observe that the graph sequence (G(Xt,Vt))t>0 has the law of our age-based spatial preferential
attachment model and is therefore constructed on the probability space carrying the Poisson process
X and the sequence V. Moreover, G extends to a deterministic mapping associating a graph structure
to any locally finite set of points in Y ⊆ Tda × (0,∞) and sequence V in (0, 1) indexed by E(Y) =
{(x,y) ∈ Y × Y : x younger than y}, where Tda = (−1

2a
1/d, 12a

1/d]d is the torus of volume a equipped
with its canonical metric d(·, ·), and x, y are connected if and only if (3.1) holds. We permit the case
a =∞, with Td∞ = Rd equipped with the Euclidean metric.
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For finite t > 0, we define the rescaling mapping

ht : Td1 × (0, t] −→ Tdt × (0, 1],

(x, s) 7−→
(
t1/dx, s/t

)
,

which expands space by a factor of t1/d and time by a factor of 1/t. The mapping ht operates
canonically on the set Xt as well as on Vt by ht(Vt)(ht(x), ht(y)) := Vt(x,y), and also on graphs with
vertex set in Xt by mapping points x to ht(x) and introducing an edge between ht(x) and ht(y) if and
only if there is one between x and y. As

ϕ

u/t · d(t1/dx, t1/dy)d

β
(
u/t
s/t

)γ
 = ϕ

(
u · d(x, y)d

β
(
u
s

)γ
)

the operation ht preserves the rule (3.1) and therefore

G(ht(Xt), ht(Vt)) = ht(G(Xt,Vt)).
In plain words, it is the same to construct the graph and then rescale the picture, or to first rescale
the picture and then construct the graph on the rescaled picture, see Figure 1.

Figure 1. The graph Gt on the left and its rescaling ht(Gt) on the right. The blue
vertices are born after time t and, therefore, the corresponding edges do not exist yet
and the vertices are not part of the rescaled graph. The yellow vertex is placed at
position 0 and remains in the centre after the rescaling.
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We now denote X t = X ∩ (Tdt × (0, 1]) and by Vt the restriction of V to indices in X t×X t. This gives
rise to a graph Gt := G(X t,Vt). As ht(Xt) is a Poisson point process of unit intensity on Tdt ×(0, 1] and
ht(Vt) are independent uniform marks attached to the potential edges, for fixed finite t, the graph Gt

has the same law as G(ht(Xt), ht(Vt)) and therefore as ht(Gt). However, the process (Gt)t>0 behaves
differently from the original process (Gt)t>0. Indeed, while the degree of any fixed vertex in (Gt)t>0

goes to infinity, the degree of any fixed vertex in (Gt)t>0 stabilizes and the graph sequence converges
to the graph G∞ := G(X∞,V∞); see the theorem below.

In order to formulate also a local version of this convergence result we add a point at the origin
to our Poisson process denoting X0 := X ∪ {(0, U)} where U is an independent, uniformly on (0, 1]
distributed birth time. As before let V0 be a family of independent uniformly distributed random
variables indexed by the potential edges in X0, and, for 0 < t ≤ ∞, let X t0 = X0 ∩ (Tdt × (0, 1]) and
denote by Vt0 the restriction of V0 to indices in X t0×X t0 . We define rooted graphs Gt0 := G(X t0 ,Vt0) with
the root being the vertex placed at the origin. For p > 0 define the class Hp of nonnegative functions
H acting on locally finite rooted graphs and depending only on a bounded graph neighbourhood of
the root with the property that

sup
0<t<∞

E[H(Gt0)
p] <∞.

Theorem 3.1.

(i) G∞ is almost surely locally finite, i.e. almost surely all its vertices have finite degree.
(ii) Almost surely, the graph sequence (Gt) converges to G∞ in the sense that for each x ∈ X∞

the neighbours of x in Gt and in G∞ coincide for large t.
(iii) In probability, the graph sequence (Gt) converges weakly locally to G∞0 in the sense that for

any H ∈ Hp, p > 1, we have

lim
t→∞

1

t

∑
x∈Gt

H(θxGt) = E[H(G∞0 )] in probability, (3.2)

where θx acts on points y = (y, s) as θx(y) = (y − x, s) and on graphs accordingly.

Theorem 3.1 will be proved in Section 4. The limiting graph G∞ in (ii) is what we call the age-
dependent random connection model. This model is of independent interest as a natural generalisation
of the random connection model, see Meester and Roy [23] or Last et al [20] for a recent paper. Like
in the classical geometric random graph models points are placed according to a Poisson point process
Y ⊆ Rd, but now every point additionally carries a mark drawn independently from the uniform
distribution on (0, 1). Given points and marks, we independently connect two points in position x
with mark u, resp. position y with mark s, with probability

ϕ
(
β−1(s ∨ u)1−γ(s ∧ u)γ · |x− y|d

)
.

The rooted graph G∞0 occurring as the local limit is the Palm version of the age-dependent random
connection model G∞; loosely speaking the graph G∞ with a typical point shifted to the origin.

Remarks:

• Weak local limits were introduced by Benjamini and Schramm [3] as distributional limits for
determinstic sequences of finite graphs randomized by a uniform choice of root. The result
in (iii) allows that H additionally depends continuously on the ages of the vertices and the
length of the edges if taken in the scaled graphs ht(θxGt). Further generalisations of the
results hold, see Yukich and Penrose [26] for seminal work on random geometric graphs and
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Jacob and Mörters [14] for a similar proof in the case of the degree-based model which can
be adapted to our situation. We will not need these more general results here.

• The age-dependent random connection model is in a different universality class than other
established models of infinite spatial scale-free graphs. For example the scale-free percolation
model of Deijfen, van der Hofstad, Hooghiemstra [6] and its continuous version studied by
Deprez and Wüthrich [7] correspond (when rewritten in our framework) to a connection
probability of the form

ϕ
(
β−1sγuγ · |x− y|d

)
.

Models of this type do not arise naturally from sequences of growing finite random graphs on
a fixed space as our model does.

• There is a similar convergence result for the degree-based spatial preferential attachment
model, but the limiting graph is not as natural as the age-dependent random connection
model as the existence of edges between vertices with given position and age depends in this
graph on the existence of edges between the older vertex and other vertices that may lie
arbitrarily far away, see Jacob and Mörters [14].

4. Convergence of neighbourhoods and degree distributions

In this section we will study the asymptotic degree distribution and show that the age-based spatial
preferential attachment model is scale-free. To this end we study the neighbourhood of a fixed vertex
x = (x, u) in the graphs Gt. We think of edges as oriented from the younger to the older endvertex,
so that the indegree of x is the number of younger vertices that connect to it, and the outdegree is
the number of older vertices it connects to. As our construction is based on Poisson processes and
conditionally independent edges, the indegree and outdegree of a fixed vertex are independent and
Poisson distributed.

If G is a graph with vertices in Tdt × (0,∞), we write x↔ y to indicate that there is an edge between
x and y in G. Now, let x = (x, u) be a vertex in G and define its older neighbours,

Yx(G) := {y = (y, s) ∈ G : x↔ y, s ≤ u} ,

and its younger neighbours born before time s,

Zx(s,G) := {y = (y, r) ∈ G : y↔ x, u < r ≤ s} .

For t ∈ (0,∞] and 0 < u < s ≤ 1, we write Ytx := Yx(Gt) and Ztx(s) := Zx(s,Gt), adding the point
x = (x, u) to the underlying Poisson process X if it is not already there.

Proposition 4.1.

(a) For every t ∈ (0,∞], the older neighbours Ytx of x = (x, u) form a Poisson point process on
Tdt × [0, u) with intensity measure

λYtx := ϕ
(
β−1u

( s
u

)γ
d(x, y)d

)
dy ds.

(b) For every t ∈ (0,∞], the younger neighbours Ztx(s0) of x = (x, u) at time s0 ∈ (u, 1] form a
Poisson point process on Tdt × (u, s0] with intensity measure

λZtx(s0) := ϕ
(
β−1s

(u
s

)γ
d(x, y)d

)
dy ds.

(c) The outdegree of the origin in G∞0 is Poisson distributed with parameter β
1−γ and independent

of the age U of the origin.
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(d) The indegree of the origin in G∞0 is mixed Poisson distributed, where the mixing distributuion
has the density

f(λ) = β1/γ(γλ+ β)−(1+1/γ) for λ > 0. (4.1)

Proof. The older neighbours of x = (x, u) are all neighbours with birth time smaller than u, there-
fore, X ∩ (Tdt × [0, u)) is the set of all potential vertices connected to x by an outgoing edge. Now,
given X a vertex y = (y, s) ∈ X ∩ (Tdt × [0, u)) is connected to x independently with probability
ϕ(β−1u1−γsγd(x, y)d). Thus, Ytx defines a thinning of X ∩ (Tdt × [0, u)) and (a) follows. The analogous
argument for the vertices in X ∩ (Tdt × (u, s0]) proves (b).

Applying (a) to x = (0, u) and t =∞ gives that the number of older neighbours is Poisson distributed
with parameter

λY∞x
(
Rd × [0, u]

)
=

∫ u

0

∫
Rd
ϕ
(
β−1u1−γsγ |y|d

)
dy ds =

∫ u

0
βuγ−1s−γ ds

∫
Rd
ϕ
(
|y|d
)
dy =

β

1− γ
,

using the normalisation of ϕ. The claimed independence follows as the distribution does not depend
on u, completing the proof of (c).

Applying (b) to x = (0, u) and t = ∞ gives that the number of younger neighbours up to time s is
Poisson distributed with parameter

λZ∞x (s)

(
Rd × (u, s]

)
=

∫ s

u

∫
Rd
ϕ
(
β−1v1−γuγ |y|d

)
dy dv = β

∫ s

u
vγ−1u−γ

∫
Rd
ϕ(|y|d) dy dv

= β

∫ s

u
vγ−1u−γ dv = β

sγu−γ − 1

γ
.

As U is independent of X and V the probability that the indegree equals k is therefore∫ 1

0
exp

(
− βu

−γ − 1

γ

)
·
(
β u
−γ−1
γ

)k
k!

du =

∫ ∞
0

exp(−λ) · λ
k

k!
·
(
β1/γ(γλ+ β)−(1+1/γ)

)
dλ,

as claimed. �

Remark: Since, by construction, Ytx and Ztx(1) are independent Poisson point processes, the neigh-
bourhood of a point x = (0, u) added (if necessary) to Gt is a Poisson point process with intensity
λZtx(1) + λYtx . Let now t be finite and pick a vertex X uniformly at random from the finite graph Gt.

We easily see that ht(θxGt) = Gt0 in distribution. Hence Proposition 4.1 part (a) and (b) give a precise
description of the neighbourhood of a randomly chosen vertex in Gt.

Proof of Theorem 3.1(i). By Proposition 4.1 part (c) and (d), almost surely, the origin has finite
degree in G∞0 . Hence, by the refined Campbell theorem (see Theorem 9.1 in [21]), almost surely, every
vertex in G∞ has finite degree. �

Proof of Theorem 3.1(ii). We work conditionally on x = (x, s) ∈ X∞. Our aim is to show that there
exists an almost surely finite random variable M such that, for all t ∈ (0,∞] and y ∈ X∞ with
distance at least M from x, the vertices x and y are not connected in Gt. To this end, observe that
the distance between x and any y ∈ Tdt can be up to 2

√
d |x| smaller than it would be in Rd. Consider

the model where the vertices within distance 2
√
d |x| of x are deleted from X∞ and all the other

vertices are moved towards x by a distance of 2
√
d |x|. It is easy to see that all vertices y ∈ X∞, that

are at least 2
√
d |x| away from x and connected to x in the finite graph Gt for some t > 0, are also

linked to x in this new model. Furthermore, the degree of x is still almost surely finite. Hence, we
define the random variable M as the distance of x to the furthest vertex it is linked to in this new
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Figure 2. Heatmaps of the neighbourhood of a realtively old root (left, birth time
0.2) and of a relatively young root (right, birth time 0.8) in G∞0 with β = 5, γ = 1/3
and ϕ(x) = 1 ∧ x−2.

model, plus 2
√
d |x|. Then M is almost surely finite and, as for t > |x| + M the vertices in X∞ and

in X t within distance M from x coincide, the edges of x linking it to another vertex y that is at most
M away coincide in Gt and G∞ for sufficiently large t. �

Proof of Theorem 3.1(iii). We can replace the left-hand side in (3.2) by the limit of 1
t

∑
x∈Gt H(θxG

t),
which has the same distribution and, due to Campbell’s formula, has expectation E[H(Gt0)]. Further-
more, the neighbourhoods of the origin in Gt0 and in G∞0 agree for sufficiently large t. As the family
(H(Gt0))t>0 is bounded in Lp and therefore uniformly integrable, we infer that E[H(Gt0)] converges
to E[H(G∞0 )]. Hence the first moments in (3.2) converge, and we now argue that for bounded H the
second moments converge, too.

Spelling out the second moment of 1
t

∑
x∈Gt H(θxG

t) we get a term corresponding to choosing the

same x ∈ Gt twice, which by the first moment calculation applied to H2 converges to zero, and the
term

E
[ 1

t2

∑
x,x′∈Gt
x 6=x′

H(θxG
t)H(θx′G

t)
]
.

Using the boundedness of H we can chose ε > 0 so that the contribution from pairs x,x′ for which
one is born before time ε is arbitrarily small. We can then find a large radius R so that the graph
neighbourhood of the origin on which H depends is contained in {y : d(0, y) ≤ R} for θxG

t for a
proportion of vertices x ∈ Gt born after time ε arbitrarily close to one, for all sufficiently large t. We
can neglect the small proportion of exceptional vertices as well as pairs x,x′ with distance smaller
than R using again the boundedness of H. On the remaining part the expectation factorizes and we
see that second moment converges to E[H(G∞0 )]2. Hence we get convergence in L2.
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It remains to remove the condition of boundedness of H. Let k ∈ N and observe that our result applies
to the bounded functional H ∧ k. Note that

E
[1

t

∑
x∈Gt

H(θxG
t)−H ∧ k(θxG

t)
]

= E
[
H(Gt0)−H ∧ k(Gt0)

]
and the right hand side goes to zero uniformly in t as k →∞ by the uniform integrability implied in
our Lp bound. This implies the required convergence. �

We define the empirical outdegree distribution νt of the graph Gt by

νt(k) =
1

t

∑
x∈Gt

1{|Yx(Gt)|=k} for k ∈ N,

and note that (for convenience) we have normalised νt so that its mass converges to one without
necessarily being equal to one for small t. We now show that the empirical outdegree distribution νt
converges to a deterministic limit.

Theorem 4.2. For any function g : N0 → [0,∞) growing no faster than exponentially we have

1

t

∑
x∈Gt

g
(
|Yx(Gt)|

)
=

∫
g dνt −→

∫
g dν,

in probability, as t→∞, where ν is the Poisson distribution with parameter β/(1− γ).

Proof. For a finite graph G with vertices marked by birth times and a root vertex x we can define
H(G) = g(|Yx(G)|) where Yx(G) is the set of edges from the root to older vertices in G. Note that
the function H depends only on the neighbourhood of the root within graph distance one and the
relative birth times of these vertices. Moreover, H(Gt0) = g(|Yx(Gt0)|) where x ∈ Gt0 is the vertex
placed at the origin, for arbitrary t, and as |Yx(Gt0)| is Poisson distributed with a bounded parameter,
the integrability condition H ∈ Hp is satisfied as long as g is not growing faster than exponentially.
As H(θxGt) = g(|Yx(Gt)|) for all x ∈ Xt and finite t, we infer the result from Theorem 3.1(iii). �

Define the empirical indegree distribution µt of the graph Gt by

µt(k) =
1

t

∑
x∈Gt

1{|Zx(t,Gt)|=k}.

Similar to above, the empirical indegree distribution µt also converges to a deterministic limit.

Theorem 4.3. For any function g : N0 → [0,∞) growing no faster than linearly we have

1

t

∑
x∈Gt

g
(
|Zx(t, Gt)|

)
=

∫
g dµt −→

∫
g dµ,

in probability, as t→∞, where µ is the mixed Poisson distribution with density f as in (4.1)

Proof. For a finite graph G with vertices marked by birth times and a root vertex x we can define
H(G) = g(|Zx(G)|) where Zx(G) is the set of edges from younger vertices in G to the root. Note
that the function H depends only on the neighbourhood of the root within graph distance one and
the relative birth times of these vertices. Moreover, H(Gt0) = g(|Zx(Gt0)|) where x ∈ Gt0 is the vertex
placed at the origin, for arbitrary t. Now |Zx(Gt0)| is dominated by |Zx(G∞0 )| whose distribution µ has
tails (calculated in Lemma 4.4 below) that vanish fast enough to ensure that H ∈ Hp for some p > 1.
As H(θxGt) = g(|Zx(Gt)|) for all x ∈ Xt and finite t we infer the result from Theorem 3.1(iii). �
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To complete the proof that the age-based preferential attachment model is scale-free with power law
exponent τ = 1 + 1/γ we observe that, by a similar argument as in Theorem 4.2 and Theorem 4.3, the
empirical degree distribution in Gt converges in probability to the convolution of ν and µ. As ν has
superexponentially light tails, the tail behaviour of the convolution is inherited from that of µ, which
we now calculate.

Lemma 4.4. µ(k) = k
−(1+ 1

γ
)+o(1)

as k ↑ ∞.

Proof. Observe that

µ(k) = β1/γ
∫ ∞
0

λk

k!
e−λ(γλ+ β)

−(1+ 1
γ
)
dλ ≤ β1/γγ

−1− 1
γ

Γ(k + 1)

∫ ∞
0

λ
(k− 1

γ
)−1

e−λ dλ

=
β1/γ

γ1+1/γ

Γ(k − 1
γ )

Γ(k + 1)
= k

−1− 1
γ
+o(1)

,

as k ↑ ∞, by Stirling’s formula. On the other hand, note that for some fixed bound A > 0, there
exists a constant c > 0 such that γx+ β ≤ cγx for all x ≥ A. Hence

µ(k) ≥ c
−1− 1

γ β1/γ

Γ(k + 1)

∫ ∞
A

λke−λ(γλ)
−1− 1

γ dλ = c̃
Γ(k − 1

γ )

Γ(k + 1)
− c̃

Γ(k + 1)

∫ A

0
λ
(k− 1

γ
)−1

e−λ dλ,

for some positive constant c̃. As the subtracted term, for fixed A, is of smaller order, as k → ∞, we
obtain the lower bound. �

5. Global and local clustering coefficients

To show that the age-based spatial preferential attachment model has clustering features we use two
metrics well established in the applied networks literature, see e.g. [27, 25] for some early papers. If G
is a finite graph, we call a pair of edges in G a wedge if they share an endpoint (called its tip). Define
the global clustering coefficient or transitivity of G as

cglob(G) := 3
Number of triangles in G

Number of wedges in G
,

if there is at least one wedge in G and cglob(G) := 0 otherwise. By definition, cglob(G) ∈ [0, 1].

Another way of thinking about clusters is locally; i.e. to count only the triangles and wedges containing
a fixed vertex x. For a vertex x with at least two neighbours, define the local clustering coefficient by

clocx (G) :=
Number of triangles in G containing vertex x

Number of wedges with tip x in G
,

which is also an element of [0, 1]. Let V2(G) ⊆ G be the set of vertices in G with degree at least two,
and define the average clustering coefficient by

cav(G) :=
1

|V2(G)|
∑

x∈V2(G)

clocx (G),

if V2(G) is not empty and as cav(G) := 0 otherwise. Note that this metric places more weight on the
low degree nodes, while the transitivity places more weight on the high degree nodes.
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Theorem 5.1 (Clustering Coefficients).

(a) For the average clustering coefficient we have

cav(Gt) −→
∫ 1

0
P
{

(X(1)
u , S(1)

u )↔ (X(2)
u , S(2)

u )
}
π(du),

in probability as t → ∞, where (X(1)
u , S(1)

u ) resp. (X(2)
u , S(2)

u ) are two independent random
variables on Rd × [0, 1] with distribution

1

λu

(
ϕ(β−1s1−γuγ |x|d)1(u,1](s) + ϕ(β−1u1−γsγ |x|d)1[0,u](s)

)
dx ds, (5.1)

where λu = β
γ (2γ−11−γ + u−γ) is the normalising factor, and π is the probability measure on [0, 1]

with density proportional to 1− e−λu − λue−λu.

(b) For the global clustering coefficient, there exists a number cglob∞ ≥ 0 such that

cglob(Gt) −→ cglob∞

in probability, as t→∞. The limiting global clustering coefficient cglob∞ is positive if and only
if γ < 1/2.

Remark: The limiting average clustering coefficient can be interpreted as the probability that in G∞0
two neighbours of the vertex at the origin are connected by an edge. The density of the birthtime
of the vertex at the origin here is not uniform but given by the measure π, which is the conditional
distribution of the birthtime of a vertex given that it has degree at least two. Observe that this
coefficient is always positive. By contrast the global clustering coefficient vanishes asymptotically
when preferential attachment to old nodes is strong (i.e. when γ is large). In this case the collection of
wedges is dominated by those with an untypically old tip. These vertices have small local clustering
as they are endvertices to a significant amount of long edges.

Proof. Let G be a finite rooted graph and define the function H(G) = clocx (G) if the root x has degree
at least two, and H(G) = 0 otherwise. As H is bounded, we have H ∈ Hp for any p > 1 and, by
Theorem 3.1 (iii), we get

1

t

∑
x∈Gt

H(θxGt) −→ E [H(G∞0 )]

in probability, as t→∞. To calculate the limit, observe that, for a vertex x with degree k, the number
of wedges with tip x is k(k − 1)/2. It follows that

E [H(G∞0 )] =

∫ 1

0

∑
k≥2

E
[

2

k(k − 1)

∑
(x,s)↔(0,u)

∑
(y,v)↔(0,u)

v<s

1{(x,s)↔(y,v)}1{|Y∞
(0,u)
|+|Z∞

(0,u)
(1)|=k}

]
du.

By Proposition 4.1, the neighbourhood of the root (0, u) is given by a Poisson point process with
intensity measure

λZ∞
(0,u)

(1) + λY∞
(0,u)

.

Conditioned on the number of neighbours, the neighbours of the root (0, u) are independent and
identically distributed by the normalized intensity measure of the neighbourhood given in (5.1), see
[21, Proposition 3.8]. Therefore,

E [H(G∞0 )] =

∫ 1

0
P
{

(X(1)
u , S(1)

u )↔ (X(2)
u , S(2)

u )
}
P
{
|Y∞(0,u)|+ |Z

∞
(0,u)(1)| ≥ 2

}
du,
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where (X(1)
u , S(1)

u ) and (X(2)
u , S(2)

u ) are independent and identically distributed as claimed. Choosing
H(G) as the indicator of the event that the root has degree at least two, Theorem 3.1 (iii) gives

|V2(Gt)|
t

−→
∫ 1

0
P
{
|Y∞(0,u)|+ |Z

∞
(0,u)(1)| ≥ 2

}
du,

in probability. As |Y∞(0,u)|+ |Z
∞
(0,u)(1)| is Poisson distributed with intensity λu we conclude that

cav(Gt) −→
∫ 1
0 P
{

(X(1)
u , S(1)

u )↔ (X(2)
u , S(2)

u )
} (

1− e−λu − λue−λu
)
du∫ 1

0 1− e−λu − λue−λu du
,

as claimed in part (a).

For the global clustering coefficient, we count the number of triangles and wedges separately. To this
end, define H(G) to be the number of triangles which have their youngest vertex in the root of G, and

Ĥ(G) to be the number of wedges with tip in the root x of G. Note that H(Gt0) ≤ |Yx(G∞0 )|2 and
thus H ∈ Hp for any p > 1. Moreover,

Ĥ(Gt0) =
1

2
|Ytx|(|Ytx| − 1) +

1

2
|Ztx(1)|(|Ztx(1)| − 1) + |Ytx||Ztx(1)| ≤ 2

(
|Y∞x |2 + |Z∞x (1)|2

)
.

If γ < 1/2 and 1 < p < 1/(2γ), we hence have Ĥ ∈ Hp and Theorem 3.1(iii) gives that

cglob(Gt) =

∑
x∈Gt H(θxGt)

t
· t∑

x∈Gt Ĥ(θxGt)
−→ E[H(G∞0 )]

E[Ĥ(G∞0 )]
> 0

in probability. If γ > 1/2, applying the theorem to the bounded functions Ĥ(Gt)∧k and then sending
k to ∞, we get 1

t

∑
x∈Gt Ĥ(θxGt)→∞ and hence cglob(Gt)→ 0 in probability, as t→∞. �

Figure 3. Local clustering coefficient of a vertex (0, u) for parameters a = 1 and
β = ced(1 − γ) chosen such that the asymptotic edge density is fixed at ced. The plot
on the left displays the behaviour of the model for high edge density (ced = 10) for
various values of γ. We remark that the shown behaviour is qualitatively independent
of the edge density. In the plot on the right, the clustering coefficient for γ = 0.2 is
shown, along with the probabilities of the event that u is younger (resp. in the middle
or older) than two randomly picked neighbours, which are connected.
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The local and average clustering coefficients cannot be calculated explicitly, but can be simulated; see
the appendix of this paper for a discussion on the simulation techniques used here. We focus on the
profile functions ϕ = 1

2a1[0,a], for a ≥ 1/2, dimension d = 1, and fixed edge density β/(1−γ). Figure 3
shows the local clustering coefficient of a vertex of age u in G∞ showing monotone dependence on the
age, i.e. the empirical probability that two neighbours of a given vertex are connected to each other is
larger for younger vertices. This coincides with our intuitive understanding of the local structure of
the networks, in which a young vertex, typically, is connected to either very close or very old vertices
such that two randomly chosen neighbours have a decent chance of being connected to each other as
well. By contrast, an old vertex typically has more long edges to younger vertices. Thus, two of its
neighbours are typically further apart, which reduces the chance of them being each others neighbour.
This monotonicity occurs independently of the choice of β, γ and a.

Figure 4. Average clustering coefficient for the network with profile function ϕ =
1
2a1[0,a] plotted against the width a, for γ = 0.3 in the left resp. γ = 0.6 in the right
graphs. The graphs in the top row correspond to fixed edge density 1 while the bottom
row corresponds to edge density 10.
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In Figure 4 we see that the dependence of the average clustering coefficient with respect to the width a
of the profile function is of order 1

a , a scaling that we also see in the analysis of the global clustering

coefficient in the case γ < 1
2 . Hence, the average clustering coefficient and the global clustering

coefficient (if γ < 1
2) can be varied by the choice of ϕ and can be made arbitrarily small by choosing

a large. Unlike with the global clustering coefficient, there is a mild dependence on β. Again, roughly
speaking, large width of ϕ encourages long edges and reduces clustering.

6. Asymptotics for typical edge lengths

In this section we study the distribution of the length of typical edges in Gt. We denote by E(G) the
set of edges of the graph G and define λt, the (rescaled) empirical edge length distribution in Gt, by

λt =
1

|E(Gt)|
∑

(x,y)∈E(Gt)

δt1/dd(x,y).

Theorem 6.1. For every continuous and bounded g : [0,∞)→ R, we have

1

|E(Gt)|
∑

(x,y)∈E(Gt)

g
(
t1/dd(x, y)

)
=

∫
g dλt →

∫
g dλ,

in probability, as t→∞, where the limiting probability measure λ on (0,∞) is given by

λ([a, b)) =
1− γ
β

∫ 1

0

∫ u

0

∫
a≤|y|<b

ϕ
(
β−1u1−γsγ |y|d

)
dy ds du. (6.1)

Proof. For a finite graph G with vertices positioned in Rd and marked by birth times and with a root
vertex x placed at the origin define, for a < b ∈ [0,∞], the function

Ha,b(G) =
∑

y∈Yx(G)

1[a,b)(|y|). (6.2)

Observe that the law of λt([a, b)) in Gt equals the law of

1

|E(Gt)|
∑
x∈X t

Ha,b(θxG
t).

As mentioned in the remark following the theorem, Theorem 3.1 is applicable to functions Ha,b de-
pending on the length of edges in the rescaled graphs (Gt)t>0. Since the sum in (6.2) is dominated by
the outdegree, Ha,b ∈ Hp for some p > 1. We thus get

1

t

∑
x∈X t

Ha,b(θxG
t) −→ E[Ha,b(G

∞
0 )],

and since Theorem 3.1 (iii) also gives
∣∣E(Gt)

∣∣ /t→ β
1−γ and λ([a, b)] = 1−γ

β E[Ha,b(G
∞
0 )] we infer that

λt([a,∞)) −→ λ([a,∞)) in probability, as t→∞. Therefore, convergence in probability of λt to λ in
the space of probability measures on R+, equipped with the Lévy-Prokhorov metric, follows. �

Remark: Suppose there exists δ > 1 such that the profile function satisfies ϕ(xd) � 1 ∧ x−dδ. Then
the explicit formula for λ in (6.1) can be used to calculate the tail behaviour of λ. More precisely,
separating the integration into several domains, depending on whether we are integrating over the
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tail domain of ϕ or not, results in the terms of order d, d( 1γ − 1) and d(δ − 1). This gives that

λ([K,∞)) � 1 ∧ (β−1/dK)−η, where

η := min
{
d, d( 1γ − 1), d(δ − 1)

}
. (6.3)

In particular, λ has finite expectation if η > 1 and infinite expectation if η < 1.

We denote by M∞0 the length of the longest outgoing edge of the origin in G∞0 . By the construction
of λ above, λ([K,∞)] is the expected number of outgoing edges of length bigger than K divided by
the total number of outgoing edges from the origin. If K is large this should be of similar order to the
probability that M∞0 ≥ K. This is confirmed in the following lemma.

Lemma 6.2. Suppose there exists δ > 1 such that the profile function satisfies ϕ(xd) � 1 ∧ x−dδ.
Then, E [(M∞0 )a] is finite if a < η and infinite if a > η, where η is as defined in (6.3).

Proof. We show that the tail probability P {(M∞0 )a ≥ K} is of order K−η/a as K →∞. The number

of outgoing edges with length at least K1/a in G∞0 from the vertex (0, u) at the origin are Poisson
distributed with parameter

λK1/a,u := λY∞
(0,u)

(
Rd\({|x| < K1/a})× (0, u]

)
,

and hence

P {(M∞0 )a ≥ K} =

∫ 1

0
1− exp

(
− λK1/a,u

)
du �

∫ 1

0
λK1/a,u du � λ([K1/a,∞)),

recalling the asymptotic edge length distribution λ defined in (6.1). The established tail behaviour of

the measure λ yields P {(M∞0 )a ≥ K} � 1 ∧K−η/a. �

Using this, we can establish a result about the average rescaled length in the network Gt.

Theorem 6.3. Suppose that there exists δ > 1 such that the profile function satisfies ϕ(xd) � 1∧x−dδ.
Then, for all a > 0 and b ∈ [0, ηa), there exists a positive constant C, depending on a, b, γ, β, ϕ, such
that

1

|E(Gt)|
∑
x∈Gt

( ∑
y∈Gt
x↔y

(
t1/dd(x,y)

)a)b
→ C (6.4)

in probability, as t→∞.

Remark: If η > 1 one can choose a = b = 1 and this yields that the mean edge length in Gt is of
order t−1/d. If η < 1 (and in particular always if d = 1) the mean edge length is of larger order.

Proof. Consider again a finite graph G with vertices positioned in Rd and marked by birth times and
with a root vertex x placed at the origin. Define

H(G) :=
( ∑

y∈Yx(G)

|y|a
)b

and observe that the law of the left-hand side in (6.4) equals the law of

1

|E(Gt)|
∑
x∈X t

H(θxG
t).

It suffices to show that H ∈ Hp for some p > 1, since Theorem 3.1 (iii) then ensures the convergence
in probability to 1−γ

β E[H(G∞0 )], which is a positive constant. To this end recall M∞0 , the length of the
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longest outgoing edge of the root x in G∞0 and observe that, almost surely, H(Gt0) ≤ (M∞0 )ab|Y∞x |b.
Since, by choice, ab < η, there exist some p, q > 1, such that α := pqab < η. Lemma 6.2 then ensures
E[(M∞0 )α] <∞ and, by applying Hölder’s inequality to the observed bound for H(Gt0), we get

sup
t>0

E
[
H(Gt0)

p
]
≤ (E [(M∞0 )α])1/q

(
E
[
|Y∞x |

α
a(q−1)

]) q−1
q
<∞.

�

7. Conclusion and Outlook

We have seen that properties of real networks, like scale-free degree distributions and clustering,
emerge from the simple building principle of preferential attachment to old and near nodes. Our model
simplifies the spatial preferential attachment model in the literature and this allows for more explicit
calculations of asymptotic network metrics. Moreover, we are therefore confident that we can also cover
more complicated features that have proved elusive in the full, degree-based, model. In particular, for
the small-world property, robustness and vulnerability of the age-based spatial preferential attachment
model only partial results have been possible [15, 13]. A full study of these problems has been initiated
in our group and we hope to be able to report on new results soon.

Mathematically, our research is a step in the important direction of developing methods for networks
that, due to clustering, cannot be locally approximated by trees. We have seen that in our case there
is still a valuable description of a local limit given in terms of a tractable graph, the age-dependent
random connection model. This model is interesting in its own right and methods from the theory
of random geometric graphs as well as techniques to investigate long-range percolation models can
presumably be developed and enhanced to provide a powerful toolbox for its investigation.

The results we have achieved (and hope to achieve soon) are to some extent universal, i.e. other
network models that follow our building principles should show qualitatively very similar behaviour.
But these results do not necessarily explain the full picture, other building principles could lead to
similar behaviour and add to the explanation of the abundance of networks with the mentioned features
that describe complex systems. A particularly interesting way to generate networks based on universal
principles is to define random graphs that try to optimize certain functionals, for example in the form
of Gibbs-measures on graphs with Hamiltonians that reward connectivity and punish long edges, see
for example recent work of Mourrat and Valesin [24]. There remain a lot of interesting challenges for
probabilists in the area of random networks.

Appendix A. Simulation of the model

In this section, we give an overview of the code used to generate the pictures shown throughout the
paper. It is also used for estimating the limiting average clustering coefficient in Chapter 5. The code
can be freely accessed at: http://www.mi.uni-koeln.de/~moerters/LoadPapers/adrc-model.R.

The main objective of the code is to sample neighbours of a given vertex (x, u) in the age-dependent
random connection model in dimension 1 for given parameters β and γ and the profile function ϕ.
Due to Proposition 4.1, which gives an explicit description of the neighbourhood of a given vertex, we
can use rejection sampling to achieve this. The distribution in (5.1), defined on R× (0, 1], that we use
to sample the neighbours of (x, u) may be unbounded and heavy tailed in the first parameter. To deal
with this, we restrict the sampling to a region with mass q = 0.99 with respect to this distribution.
This sampling works for arbitrary but reasonable choices of the profile function ϕ and parameters β,
γ; we provide and use an optimized sampling algorithm for ϕ = 1

2a1[0,a] with a ≥ 1
2 . The advantage of

http://www.mi.uni-koeln.de/~moerters/LoadPapers/adrc-model.R
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studying this class of ϕ is that expressions can be analytically simplified, which allows us to improve
the algorithm by dividing the region from which the points are sampled into sub-regions with equal
mass with respect to ϕ, thus increasing the acceptance rate for points sampled far away from (x, u).
That is, the code first selects one of these equally likely sub-regions uniformly at random and then
points are sampled therein until one is accepted. The numerical optimization method nlminb is used
to calculate the boundaries of the ranges, i.e. quantiles of the distribution from (5.1).

A first application of the sampling is the estimation of the expected local clustering coefficient of a
vertex (0, u) in the age-dependent random connection model (see Figure 3) and by Theorem 5.1 also
the average clustering coefficient for the age-based preferential attachment network (see Figure 4). To
this end, the code samples pairs of neighbours of (0, u) and averages the probability that the pair is
connected. A second application of the sampling is generating heatmaps of the neighborhoods of a
given vertex (see Figure 2). The heatmaps are generated using the R library MASS and function kde2d

by estimating the heat kernel for the sampled neighbouring vertices. Further properties thereof can
be studied with additional heatmap generating functions that we provide.
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