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Abstract. We describe the critical window for percolation in the universality class of sparse growing
random graphs. In our models, vertices arrive sequentially and connect independently to each earlier
vertex v with probability proportional to a nonpositive power of the arrival time of v, continuing until
the graph has n vertices. These models include uniformly grown random graphs and inhomogeneous
random graphs of preferential-attachment type. Whenever the critical percolation threshold is positive,
we show that the critical window has width of order (logn)−2 and a secondary phase transition at
its finite upper boundary. Inside this window the largest component has size of order

√
n/ logn, and

the susceptibility remains finite and independent of the position in the window. The proofs couple
component explorations to branching random walks killed outside an interval of length logn, allowing
sharp control of the barely subcritical and critical regimes.

1. Introduction

Mean-field random graphs. Phase transitions in random graph models describe the sudden emergence
of large-scale connectivity as the edge density increases. The classical example is the percolation transi-
tion discovered by Erdős and Rényi: In the random graph G(n, c/n), a giant component—a connected
component containing a positive fraction of the n vertices—appears as the edge-density parameter c
passes the critical value one. Below this point all components are small. A series of works by Bollobás,
Łuczak, and Aldous [3, 15, 27, 34, 47] established a complete asymptotic description of this first-order
phase transition. They showed that, as c = 1+ εn → 1, the size of the largest component Ln exhibits a
characteristic ‘double jump’ and has a critical window of width n−1/3:

|Ln| ∼ 2|εn|−2 log(|εn|3n), if εnn1/3 → −∞,

|Ln| ≍ n2/3, if εnn1/3 → α ∈ R, (1.1)

|Ln| ∼ 2εnn, if εnn1/3 → ∞.

Here, we write Xn ∼ an if Xn/an → 1 in probability, and Xn ≍ an if Xn/an is tight on (0,∞).
Critical Erdős–Rényi graphs belong to the same universality class as high-dimensional critical nearest-

neighbour bond percolation on Zd, the configuration model with degree sequence of bounded third
moment, and many other models. This class is often called the mean-field universality class. For models
in this class, the local neighbourhood of a typical vertex is well approximated by a critical Bienaymé–
Galton–Watson branching process, and the probability that the component C of a typical vertex has
size at least k decays as 1/

√
k. Consequently, |C | has an infinite first moment in the limit, and the

susceptibility—the mean component size averaged over all vertices—diverges at criticality. We refer the
reader to [16, 30, 36] for background, references, and related results.

Growing random graphs. We leave the mean-field paradigm, and study a family of sparse growing
random graph models in which vertices are added sequentially and connect to earlier vertices. Growing
graph models have been of interest in the statistical physics literature for about two decades for their
‘anomalous percolation behaviour’, see for example [13, 23, 40, 44, 45]. Other than mean-field models,
growing models have finite susceptibility at criticality and exhibit an infinite order phase transition.
More specifically, the proportion θ(p) of vertices in the giant component satisfies, when the percolation
probability p approaches pc from above, for some model-dependent constant C > 0,

θ(p) = exp

(
− C + o(1)√

p− pc

)
. (1.2)

This was proved for a range of growing graph models, see [11, 14, 26, 54] for rigorous results. To our
knowledge, no results are known about the critical percolation window in these models.

Our results. In this paper we investigate the behaviour of this class of models in a window around
the critical probability for an accessible model including models of preferential-attachment type, see
Definition 2.1. We show that our models feature,
(1) a critical window of width (log n)−2, with largest component of order

√
n/ log n (Theorem 2.2);

(2) a secondary phase transition at the finite upper bound of the critical window (Corollary 2.4);
(3) finite and constant susceptibility throughout the entire critical window (Theorem 2.10).
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We believe that this is compelling evidence for the existence of a universality class containing many
models of growing random graphs, both with exponentially-decaying or polynomially-decaying degree
distribution (the latter are often called scale-free graphs). The class is characterised by these three
features. Finite and constant susceptibility is a particularly striking aspect of this universality class, and
we are not aware of earlier rigorous proofs of this phenomenon for scale-free graphs. In most statistical-
physics and random-graph models, in particular mean-field models, the Ising model and percolation
on Zd, the susceptibility diverges near criticality. In growing random graphs, throughout the window up
to its finite upper bound, vertices in components of order

√
n/ log n account for only o(n) of the total

summed component size, making their contribution to the mean negligible. Therefore, even though the
number of edges changes by order n/(log n)2 within the critical window, these additional edges do not
alter the mean component size, while the size of the largest component changes by a multiplicative factor.

Model example. A canonical model in our family is the uniformly grown random graph, also known
as Dubins’ model or c/j-model. Vertices arrive one by one, and when the jth vertex arrives it connects
independently to all vertices i < j with probability c/j. The infinite version of this model was studied
extensively in [25, 39, 55, 58], where the critical value ccrit = 1/4 was identified. Bollobás et al. in [11]
proved an infinite-order percolation phase transition for the finite version. In contrast to Erdős–Rényi
graphs, in the subcritical regime the largest component is of polynomial size [11, 51] with exponent
1/2−

√
ε when c = 1/4−ε. At criticality, Durrett showed in [24] that the expected size of the component

containing the first vertex is at most of order
√
n/ log n, and Janson and Riordan proved in [37] that

susceptibility at criticality is finite for a related model, see also [23, 24, 40].
We prove that Durrett’s bound is sharp, and that the largest connected component has the same

order. Zooming in on the critical percolation value, we set c = ccrit + εn and prove for εn → 0,

|Ln| ≍
√
|εn|n1/2−

√
|εn| if εn(log n)2 → −∞,

|Ln| ≍
√
n/ log n, if εn(log n)2 → α ∈ (−∞, π2), (1.3)

|Ln| ≫
√
n/ log n, if εn(log n)2 → α ∈ [π2,∞].

These asymptotics illustrate how the size of the largest component transitions from polynomial with
exponent smaller than 1/2 into the critical regime, revealing a qualitatively new phase structure compared
to the mean-field universality class in (1.1). When εn ∼ π2(log n)−2, the size of the largest component
jumps to a larger order than

√
n/ log n. When α ≥ π2, we expect the emergence of a single component

that grows sublinearly but of asymptotically larger order than all other components, see Conjecture 2.6.
We next explain heuristically why the critical window differs sharply from the mean-field case. In

Section 2 we state the results formally, holding for a large class of growing random graphs that includes
a scale-free random graph of preferential-attachment type.

Heuristics: Size of the largest component. We outline the intuition behind the
√
n/ log n scale.

The main reason for the fundamentally different behaviour of the phase transition, compared to Erdős–
Rényi graphs, is that the local limit or Benjamini–Schramm limit, describing the neighbourhood of a
typical vertex, is no longer a Bienaymé–Galton–Watson tree. In uniformly grown random graphs, it
is instead given by the trace of a branching random walk with a killing boundary, and the typical
component size |Cn| exhibits the same properties as the total progeny in such a killed branching random
walk (KBRW) at criticality. Its distribution has a lighter tail than the typical component size in critical
Erdős–Rényi graphs, and satisfies

P
(
|Cn| ≥ k

)
≍ 1

k(log k)2
≪ 1√

k
.

For general KBRW this behaviour was proved by Aïdékon et al. in [2] under assumptions that do not
hold in the present context (in particular, they require finiteness of the number of offspring of a particle).
These asymptotics are made precise in Theorem 2.8 for fixed k not depending on n.

Assuming these asymptotics also for large k = k(n), it follows that limn→∞ E[|Cn|] < ∞ leading
to finite susceptibility, while limn→∞ E[|Cn| log |Cn|] = ∞. Moreover, a back-of-the-envelope calculation
predicts the asymptotic size of the largest component Ln. Assuming that |Ln| is of order k, the expected
number of vertices in components of size at least k should be of order k. So, we aim to find k solving

k ≍ E
[
#vertices in components of size at least k

]
= nP

(
|Cn| ≥ k

)
≍ n

k(log k)2
,

which gives k of order
√
n/ log n.
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Heuristics: Critical window. The local limit is invariant under the sequence εn → 0 and thus provides
no information about the change of behaviour within the critical window. To analyse the transition, we
go beyond the local limit. For a fixed vertex in the graph of size n, we couple the exploration of its
component to a branching random walk (BRW) whose particles are killed when they exit an interval
of length log n; the spatial coordinate of a particle in the branching random walk corresponds to the
logarithm of the arrival time of the corresponding vertex, generations correspond to one step in a breadth-
first exploration. Under this logarithmic rescaling of vertex positions, each particle in the BRW produces
offspring to its right at rate c, matching the expected number of edges a vertex j creates when connecting
to later vertices with probability c/j.

Using many-to-few formulas, we express moments of the total progeny through a centered random
walk with σ2 = 1/(2c2crit) = 8, started from x and stopped upon leaving an interval of length log n. The
walk describes the distinguished spine (ancestral line) arising in the many-to-one change of measure;
each step corresponds to the next generation along that spine (and its position to some vertex), and
the hitting time records when the position of the spine no longer corresponds to a vertex with label
in [n]. This construction relates the first moment of the progeny to the moment-generating function of
the spine’s hitting time τn of the interval boundaries, evaluated at εn/ccrit = 4εn.

The width and finiteness of the critical window are determined by the radius of convergence of this
transform, Ex[exp(4εnτn)]. Because the mean hitting time is at most of order (log n)2, the width of the
critical window in the graph is of order (log n)−2. The radius of convergence is governed by the smallest
eigenvalue of the Laplacian for Brownian motion with absorbing boundaries and diffusion coefficient
D = σ2/2 = 4, namely λ1 = D(π/ log n)2. The transform Ex[exp(4εnτn)] is finite precisely when
4εn < λ1; this gives the threshold εn = (π/ log n)2 marking the upper edge of the critical window. The
dependence on εn(log n)

2 appearing in this analysis is reflected in the function Si in (2.5) which encodes
how the size of the largest component scales across the critical window, see Theorem 2.2.

The width of order (log n)−2 and the upper boundary of the window are consistent with the previously
known asymptotics for the size of the largest component in the subcritical and weakly supercritical regime.
In the subcritical regime c = ccrit−ε, the largest component has polynomial order n1/2−

√
ε which suggests

that the largest component at criticality is of order n1/2+o(1). In the weakly supercritical regime, the
largest component contains about θ(ccrit + ε)n vertices, with θ(c) defined in (1.2) for C = π/2. This
suggests that the largest component contains n1/2+δ vertices when εn(log n)

2 > π2, matching the upper
edge of the critical window. The intuition behind θ is that it describes the probability that the branching
random walk started from a typical vertex with only a right killing boundary survives forever.

In the next section we introduce the general growing random graph model studied in this paper,
which includes a class of scale-free growing random graphs behaving similarly to preferential attachment
models. The same criticality characteristics persist for these models, marking fundamentally different
behaviour from universality classes observed in rank-one random graphs; we compare the two classes in
Section 2.3.

2. Model definition and main results

We now define the model of γ-growing random graph studied in this paper. It depends on two
parameters, γ and β. Note that we define it in general, but focus on γ ∈ [0, 1/2) in this paper.

Definition 2.1 (γ-growing random graph). Let γ ∈ (−∞, 1) and β > 0. Let G1 be the graph with a
single vertex labeled 1. At discrete steps j ∈ N \ {1} a new vertex with label j arrives and connects
independently by an edge to present vertices i ∈ [j − 1] := {1, . . . , j − 1} with probability

pij =
(
βi−γjγ−1

)
∧ 1. (2.1)

to form Gj from Gj−1. We write Pβ and Eβ for the law and expectation of the random graph, and omit
in our notation the dependency on γ. We write Cn(v) for the connected component containing v in Gn

and Ln(β) or Ln for the largest connected component in Gn with arbitrary tie-breaking rule.

Throughout, we let the edge-density parameter β = βn < 1 depend on the final size n, but regard it
as fixed while the graph grows from a single vertex into Gn. In the present paper, the minimum in (2.1)
is never attained at one. When γ = 0, the model reduces to the uniformly grown random graph. When
γ > 0, arriving vertices prefer connecting to old vertices. The connection probability is asymptotically
equal to the expected connection probability in affine preferential attachment, in which arriving vertices
connects to earlier vertices with probability proportional to an affine function of their degree. In both
models, old vertices have a higher degree. The asymptotic degree distribution follows a power law with
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exponent τ = 1 + 1/γ > 2, and has finite variance when γ < 1/2. When γ < 0, arriving vertices favour
connecting to young vertices, and all degrees remain finite in the limit. Although we expect that similar
results hold for γ < 0 compared to γ ∈ [0, 1/2), we restrict ourselves to γ ≥ 0 to reduce technicalities.

The γ-growing random graph can be phrased as an inhomogeneous random graph as defined in [12]
(for any γ), and is therefore called inhomogeneous random graph of preferential-attachment type in [50]
for γ > 0. Its infinitary version is also a special case of a random graph model introduced by Durrett
and Kesten [25], and used in the analysis of the critical window in rank-one random graphs with infinite-
variance degrees [7]. The absence of edge dependencies makes the model analytically tractable and allows
percolation to be performed simultaneously with graph generation. This allows a detailed description
of the percolation phase transition, while retaining the key mechanism of preferential attachment. We
expect classical preferential-attachment models to exhibit similar critical behaviour.

As in most non-spatial sparse graphs, the percolation phase transition is non-trivial only when the
degree distribution has finite variance [20, 49], i.e., when τ > 3 or, equivalently, γ < 1/2. Formally, the
critical edge-density parameter is given by

βc(γ) := inf
{
β > 0: sup

ε>0
lim inf
n→∞

Pβ
(
|Ln| > εn

)
= 1
}

= max(1/4− γ/2, 0), (2.2)

as shown in [49] by analyzing the survival probability of a branching random walk, the local limit of the
graph. Indeed, βc > 0, if and only if γ < 1

2 .

In the subcritical phase, when β < βc, the temporal growth leads to a largest component of size nρ+o(1)

as shown in [51] (see Remark 2.5 on the o(1)-term), which is much larger than the largest degree in the
graph which is of order nγ . This is contrary to rank-one models where the subcritical largest component
has the same order as the largest degree [32, 46], but similar to genuine preferential attachment models,
see [53] and recent work on uniform attachment models by Banerjee et al. [4]. For γ-growing random
graphs, we have

ρ = 1
2 −

√
4βc|β − βc| = 1

2 −
√
( 12 − γ)2 − β(1− 2γ) > γ. (2.3)

In the supercritical phase, when β > βc, there is a unique macroscopic component containing a
proportion θ(β) of the vertices, where θ(β) can be expressed as the survival probability of the local limit.
When β ↓ βc, we observe that the phase transition is of infinite order, as

θ(β) = exp

(
− π/2 + o(1)√

4βc|β − βc|

)
, (2.4)

shown in [43] for our setup, similar to the analysis in [26] for a preferential-attachment model.

2.1. Main results. We consider the graphs around the critical edge density βc whenever it is positive;
thus, we assume γ < 1/2. We let (βn)n≥1 be a sequence tending to βc and focus on a window of order
1/(log n)2 around βc: one should think of sequences such that 4βc(βn − βc)(log n)

2 → α ∈ [−∞,∞]. If
α ∈ (−∞, π2), this window marks the scale on which the largest component remains of the same order
as at criticality, and reveals how the constant prefactor varies as α is changed. The following function
describes the impact of varying α,

Si(α) :=



sin(
√
α)√

α
, if α > 0,

1, if α = 0,

sinh
(√

|α|
)√

|α|
, if α < 0.

(2.5)

For α < π2, Si(α) is an analytic, convex, and decreasing function, with Si(α) → ∞ as α → −∞, and
Si(α) ↓ 0 as α ↑ π2. Note that Si should not be mistaken for the sine integral.

We state our main theorem: It establishes the critical window, and shows the precise scaling of the
largest component in this window and just below it.

Theorem 2.2 (Largest component around criticality). Fix γ ∈ [0, 1/2). There exists a positive-valued
function ε 7→ Mε such that for any sequence βn → βc with lim supn→∞ 4βc(βn − βc)(log n)

2 < π2, there
exists a constant n0 such that for all n ≥ n0 and ε > 0,

Pβn

(∣∣Ln

∣∣/ √
n/ log n

Si
(
4βc(βn − βc)(log n)2

) ∈ [1/Mε,Mε]

)
≥ 1− ε.
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Remark 2.3. We stress that the index n0 only depends on the sequence (βn)n≥1, not on ε. The function
ε 7→ Mε is universal: it does not depend on the sequence within the window. In a sense, the dependence
on the sequence (βn)n≥1 is entirely captured by the term involving the function Si.

The following corollary restates the three asymptotics formulated in (1.3) for uniformly growing ran-
dom graphs, when 4βc = 1, and generalizes these asymptotics to inhomogeneous random graphs of
preferential-attachment type with non-trivial phase transition, i.e., when γ ∈ (0, 1/2). For a sequence of
random variables (Xn)n≥1, we write Xn ≫ an if Xn/an → ∞ in probability, and Xn ≍ an if (Xn/an)n≥1

is tight on (0,∞), that is, limM→∞ infn∈N P
(

1
M ≤ Xn/an ≤ M

)
= 1.

Corollary 2.4 (Barely subcritical phase, critical window, and transition across π2). Fix γ ∈ [0, 1/2).
Let βn → βc be a sequence such that 4βc(βn − βc)(log n)

2 → α ∈ [−∞,∞]. Then,

|Ln(βn)| ≍
√
|βn − βc|n1/2−

√
4βc|βn−βc| if α ∈ [−∞, 0),

|Ln(βn)| ≍
√
n/ log n, if α ∈ (−∞, π2),

|Ln(βn)| ≫
√
n/ log n, if α ∈ [π2,∞].

Proof. If α ∈ (−∞, π2), then Si(4βc(βn − βc)(log n)
2) converges to a constant and Theorem 2.2 implies

the tightness. If α ≥ π2, the limit follows from a straightforward monotone coupling of |Ln| as a function
of α together with the fact that Si(α) → 0 as α → π2. For the first case, it suffices to show that√

4βc|βn − βc|n−
√

4βc|βn−βc| ≍ 1

Si
(
4βc(βn − βc)(log n)2

)
log n

.

Substituting the definition of Si in (2.5), and rearranging terms, this is equivalent to showing that

n
√

4βc|βn−βc| ≍ sinh
(√

4βc|βn − βc|(log n)2
)
.

There exists ε, δε > 0 such that
√
4βc|βn − βc|(log n)2 ≥ ε for all large n, and sinh(y) ∈ [δεe

y, ey] for
y ≥ ε. This finishes the proof. □

Remark 2.5.

(i) The asymptotics in the first and second case coincide when α ∈ (−∞, 0). In the barely subcritical
phase, when α = −∞, the largest component is of smaller order than

√
n/ log n.

(ii) Although we prove the Theorem 2.2 (and thus Corollary 2.4) for sequences βn → βc, the proof can
be adapted to the subcritical regime when β < βc is fixed, sharpening [50] by removing the o(1)-term
in the exponent ρ in (2.3) that describes the polynomial size of the largest component. This would
lead to additional case distinctions in our proofs, and we refrain from including it.

The following conjecture addresses what happens for βn → βc just above the critical window, and we
plan to resolve it in forthcoming work. It is inspired by the infinite order phase transition described in
[11, 26, 43], where first n → ∞, and then β ↓ βc, see also (2.4). The refined version of the conjecture
(without the o(1) term in the exponent compared to (2.4)) is motivated by precise asymptotics for the
survival probability of weakly super-critical killed branching Brownian motion [5].

Conjecture 2.6 (Barely supercritical phase). Fix γ ∈ [0, 1/2). There exists a constant c > 0 such that
for any sequence βn → βc such that lim infn→∞ 4βc(βn − βc)(log n)

2 > π2,∣∣Ln(βn)
∣∣/n exp

(
− π/2√

4βc(βn − βc)

)
P−→ c.

Remark 2.7. When 4βc(βn − βc)(log n)
2 → α ∈ (π2,∞), the conjecture predicts a component of

polynomial size with exponent 1 − π/(2
√
α) > 1/2. We anticipate a secondary critical window (of

unknown width) when α = π2 in which the largest component jumps from order
√
n/ log n to

√
n to

larger order, and in which the susceptibility blows up (see Theorem 2.10 below).

We next describe the tail of the component size of a typical vertex, and show that it behaves similar
to the distribution of the total progeny in critical killed branching random walk [1, 2]. The theorem
applies to any sequence βn → βc, and does not require it to be in the critical window. Let On be a
vertex chosen uniformly at random from [n].

Theorem 2.8 (Tail of typical component size). Fix γ ∈ [0, 1/2). There exist constants c, C > 0, such
that for all k ∈ N, and any sequence βn tending to βc,

c

k(log k)2
≤ lim

n→∞
Pβn

(
|Cn(On)| ≥ k

)
≤ C

k(log k)2
. (2.6)
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Remark 2.9. The summability in k suggests that the first moment of |Cn(On)| is bounded. However,
this is not immediately implied as the result is proved for the limit n → ∞ and fixed k. By analogy with
the critical Erdős–Rényi random graph, in the critical window we expect the same asymptotic to hold
for any k = k(n) smaller than the typical size of the largest component, which is of order

√
n/ log n in

the critical window. The most likely mechanism for a vertex to be in a component of size at least kn is
the existence of a path from On to an old vertex whose expected component size is of order kn. Upper
bounds for such kn follow from our techniques below, whereas matching lower bounds are more delicate,
requiring a careful treatment of collisions in both phases of the exploration; see Sections 3–4.

We proceed to the susceptibility, which we define as in Janson and Riordan [37] as the (random) quantity

1

n

n∑
v=1

|Cn(v)| =
1

n

∑
C⊆Gn

|C |2,

where the second sum runs over all connected components in Gn. The next theorem shows that the
limiting susceptibility remains finite and deterministic throughout the critical window, unlike in the
mean-field universality class [35]. In particular, the limit is independent of the position of the sequence
(βn)n≥1 within this window and it converges also in expectation. However, higher moments of the
component sizes still diverge as criticality is approached.

Theorem 2.10 (Finite susceptibility). Fix γ ∈ [0, 1/2). Let βn → βc be such that lim supn→∞ 4βc(βn −
βc)(log n)

2 < π2. Then,
1

n

n∑
v=1

|Cn(v)|
P,L1

−→ 4(1− γ2), as n → ∞. (2.7)

Moreover,
1

n

n∑
v=1

|Cn(v)| log |Cn(v)|
P−→ ∞, as n → ∞. (2.8)

Remark 2.11. We expect the susceptibility to diverge if lim infn→∞ 4βc(βn − βc)(log n)
2 > π2, and

we plan to address this in future work. Note that it would be implied by Conjecture 2.6, as each
vertex in the largest component of size n1/2+ε contributes n1/2+ε to the sum. The boundary case
4βc(βn − βc)(log n)

2 → π2 remains open; if the sequence is such that the largest component is of order√
n, we believe that the susceptibility may remain finite but random.

2.2. Generalisation to related connection probabilities. The results in Theorems 2.2, 2.8 and 2.10
are robust under small perturbations of the connection probability pij defined in (2.1). In fact, we only
require that edges are independent, and that, for all j > i ≥ 1, the connection probabilities satisfy

1− exp
(
− βi−γjγ−1

)
≤ pij ≤ 1− exp

(
− β(i− 1

2 )
−γ(j − 1

2 )
γ−1
)
. (2.9)

These bounds are only used directly in the proof of Proposition 4.3, see from (4.14) onward for the proof
that pij satisfies the upper bound whenever β ∈ (0, 1

2 ], a restriction which is harmless as βc ≤ 1/4 for
γ ∈ [0, 1/2) by (2.2), and we assume βn → βc.

Janson’s contiguity results for random graphs, see [33, Corollary 2.12(ii)], allow us to extend almost
all results to models with independent edges whose connection probabilities may violate (2.9) but remain
sufficiently close to pij . If edges appear with probability p′ij , then all results except the L1-convergence
in (2.7) continue to hold whenever

∑
i<j<∞(pij − p′ij)

2/pij < ∞. The L1-convergence in (2.7) requires
an extra condition; for instance, the upper bound on the connection probability in (2.9) suffices.

2.3. Universality landscape. We conclude by positioning γ-growing random graphs within the broader
landscape of universality classes. Their critical behaviour with finite-variance degree distribution forms
a universality class distinct from the mean-field class (Erdős–Rényi, configuration model with bounded
third moment), and the heavy-tailed rank-one class containing the configuration model with finite vari-
ance and infinite third moment degree distribution.

In rank-one models, the local limit in the critical window is still a critical unimodular Bienaymé–
Galton–Watson tree, and a depth-first exploration of the components in rank-one graphs with finite
third moment gives a coupling with random walks with finite-variance jumps. This relates component
sizes to excursions of Brownian motion with parabolic drift depending on the position in the critical
window [8, 21, 38]. When the third moment is infinite, similar techniques apply, now with infinite-
variance jumps, yielding a relation to Lévy processes [9, 18, 22]. Their critical components are smaller
than in mean-field models but larger than in the growing case—leading to diverging susceptibility—while
their scaling window is wider than in mean-field but narrower than in growing random graphs.
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For γ-growing random graphs the mechanism is fundamentally different. Here temporal growth gov-
erns component formation, and the local limit is the trace of a single-type branching random walk in
which space encodes logarithmic arrival times, observed first in [20] for a related model. Much earlier,
Bollobás, Janson and Riordan [11] studied the uniformly grown model via path counting in the sub-
critical regime to establish the infinite-order phase transition. Janson and Riordan used the local limit
(phrased as multi-type branching process) to prove finite susceptibility at criticality for a related model
through integral operators in [37]. In their proofs they let n → ∞ before sending ε → 0 to deduce critical
behaviour. While these methods extend to a wide family of inhomogeneous random graphs, this order
of limits is not designed to capture a critical window, since local limits do not depend on converging
sequences (εn)n≥1.

By contrast, our analysis couples breadth-first component explorations to two-sided killed branching
random walks, which remain tractable for the growing and scale-free models here. They allow us to follow
the n-dependence inside the critical window. We expect genuine preferential-attachment graphs—where
new vertices connect according to degree instead of age—to exhibit qualitatively the same behaviour and
thus to fall into the same universality class. Their local limit is a multi-type branching random walk
[6, 20, 28] reflecting degree correlations. Although edge dependencies make analysis substantially harder,
the underlying temporal mechanism is similar. These distinctions explain why growing graphs exhibit
a slow, infinite-order transition from the subcritical to the supercritical phase, with a critical window
bounded from above, separating them from graphs in the mean-field universality class.

We begin with an overview of our method of proof and leave the detailed proofs to Sections 4–10.

3. Overview of the proofs

To bound the size of the largest component, we start from the observation that early vertices are
the most likely to belong to large components. The components containing the oldest vertices should
intuitively have sizes of the same order as the largest one. Our goal is to show that this intuition is correct
and that all remaining components are smaller to obtain an upper bound. We use the simple observation
that if the largest component has size at least s, there must be at least s vertices in a component of size
at least s. By Markov’s inequality,

Pβn
(
|Ln| ≥ s

)
≤ 1

s

n∑
v=1

Pβn
(
|Cn(v)| ≥ s

)
.

Thus, obtaining lower and upper bounds for Theorems 2.2, 2.8, and 2.10 reduce to bounding component
sizes of individual vertices for which we employ first- and second-moment methods. To compute these
moments, we rely on breadth-first explorations of components in the graph, which can be coupled to a
branching random walk (BRW) killed beyond two barriers at distance log n apart. A BRW is a system of
particles distributed on the real line, such that a particle at position x in generation k generates particles
in generation k + 1 according to some point process P, recentred around x, independently from the
other particles in generation k. Our model is related to a branching random walk in the following way:
consider the breadth-first exploration process of the component containing some vertex v ∈ [n]. If we
consider vertices as particles and consider the logarithm of the label of the vertex as the position of
the particle, then this breadth-first exploration can be approximated by a killed branching random walk
(KBRW), in which particles are killed at positions above log n—preventing edges to vertices that arrive
in the future—and below the origin—preventing edges to non-existing vertices with negative label. The
point process P is a Poisson process with intensity measure µβ defined, for γ ∈ [0, 1), by

µβ(dy) := β ·
(
e(1−γ)y

1{y<0} + eγy1{y≥0}
)
dy = βey/2−(1/2−γ)|y| dy = βey/2−2βc|y| dy, (3.1)

where the last equality holds only for γ ≤ 1/2. The term for y < 0 shows that each particle has almost
surely finitely many children to its left (backwards in time, corresponding to older vertices). Moreover,
as γ increases, the left tail decays more and more slowly, reflecting preference to older vertices. For y > 0
and γ ∈ [0, 1), each particle produces infinitely many children to its right (forward in time). In fact,
under the logarithmic parametrisation, a particle located at distance log i from the left killing boundary
produces roughly (n/i)γ offspring to its right when γ > 0, matching the expected number of neighbours
of vertex i in a graph of size n; this makes the log n spatial scale natural for the coupling.

A connection between the exploration process of a nonlinear preferential attachment model and a
KBRW was first observed in [20], who used it to construct the local limit and identify the critical
value βc for their model. In these models, the local limit can be seen as the KBRW starting at distance
X from a right killing boundary, with X an exponentially distributed random variable correcting for
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the logarithmic scaling. Note that in this limit, the left killing boundary plays no role. By contrast, in
this paper we couple the exploration with the branching random walk for fixed large n, and both killing
boundaries become essential.

The branching random walk with right killing boundary was also used in [51] to study the largest com-
ponent in the subcritical regime β < βc for the inhomogeneous random graph of preferential-attachment
type. In the subcritical regime, all particles of the branching random walk drift to +∞ with positive
speed, so that the exploration process can be approximated by a finite lookahead algorithm. At critical-
ity, when β = βc, the minimum particle in the branching random walk still drifts to +∞ but with speed
zero. This considerably complicates matters.

We now describe the main ideas to bound component sizes of individual vertices in the proof of
Theorem 2.2 on the size of the largest component. We use the coupling to the branching random walk
killed outside [0, log n]. Two-sided killing has been a key tool in Aïdékon [1] and Aïdékon et al. [2] to
study the total progeny of the one-sided killed branching random walk, under the assumption of a finite
number of offspring (and some bounded moments). There are three major difficulties in our study.

First, we must allow for infinitely many offspring. We do so by reformulating the classical many-to-one
and many-to-two formulas. Classically, these express sums over particles at a fixed generation or along a
stopping line in terms of a single random walk, see e.g. Biggins and Kyprianou [10] or Shi [56]. We instead
derive formulas for moments of quantities summing over all particles of the branching random walk, see
Lemmas 5.1–5.2. While this may appear as a simple generalization, we are not aware of previous use of
this approach in the branching random walk literature.

Second, recall that we allow the intensity parameter β to depend on n. This has the effect that
the branching random walk with only a single killing boundary is non-critical. Our goal is to show
that adding a second killing boundary at distance log n makes it behave like a critical BRW whenever
(βn)n≥1 is in the critical window. In the moment calculations, this results in a multiplicative factor
(β/βc)

k, where k is the number of steps of the centred random walk (Sk)k≥0. We therefore need sharp
multiplicative bounds on the resolvent kernel of this random walk killed outside the interval [0, L], with
L ≈ log n, i.e., on

Rβg(x) = Ex

[ ∞∑
k=0

(β/βc)
kg(Sk)1{Si ∈ [0, L]∀i ≤ k}

]
,

for some functions g. Moreover, we need these bounds to be uniform for x in the whole range of the
interval. Mogulskii’s theorem [48], which is typically used to compare a random walk between two
barriers to a Brownian motion (in the small deviation regime, which is the one that matters here), only
gives bounds which are precise at the exponential scale, which is by far not sufficient for our purposes.
Instead, we use the fact that the random walk (Sk)k≥0 appearing in our case is quite special as its steps
follow the Laplace distribution. The corresponding resolvent solves the Fredholm integral equation

f(x) = g(x) +
β

2βc

∫ L

0

e−|x−y|f(y) dy.

When g is an exponential function, there are exact formulas for the solutions to this equation, which
yield bounds on first and second moments of the total progeny of the branching random walk killed
outside [0, L], which are sharp up to multiplicative constants, see Propositions 6.2 and 6.3.

The third difficulty is to transfer the branching random walk results to the graph exploration. The
branching random walk evolves in continuous space, and we let each vertex occupy a small interval in this
space. Because particles evolve independently once created, many particles may (and will) occupy the
same interval, creating a collision. In the graph, only the first real particle in each interval corresponds
to a discovery of a corresponding vertex, and any later particles lead to overcounting. We therefore call
a colliding particle and its descendants fake. Proposition 7.1 shows that the expected number of fake
particles is at most a small multiple of the expected total number of particles. This relies on a second
moment bounding the expected number of collisions (Lemma 7.4) and on estimates of the random-walk
resolvent Rβ . The resulting bounds are uniform in the sequence (βn)n≥1 within the critical window,
which is essential for controlling the total number of fake particles generated from a small interval, which
itself depends sensitively on the sequence and spatial position if a collision occurs. A crucial ingredient
is a bound on the random walk resolvent Rβ applied to g being the indicator function of a small interval,
see Lemma 7.5. The explicit formulas used above are of no help here, as they require g to be exponential.
We therefore obtain an upper bound through direct analytic arguments, making use of a reduction of
the Fredholm integral equation to a second-order ODE, and bounding g by suitably chosen functions.
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Having established Theorem 2.2, the proof of Theorem 2.8 reduces to bounding the distribution of
the total progeny of the local limit of the graph, in which collisions do not occur. The local limit is
independent of the sequence βn → βc, and the analysis follows Aïdékon’s approach [1], see Lemma 9.1,
using our previous lemmas with β = βc.

To prove Theorem 2.10, we show that the mean component size is asymptotically equal to the expected
size of the local limit, and therefore does not depend on the sequence (βn)n≥1, provided it lies within
the critical window. By contrast, Theorem 2.2 demonstrates that the largest component (typically
containing some old vertices) depends sensitively on the value of (βn)n≥1 inside the critical window.
Using a decomposition of components according to their oldest vertex, we show in Lemma 10.1 that the
number of vertices in components with old vertices is still negligible. Hence the main contribution to the
mean component size comes from components restricted to young vertices, which are largely unaffected
by the value βn and determined by the local limit, whose expected size follows from Proposition 6.2.

Organisation of the paper. Section 4 formalises the coupling between the γ-growing random graph
and the killed branching random walk, and defines the local limit along with corollaries useful for proving
Theorems 2.8–2.10. Section 5 presents the many-to-few formulas, used in Section 6 to obtain bounds on
the moments of the progeny of the branching random walk killed from two sides, and in Section 7 to
analyse collisions. The remaining sections prove the main results: Theorem 2.2 on the largest component
in Section 8; Theorem 2.8 on the component size distribution in Section 9; and Theorem 2.10 on the
finite susceptibility in Section 10.

4. Branching random walks and component exploration

To analyse the component of a given vertex v in the finite graph Gn, we show in this section how to
couple it with a killed branching random walk, inspired by a breadth–first exploration process. We then
show that the same branching random walk describes the local limit of the model when parameters are
fixed at their critical values.

4.1. Coupling component exploration with a branching random walk. In the γ-growing random
graph the vertices arrive one per unit time; for the coupling we accelerate time exponentially, assigning
to each vertex a position that is a logarithmic function of its label. We use two logarithmic embeddings,
one for the lower and one for the upper bound on component sizes.
Logarithmic vertex embedding. For the lower bound, we place vertex i at position x−

i = log i, and we
associate to vertex i the interval to its right until the position of vertex i + 1. We set for i,m, n ∈ N,
and x ∈ [0,∞),

x−
i = log i, I−i =

[
log i, log(i+ 1)

)
, I−[m,n] =

[
logm, log(n+ 1)

)
, ℓ−(x) = ⌊ex⌋, (4.1)

where ℓ−(x) yields the vertex label corresponding to position x. That is, ℓ−(x) = i iff x ∈ I−i .
For the upper bound we associate slightly larger intervals to each vertex. We place vertex i at position

x+
i = log(2i−1) and associate to each vertex its interval to the left. We set for i,m, n ∈ N, and x ∈ [0,∞),

x+
i = log(2i− 1), I+i =

{(
log(2i− 3), log(2i− 1)

]
, if i ≥ 2,

{0}, if i = 1,

ℓ+(x) =

{
⌈ 1
2e

x⌉+ 1, if x > 0,

1, if x = 0,
I+[m,n] =

{(
log(2m− 3), log(2n− 1)

]
, if m ≥ 2,[

0, log(2n− 1)
]
, if m = 1.

(4.2)

As log(−1) is undefined, vertex 1 has a singleton as associated interval, requiring slightly special treatment
later. Note that |I+i | = log

(
1 + 1

i−3/2

)
= 1/i + O(1/i2) as i → ∞, so |I+i | and |I−i | exhibit the same

asymptotic scaling. From now on, we drop the superindex ± whenever it is clear from the context.

Branching random walks. We now proceed to define branching random walks, following Jagers [31].
Note that we only deal here with branching random walks where every particle has an infinite number
of children, in contrast to large parts of the literature, see e.g. Shi [56]. Let U be the Ulam–Harris tree
consisting of words over the alphabet N := {1, 2, . . .} of arbitrary length, i.e.,

U =

∞⋃
n=0

Nn, with N0 := {∅}. (4.3)

For s ∈ U , let |s| denote the generation of s, i.e., the length of the word s. We write s ≤ t if s is an
ancestor of t in U , i.e., if s is a prefix of t.
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A branching random walk is a random field (Xs)s∈U taking values in R and defined as follows. Let
ξ = (ξ1, ξ2, . . .) be a random sequence taking values in R and denote by Lξ its law. Let (ξs)s∈U be iid
copies of ξ. The branching random walk with reproduction law Lξ and starting from x ∈ R is defined
recursively as follows:

X∅ = x, ∀s ∈ U , j ≥ 1 : Xsj = Xs + ξsj . (4.4)
Heuristically, a branching random walk is a particle system on the real line, where each particle inde-
pendently gives birth to an infinite number of children which, starting from the position of their parent,
jump according to the law of the random vector ξ. We therefore call an element s ∈ U sometimes a
particle of the branching random walk and Xs its position.

We now specify the reproduction law relevant for our coupling, and give notation for the progeny in
which particles are killed outside an interval.

Definition 4.1 (γ-branching random walk). Fix γ ∈ [0, 1/2), and let β > 0. Let ξ be the random
sequence of atoms in increasing order of a Poisson point process on R with intensity µβ defined in (3.1).
The γ-branching random walk (Xs)s∈U starting from x ∈ R is defined to be the branching random walk
with reproduction law Lξ starting with a particle at x. We denote by Pβ

x its law and write Eβ
x for the

expectation with respect to it.

Let I ⊆ R be an interval. We are interested in the total progeny of the γ-branching random walk
killed outside I, defined by

TI :=
∑
t∈U

1{∀s ≤ t : Xs ∈ I}. (4.5)

Let m ≤ v ≤ n. We denote by T ±
[m,n](v) the total progeny of the γ-branching random walk starting with

a particle at x±
v killed outside the interval I±[m,n].

Revealing the branching random walk. We view the branching random walk as being revealed as follows:
Each generation is exposed by exploring all offspring of the preceding generation from its leftmost particle
to its rightmost particle; for each particle, we reveal its offspring from left to right in increasing spatial
position. Formally, we define a total order ≺ on particles s, t ∈ U . We say s ≺ t if (i) |s| < |t|; or if (ii)
|s| = |t| and if s′ and t′ denote the parents of s and t, respectively, we have Xs′ < Xt′ , or if (iii) s and t
have the same parent u and s = ui, t = uj with i < j.

Note that ≺ is almost surely well-defined, since µβ is non-atomic (see (3.1)), and therefore all particle
positions are distinct almost surely. Also note that in (iii), we have i < j if and only if Xs < Xt, by
definition of the reproduction law of the γ-branching random walk.

Definition 4.2 (Real, fake, and colliding particles). Let T ±
[m,n](v) be the total progeny of the γ-branching

random walk restricted to I±[m,n]. We declare the root to be real, and assign types to all other particles
in T ±

[m,n] recursively in the order ≺. If a particle t has position Xt ∈ I±i for a vertex i ∈ [m,n], then t
is called real if its parent t′ is real and if there is no real particle s ∈ T ±

[m,n] with s ≺ t and Xs ∈ I±i .
If I±i contains a real particle s ≺ t and t′ is real, we call t both colliding and fake. All descendants of
these colliding particles are also called fake. We write Real(T ±

[m,n](v)) and Fake(T ±
[m,n](v)) for the sets

of real and fake particles, respectively, and we denote the set of colliding particles with position in I±i by
Colliding(T ±

[m,n](v), I
±
i ). Note that Colliding(T ±

[m,n](v), I
±
i ) ⊆ Fake(T ±

[m,n](v)) for every i.

Ancestral lines of real particles provide an approximation for the edges encountered in a breadth-first
exploration of the cluster of a vertex v, after projecting particle positions via ℓ, see Remark 4.5 below. The
following proposition makes the coupling between the γ-growing random graph and the real particles in
the γ-branching random walk precise. We set up some final notation. Let C[m,n](v) denote the connected
component containing v ∈ [m,n] in the induced subgraph on the vertices [m,n] := {m, . . . , n}, denoted
by G[m,n]. Moreover, let d[m,n](u, v) denote the graph distance between u, and v, i.e., the smallest number
of edges in G[m,n] on a path between u and v.

Proposition 4.3 (Coupling the branching random walk with a component). Let β ∈ (0, 1/2] and
γ ∈ [0, 1). Consider the γ-growing random graph from Definition 2.1, and the γ-branching random walk
from Definition 4.1. Assume first that m, v, n ∈ N such that m ≤ v ≤ n. There exists a coupling of
T −

[m,n](v) and C[m,n](v) such that on this coupling, for all k ∈ N,{
ℓ−(Xs) : s ∈ Real

(
T −

[m,n](v)
)
, |s| ≤ k

}
⊆ {j ∈ C[m,n](v) : d[m,n](v, j) ≤ k}. (4.6)

Assume next that v ≤ n, and m ∈ [1 + 1v≥2, v]. There exists a coupling of T +
[m,n](v) and C[m,n](v) such

that on this coupling, for all k ∈ N0,

{j ∈ C[m,n](v) : d[m,n](v, j) ≤ k} ⊆
{
ℓ+(Xs) : s ∈ Real

(
T +

[m,n](v)
)
, |s| ≤ k

}
. (4.7)



THE CRITICAL WINDOW IN GROWING RANDOM GRAPHS 11

Proof. Fix m ≤ v ≤ n. We construct a probability space on which we simultaneously sample the killed
branching random walk T ±

[m,n](v) and the component C[m,n](v). We use the construction both for the
lower and upper bound. To do so, we use the following collections of iid uniform random variables:

Us,j ∼ Unif[0, 1], s ∈ U , j ∈ [m,n], and Ri,j ∼ Unif[0, 1], i, j ∈ [m,n], i < j. (4.8)

We construct a sample of the branching random walk killed outside I±[m,n] iteratively. We start the
branching random walk with the root positioned at log v or log(2v − 1) for lower and upper bound,
respectively. Let q±s,j be the probability that s ∈ U , given its position Xs, produces at least one offspring
in the interval I±j . Then we may couple the branching random walk with the uniform random variables
such that for all s ∈ U and j ∈ [m,n],

1{∃i ∈ N : Xsi ∈ I±j } = 1{Us,j ≤ q±s,j}.

Given the sample of the branching random walk and the uniform random variables, we determine the
component of C[m,n](v) via the order ≺ of branching random walk particles. We call particles in the
branching random walk real and fake following Definition 4.2. Each interval I±i contains at most one
real particle. Assume first that I±i contains a real particle, denoted by si. Then we couple the edges in
G[m,n] by setting

1{i ∼ j} = 1{Usi,j ≤ pij}, if there exists a real particle si such that Xsi ∈ I±i ,
and there is no real particle sj such that Xsj ∈ I±j with sj ≺ si.

(4.9)

Edges {i, j} in G[m,n] are now uniquely determined provided that I±i or I±j contains a real particle in
T ±

[m,n], as the offspring of the smallest real particle in the ordering decides presence of the edge. The
only undetermined edges {i, j} in G[m,n] are those such that I±i ∪ I±j contains no real particle. We set,
for i < j,

1{i ∼ j} = 1{Ri,j ≤ pij}, if both I±i and I±j contain no real particles.

Note that the described coupling indeed preserves the marginals for the connected component and killed
branching random walk. We now prove the lower bound (4.6).

Lower bound. On the described coupling, provided that q−t,j ≤ pij for each real particle t ∈ Ii, for all
i, j ∈ [m,n], we have the following implication: If a particle s in generation k is real, then its ancestral
line towards the root has a corresponding path in C[m,n] by projecting particle positions on the ancestral
path to vertices using ℓ−(x) = ⌊ex⌋. We show next that q−t,j ≤ pij is satisfied for all particles t. We
recall that q−t,j denotes the probability that a particle t produces at least one offspring in I−j . Bounding
pij ≥ 1− exp(−pij), it suffices to show that, for t with Xt ∈ I−i ,

q−t,j = 1− exp
(
− µβ

(
(log j −Xt, log(j + 1)−Xt]

))
≤ 1− exp

(
β(i ∨ j)γ−1(i ∧ j)−γ

)
. (4.10)

In the remainder, we suppose γ > 0, as the case γ = 0 can be deduced by letting γ → 0, using continuity
of q−t,j and pij in γ. By definition of µβ in (3.1), q−t,j is maximized when Xt is at the leftmost value in
I−i = [log i, log(i+ 1)). Thus,

µβ

(
(log j −Xt, log(j + 1)−Xt]

)
≤ µβ

(
(log(j/i), log((j + 1)/i)]

)
.

We now distinguish between i < j and i > j. If i < j, then

µβ

(
(log(j/i), log((j + 1)/i)]

)
= β

∫ log((j+1)/i)

log(j/i)

eγy dy = β
γ

(
((j + 1)/i)γ − (j/i)γ

)
= β

γ

(
(1 + 1/j)γ − 1

)
jγi−γ ≤ βjγ−1i−γ ,

where the last bound follows by concavity of the function x 7→ xγ , x ≥ 0, since γ ∈ (0, 1). Similarly, if
i > j, then

µβ

(
(log(j/i), log((j + 1)/i)]

)
= β

∫ log((j+1)/i)

log(j/i)

e(1−γ)y dy = β
1−γ

(
((j + 1)/i)1−γ − (j/i)1−γ

)
= β

1−γ

(
(1 + 1/j)1−γ − 1

)
j1−γiγ−1 ≤ βiγ−1j−γ .

These two cases prove (4.10) and the lower bound (4.6) follows.
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Upper bound. We next prove (4.7) via the same coupling. Recall that in the upper bound embedding
the interval I+1 is the singleton {0}. Since we consider the component of v in the induced subgraph on
[m,n] with m ≥ 1 + 1v≥2, vertex one does not appear in C[m,n](v) whenever v ≥ 2. In the remaining
case v = 1, the root is a real particle in I+1 = {0}, and one is contained in the set on the right-hand side
in (4.7). Thus, it suffices to show that

{j ∈ C[m,n](v) : d[m,n](v, j) ≤ k, j ≥ 2} ⊆
{
ℓ+(Xs) : s ∈ Real

(
T +

[m,n](v)
)
, |s| ≤ k

}
. (4.11)

We show below that pij ≤ q+t,j for all real particles t ∈ I+i and all i, j ∈ [m,n] and j ≥ 2. Under this
assumption, we claim that (4.11) follows by induction on k. For k = 0, it is trivial, as both sets consist
only of the vertex v. Assuming the inclusion holds for k, we advance the induction and argue next that
it also holds for k + 1. We decompose{

j ∈ C[m,n](v) : d[m,n](v, j) ≤ k + 1
}

=
{
j ∈ C[m,n](v) : d[m,n](v, j) ≤ k

}
∪
{
j ∈ C[m,n](v) : d[m,n](v, j) = k + 1

}
.

By the induction hypothesis, the first set on the right-hand side is a subset of the real particles in the
first k generations. So, we have to argue that{

ℓ+(Xs) : s ∈ Real
(
T +

[m,n](v)
)
, |s| ≤ k + 1

}
⊇
{
j ∈ C[m,n](v) : d[m,n](v, j) = k + 1, j ≥ 2

}
. (4.12)

Thus, we consider the event that a breadth-first exploration of C[m,n](v) discovers a vertex j ∈ [m,n]
exactly at generation k+1. In particular, we work on the event that d[m,n](v, j) > k. For proving (4.12),
we may assume without loss of generality that there is no real particle s in the first k generations such
that ℓ+(Xs) = j. Let

Realk(v) :=
{
ℓ+(Xs) : |s| = k, s ∈ Real

(
T +

[m,n](v)
)}

.

By (4.9), presence of an edge {i, j} is decided by the offspring of the smallest real particle in I+i ∪ I+j
with respect to the ordering ≺. There are no real particles in the union of

(
I+i : i ∈ Realk(v)

)
before

generation k by definition of real particles, and I+j contains no real particle before generation k + 1 by
assumption. Therefore, none of the edges {i, j} with i ∈ Realk has been determined before generation
k+1. These edges are revealed exactly when we expose the offspring of the real particles in generation k.

If none of the real particles in generation k produces an offspring in I+j , then Us,j > q+s,j for all real
particles s in generation k. As we assume that q+s,j ≥ pij for all real particles s with Xs ∈ I+i and all
i, j ∈ [m,n] with j ≥ 2, all edges between Realk and j are absent on this event, and we necessarily have
that d[m,n](v, j) ≥ k + 2 as we work on the event that d[m,n](v, j) > k.

Therefore, the only way that d[m,n](v, j) can be discovered by the exploration in generation k + 1
while none of the real particles up to generation k project to j, is if there is a smallest real particle s
in generation k (with respect to ≺) that produces an offspring si with position Xsi ∈ I+j . The first
offspring that s produces in I+j must be real because I+j did not contain a real particle before. The
inclusion stated in (4.12) follows provided that q+t,j ≥ pij for all real particles t ∈ I+i and all i, j ∈ [m,n]
with j ≥ 2. Thus, (4.11) and (4.7) follow under the same condition.

Verification of the one-step inequality q+t,j ≥ pij. We finish the proof of (4.7) by showing the inequality
q+t,j ≥ pij for all real particles t ∈ I+i and all i, j ∈ [m,n] with j ≥ 2. Again, we can suppose γ > 0. Since
q+t,j is the probability that particle t produces at least one offspring in I+j , we will show that for any t
with ℓ+(Xt) = i, and j ≥ 2,

q+t,j = 1− exp
(
− µβ

(
(log(2j − 3)−Xt, log(2j − 1)−Xt]

))
≥ β(i ∨ j)γ−1(i ∧ j)−γ . (4.13)

Note that j ≥ 2 implies that log(2j − 3) is well-defined. By the definition of the measure µβ in (3.1),
the left-hand side is minimized when Xt is at the rightmost value in I+i , which is log(2i− 1) for all i ≥ 1
by (4.2). Thus,

µβ

(
(log(2j − 3)−Xt, log(2j − 1)−Xt]

)
≥ µβ

(
(log

(
2j−3
2i−1

)
, log

(
2j−1
2i−1

)])
.

We now distinguish again between i < j and i > j ≥ 2. If 1 ≤ i < j, then

µβ

(
(log

(
2j−3
2i−1

)
, log

(
2j−1
2i−1

)])
= β

∫ log 2j−1
2i−1

log 2j−3
2i−1

eγy dy = β
γ

((
2j−1
2i−1

)γ −
(
2j−3
2i−1

)γ)
= β

γ (2i− 1)−γ
(
(2j − 1)γ − (2j − 3)γ

)
= β(i− 1

2 )
−γ(j − 1

2 )
γ · 1

γ

(
1−

(
1− 2

2j−1

)γ)
.
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We use concavity of the function x 7→ xγ , x ≥ 0, and that 1− exp(−x) ≥ x−x2/2 for x > 0. This yields,

1− exp
(
− µβ

(
(log(2j − 3)−Xs, log(2j − 1)−Xs]

))
≥ 1− exp

(
β(i− 1

2 )
−γ(j − 1

2 )
γ−1
)

(4.14)

≥ β(i− 1
2 )

−γ(j − 1
2 )

γ−1 − β2

2 (i− 1
2 )

−2γ(j − 1
2 )

2(γ−1).

Recall from (4.13) that we aim to show that the right-hand side is at least βi−γjγ−1. Rearranging terms,
we obtain that (4.13) is implied if

β
2 ≤ (i− 1

2 )
γ(j − 1

2 )
1−γ − i−γjγ−1(i− 1

2 )
2γ(j − 1

2 )
2(1−γ)

=
( i− 1

2

i

)γ( j− 1
2

j

)1−γ
(
iγj1−γ − (i− 1

2 )
γ(j − 1

2 )
1−γ
)
.

The first two factors on the right-hand side are increasing in i and j as γ ∈ [0, 1). Their product is at
least 1

2 as j > i ≥ 1. Since we assume β ≤ 1
2 , it suffices to show that

1
2 ≤ iγj1−γ − (i− 1

2 )
γ(j − 1

2 )
1−γ . (4.15)

To this end, consider the function

f(x, y) = xγy1−γ − (x− 1
2 )

γ(y − 1
2 )

1−γ , for 1 ≤ x ≤ y.

Its derivative with respect to y is
∂

∂y
f(x, y) = (1− γ)

((
x
y

)γ −
(x− 1

2

y− 1
2

)γ) ≥ 0,

since x/y ≥ (x− 1
2 )/(y − 1

2 ) for y ≥ x ≥ 1. Moreover, we have that f(x, x) = x− (x− 1
2 ) =

1
2 for every

x ≥ 1. It follows that f(x, y) ≥ 1
2 for all y ≥ x ≥ 1, and therefore f(i, j) ≥ 1

2 for all 1 ≤ i < j. This
proves (4.15) when 1 ≤ i < j. The same reasoning applies when i > j ≥ 2, with the exponent γ replaced
by 1− γ. This proves (4.13) for all values i, j ∈ [m,n] with j ≥ 2, and finishes the proof of (4.7). □

Remark 4.4 (Precision of the coupling). For the purposes of this paper, a simpler coupling would have
sufficed. For instance, in the lower bound we could declare a particle fake if it has an ancestor that has
position in an interval with another particle, irrespective of whether that particle is real or fake or where
it appears in the ordering ≺. For the upper bound, we could dominate the component by projecting all
particles in the killed branching random walk, without distinguishing real or fake particles. We formulated
this more refined coupling above because it yields a sharper and more transparent correspondence between
the branching random walk and a component in the graph. This finer structure may be useful in future
work requiring even more precise control of the γ-growing random graph.

Remark 4.5 (Relation between ancestral lines and edges). Ancestral lines towards real particles approx-
imate the edges in a component. This approximation is less accurate for particles with small position,
corresponding to early vertices, as the absolute difference between the left-hand side and the right-hand
side in (4.10) and (4.13) can be largest for small values of i and j.

Some colliding particles have a corresponding edge in Cn(v), but not every collision does. Suppose
a particle t with real parent t′ with position Xt′ ∈ Ii collides with a real particle s ≺ t with Xs ∈ Ij .
By (4.9), this collision only corresponds to an edge {i, j} if the edge has not been determined before, which
only occurs when |s| = |t|, or when |t′| = |s| and Xt′ < Xs. Collisions outside these two configurations are
artifacts of the branching random walk and have no corresponding edge. In the lower-bound construction
T −

[1,n], every collision satisfying one of these configurations yields an edge in Cn(v) that closes a cycle.
In the upper-bound construction T +

[1,n] the ancestral lines of the branching random walk form supersets
of the edges in Cn(v), and each cycle has an edge corresponding to such a collision, but not every such
collision corresponds to an edge closing a cycle.

4.2. Local limit is the trace of the γ-BRW. The construction of the killed γ-BRW in Section 4.1
is inspired by the local limit of inhomogeneous random graphs of preferential-attachment type in [49],
and constructed for genuine preferential attachment models in [6, 20, 28]. We are not aware of previous
occurrences for uniformly grown random graphs (γ = 0). Informally, the local limit describes the limiting
graph structure around a typical vertex up to a fixed (but arbitrarily large) number of generations r as
n → ∞. As we see below, the local limit of γ-growing random graphs attachment is the trace of a killed
branching random walk on the negative half line. Here, the trace is the graph obtained from a branching
random walk by viewing particles as vertices, and including an edge between vertices representing the
particles of a parent and its offspring in the branching random walk. We give a brief description of the
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local limit here, as it helps in proving Theorems 2.8 and 2.10. We refer to [57] for a more elaborate
discussion. We start with some general definitions.

A rooted graph is a couple (G, o) of a graph G = (V,E) and some, possibly random, distinguished
vertex o ∈ V , which we call the root of G. We call two rooted graphs (G1, o1) and (G2, o2) isomorphic,
i.e., (G1, o1) ≃ (G2, o2), if there exists a bijection ϕ from the connected component of o1 in G1 to the
connected component of o2 in G2 such that ϕ(o1) = o2, and that {u, v} is an edge in (G1, o1) if and only
if {ϕ(u), ϕ(v)} is an edge in (G2, o2). Let G be the space of isomorphism classes of rooted locally finite
graphs. We write BG(v, r) for the subgraph of G induced on vertices at graph distance at most r from
v ∈ V . Define

R
(
(G1, o1), (G2, o2)

)
:= max

{
r ∈ N : BG1

(o1, r) ≃ BG2
(o2, r)

}
,

dG
(
(G1, o1), (G2, o2)

)
:= 1/

(
1 +R

(
(G1, o1), (G2, o2)

))
.

Then, (G, dG) is a Polish space. We call a finite rooted graph (G,O) uniformly rooted, if O is chosen
uniformly at random among the vertices of G. We say that a sequence of uniformly rooted graphs
(Gn, On)n≥1 converges locally in probability to (G∞, O) having law µ, if for every bounded and continuous
function h : G → R,

1

|Vn|
∑
v∈Vn

h(Gn, v)
P−→ Eµ[h(G∞, O)], as n → ∞, (4.16)

where Vn is the vertex set of Gn. Note that the left hand side is the expectation of h(Gn, On) over the
uniform root On for the fixed graph Gn, and thus is a random variable if Gn itself is a random graph.

Theorem 4.6 (Local limit). Consider the γ-growing random graph with fixed γ ∈ [0, 1). Let βn be a
sequence tending to β. Then (Gn, On) converges locally in probability to the trace of the γ-BRW with
parameters γ and β with the root at the origin, with particles killed upon entering the interval (X,∞)
for an independent exponential random variable X.

The theorem shows that the n-dependence of β vanishes in the local limit. A proof of the theorem was
given by the third author in [49] for β not depending on n and the graph Gn. We explain the heuristics
of the limit, and how to extend the proof to β = βn → βc, and leave the details to the reader.

Proof sketch. To prove local convergence in probability, by [57, Theorem 2.15] it suffices to prove that
for any fixed rooted graph H and r

1

|Vn|
∑
v∈Vn

1{BGn (vn,r)≃H}
P−→ P

(
BG(o, r) ≃ H

)
.

Such proofs proceed via a first and second moment method. The second moment is discussed in detail
in [57, Section 3] for more general inhomogeneous random graphs. We discuss only the first moment,
corresponding to the distribution of the r-neighbourhood of a uniform vertex up to graph distance r.

This distribution is understood via a similar exploration as given in Section 4.1, except that particles
have now position on (−∞, X], rather than on I[1,n] ∼ [0, log n]. We start from the same partition of the
positive half line as in Section 4.1 for large n. To sample a cell uniformly at random (corresponding to
taking a uniform root) from the right killing boundary, the exponential speed-up from Section 4.1 needs
to be corrected for. This corresponds to sampling the root at exponential distance X (conditioned to
be at most log n) from the right-killing boundary, which is at position approximately log n. We then
translate the branching random walk by − log n + X to put the root at the origin. Taking a limit of
n → ∞, the left killing barrier drifts to −∞, and hence in the local limit there is no killing of particles
to the left. Only particles on (X,∞) are killed, which corresponds to “removing edges to vertices that
arrive in the future” in the pre-limit. The interval occupied by the particles of the first r generations is
tight. In this tight set, cells become infinitesimally small in the limit, so no collisions can happen in the
limit, and we do not need a distinction between real and fake particles.

This construction allows to determine the local limit for fixed β. To show that the local limit of the
graph with a sequence βn tending to some β > 0 does not depend on βn, a simple coupling argument
works by taking the canonical coupling of the breadth-first explorations with βn and β: for any fixed
number of generations r, we can choose n sufficiently large such that the explorations agree up to
generation r with probability arbitrarily close to one. □
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Corollary 4.7 (Truncated component sizes). Consider the γ-growing random graph with fixed γ ∈ [0, 1).
Let βn be a sequence tending to β. For every k ∈ N, as n → ∞,

1

n

n∑
v=1

1{|Cn(v)|≥k}
P,L1

−→ Pβ
0

(
T(−∞,X] ≥ k

)
, (4.17)

1

n

n∑
v=1

|Cn(v)|1{|Cn(v)|≤k}
P,L1

−→ Eβ
0

[
T(−∞,X]1{T(−∞,X]≤k}

]
, (4.18)

1

n

n∑
v=1

|Cn(v)| log |Cn(v)|1{|Cn(v)|≤k}
P,L1

−→ Eβ
0

[
T(−∞,X] log T(−∞,X]1{T(−∞,X]≤k}

]
. (4.19)

Proof. The three functions in the sum are bounded and depend only on the k-neighbourhood of the
graph rooted at v, implying that they are continuous. The limits in probability follow by Theorem 4.6
and (4.16). The convergence holds also in L1 by boundedness of the averages on the left-hand sides. □

We explain why this corollary is central for Theorems 2.8 and 2.10. For the tail of the typical
component sizes in Theorem 2.8, the corollary reduces it to studying the tail of the total progeny of
the local limit, and —crucially— collisions do not occur in the local limit, which simplifies the proof.
For proving the second limit Theorem 2.10, we truncate component sizes at level k, use (4.19), and
then let k → ∞. The fact that this latter limit tends to infinity will follow from our analysis of the
decay of the right-hand side in (4.17). To obtain a lower bound for the first limit in Theorem 2.10, we
can argue similarly. An upper bound does not naively follow from (4.18): We have to argue that the
contribution coming from components larger than k do not contribute significantly. Local convergence
does not provide the tools for this. To handle that tail, we use the coupling with the branching random
walk where β may depend on n, and thus is not necessarily equal to βc. Our bounds there will crucially
use that lim supn→∞ 4βc(βn − βc)(log n)

2 < π2.

5. Preliminaries: Many-to-few formulas

This section collects two key preliminaries for analysing the γ-branching random walk in the finite-n
pre-limit, where β may depend on n, and the critical local limit with β = βc. We extend the classical
many-to-one and many-to-two formulas, which usually express expectations over particles in a fixed
generation or along a stopping line (see Biggins–Kyprianou [10] or Shi [56]), to identities summing
over all particles in the tree. These identities relate such global sums to expectations taken along a
single distinguished spine of the process, and reduces the analysis of the branching system to that of a
non-branching random walk. The multiplicative factors (β/βc)

n appearing in the forthcoming formulas
originate from the Poissonian displacement distribution (3.1), changing β rescales the offspring intensity
by β/βc. We now introduce the associated random walk.

Recall that a Laplace-distributed random variable Y with parameter a has distribution

P(Y ≤ y) =
1

2a

∫ y

−∞
e−|x|/a dx,

and variance 2a2. Under Px, denote by (Sn)n≥1 the random walk started from x with Laplace(1)-
distributed steps, we simply call this a Laplacian random walk. Note that such a random walk can
be constructed from a Brownian motion by stopping it at the times of a Poisson process (see e.g. [17,
Formula 1.1.0.5]), but we do not use this fact in this paper. The many-to-one formula that we state next
is the main tool for computing moments of the total progeny.

Lemma 5.1 (Many-to-one formula). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
Let (Sn)n≥1 be a Laplacian random walk with parameter one. Let F :

⋃∞
n=0 Rn → [0,∞) be measurable.

Then we have that

Eβ
x

[∑
t∈U

F ((Xs)s≤t)

]
= e−x/2E2βcx

[ ∞∑
n=0

(β/βc)
nF
(
S0/(2βc), . . . , Sn/(2βc)

)
eSn/(4βc)

]
. (5.1)
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Proof. Recall that the offspring distribution of the branching random walk is the Poisson process with
intensity µβ defined in (3.1). Hence, for every non-negative, measurable function f , we have

Eβ
x

[ ∞∑
i=1

f(Xi)

]
=

∫
f(x+ y)µβ(dy) = β

∫
f(x+ y)ey/2e−2βc|y| dy

= (β/βc)e
−x/2

∫
f(z)ez/2

(
βce

−2βc|z−x|) dz.
Let S

(γ)
1 = x+X

(γ)
1 , with X

(γ)
1 Laplace distributed with parameter 1/(2βc). This gives

Eβ
x

[ ∞∑
i=1

f(Xi)

]
= (β/βc)e

−x/2Eβc
x

[
f(S

(γ)
1 )eS

(γ)
1 /2

]
. (5.2)

We next rewrite the expectation on the right-hand side in (5.1) in terms of a Laplacian random walk
with parameter 1/(2βc). Let Xi ∼ Laplace(1), Sn = x0 +X1 + . . .+Xn, and X(γ)

i ∼ Laplace(1/(2βc)).
If Y ∼ Laplace(1), then aY ∼ Laplace(a). Taking x0 = 2βcx,

1

2βc
Sn =

2βcx

2βc
+

n∑
i=1

1

2βc
Xi

d
= x+

n∑
i=1

X
(γ)
i =: S(γ)

n .

By linearity of expectation, it now suffices to prove that for every n ≥ 0 and every measurable F : Rn →
[0,∞), we have

Eβ
x

∑
|t|=n

F ((Xv)s≤t)

 = e−x/2Ex

[
(β/βc)

nF (S
(γ)
0 , . . . , S(γ)

n )eS
(γ)
n /2

]
= e−x/2E2βcx

[
(β/βc)

nF
(
S0/(2βc), . . . , Sn/(2βc)

)
eSn/(4βc)

]
.

(5.3)

We prove this by induction on n. The case n = 0 is trivial. Assume the equality holds for some n and
all F as above. We aim to prove it for n + 1. We decompose according to the particles at the first
generation. Define the function Fx(x1, . . . , xn) := F (x, x1, . . . , xn). We have,

Eβ
x

[ ∑
|t|=n+1

F ((Xs)s≤t)

]
=

∞∑
i=1

Eβ
x

[ ∑
|t|=n

Fx((Xis)s≤t)

]

=

∞∑
i=1

Eβ
x

[
Eβ
Xi

[ ∑
|t|=n

Fx((Xs)s≤t)

]]
(branching property)

=

∞∑
i=1

Eβ
x

[
e−Xi/2EXi

[
(β/βc)

nFx(S
(γ)
0 , . . . , S(γ)

n )eS
(γ)
n /2

]]
(induction hypothesis)

= e−x/2(β/βc)Ex

[
E
S̃

(γ)
1

[
(β/βc)

nFx(S
(γ)
0 , . . . , S(γ)

n )eS
(γ)
n /2

]]
(Equation (5.2)),

where S̃
(γ)
1 is distributed like S

(γ)
1 under Px. By the Markov property of the random walk, we get,

Eβ
x

 ∑
|t|=n+1

F ((Xs)s≤t)

 = e−x/2(β/βc)Ex

[
(β/βc)

nFx(S
(γ)
1 , . . . , S

(γ)
n+1)e

S
(γ)
n+1/2

]
= e−x/2Ex

[
(β/βc)

n+1F (S
(γ)
0 , . . . , S

(γ)
n+1)e

S
(γ)
n+1/2

]
.

This proves (5.3) with n+ 1 in place of n and completes the induction step. The lemma follows. □

We proceed to the many-to-two formula, which allows to derive second moments of the total progeny.
It will also be used to control the number of collisions.
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Lemma 5.2 (Many-to-two formula). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
For F :

⋃∞
n=0 Rn → [0,∞) a measurable function, define the operators M and M∗ by

MF (x0, . . . , xn) := Eβ
xn

[∑
t∈U

F (x0, . . . , xn−1, (Xs)s≤t)

]

M∗F (x0, . . . , xn) := Eβ
xn

 ∑
t∈U , t̸=∅

F (x0, . . . , xn−1, (Xv)s≤t)


= MF (x0, . . . , xn)− F (x0, . . . , xn).

Then,

Eβ
x

[(∑
t∈U

F ((Xr)r≤t)

)2]
= M(F 2)(x) +M(M∗F )2(x).

Proof. Define the operator Q by

QF (x0, . . . , xn) := Eβ
xn

 ∑
i,j≥1, i ̸=j

F (x0, . . . , xn, Xi)F (x0, . . . , xn, Xj)

 .

We have,

Eβ
x

[(∑
t∈U

F ((Xr)r≤t)

)2]
= Eβ

x

[ ∑
s,t∈U

F ((Xr)r≤t)F ((Xr)r≤s)

]

= Eβ
x

[∑
t∈U

F ((Xr)r≤w)
2

]
+ Eβ

x

[ ∑
s,t∈U , t̸=s

F ((Xr)r≤t)F ((Xr)r≤s)

]
.

The first term equals M(F 2)(x). For the second term we obtain, by decomposing according to the most
recent common ancestor of t and s,

Eβ
x

[ ∑
s,t∈U , t ̸=s

F ((Xr)r≤t)F ((Xr)r≤s)

]
= Eβ

x

[ ∑
w∈U

∞∑
i,j=1
i ̸=j

∑
s,t∈U

F ((Xr)r≤wit)F ((Xr)r≤wjs)

]

= Eβ
x

[ ∑
w∈U

∞∑
i,j=1
i ̸=j

MF ((Xr)r≤wi)MF ((Xr)r≤wj)

]

= Eβ
x

[ ∑
w∈U

QMF ((Xr)r≤w)

]
= MQMF (x).

In total, we have

Eβ
x

[(∑
t∈U

F ((Xr)r≤t)

)2]
= M(F 2)(x) +MQMF (x). (5.4)

To complete the proof, recall that the offspring distribution of the γ-branching random walk is a Poisson
process with intensity measure µβ defined in (3.1). Letting µ

[2]
β denote its second factorial moment

measure (see e.g. [19, Sections 5 and 6]), we have µ[2]
β = µβ ⊗ µβ by [19, Proposition 6.3.III], and therefore,

QF (x0, . . . , xn) =

∫
F (x0, . . . , xn, x)F (x0, . . . , xn, y)µ

[2]
β (dx, dy)

=

(∫
F (x0, . . . , xn, x)µβ(dx)

)2

=
(
M0F (x0, . . . , xn)

)2
,

where we set

M0F (x0, . . . , xn) =

∫
F (x0, . . . , xn, x)µβ(dx) = Eβ

x

[ ∞∑
i=1

F (x0, . . . , xn, Xi)

]
.

Note that M0MF = M∗F , whence QMF = (M∗F )2. Together with (5.4), this proves the lemma. □
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6. Progeny of the branching random walk killed from two sides

This section gives uniform moment bounds for the total progeny of the γ-branching random walk
(BRW) killed outside large intervals. These estimates are the core input in the proofs of the main
theorems: They show that the progeny is concentrated around its mean and they explain the threshold
π2 in our statements. It arises from a hitting time equation for the killed Laplacian random walk (see
Lemma 6.6 below) and marks where exponential moments of the hitting time —and consequently the
BRW progeny— blow up. Throughout this section, we study the γ-BRW by itself, postponing the
connection to the graph of size n to Section 7. We adopt the following notation:
- Global scale L. The parameter L should be thought of encoding the graph size via L ≈ log n. In our

many-to-one lemma, we scaled the jump distribution of the random walk describing the spine such
that it becomes independent of γ. As a result, it lives on an interval of γ-dependent length 2βcL,
which should be thought of as 2βc log n. Nevertheless, we keep using L for the length of intervals.

- Deviation from criticality. We write ρL := (βn − βc)/βc for the normalized deviation from critical-
ity. The moment estimates below hold for sequences βL → βc (equivalently ρL → 0) satisfying the
constraint

lim sup
L→∞

ρL(2βcL)
2 ≈ lim sup

n→∞

βn − βc

βc
(2βc log n)

2 = lim sup
n→∞

4βc(βn − βc)(log n)
2 < π2.

- Interior cutoff K. In addition to the global scale L, we use a smaller cut-off K ∈ [L0, L]. Restricting the
progeny to [0,K] isolates the contribution of particles that stay within a reduced region, corresponding
to the young vertices near the right end of the interval [0, log n]. Allowing K to grow with L but remain
strictly smaller is crucial for the lower bound on the largest component and for an upper bound on the
susceptibility. We assume K is at least a large constant, so that asymptotics in our progeny moments
can kick in.

With these conventions we define the auxiliary functions Si and Co, extending the definition of Si
from (2.5), and introducing its counterpart:

Si(α, y) :=



sin(
√
αy)√
α

, if α > 0,

y, if α = 0,

sinh(
√
|α|y)√

|α|
, if α < 0;

Co(α, y) :=


cos(

√
αy), if α > 0,

1, if α = 0,

cosh(
√
|α|y), if α < 0.

(6.1)

For fixed y ∈ [0, 1] both functions are analytic in α and on the interval (0, π2) the function α 7→ Si(α, y) is
decreasing and positive. As a function on the interval [0, 1] the function y 7→ Si(α, y) is convex for α < 0
and concave for α > 0. For α ≤ (π/2)2, it is increasing. The functions Si and Co are the eigenfunctions
that appear when solving the Fredholm integral equation / second–order ordinary differential equation
associated to the killed Laplace random walk, see Lemma 6.7 below.

The next lemma provides upper bounds on y 7→ Si(α, y) independent of α. The function can be
bounded by a linear function in y when α > 0, which is the relevant case for the γ-BRW just above
criticality. When α < 0 the increase is exponential for large y, but still linear for y close to the origin.

Lemma 6.1. For any L ≥ 0, ρ ∈ R, and x ≥ 0,

Si(ρL2, x/L) ≤ x

L

(
2 + 1{ρ<0}e

√
|ρ|x
)
≤ 3x

L
e
√

|ρ|x, Co(ρL2, x/L) ≤ 1{ρ≥0} + 1{ρ<0}e
√

|ρ|x.

Proof. When ρ = 0, Si(ρL2, x/L) = x/L by definition. If ρ > 0, then using sin(y) ≤ y for y ≥ 0,

Si(ρL2, x/L) =
sin(

√
ρx)

√
ρL

≤ x/L.

When ρ < 0, using sinh(y) = 1
2 (e

y − e−y) ≤ 2y for y ∈ [0, 1],

Si(ρL2, x/L) =
sinh(

√
|ρ|x)√

|ρ|L
≤ 1{

√
|ρ|x≤1}

2x

L
+ 1{1/

√
|ρ|<x}

e
√

|ρ|x√
|ρ|L

≤ 2x

L
+

x

L
e
√

|ρ|x.

The upper bound on Co(ρL2, x/L) is immediate since cos(x) ≤ 1, and cosh(x) ≤ ex. □

The next two propositions provide uniform first– and second–moment estimates for the total progeny
that are valid for all starting positions and for every admissible sequence βL.



THE CRITICAL WINDOW IN GROWING RANDOM GRAPHS 19

Proposition 6.2 (First moment). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
Let βL → βc be such that lim supL→∞ 4βc(βL − βc)L

2 < π2. Let ε ∈ (0, 1). There exists a constant L0

such that for all L ≥ L0, all K ∈ [L0, L], and all x ∈ [0,K],

EβL
x

[
T[0,K]

]/(
(1 + 4βc)

Si(4βc(βL − βc)K
2, x/K) + 1/(2βcK)

Si(4βc(βL − βc)K2, 1)
e(K−x)/2 + 1− (4βc)

2

)
∈ [1− ε, 1 + ε].

Proposition 6.3 (Second moment). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
There exists a constant C > 0 such that for any βL → βc such that lim supL→∞ 4βc(βL − βc)L

2 < π2

there exists a constant L0 > 0 such that for all L ≥ L0, all K ∈ [L0, L], and all x ∈ [0,K],

Eβ
x

[
T 2
[0,K]

]
≤ C

Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1/K

K2Si
(
4βc(βL − βc)K2, 1

)3 eK−x/2. (6.2)

We prove the propositions in Section 6.2, after having established preliminaries on the Laplacian
random walk in Section 6.1. Before that, we present two corollaries of the two moment bounds. The
first corollary suffices to prove the upper bound on the largest component, see page 34.

Corollary 6.4. Consider the γ-branching random walk with parameter γ ∈ [0, 1/2). There exists a
constant C > 0 such that for any βL → βc such that lim supL→∞ 4βc(βL − βc)L

2 < π2 there exists a
constant L0 > 0 such that for all L ≥ L0 and all K ∈ [L0, L], all x ∈ [0,K] and R > 0,

PβL
x

(
T[0,K] ≥ REβL

0

[
T[0,K]

])
≤ C

R2

Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1/K

Si
(
4βc(βL − βc)K2, 1

) e−x/2. (6.3)

Proof. Assume L0 is sufficiently large that we can apply Proposition 6.2 for ε = 1/2. We apply Markov’s
bound to the second moment. Using a lower bound on the first moment for x = 0 (βc ≤ 1/4 so
1− (4βc)

2 ≥ 0; Si(α, 0) = 0), and the upper bound on the second moment, we obtain for some C > 0,

PβL
x

(
T[0,K] ≥ REβL

0

[
T[0,K]

])
≤

EβL
x

[
T 2
[0,K]

]
R2EβL

0

[
T[0,K]

]2 ≤ C

R2

Si(4βc(βL − βc)K
2, 1− x/K) + 1/K

Si(4βc(βL − βc)K2)
e−x/2. □

The next corollary establishes tightness from below for the progeny divided by its expectation.

Corollary 6.5. Consider the γ-branching random walk with parameter γ ∈ [0, 1/2). There exist positive-
valued functions ε 7→ δε and ε 7→ Kε such that for any sequence βL → βc such that lim supL→∞ 4βc(βL−
βc)L

2 < π2 there exists a constant L0 > 0 such that for all L ≥ L0 and all K ∈ [L0 + Kε, L], and all
ε > 0,

PβL

0

(
T[0,K] ≥ δεEβL

0

[
T[0,K]

])
≥ 1− ε. (6.4)

Proof. We assume that L0 is sufficiently large so that Propositions 6.2 and 6.3 apply, and that βL ≥ βc/2
for all L ≥ L0. Let K ′ > L0. By Proposition 6.2, there exists a constant c > 0 such that

EβL

0

[
T[0,K′]

]
≥ c

K ′Si
(
4βc(βL − βc)K ′2, 1

)eK′/2.

Similarly, by Proposition 6.3, we have for some C ′ > 0

EβL

0

[
T 2
[0,K′]

]
≤ C ′

K ′2Si
(
4βc(βL − βc)K ′2, 1

)2 eK′
.

Combined with the lower bound on the first moment, Paley–Zygmund yields that

PβL

0

(
T[0,K′] ≥ 1

2E
βL

0

[
T[0,K′]

])
≥

EβL

0

[
T[0,K′]

]2
4EβL

0

[
T 2
[0,K′]

] ≥ c2/(4C ′) =: θ. (6.5)

We now bootstrap this lower bound from θ to 1 − ε at the expense of an ε-dependent factor on the
right-hand side inside the probability. To do so, we consider the subprogeny of the offspring of the root.
Informally, for the total progeny to be unexpectedly small, all offspring of the root should have a small
subprogeny. Let T[a,b](i) denote the progeny of the ith child of the root, with particles killed outside
[a, b]. We let Kε, δε > 0 be two constants, and first consider the offspring of the root inside the interval
[0,Kε]. Then,{

T[0,K] <
1
2E

βL

0

[
T[0,K−Kε]

]}
⊆
{
∀i ∈ N : Xi ∈ [0,Kε], T[Xi,K−(Kε−Xi)](i) <

1
2E

βL

0

[
T[0,K−Kε]

]}
.
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Thus, for each offspring of the root (within distance at most Kε from the root), we only consider the
total progeny to its right in an interval of length K −Kε ≥ L0. Using the independence, translating all
offspring by −Xi, and using (6.5) for K ′ = K −Kε,

PβL

0

(
T[0,K] <

1
2E

βL

0

[
T[0,K−Kε]

])
≤ EβL

0

[
(1− θ)#{i:Xi∈[0,Kε]}

]
.

By the definition of the displacement measure µβ in (3.1), when γ ≥ 0, the number of particles in [0,Kε]
stochastically dominates a Poisson random variable with mean βL log(Kε) ≥ βc log(Kε)/2. Thus, we set
Kε as the solution of the equation

ε = E
[
(1− θ)Poi(βc log(Kε)/2)

]
,

and obtain

PβL

0

(
T[0,K] <

1

2

EβL

0

[
T[0,K−Kε]

]
EβL

0

[
T[0,K]

] EβL

0

[
T[0,K]

])
≤ ε.

The proof is finished if we can show that for K −Kε ≥ L0,

EβL

0

[
T[0,K−Kε]

]
EβL

0

[
T[0,K]

] ≥ e−Kε/2
1

3(1 +Kε)
. (6.6)

Assume L0 is sufficiently large that we can apply Corollary 6.5 for ε6.5 = 1/2. Then,

EβL

0

[
T[0,K−Kε]

]
EβL

0

[
T[0,K]

] ≥ 1

3
e−Kε/2

KSi
(
4βc(βL − βc)K

2
)

(K −Kε)Si
(
4βc(βL − βc)(K −Kε)2

) .
Since α 7→ Si(α) is decreasing, the last ratio is at least 1 when α ≤ 0. So we may assume that βL > βc.
Substituting the definition of Si in (2.5), we obtain

EβL

0

[
T[0,K−Kε]

]
EβL

0

[
T[0,K]

] ≥ 1

3
e−Kε/2

sin(
√

4βc(βL − βc)K)

sin(
√
4βc(βL − βc)(K −Kε))

≥ 1

3
e−Kε/2

sin(
√

4βc(βL − βc)K)

sin(
√
4βc(βL − βc)K) +

√
4βc(βL − βc)Kε

=
1

3
e−Kε/2

(
1 +

√
4βc(βL − βc)

sin(
√

4βc(βL − βc)K)
Kε

)−1

.

Since lim supL→∞ 4βc(βL − βc)L
2 < π2, and we only consider L such that βL > 0, we may assume that

L0 is sufficiently large so that the ratio between brackets is at most Kε for L ≥ K ≥ L0, proving (6.6).
This finishes the proof for δε = e−Kε/2/(6(1 +Kε)). □

6.1. Laplace–Fourier transform of the stopped random walk. By the many-to-one formula in
Lemma 5.1, the expectation of the total progeny can be written in terms of a Laplacian random walk
with parameter one. In particular, for the γ-BRW with parameter β,

Eβ
x

[
T[0,L]

]
= e−x/2E2βcx

[ ∞∑
k=0

(β/βc)
k
1{Si ∈ [0, 2βcL]∀i ≤ k}eSk/(4βc)

]
. (6.7)

To study the right-hand side and related expressions, we introduce for b > 0 ρ > −1, and ± ∈ {−,+},

H±
b (x, ρ, L) := Ex

[
τL−1∑
k=0

(1 + ρ)ke±bSk

]
, (6.8)

where
τL := min

{
k : Sk /∈ [0, L]

}
(6.9)

denotes the hitting time of [0, L]c. As mentioned at the beginning of Section 5, the Laplacian random
walk can be constructed from a Brownian motion by stopping it at the times of a Poisson process. One
might therefore aim to obtain estimates on H±

b using analogous quantities for Brownian motion killed
outside an interval. However, this is not immediate, since killing the Brownian motion as soon as it
quits the interval is not the same as killing it only at the times of the Poisson process. Instead, we will
use below that H±

b solves a Fredholm integral equation whose solution and asymptotics we compute
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explicitly. To guarantee finiteness of the solution, we establish an initial bound. From (6.7) it follows
that,

e−x/2Ex

[
(β/βc)

τ2βcL

]
≤ Eβ

x

[
T[0,L]

]
= e−x/2H+

1/(4βc)
(2βcx, β/βc − 1, 2βcL)

≤ e(L−x)/2 βc

β−βc
E2βcx

[
(β/βc)

τ2βcL − 1
]
,

(6.10)

motivating to first study the probability-generating function (pgf) of the hitting time: We show that it
blows up for β/βc = 1 + ρ close to the radius of convergence. Define

ρ∗L := min
{
ρ ≥ 0 : cos

(√
ρL/2

)
−√

ρ sin
(√

ρL/2
)
= 0
}
. (6.11)

Lemma 6.6 (PGF of the hitting time). Let (Sn)n≥0 denote the Laplacian random walk. Then,

EL/2

[
(1 + ρ)τL

]
=



1 + ρ

cosh(
√
|ρ|L/2) +

√
|ρ| sinh(

√
|ρ|L/2)

, if ρ ∈ [−1, 0],

1 + ρ

cos(
√
ρL/2)−√

ρ sin(
√
ρL/2)

, if ρ ∈ (0, ρ∗L),

∞, if ρ ≥ ρ∗L.

(6.12)

Moreover, Ex[(1 + ρ)τL ] < ∞ for all x ∈ [0, L] for all ρ ∈ [−1, ρ∗L). We have ρ∗LL
2 → π2 as L → ∞.

Proof. We first analytically derive an expression for the expectation for ρ ∈ [−1, 0]. Let Sk = L/2 +
X1 + . . .+Xk, where Xi ∼iid Laplace(1). For θ ∈ (0, 1), E[eθXi ] = 1/(1− θ2), and hence

Mk := (1− θ2)keθSk defines a martingale.

We write τ = τL. Since θ ∈ (0, 1) and Sn ∈ [0, L] for n ≤ τ , Mn∧τ is uniformly integrable for all n. By
the optional stopping theorem,

e−θL/2EL/2[Mτ ] = 1.

By symmetry, Sτ ≥ L with probability 1/2. On this event, the last step of the random walk moves in
the positive direction. By the memoryless property of Laplace distributed random variables conditioned
on their sign (which is an exponential distribution), the overshoot is exponentially distributed with
parameter 1, independent of τ . Thus, on the event {Sτ > L}, Sτ = L+ Y with Y ∼ Exp(1). Otherwise,
it exits via 0, and Sτ = −Y . Using E[eθY ] = 1/(1− θ) for θ < 1, we have

1 = e−θL/2 1

2
eθLE

[
eθY
]
EL/2

[
(1− θ2)τ

]
+ e−θL/2 1

2
E
[
e−θY

]
EL/2

[
(1− θ2)τ

]
= EL/2

[
(1− θ2)τ ]

( 1/2

1− θ
eθL/2 +

1/2

1 + θ
e−θL/2

)
= EL/2

[
(1− θ2)τ ]

1/2

1− θ2

(
(1 + θ)eθL/2 + (1− θ)e−θL/2

)
= EL/2

[
(1− θ2)τ

] 1

1− θ2
(
cosh(θL/2) + θ sinh(θL/2)

)
.

We write 1 + ρ = s. Rearranging and substituting θ =
√
1− s yields for s ∈ [0, 1]

Φ(s) := EL/2[s
τ ] =

s

cosh(
√
1− sL/2) +

√
1− s sinh(

√
1− sL/2)

=: F (s).

Since Φ and F are both analytic functions that agree on [0, 1], by analytic continuation they must agree
on the set [0, R) where R corresponds to the radius of convergence of the power series representation,
which is identical to the first singularity point of F . The first singularity point of F is equal to the
smallest root of the denominator, which corresponds to the s = 1 + ρ∗L defined in (6.11), proving the
formula of the probability generating function.

The hitting time of [0, L]c of the random walk started from x ∈ [0, L] is stochastically dominated by
the hitting time of [0, L]c when the random walk is started from the centre L/2, so Ex[(1+ρ)τL ] < ∞. As
L→∞, ρ∗L behaves asymptotically like the smallest positive root of cos(√ρL/2)=0. So, ρ∗LL

2 → π2. □

In view of (6.10), Lemma 6.6 guarantees finiteness of the expected total progeny for all ρ sufficiently
close to one. The next lemma exploits this observation to derive an explicit expression for H by solving
a Fredholm integral equation.
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Lemma 6.7 (Exact solution of H±). Let b ≥ 0. Let ρ ∈ [−1, ρ∗L). Then,

H+
b (x, ρ, L) =

1 + ρ

b2 + ρ

((
1 + b

) Si(ρL2, x/L) + 1
LCo(ρL

2, x/L)

(1− ρ)Si(ρL2, 1) + 2
LCo(ρL

2, 1)
ebL (6.13)

−
(
b− 1

)Si(ρL2, 1− x/L) + 1
LCo(ρL

2, 1− x/L)

(1− ρ)Si(ρL2, 1) + 2
LCo(ρL

2, 1)

)
+

b2 − 1

b2 + ρ
ebx.

Moreover,
H−

b (x, ρ, L) = e−LbH+
b (L− x, ρ, L). (6.14)

Proof. We give the proof for H+, defined in (6.8), and explain at the end the adaptations for H−. Since
Sn ∈ [0, L] for n < τL, when ρ ̸= 0

H+
b (x, ρ, L) ≤ ebLEx

[
τL−1∑
k=0

(1 + ρ)k

]
= ebLEx

[
(1 + ρ)τL − 1

ρ

]
,

which is finite by Lemma 6.6, also when ρ = 0. We next find an expression for H+
b , using that it is finite.

As Sk is a symmetric random walk killed upon entering [0, L]c, the distribution of (L − Sk) and Sk,
started from L− (L− x) = x, agree. It follows by definition of H+ in (6.8) that

H+
b (x, ρ, L) = ebLEL−x

[ ∞∑
k=0

(1 + ρ)ke−bSk1{Si∈[0,L]∀i≤k}

]
=: ebLGρ(L− x). (6.15)

We make the change of variables y = L − x. By conditioning on the first step of the random walk, it
follows that Gρ(y) solves the Fredholm integral equation

Gρ(y) = e−by +
1 + ρ

2

∫ L

0

e−|y−z|Gρ(z) dz. (6.16)

Such equations have been extensively studied in the literature, mostly using Wiener-Hopf techniques, see
e.g. the references in Ponomarev [52]. The particular example (6.16) appears for example in Latter [42]
and Gautesen [29]. On page 28 in Latter [42], we have the following formula for the unique finite solution

Gρ(y) =

(
1 + b

i
√
ρ− 1

eiL
√
ρ +

1− b

i
√
ρ+ 1

e−bL

)
e−iy

√
ρ

D(b2 + ρ)

+

(
1 + b

i
√
ρ+ 1

e−iL
√
ρ +

1− b

i
√
ρ− 1

e−bL

)
eiy

√
ρ

D(b2 + ρ)

+
b2 − 1

b2 + ρ
e−by, D :=

e−iL
√
ρ

(i
√
ρ+ 1)2

− eiL
√
ρ

(i
√
ρ− 1)2

.

(6.17)

We reformulate this formula for ρ ≥ 0 and obtain

D =
1(

(1 + i
√
ρ)(1− i

√
ρ)
)2 ((i√ρ− 1)2e−iL

√
ρ − (i

√
ρ+ 1)2eiL

√
ρ
)

=
1

(1 + ρ)2

(
(1− ρ)(e−iL

√
ρ − eiL

√
ρ)− 2i

√
ρ(e−iL

√
ρ + eiL

√
ρ)
)

=
−2i

(1 + ρ)2

(
(1− ρ) sin(L

√
ρ) + 2

√
ρ cos(L

√
ρ)
)
.

Similarly,

1

i
√
ρ− 1

ei
√
ρ(L−y) +

1

i
√
ρ+ 1

e−i
√
ρ(L−y) = − 1

1 + ρ

(
(i
√
ρ+ 1)ei

√
ρ(L−y) + (i

√
ρ− 1)e−i

√
ρ(L−y)

)
= − 2i

1 + ρ

(√
ρ cos(

√
ρ(L− y)) + sin(

√
ρ(L− y))

)
,

and
1

i
√
ρ+ 1

e−i
√
ρy +

1

i
√
ρ− 1

ei
√
ρy = − 2i

1 + ρ

(√
ρ cos(

√
ρy) + sin(

√
ρy)
)
.
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Thus, when ρ > 0,

Gρ(y) =
1 + ρ

b2 + ρ

(
(1 + b)

sin(
√
ρ(L− y)) +

√
ρ cos(

√
ρ(L− y))

(1− ρ) sin(L
√
ρ) + 2

√
ρ cos(L

√
ρ)

+ (1− b)
sin(

√
ρy) +

√
ρ cos(

√
ρy)

(1− ρ) sin(L
√
ρ) + 2

√
ρ cos(L

√
ρ)

e−bL

)
+

b2 − 1

b2 + ρ
e−by.

(6.18)

Substituting these values in (6.15), and dividing all numerators and denominators by
√
ρL2 (see definition

of Si,Co in (6.1)), (6.13) follows for ρ ≥ 0. For ρ < 0 analogous reasoning yields the answer. Alterna-
tively, when ρ < 0, one can use analytic continuation as a function of ρ, combined with sin(iy) = i sinh(y)
and cos(iy) = cosh(y). For H−, the analysis of Gρ combined with (6.15) yields (6.14), as we have

H−
b (x, ρ, L) = Ex

[ ∞∑
k=0

(1 + ρ)ke−bSk1{Si∈[0,L]∀i≤k}

]
= Gρ(x). □

Corollary 6.8 (Asymptotics of H). Let ρL → 0 be such that lim supL→∞ ρLL
2 < π2, and let ε ∈ (0, 1).

For each b ≥ 1, there exists a constant L0 such that for all L ≥ L0, all K ∈ [L0, L], and all x ∈ [0,K],

H+
b (x, ρL,K)

/(
(1 + 1/b)

Si(ρLK
2, x/K) + 1/K

Si(ρLK2)
ebK + (1− 1/b2)ebx

)
∈ [1− ε, 1 + ε].

Additionally, for b ∈ (0, 1), there exists a constant L′
0 such that for all L ≥ L0, all K ∈ [L0, L], and all

x ∈ [0,K],

H+
b (x, ρL,K) ≤ (1 + ε)(1 + 1/b)

Si(ρLK
2, x/K) + 1/K

Si(ρLK2)
ebK .

Proof. We prove an upper bound on H+ and leave it to the reader to verify the lower bound using
analogous bounds. Let δ > 0 be a sufficiently small constant depending on ε. We first show that the
negative term on the second line in (6.13) is negligible to the positive term on the first line. To do so,
we have to show that there is L1 such that for all L ≥ L1, K ∈ [L1, L] and x ∈ [0,K],∣∣∣∣b− 1

b+ 1

Si(ρLK
2, 1− x/K) + 1

KCo(ρLK
2, 1− x/K)

Si(ρLK2, x/K) + 1
KCo(ρLK2, x/K)

e−bK

∣∣∣∣ ≤ δ.

For the numerator, we invoke Lemma 6.1 to bound Si(ρLK
2, 1 − x/K) ≤ 3e

√
ρLK , and Co(ρLK

2, 1 −
x/K) ≤ e

√
|ρL|K . The bound is implied if∣∣∣∣b− 1

b+ 1

4e
√

|ρL|K−bK/2(
Si(ρLK2, x/K) + 1

KCo(ρLK2, x/K)
)
ebK/2

∣∣∣∣ ≤ δ.

As ρL → 0, the numerator can be made arbitrarily small if K is at least a large constant. Thus, the
whole expression can be made small if the denominator is bounded away from 0. When ρL ≤ 0, the
denominator is increasing in x (easy to verify by differentiation), and therefore minimized at x = 0. In
this case, the denominator is at least ebK/K, which is bounded away from 0 for K ≥ 1. When ρL > 0,

inf
x∈[0,K]

(
Si(ρLK

2, x/K) +
1

K
Co(ρLK

2, x/K)
)
ebK/2 = inf

x∈[0,K]

( sin(√ρLx)

K
√
ρL

+
1

K
cos(

√
ρLx)

)
ebK/2.

When L is sufficiently large, it follows by differentiation that the function is increasing for √
ρLx ∈

[0, π/2] and minimized at 0, and the function is at least 1 when K is at least a large constant. For
x ∈ [π/(2

√
ρL),K], the sin is decreasing, and

inf
x∈[π/(2

√
ρL),K]

(
sin(

√
ρLx)

K
√
ρL

+
1

K
cos(

√
ρLx)

)
ebK/2 ≥ 1

K

(
sin(

√
ρLL)√
ρL

− 1

)
ebK/2 ≥ 1

for all K sufficiently large, using that lim supL→∞ ρLL
2 < π2. This proves that there exists L1 such that

for all L ≥ L1, all K ∈ [L1, L], and all x ∈ [0,K],∣∣∣∣b− 1

b+ 1

Si(ρLK
2, 1− x/K) + 1

KCo(ρLK
2, 1− x/K)

Si(ρLK2, x/K) + 1
KCo(ρLK2, x/K)

e−bK

∣∣∣∣ ≤ ∣∣∣∣b− 1

b+ 1

(
2 + 3e

√
|ρL|K)e−bK/2

∣∣∣∣ ≤ δ.
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Thus, by Lemma 6.7, using ρL ↓ 0, whenever L is larger than some L1 and K ∈ [L1, L],

H+
b (x, ρL,K) ≤ 1 + ρL

b2 + ρL
(1 + δ)(1 + b)

Si(ρLK
2, x/K) + 1

KCo(ρLK
2, x/K)

(1− ρ)Si(ρLL2) + 2
KCo(ρLL2)

ebL +
b2 − 1

b2 + ρL
ebx

≤ (1 + δ)2
1 + b

b2
Si(ρLK

2, x/K) + 1
KCo(ρLK

2, x/K)

(1− ρL)Si(ρLK2) + 2
KCo(ρLK2)

ebK + (1 + δ)(1− 1/b2)ebx.

We next show that

Si(ρLK
2, x/K) +

1

K
Co(ρLK

2, x/K) ≤ (1 + δ)
(
Si(ρLK

2, x/K) +
1

K

)
. (6.19)

Rearranging terms, this is equivalent to

Co(ρLK
2, x/K) ≤ δKSi(ρLK

2, x/K) + 1 + δ.

When ρL ≥ 0, the left-hand side is at most one, while the right-hand side is at least 1+ δ. When ρL < 0,
the inequality becomes equivalent to

1

2

(
e
√

|ρ|x + e−
√

|ρ|x
)
≤ δK

2

(
e
√

|ρ|x − e−
√

|ρ|x
)
+ 1 + δ,

which is equivalent to
1 + δK ≤ (δK − 1)e2

√
|ρ|x + 2(1 + δ)e

√
|ρ|x.

The right-hand side is minimized at x = 0, in which case it is equal to 1 + δ(K + 1). This proves (6.19),
and we obtain

H+
b (x, ρL,K) ≤ (1 + δ)3

b2
(1 + b)

Si(ρLK
2, x/K) + 1

K

(1− ρL)Si(ρLK2) + 2
KCo(ρLK2)

ebK + (1 + δ)(1− 1/b2)ebx.

To finish the upper bound for b ≥ 1, we will argue that there exists L2 such that for all L ≥ L2 and
K ∈ [L2, L],

(1− ρL)Si(ρLK
2) +

2

K
Co(ρLK

2) ≥ (1− δ)Si(ρLK
2). (6.20)

When L is sufficiently large, ρL < δ/2, and it suffices if (δ/2)Si(ρLK2) − 2/K ≥ 0. Since α 7→ Si(α)
is decreasing, it suffices if (δ/2)Si(ρLL

2) − 2/K ≥ 0. We may assume L is so large that Si(ρLL
2) ≥

lim infL→∞ Si(ρLL
2)/2, and then assume K is large enough depending on δ such that the bound holds.

This proves that, when b ≥ 1,

H+
b (x, ρL,K) ≤ (1 + δ)3

b2(1− δ)
(1 + b)

Si(ρLK
2, x/K) + 1

K

Si(ρLK2)
ebK + (1 + δ)(1− 1/b2)ebx.

Choosing δ sufficiently small depending on ε finishes the upper bound for b ≥ 1. Lower bounds can be
obtained using analogous bounds. For b ∈ (0, 1), only the bound (b2−1)ebx/(b2+ρ) ≤ (1+δ)(1−1/b2)ebx

becomes negative, and is bounded from above by 0. □

6.2. Branching random walk. Armed with the asymptotics of the function H+ in Corollary 6.8, we
are ready to prove the main statements of this section.

Proof of Proposition 6.2. By the many-to-one formula in Lemma 5.1 and the formula for T[0,K] in (4.5),
we find that

EβL
x

[
T[0,K]

]
= e−x/2E2βcx

[ ∞∑
k=0

(βL/βc)
k
1{Si/(2βc)∈[0,K]∀i≤k}e

Sk/(4βc)

]
= e−x/2H+

1/(4βc)
(2βcx, βL/βc − 1, 2βcK).

The bounds follow from Corollary 6.8 for b = 1/(4βc), and the change of variables L6.8 = 2βcL, K6.8 =
2βcK, and ρL = βL/βc − 1. □

Proof of Proposition 6.3. We set F (x0, . . . , xn) = 1{xk ∈ [0,K]∀k ≤ n}, so F = F 2. Let M be the
operator from the many-to-two formula, Lemma 5.2, which states that

EβL
x [T 2

[0,K]] = (MF )(x) +M(M∗F )2(x). (6.21)

Also note that

MF (x0, . . . , xn) = F (x0, . . . , xn)EβL
xn

[T[0,K]], (6.22)

and (
M∗F (x0, . . . , xn)

)2 ≤ (MF (x0, . . . , xn)
)2

= F (x0, . . . , xn)EβL
xn

[T[0,K]]
2. (6.23)
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We assume L0 sufficiently large so that we can use Proposition 6.2 for ε = 1/2. Using and (a + b)2 ≤
2a2 + 2b2, we have for some C1 = C1(γ),

EβL
xn

[T[0,K]]
2 ≤ C1

Si
(
4βc(βL − βc)K

2, xn/K
)2

+ 1/K2

Si2
(
4βc(βL − βc)K2

) eK−xn + C1. (6.24)

We claim that there exists a constant C2 = C2(γ) such that, for all xn ∈ [0,K] and any K ≥ 1,(
Si
(
4βc(βL − βc)K

2, xn/K
)2

+ 1/K2
)
e−xn/4 ≤ C2/K

2. (6.25)

Indeed, by Lemma 6.1,

Si2
(
4βc(βL − βc)K

2, xn/K
)
e−xn/4 ≤ 4

K2

(
xn + xne

xn

√
4βc|βL−βc|

)2
e−xn/4.

For L0 sufficiently large, 2
√

4βc|βL − βc| < 1/8 for any L ≥ L0. As a result, the right-hand side is
bounded from above by C3/K

2 for some constant C3 > 0, proving (6.25). Using (6.25) in (6.24), there
exists a constant C4 > 0 such that

EβL
xn

[T[0,K]]
2 ≤ C4

K2Si2
(
4βc(βL − βc)K2

)eK−(3/4)xn + C4.

Recalling (6.23),(
M∗F (x0, . . . , xn)

)2 ≤ F (x0, . . . , xn)
C4

K2Si2
(
4βc(βL − βc)K2

)eK−(3/4)xn + C4F (x0, . . . , xn)

=: G(x0, . . . , xn)
C3

K2Si2
(
4βc(βL − βc)K2

)eK + C3F (x0, . . . , xn). (6.26)

We have by the many-to-one formula (Lemma 5.1) and the definition of H− in (6.8),

MG(x) = e−x/2E2βcx

[
(βL/βc)

n
1{Sk ∈ [0, 2βcK]∀k ≤ n}eSn/(4βc)−(3/(8βc))Sn

]
= e−x/2H−

1/(8βc)
(2βcx, βL/βc − 1, 2βcK).

(6.27)

We assume L0 is sufficiently large so that we can use the upper bound on H− from Corollary 6.8 for
b = 1/(8βc) and ε = 1/2 after the change of variables L6.8 = 2βcL, K6.8 = 2βcK, and ρL = βL/βc − 1.
We find for some C5 > 0,

MG(x) ≤ C5

Si
(
(βL/βc − 1)(2βcK)2, 1− x/K

)
+ 1

2βcK

Si
(
(βL/βc − 1)(2βcK)2

) e−x/2 + 21{βc≤1/8}

( 1

8βc
− 1
)
.

Combined with (6.26) and (6.21), we obtain for some C6 > 0

EβL
x

[
T 2
[0,K]

]
≤ C6

Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1

2βcK

K2Si3
(
4βc(βL − βc)K2

) eK−x/2 + C6MF (x).

As MF (x) = EβL
x

[
T[0,K]

]
, we obtain by Proposition 6.2,

EβL
x

[
T 2
[0,K]

]
≤ C7

Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1

2βcK

K2Si3
(
4βc(βL − βc)K2

) eK−x/2

+ C7

Si
(
4βc(βL − βc)K

2, x/K
)
+ 1

2βcK

Si
(
4βc(βL − βc)K2

) e(K−x)/2 + C7.

(6.28)

To finish the proof, we have to argue that the terms on the second line are at most a constant multiple
of the term on the right-hand side in the first line. That is, there should exist C,C ′ (not depending on
the sequence βL) such that whenever L ≥ L0 (for some large L0), K ∈ [L0, L], and x ∈ [0,K],

Si
(
4βc(βL − βc)K

2, x/K
)
+ 1

2βcK

Si
(
4βc(βL − βc)K2

) e(K−x)/2 ≤ C
Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1

2βcK

K2Si3
(
4βc(βL − βc)K2

) eK−x/2, (6.29)

and
Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1

2βcK

K2Si3
(
4βc(βL − βc)K2

) eK−x/2 ≥ 1. (6.30)
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We first show (6.29). We bound the numerator on the right-hand side from below by 1/(2βcK). Rear-
ranging terms yields that it suffices if

2βcK
3Si2

(
4βc(βL − βc)K

2
)(

Si
(
4βc(βL − βc)K

2, x/K
)
+

1

2βcK

)
≤ CeK/2. (6.31)

By Lemma 6.1, the factors involving Si are all at most e
√

4βc|βL−βc|L. Whenever L0 is sufficiently large,
the left-hand side is at most eK/2 for all K ≥ L0. The bound (6.30) follows analogously, bounding
eK−x/2 ≥ eK/2 for x ∈ [0,K]. This proves that the term on the first line in (6.28) is the dominant term,
and that there exists a constant C8 only depending on γ such that for all L ≥ L0 (for some L0 that is
allowed to depend on βL), K ∈ [0, L], and x ∈ [0,K],

EβL
x

[
T 2
[0,K]

]
≤ C7

Si
(
4βc(βL − βc)K

2, 1− x/K
)
+ 1

2βcK

K2Si3
(
4βc(βL − βc)K2

) eK−x/2. □

7. Real, fake and colliding particles

This section establishes preliminaries to bound from below the size of the largest connected component.
In particular, we ensure that the number of fake particles (see Definition 4.2) is small by arguing that
the number of collisions is small if we restrict to vertices arriving after a large constant amount of time.
As a result, the total progeny of the branching random walk becomes a good approximation for the size
of the connected component of a vertex.

Proposition 7.1 (Fake particles). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
There exists a constant C > 0 such that for any sequence βn → βc such that lim supn→∞ 4βc(βn −
βc)(log n)

2 < π2 there exists a constant k0 such that for all n ≥ 1 and m ∈ [n] such that n/m ≥ k0, and
any v ∈ [m,n],

Eβn

[∣∣Fake(T −
[m,n](v))

∣∣] ≤ C
log(v/m) + 1√

mv
Eβn

[
|T −

[m,n](m)|
]
. (7.1)

We prove the proposition at the end of the section. We next show how a lower bound on the number
of real particles follows.

Corollary 7.2 (Real particles). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
There exist positive-valued functions ε 7→ δε, ε 7→ kε, and ε 7→ mε, such that for any sequence βn → βc

such that lim supn→∞ 4βc(βn −βc)(log n)
2 < π2, there exists a constant k0 such that for all ε > 0, n ≥ 1

and all m ∈ [mε, n] such that n/m ≥ k0kε,

P
(∣∣Real(T −

[m,n](m)
)∣∣ ≥ δε

√
n/m

/
log(n/m)

Si
(
4βc(βn − βc) log

2 n
m

)) ≥ 1− ε.

Proof. To lower bound the number of real particles, we use the lower bound on the total progeny
(union of real and fake particles) from Corollary 6.5, and derive an upper bound on the number of
fake particles using Proposition 7.1. We denote by δ′ε the function δε from Corollary 6.5, and let Kε

be from said corollary. We let L = log n, βL = βn, and K = log((n + 1)/m). Recall that the killed
branching random walk T −

[m,n](m) starts with a particle located at logm, and particles are killed upon
leaving I−[m,n] = [logm, log(n+ 1)). We translate the random walk by − logm. With L0 and Kε from
Corollary 6.5, if n/m ≥ eL0+Kε/2 , then

P
(∣∣T −

[m,n](m)
∣∣ ≤ δ′ε/2

√
n/m

/
log(n/m)

Si
(
4βc(βn − βc) log

2 n
m

)) ≤ ε/2.

Now, let C be the constant from Proposition 7.1. By Markov’s inequality,

P
(∣∣Fake(T −

[m,n](m)
∣∣ ≥ (δ′ε/2/2)

√
n/m

/
log(n/m)

Si
(
4βc(βn − βc) log

2 n
m

))
≤ 2C

δ′ε/2m
· Eβn

[
|T −

[m,n](m)|
]/ √

n/m

log(n/m)Si
(
4βc(βn − βc) log

2 n
m

) .
If we assume that log(n/m) is sufficiently large, then by Proposition 6.2, the second factor on the right-
hand side is at most 2. Setting mε to be the smallest integer such that the first factor on the right-hand
side is at most ε/4 finishes the proof. □
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The main technical task of this section is to obtain an upper bound on the number of collisions in
the cell I−u of a vertex u. Perhaps surprisingly, we obtain an upper bound that is independent of the
sequence (βn)n≥1 whenever n is sufficiently large, which is crucial in proving Proposition 7.1.

Lemma 7.3 (Colliding particles). Consider the γ-branching random walk with parameter γ ∈ [0, 1/2).
There exists a constant C > 0 such that for any sequence βn → βc such that lim supn→∞ 4βc(βn −
βc)(log n)

2 < π2 there exists a constant k0 such that for all n ≥ 1 and m ∈ [n] such that n/m ≥ k0, and
any u, v ∈ [m,n],

Eβn

[∣∣Colliding(T −
[m,n](v), I

−
u )
∣∣] ≤ C

log(v/m) + 1

u
√
mv

(
1 + log

u

m

)2

. (7.2)

In Section 7.2 below, we prove Lemma 7.3 and combine it with the branching property and progeny
bounds from Section 6 to prove Proposition 7.1.

The proof of the next lemma shows how the number of collisions can be bounded using a second
moment argument. In particular, we apply the many-to-few lemmas from Section 5 to reduce bounding
the expected number of collisions to estimates on the Laplacian random walk.

Recall the definition of ρ∗L in (6.11). Given L > 0 and an interval I ⊆ [0, L], let us define for
ρ ∈ (−1, ρ∗L), K ∈ [0, L], an interval I ⊆ [0,K], and x ∈ [0,K], the function

RI(x, ρ,K) := Ex

[
τK−1∑
ℓ=1

(1 + ρ)ℓ1{Sℓ∈I}

]
. (7.3)

Lemma 7.4 (Collision bounding via random walk). Consider the γ-branching random walk with param-
eter γ ∈ [0, 1/2). Let m,u, v, n ∈ N such that u, v ∈ [m,n]. Let (Sj)j≥0 be a Laplacian random walk and
let τ denote its hitting time of [0, 2βc log

n+1
m )c. Then,

Eβ
[
|Colliding(T −

[m,n](v), I
−
u )|
]

≤ u+ 1

2
√
mv

E
2βc log(

v
m )

[
τ−1∑
j=0

( β
βc
)je−Sj/(4βc)

(
R2βc(I

−
u −logm)(Sj ,

β−βc

βc
, 2βc log

n+1
m )

)2]
.

(7.4)

Proof. We omit the superindex “−” throughout the proof. Recall from Definition 4.2 that a particle t is
said to collide in an interval Iu if t lies in Iu and there exists another real particle s in Iu with s ≺ t,
where the order ≺ is described above Definition 4.2. We consider a superset of the colliding particles
by including particles t that have a position in an interval that already contains a fake particle s, see
Definition 4.2. In formulas,∑

t∈U

Eβ
[
1{t ∈ Colliding(T[m,n](v), Iu)}

]
≤
∑
t∈U

Eβ
log v

[
1{∃s ∈ U : Xs, Xt ∈ Iu, s ≺ t : Xw, Xz ∈ I[m,n]∀w ≤ s, z ≤ t}

]
≤ 1

2
Eβ
log v

[ ∑
s,t∈U
s̸=t

1{Xs, Xt ∈ Iu : Xw, Xz ∈ I[m,n]∀w ≤ s, z ≤ t}

]
. (7.5)

We apply the many-to-two lemma (Lemma 5.2) and many-to-one lemma (Lemma 5.1) to the expecta-
tion. We write (Sj)j≥0 and (S′

m)m≥0 for two Laplacian random walks, and let τ̃ = inf{j : Sj /∈ 2βcI[m,n]}
and τ̃ ′ = inf{j : S′

j /∈ 2βcI[m,n]}. Then, the right-hand side in (7.5) is equal to

1

2
√
v
E2βc log v

[
τ̃−1∑
j=0

(β/βc)
je−Sj/(4βc)ESn

[
τ̃ ′−1∑
ℓ=1

(β/βc)
ℓ
1{S′

ℓ∈2βcIu}e
S′
ℓ/(4βc)

]2]
.

On the indicator in the inner expectation, S′
ℓ ≤ 2βc log(u+ 1), and thus the expression is bounded from

above by

u+ 1

2
√
v
E2βc log v

[
τ̃−1∑
j=0

(β/βc)
je−Sj/(4βc)ESj

[
τ̃ ′−1∑
ℓ=1

(β/βc)
ℓ
1{S′

ℓ∈2βcIu}

]2]
.



28 J. JORRITSMA, P. MAILLARD, P. MÖRTERS

We translate the random walks by −2βc logm and kill the shifted walks when they leave
[
0, 2βc log

(
n+1
m

))
.

Writing τ and τ ′ for the hitting times of the complement of this interval, (7.5) is at most

u+ 1

2
√
v
E
2βc log(

v
m )

[
τ−1∑
j=0

(β/βc)
je−(Sj+log(m))/(4βc)ESj+log(m)

[
τ̃ ′−1∑
ℓ=1

(β/βc)
ℓ
1{S′

ℓ ∈ 2βcIu}

]2]

=
u+ 1

2
√
mv

E
2βc log(

v
m )

[
τ−1∑
j=0

(β/βc)
je−Sj/(4βc)ESj

[
τ ′−1∑
ℓ=1

(β/βc)
ℓ
1{S′

ℓ ∈ 2βc(I
−
u − logm)}

]2]
. □

We follow a similar structure as in Section 6: we bound the resolvent of the random walk in the next
subsection, and give the proofs of Lemma 7.3 and Proposition 7.1 in Section 7.2 afterwards.

7.1. Resolvent of the stopped random walk. Building upon Lemma 7.4, we bound the resolvent
RI(x, ρ,K) in (7.3) from above in this section. We will apply it for [a, b] corresponding to the cells
I−u defined in (4.1) that have length at most 2βc ≤ 1. Again, the next lemma is independent of the
sequence ρL under certain conditions, even though RI depends on it.

Lemma 7.5 (Resolvent upper bound). Let ρL → 0 be such that lim supL→∞ ρLL
2 < π2. There exists

a constant L0 such that for all L ≥ L0, all K ∈ [L0, L], all x ∈ [0,K], and all a, b ∈ [0,K] such that
b− a ∈ [0, 1],

R[a,b](x, ρL,K) ≤ 3(b− a)(b+ 2)(x+ 2).

We take an analytic approach using integral equations to bound R[a,b) from above. We approximate
the indicator function in its definition in (7.3) by a differentiable function. Let

Qa,b(x) :=

1− cos
(
2π

x− a

b− a

)
, if x ∈ [a, b],

0, if x /∈ [a, b],
Fa,b(x, ρ, L) := Ex

[
τL−1∑
n=0

(1 + ρ)nQa,b(Sn)

]
. (7.6)

Lemma 7.6 (Analysis of F ). Let L > 0, and assume [a, b] ⊆ [0, L]. For ρ ≤ 0,

Fa,b(x, ρ, L) ≤ (b− a)(x+ 1) +Qa,b(x) (7.7)

Moreover, for ρ ∈ (0, ρ∗L ∧ 4π2/(b− a)2),

Fa,b(x, ρ, L) ≤ (b− a)(1 + ρ)
4π2

4π2 − ρ(b− a)2
Si(ρL2) + (b+ 1)/L

(1− ρ)Si(ρL2) + 2Co(ρL2)/L
(x+ 1) +Qa,b(x). (7.8)

Proof. Similar to (6.16), Fa,b solves the Fredholm equation

Fa,b(x, ρ, L) = Qa,b(x) +
1 + ρ

2

∫ L

0

e−|x−y|Fa,b(y, ρ, L) dy =: Qa,b(x) +
1 + ρ

2
I(x). (7.9)

By Lemma 6.6, Fa,b is finite when ρ < ρ∗L, which is satisfied by our assumption on ρ. We will find
a candidate solution of the integral equation by deriving an ordinary differential equation (ODE) with
boundary conditions. The solution to this differential equation is then equal to Fa,b(x, ρ, L) as Fa,b and
the kernel e−|x−y| are sufficiently regular, see the standard reference [41] for details.

In what follows, we write for simplicity F = Fa,b(·, ρ, L) and Q = Qa,b. By differentiating I(x) twice,
we find

I ′(x) = −e−x

∫ x

0

eyF (y) dy + ex
∫ L

x

e−yF (y) dy, I ′′(x) =

∫ L

0

e−|x−y|F (y) dy − 2F (x).

As a result, I ′′(x)−I(x) = −2F (x). Substituting the expression for F from (7.9), we get the second-order
linear non-homogeneous ODE1

I ′′(x) + ρI(x) = −2Q(x), x ∈ [0, L]. (7.10)

To derive the boundary conditions from the integral definition of I, we find that

I(0) =

∫ L

0

F (y)e−y dy = I ′(0), I(L) =

∫ L

0

F (y)e−(L−y) dy = −I ′(L). (7.11)

We distinguish the cases ρ ≤ 0 versus ρ > 0.

1We could also obtain this ODE using the coupling of the Laplacian random walk with a Brownian motion mentioned
at the beginning of Section 5. Note however the Robin boundary conditions encountered here. In the case of Brownian
motion killed outside the interval [0, L], one would rather obtain Dirichlet boundary conditions, see e.g. [17, Appendix 1.6].
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Case 1: ρ ∈ [−1, 0]. Since (7.6) is increasing in ρ ∈ [−1, 0] , we assume w.l.o.g. that ρ = 0, so
I ′′(x) = −2Q(x). Integrating twice, we obtain for some constants C,C ′ > 0 that

I(x) = C ′ + Cx− 21{x∈[a,b]}

(
(x− a)2

2
− (b− a)2

(2π)2

(
1− cos

( 2π

b− a
(x− a)

)))
− 21{x∈[b,L]}

(
(b− a)2

2
+ (x− b)(b− a)

)
.

The boundary condition I(0) = I ′(0) yields that C = C ′. The condition I(L) = −I ′(L) yields that C
satisfies the equation

C(L+1)−2
( (b− a)2

2
+(L− b)(b−a)

)
= −C+2(b−a), solved for C ′ = C = (b−a)

2L− b− a+ 2

L+ 2
.

The factor multiplying (b− a) is at most 2, so

I(x) ≤ 2(b− a)(1 + x)− 21{x∈[a,b]}

(
(x− a)2

2
− (b− a)2

(2π)2

(
1− cos

( 2π

b− a
(x− a)

)))
− 21{x∈[b,L]}

(
(b− a)2

2
+ (x− b)(b− a)

)
.

(7.12)

We next argue that the factors multiplying the indicators are negative. When x ∈ [b, L], this is clear.
When x ∈ [a, b], using 1− cos(x) ≤ x2/2,(b− a

2π

)2(
1− cos

( 2π

b− a
(x− a)

))
≤
(b− a

2π

)2 1
2

( 2π

b− a
(x− a)

)2
=

(x− a)2

2
.

Thus, I(x) ≤ 2(b− a)(1 + x). Substituting this bound into (7.9) proves

F (x) = Q(x) +
1

2
I(x) ≤ Q(x) + (b− a)(x+ 1).

Case 2: ρ > 0. We take the same approach, but the extra term ρI(x) in (7.10) makes the analysis more
involved. The ODE (7.10) needs to be solved for all x ∈ [0, L]. By definition of Q in (7.6), the right-hand
side in (7.10) equals 0 when x /∈ [a, b], and the general solution for such x (when ρ > 0) is given by
C sin(

√
ρx)+C ′ cos(

√
ρx) for some constants C,C ′ > 0. Thus, for some constants C1, C

′
1, C2, C

′
2, I must

satisfy

I(x) =

{
C1 sin(

√
ρx) + C ′

1 cos(
√
ρx), if x ∈ [0, a],

C2 sin(
√
ρx) + C ′

2 cos(
√
ρx), if x ∈ [b, L].

(7.13)

When x ∈ (a, b), we have Q(x) = 1− cos(ω(x−a)) with ω = 2π/(b−a), in which case the ODE (7.10) is
inhomogeneous. By differentiation, it is easy to verify by substitution into (7.10) that it has a particular
solution Ip(x) = −2/(ω2 − ρ) cos(ω(x − a)) − 2/ρ. Note that ω2 = 4π2/(b − a)2 > ρ by assumption.
Therefore, the general solution for x ∈ [a, b] satisfies for some constants C3, C

′
3 that

I(x) = C3 sin(
√
ρx) + C ′

3 cos(
√
ρx)− 2

ω2 − ρ
cos(ω(x− a))− 2

ρ
, if x ∈ (a, b). (7.14)

By the boundary condition I(0) = I ′(0) in (7.11), we find that C ′
1 =

√
ρC1. Thus,

I(x) = C1 sin(
√
ρx) +

√
ρC1 cos(

√
ρx), x ∈ [0, a].

As I(x) is a differentiable function, the constants C2, C
′
2, C3, C

′
3 will be chosen such that the limits of

I(x) and I ′(x) exist as x → a and x → b. By the continuity of I(x) and I ′(x) at x = a we find that C3

and C ′
3 must satisfy the two equations

C1 sin(
√
ρa) +

√
ρC1 cos(

√
ρa) = C3 sin(

√
ρa) + C ′

3 cos(
√
ρa)− 2/(ω2 − ρ)− 2/ρ,

C1
√
ρ cos(

√
ρa)− ρC1 sin(

√
ρa) = C3

√
ρ cos(

√
ρa)− C ′

3

√
ρ sin(

√
ρa),

which are solved for

C3 = C1 + sin(
√
ρa)
(2
ρ
+

2

ω2 − ρ

)
, C ′

3 =
√
ρC1 + cos(

√
ρa)
(2
ρ
+

2

ω2 − ρ

)
. (7.15)
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As cos(θ − ϕ) = cos θ cosϕ+ sin θ sinϕ, when x ∈ [a, b],

I(x) = C1 sin(
√
ρx) +

√
ρC1 cos(

√
ρx) +

(2
ρ
+

2

ω2 − ρ

)(
sin(

√
ρa) sin(

√
ρx) + cos(

√
ρa) cos(

√
ρx)
)

− 2

ω2 − ρ
cos(ω(x− a))− 2

ρ

= C1 sin(
√
ρx) +

√
ρC1 cos(

√
ρx) +

(2
ρ
+

2

ω2 − ρ

)
cos(

√
ρ(x− a))− 2

ω2 − ρ
cos(ω(x− a))− 2

ρ

= C1 sin(
√
ρx) +

√
ρC1 cos(

√
ρx) +

2ω2/ρ

ω2 − ρ

(
cos(

√
ρ(x− a))− 1

)
+

2

ω2 − ρ
Q(x). (7.16)

Next, we use the differentiability at x = b to derive analogously that C2 and C ′
2 must satisfy the equations

C2 = C3 − sin(
√
ρb)

2ω2/ρ

ω2 − ρ
, C ′

2 = C ′
3 − cos(

√
ρb)

2ω2/ρ

ω2 − ρ
.

Substituting the values of C3 and C ′
3, we find

C2 = C1 −
(
sin(

√
ρb)− sin(

√
ρa)
) 2ω2/ρ

ω2 − ρ
, C ′

2 =
√
ρC1 −

(
cos(

√
ρb)− cos(

√
ρa)
) 2ω2/ρ

ω2 − ρ
.

We use the boundary condition I(L) = −I ′(L) to derive the value of C1. This boundary condition is
equivalent to

C2 sin(
√
ρL) + C ′

2 cos(
√
ρL) = −√

ρC2 cos(
√
ρL) +

√
ρC ′

2 cos(
√
ρL).

Using the values of C2 and C ′
2 in terms of C1, this gives a solution for C1, which is given by

C1 =
2ω2/ρ

ω2 − ρ

cos(
√
ρ(L− b))− cos(

√
ρ(L− a)) +

√
ρ
(
sin(

√
ρ(L− b))− sin(

√
ρ(L− a))

)
(1− ρ) sin(

√
ρL) + 2

√
ρ cos(

√
ρL)

=:
2ω2

ω2 − ρ

N(a, b, ρ, L)/
√
ρ

D(ρ, L)

1
√
ρ
.

(7.17)

Thus, we find the expression

I(x) =
2ω2

ω2 − ρ

N(a, b, ρ, L)/
√
ρ

D(ρ, L)

(
sin(

√
ρx)

√
ρ

+ cos(
√
ρx)

)

+



0, if x ∈ [0, a],

2ω2/ρ

ω2 − ρ

(
cos(

√
ρ(x− a))− 1

)
+

2

ω2 − ρ
Q(x), if x ∈ (a, b),

2ω2/ρ

ω2 − ρ

(
cos(

√
ρ(x− a))− cos(

√
ρ(x− b))

)
, if x ∈ [b, L].

(7.18)

As for the case ρ ≤ 0, we will prove that the terms on the second to fourth row are non-positive. When
x ≤ a, this is obvious. When x > b, it follows because 0 ≤ √

ρ(x− b) ≤ √
ρ(x− a) ≤ (1 + ρ∗L)L ≤ π, and

cos(s) is decreasing on [0, π]. We verify the case x ∈ (a, b), for which we have to show that

ω2

ρ

(
cos
(√

ρ(x− a)
)
− 1
)
+ 1− cos

(
ω(x− a)

)
≤ 0. (7.19)

Let

u(t) :=
1− cos(t)

t2
, t1 :=

√
ρ(x− a), t2 := ω(x− a).

Our assumption ρ < 4π2/(b− a)2 is equivalent to √
ρ < ω, so t1 < t2 ≤ 2π. With these definitions,

ω2

ρ

(
cos(

√
ρ(x− a))− 1

)
+ 1− cos

( 2π

b− a
(x− a)

)
= t22

(
u(t2)− u(t1)

)
Now, u is non-increasing for t ∈ [0, 2π], because u(t) = (sinc(t/2))2/2 by the half-angle formula 1 −
cos(t) = 2 sin2( t2 ), and sinc is non-decreasing on [0, π]. This proves (7.19), and obtains the upper bound

I(x) ≤ 2ω2

ω2 − ρ

N(a, b, ρ, L)
√
ρD(ρ, L)

(
sin(

√
ρx)

√
ρ

+ cos(
√
ρx)

)
≤ 2ω2

ω2 − ρ

N(a, b, ρ, L)
√
ρD(ρ, L)

(x+ 1).

Invoking this bound into the integral equation (7.9), we find

Fa,b(x, ρ, L) = Qa,b(x) +
1 + ρ

2
I(x) ≤ Qa,b(x) + (1 + ρ)

2ω2

ω2 − ρ

N(a, b, ρ, L)
√
ρD(ρ, L)

(x+ 1).
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To prove (7.8), we still have to show that

N(a, b, ρ, L)
√
ρD(ρ, L)

=
cos(

√
ρ(L− b))− cos(

√
ρ(L− a)) +

√
ρ
(
sin(

√
ρ(L− b))− sin(

√
ρ(L− a))

)
(1− ρ) sin(

√
ρL) + 2

√
ρ cos(

√
ρL)

≤ (b− a)
Si(ρL2) + (b+ 1)/L

(1− ρ)Si(ρL2) + 2Co(ρL2)/L
.

(7.20)

We use sin(θ − ϕ) ≤ |θ − ϕ| to bound the differences of the sines in the numerator by √
ρ(b− a).

N(a, b, ρ, L)
√
ρD(ρ, L)

≤ b− a

(1− ρ) sin(
√
ρL) + 2

√
ρ cos(

√
ρL)

(
cos(

√
ρ(L− b))− cos(

√
ρ(L− a))

√
ρ(b− a)

+
√
ρ

)
.

We use the mean-value theorem to bound the first term within brackets, i.e.,

cos(
√
ρ(L− b))− cos(

√
ρ(L− a))

√
ρ(b− a)

≤ sup
ξ∈[a,b]

∣∣∣ sin(√ρ(L− ξ))
∣∣∣

≤ sin
(√

ρ(L− a)
)
+
√
ρ(b− a) ≤ sin(

√
ρL) +

√
ρb.

This yields,
N(a, b, ρ, L)
√
ρD(ρ, L)

≤ (b− a)
sin(

√
ρL) +

√
ρ(b+ 1)

(1− ρ) sin(
√
ρL) + 2

√
ρ cos(

√
ρL)

.

Dividing both numerator and denominator by √
ρL, the bound in (7.20) follows by the definition of Si

and Co in (6.1). This finishes the proof of the lemma. □

We next prove Lemma 7.5, and establish an upper bound independent of the sequence (ρL)L≥1.

Proof of Lemma 7.5. We set a1 = a − (b − a) = 2a − b and b1 = b + (b − a) = 2b − a, and obtain
1{x∈[a,b]} ≤ 2

3Qa1,b1(x). To apply Lemma 7.6, we require a1, b1 ∈ [0,K], which we ensure by increasing
the window [0,K] by 2(b − a) and translating the random walk to the right by b − a. That is, we set
x̃ = x+ (b− a), K̃ = K + 2(b− a), ã = a1 + (b− a) = a, b̃ = b1 + (b− a) = 3b− 2a. We have,

Ex

[
τK−1∑
n=1

(1 + ρ)n1{Sn∈[a,b]}

]
≤ Ex̃

[ τK̃−1∑
n=1

(1 + ρ)n1{Sn∈[a+(b−a),b+(b−a)]}

]

≤ 2

3
Ex̃

[ τK̃−1∑
n=0

(1 + ρ)nQã,b̃(Sn)

]
− 2

3
Qã,b̃(x̃).

By Lemma 7.6, we obtain (writing ρ = ρL and ρ+ = ρ ∨ 0):

R[a,b](x, ρ,K) ≤ 2(b− a)(1 + ρ+)
4π2

4π2 − 9ρ+(b− a)2
Si(ρ+K̃2) + (2b− a+ 1)/K̃

(1− ρ+)Si(ρ+K̃2) + 2Co(ρ+K̃2)/K̃
(x+ b− a+ 1).

The third and fourth term on the right-hand side converge to 1 as ρ → 0. Since b−a ≤ 1, the last factor
is at most x+ 2. Therefore, it is sufficient to show that

Si
(
ρ+(K + 2(b− a))2

)
+ (2b− a+ 1)/(K + 2(b− a))

(1− ρ+)Si
(
ρ+(K + 2(b− a))2

)
+ 2Co

(
ρ+(K + 2(b− a))2

)
/(K + 2(b− a))

≤ b+ 2.

Similar to the proof of (6.20), we may assume that K and L are sufficiently large such that the denomi-
nator is at least 2

3Si
(
ρ+(K + 2(b− a))2

)
. Thus, it suffices if

3

2

Si
(
ρ+(K + 2(b− a))2

)
+ (b+ 2)/K

Si
(
ρ+(K + 2(b− a))2

) ≤ b+ 2

(
⇐⇒ b+ 2

KSi
(
ρ+(K + 2(b− a))2

) ≤ b+ 1/2

)
.

We may assume that K and L are at least so large that

K ≥ 8

lim infL→∞ Si
(
ρ+LL

2
) , and Si

(
ρ+(K + 2(b− a))2

)
≥ min

(
4,

1

2
lim inf
L→∞

Si
(
ρ+LL

2
))

,

and it follows that for L0 sufficiently large that, for L ≥ L0, K ∈ [L0, L], and x, a, b ∈ [0,K] such that
b− a ≤ 1, we have

R[a,b](x, ρ,K) ≤ 3(b− a)(b+ 2)(x+ 2). □
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7.2. Applications to the γ-branching random walk. We apply the bound on the resolvent in
Lemma 7.5 to prove Lemma 7.3, which bounds the expected number of collisions.

Proof of Lemma 7.3. By Lemma 7.4,

Eβn
[
|Colliding(T −

[m,n](v), I
−
u )|
]

≤ u+ 1

2
√
mv

E
2βc log(

v
m )

[
τ−1∑
j=0

( β
βc
)je−Sj/(4βc)

(
R2βc(I

−
u −logm)(Sj ,

β−βc

βc
, 2βc log

n+1
m )

)2]
. (7.21)

To bound R, we use Lemma 7.5 for [a, b] = 2βc(I
−
u −logm) = 2βc[log

u
m , log u+1

m ], so b−a ≤ 2βc/u ≤ 1/2,
and ρL = βL/βc − 1. We assume that n/m is sufficiently large that 2βc log(n/m) ≥ L0, and use the
bound b− a = 2βc log(1 + 1/u) ≤ 2βc/u. We obtain that

R2βc(I
−
u −logm)(Sj ,

β−βc

βc
, 2βc log

n+1
m ) ≤ 6βc

u

(
log

u+ 1

m
+ 2

)
(Sj + 2),

abbreviating L = 2βc log
n+1
m and ρ = 1− β/βc. Substituting this into (7.21) we find, for some Cγ > 0,

Eβn
[
|Colliding(T −

[m,n](v), I
−
u )|
]
≤ 18β2

c (u+ 1)

u2
√
mv

(
log

u+ 1

m
+ 2

)2

E
2βc log(

v
m )

[
τ−1∑
j=0

( β
βc
)j(Sj + 2)2e−Sj/(4βc)

]

≤ Cγ

u
√
mv

(
log

u+ 1

m
+ 2

)2

E
2βc log(

v
m )

[
τ−1∑
j=0

( β
βc
)je−Sj/(8βc)

]

using in the last bound that (x + 2)2e−x/(4βc) ≤ Ce−x/(8βc) for some C > 0 depending on γ. We
use the upper bound in Corollary 6.8 on H−

1/(8βc)
to bound the remaining expectation. We abbreviate

x = 2βc log(v/m) and K = 2βc log((n+1)/m) and ρ = βn/βc − 1. We find for another constant C ′
γ > 0,

Eβn
[
|Colliding(T −

[m,n](v), I
−
u )|
]
≤

C ′
γ

u
√
mv

(
log

u+ 1

m
+ 2

)2

·
(
Si
(
ρ+K2, 1− x/K

)
+ 1/K

Si(ρ+K2)
+ 1

)
.

If ρ+ = 0, Si(ρ+K2, x) = x, and the last factor is equal to 2− (x− 1)/K ≤ 2. When ρ+ > 0,

Si
(
ρ+K2, 1− x/K

)
+ 1/K

Si(ρ+K2)
=

sin(
√
ρ(K − x)) +

√
ρ

sin(
√
ρK)

≤
sin(

√
ρK) +

√
ρ(x+ 1)

sin(
√
ρK)

= 1 +
x+ 1

KSi(ρ+K2)
.

We may assume that K is sufficiently large that KSi(ρ+K2) ≥ 1. Thus, for some C ′′
γ > 0

Eβn
[
|Colliding(T −

[m,n](v), I
−
u )|
]
≤ C′

γ

u
√
mv

(
log u+1

m + 2
)2 · (x+ 3

)
≤ C′′

γ

u
√
mv

(
1 + log u

m

)2(
1 + log v

m

)
. □

We are ready to prove the main proposition of this section. Having bounded the expected number of
collisions in each cell, its proof uses the branching property and the progeny bounds from Section 6.

Proof of Proposition 7.1. Recall from Definition 4.2 that colliding particles are particles that have a real
parent and that have position in an interval I−u that contains a real particle with smaller label with respect
to the order ≺ given above Definition 4.2. The union of these colliding particles with their descendants
form the set of fake particles. We decompose the set of fake particles according to the position of their
unique colliding ancestor. We write TI−

[m,n]
(s) for the number of descendants of a particle s ∈ U in the

killed branching random walk. We now use the branching property to obtain

Eβn

[∣∣Fake(T −
[m,n](v)

)∣∣] = n∑
u=m

∑
s∈U

Eβn

[
1{s∈Colliding(T −

[m,n]
(v),Iu)}TI−

[m,n]
(s)
]

≤
n∑

u=m

Eβn

[∣∣Colliding(T −
[m,n](v), I

−
u

)∣∣] sup
x∈I−

u

Eβn
x

[
TI−

[m,n]

]
.

The second expectation is maximized at the left boundary of I−u =
[
log u, log(u+1)

)
, in which case the

killed branching random walk agrees with T −
[m,n](u). We obtain

Eβn

[∣∣Fake(T −
[m,n](v)

)∣∣] ≤ n∑
u=m

Eβn

[∣∣Colliding(T −
[m,n](v), I

−
u

)∣∣] · Eβn

[∣∣T −
[m,n](u)

∣∣].
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We assume that n/m is sufficiently large such that the bound in Lemma 7.3 applies. Abbreviating
xu = log(u/m), we obtain for some C > 0,

Eβn
[
|Fake(T −

[m,n](v))|
]
≤ C(1 + xv)√

mv
Eβn

[∣∣T −
[m,n](m)

∣∣] n∑
u=m

(1 + xu)
2

u

Eβn
[∣∣T −

[m,n](u)
∣∣]

Eβn
[∣∣T −

[m,n](m)
∣∣] . (7.22)

We finish by showing that the remaining sum is bounded from above by a constant that does not depend
on the sequence βn whenever n/m is sufficiently large.

We assume that K = log((n + 1)/m) is sufficiently large that so that Proposition 6.2 applies for
ε = 1/2, L = log n and βL = βn. Then, for some constant Cγ > 0,

n∑
u=m

(1 + xu)
2

u

Eβn
[∣∣T −

[m,n](u)
∣∣]

Eβn
[∣∣T −

[m,n](m)
∣∣] ≤ 3

n∑
u=m

(1 + xu)
2

u

Si(4βc(βn−βc)K
2,xu/K)+1/(2βcK)

Si(4βc(βn−βc)K2)

√
(n+ 1)/u+ Cγ

1
2βcKSi(4βc(βn−βc)K2)

√
(n+ 1)/m

≤ 3

n∑
u=m

(1 + xu)
2

u

((
2βcKSi(4βc(βn − βc)K

2, xu/K) + 1
)√

m/u

+ 2KβcCγSi(4βc(βn − βc)K
2)
√
m/n

)
= 3

√
m

n∑
u=m

(1 + xu)
2

u3/2

(
2βcKSi(4βc(βn − βc)K

2, xu/K) + 1
)

+ 6KβcCγSi
(
4βc(βn − βc)K

2
)
e−K/2

n∑
u=m

(1 + xu)
2

u
.

We first discuss the last line. We recall that xu = log(u/m), and that there exists a constant C1 > 0
such that for all m,n the sum is at most C log3((n + 1)/m) = C1K. By Lemma 6.1, Si(x) ≤ 3e

√
|x|.

Assuming n is sufficiently large that
√
4βc(βn − βc) < 1/4, it follows that the second line is at most

18βcCγC1K
4e−K/4 < C2,

whenever n/m is sufficiently large, for some constant C2 only depending on γ. Thus,
n∑

u=m

(1 + xu)
2

u

Eβn
[∣∣T −

[m,n](u)
∣∣]

Eβn
[∣∣T −

[m,n](m)
∣∣] ≤ C2 + 3

√
m

n∑
u=m

(1 + xu)
2

u3/2

(
2βcKSi(4βc(βn − βc)K

2, xu/K) + 1
)
.

To bound the remaining sum, we assume that n is sufficiently large that
√
4βc|βn − βc| < 1/4. We

bound KSi(αK2, x/K) ≤ 3xe
√

|α|x by Lemma 6.1. We obtain, substituting xu = log(u/m),
n∑

u=m

(1 + xu)
2

u

Eβn
[∣∣T −

[m,n](u)
∣∣]

Eβn
[∣∣T −

[m,n](m)
∣∣] ≤ C2 + 3

√
m

n∑
u=m

(1 + xu)
2

u3/2

(
3βcxue

xu/4 + 1
)

≤ C2 + 6βcm
1/4

n∑
u=m

xu(1 + xu)
2u−5/4 + 3

√
m

n∑
u=m

(1 + xu)
2u−3/2.

The first sum after the second inequality is bounded from above by C3m
−1/4 for some absolute con-

stant C3. Similarly, the second sum is bounded from above by C4/
√
m for some absolute constant

C4 > 0. Substituting these bounds into (7.22), we obtain

Eβn
[
|Fake(T −

[m,n](v))|
]
≤ C(1 + xv)√

mv
Eβn

[∣∣T −
[m,n](m)

∣∣] · (C2 + 6βcC3 + 3C4

)
,

which finishes the proof. □

8. Largest component

In this section we prove the main result of the paper, Theorem 2.2 on the largest connected component.
We prove a short auxiliary lemma. Recall Si from (2.5).

Lemma 8.1. Let ρn → 0 such that lim supn→∞ ρn(log n)
2 < π2. Then,

lim inf
n→∞

Si
(
ρn(log 2n)

2
)

Si
(
ρn(log n)2

) ≥ 1.
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Proof. Since α 7→ Si(α) is non-increasing and positive for α < π2, the ratio is at least 1 whenever ρn ≤ 0.
Thus, we assume without loss of generality that ρn > 0 for all n. We recall that sin(θ+ ϕ) ≥ sin(θ)− ϕ.
As lim sup ρn(log n)

2 < π2, and ρn ↓ 0,

Si
(
ρn(log 2n)

2
)

Si
(
ρn(log n)2

) =
sin
(√

ρn log 2n
)

sin
(√

ρn log n
) · log n

log 2n
≥
(
1−

√
ρn log 2

sin(
√
ρn log n)

)
· log n

log n+ log 2
−→ 1. □

Proof of Theorem 2.2. We start with the upper bound.

Upper bound. Let ε > 0. We aim to find a function Mε such that for any sequence βn → βc such that
lim sup 4βc(βn − βc)(log n)

2 < π2, there exists n0 such that for all n ≥ n0,

Pβn

(
|Ln| ≥ Mε

3(1 + 4βc)

2

√
2n/ log 2n

Si
(
4βc(βn − βc)(log 2n)2

)) ≤ ε.

In view of Lemma 8.1 this suffices for the theorem. Applying Lemma 6.2 for ε = 1/2, K = log 2n and
x = 0, we may assume that n0 is sufficiently large that for all n ≥ n0,

Eβn

0

[
T[0,log 2n]]

/
(1 + 4βc)

√
2n/ log 2n

Si
(
4βc(βn − βc)(log 2n)2

) ∈ [1/2, 3/2]. (8.1)

Using the upper bound of (8.1) yields,

Pβn

(
|Ln| ≥ Mε

3(1 + 4βc)

2

√
2n/ log 2n

Si
(
4βc(βn − βc)(log 2n)2

)) ≤ Pβn

(
|Ln| ≥ MεEβn

0

[
T[0,log 2n]]

)
. (8.2)

We rely on Markov’s bound for the individual component sizes. We distinguish vertex one from the
other vertices, as Proposition 4.3 requires that we consider the induced subgraph G[m,n] with m ≥ 2 if
v ̸= 1. If |Ln| ≥ s, then at least one of the following two events holds: The component containing the
first vertex has size at least s, or there is a vertex v /∈ Cn(1) in a component of size at least s, which is
contained in the event that the induced subgraph on [2, n] contains a component of size at least s. Let
us write L[2,n] for the largest connected component in this subgraph. Then,

Pβn
(
|Ln| ≥ s

)
≤ Pβn

(
|Cn(1)| ≥ s

)
+ Pβn

(
|L[2,n]| ≥ s

)
.

The event in the second probability is equivalent to {
∑

u∈[n] 1{|C[2,n](v)|≥s} ≥ s}. Applying Markov’s
inequality yields

Pβn
(
|Ln| ≥ s

)
≤ Pβn

(
|Cn(1)| ≥ s

)
+

1

s

∑
v∈[2,n]

Pβn

(
|C[2,n](v)| ≥ s

)
.

We use the stochastic domination of the component sizes by the progenies of the corresponding KBRWs
from Proposition 4.3, taking a union over all k ∈ N, and bounding the number of real particles from
above by the total progeny of the killed-branching random walk. By definition of I+i in (4.2), both for
v = 1 and v ≥ 2, a particle u is killed in the branching random walk along with its descendants if
Xu /∈ [0, log(2n− 1)] ⊆ [0, log 2n]. Thus,

Pβn

(
|Ln| ≥ MεEβn

0

[
T[0,log 2n]]

)
≤ Pβn

0

(
T[0,log 2n] ≥ MεEβn

0

[
T[0,log 2n]]

)
+

1

MεEβn

0

[
T[0,log 2n]

] ∑
v∈[2,n]

Pβn

log v

(
T[0,log 2n] ≥ MεEβn

0

[
T[0,log 2n]]

)
.

We apply Markov’s bound to the first probability on the right-hand side. For the summands we apply
Corollary 6.4 for x = log(2v−1), K = L = log(2n), and R = Mε. We obtain for some constant C = C(γ)

Pβn

(
|Ln| ≥ Mε

3(1 + 4βc)

2

√
2n/ log 2n

Si
(
4βc(βn − βc)(log 2n)2

))

≤ 1

Mε
+

C

M3
ε

∑
v∈[2,n]

Si
(
4βc(βn − βc)(log 2n)

2, 1− log(2v−1)
log 2n

)
+ 1

log 2n

Eβn

0

[
T[0,log 2n]

]
· Si
(
4βc(βn − βc)(log 2n)2

) 1√
2v − 1

.

(8.3)

We can make the right-hand side smaller than ε, provided that we show that the sum is bounded by a
constant C ′ only depending on γ. We use the lower bound from (8.1) to bound the denominator of the
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first factor in the sum from below by
√
2n/(2 log 2n). Then, using the upper bound on Si in Lemma 6.1

with ρn = 4βc(βn − βc), and using that 2v − 1 ≥ v, we get,

Pβn

(
|Ln| ≥ Mε

3(1 + 4βc)

2

√
2n/ log 2n

Si
(
4βc(βn − βc)(log 2n)2

))

≤ 1

Mε
+

2C log 2n

M3
ε

√
2n

∑
v∈[2,n]

Si
(
4βc(βn − βc)(log 2n)

2, log(2n/(2v−1))
log 2n

)
+ 1

log 2n√
2v − 1

≤ 1

Mε
+

6C

M3
ε

√
2n

∑
v∈[2,n]

( log(2n/(2v − 1))√
2v − 1

( 2n

2v − 1

)√|ρn|
+

1√
2v − 1

)

≤ 1

Mε
+

6C

M3
ε

√
2n

∑
v∈[2,n]

( log(2n/v)√
v

(2n
v

)√|ρn|
+

1√
v

)
≤ 1

Mε
+

6C

M3
ε

∑
v∈[2,n]

(
log(2n/v)(2n)−1/4v−3/4 +

1√
2nv

)
.

In the last bound we used that when n0 is sufficiently large,
√

|ρn| < 1/4. The sum is bounded from
above by an absolute constant C ′ > 0. Choosing Mε to be a sufficiently large constant, the right-hand
side is at most ε, which proves the upper bound.

Lower bound, n large depending on ε. We proceed to the lower bound for Gn, which we split into two
parts. We start by showing that there exist functions ε 7→ δε, ε 7→ mε, such that for any sequence
βn → βc such that lim supn→∞ 4βc(βn−βc)(log n)

2 < π2, there exists n0 ∈ N such that for all ε > 0 and
all n ≥ n0mε,

Pβn

(
|Ln(βn)| ≥ δε

√
n/ log n

Si
(
4βc(βn − βc)(log n)2

)) ≥ 1− ε. (8.4)

Here, n is required to be sufficiently large depending on ε. In the subsequent step we give a direct
argument to lower bound the largest component for n ≤ n0mε, still assuming it is larger than some n∗

0

depending on the sequence (βn)n≥1.

For fixed ε > 0, we let mε and δ̃ε be the functions from Corollary 7.2. The size of the component
containing the vertex mε is a lower bound for the size of the largest connected component. By Proposi-
tion 4.3, the size of this connected component stochastically dominates the number of real particles in
the killed branching random walk T −

[mε,n]
(mε). By Corollary 7.2,

Pβn

(
|Ln| ≥ δ̃ε

√
n/mε/ log(n/mε)

Si
(
4βc(βn − βc) log

2 n
mε

)) ≥ Pβn

(∣∣C[mε,n](mε)
∣∣ ≥ δ̃ε

√
n/mε/ log(n/mε)

Si
(
4βc(βn − βc) log

2 n
mε

))

≥ Pβn

(∣∣Real(T −
[mε,n]

(mε)
)∣∣ ≥ δ̃ε

√
n/mε/ log(n/mε)

Si
(
4βc(βn − βc) log

2 n
mε

))
≥ 1− ε.

Similar to the reasoning after (6.6),√
n/mε/ log(n/mε)

Si
(
4βc(βn − βc) log

2 n
mε

)/ √
n/ log(n)

Si
(
4βc(βn − βc) log

2 n
) ≥ 1

√
mε(1 + logmε)

for all n/mε sufficiently large depending on (βn)n≥1. This proves the lower bound for the graph Gn with
δε = δ̃ε/(

√
mε(1 + logmε)) when n ≥ n0mε.

Lower bound, removing ε-dependence on n. We next prove the bound (8.4) for n ∈ [n∗
0, n0mε], where

n∗
0 ≥ n0 is a large constant only depending on (βn)n≥1, and a (possibly) smaller value δε. Let degn(1)

denote the degree of vertex one in Gn. We will lower bound the size of the largest component by
1 + degn(v). We assume n∗

0 is such that for n ≥ n∗
0 the following three bounds hold:

(1) Si
(
4βc(βn − βc)(log n)

2
)
≥ min

(
1,

1

2
lim inf
n→∞

Si
(
4βc(βn − βc)(log n)

2
))

=: C0,

(2) βn ≥ βc/2,

(3) Eβc/2[degn∗
0
(1)] ≥ max

(√n0

C0
, 1
)
.
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The latter condition can be met since the degree of a fixed vertex diverges as the graph grows. For
n ∈ [n∗

0, n0mε],

Pβn

(
|Ln| ≥ δε

√
n/ log n

Si
(
4βc(βn − βc)(log n)2

)) ≥ Pβn

(
|Ln| ≥ δε

√
n/ log n

C0

)
≥ Pβn

(
|Ln| ≥ δε

√
mε

√
n0

C0

)
≥ Pβn

(
1 + degn(1) ≥ δε

√
mεEβc/2

[
degn∗

0
(1)
])

≥ Pβc/2
(
degn∗

0
(1) ≥ δε

√
mεEβc/2

[
degn∗

0
(1)
]
− 1
)
.

We still have the freedom to choose δε sufficiently small so that the last line is at least 1 − ε. Such
existence follows from large deviations for sums of Bernoulli random variables with summed expectation
at least 1. This finishes the proof of the tightness from below. □

9. Typical components and progeny of the local limit

We will prove Theorem 2.8 on the tail of the typical component size distribution. In view of Corol-
lary 4.7, it suffices to study the distribution of the progeny of the local limit, which is item (1) in the
next lemma. Items (2, 3) will be used to prove Theorem 2.10 on the susceptibility in the next section.

Lemma 9.1. Consider the γ-branching random walk for some γ ∈ [0, 1/2) at β = βc. Let X ∼ Exp(1).
The following hold:

(1) There exist constants c, C ∈ (0,∞), such that for all k ≥ 2,

c

k(log k)2
≤ P0(T(−∞,X] ≥ k) ≤ C

k(log k)2
.

(2) E0

[
T(−∞,X]

]
= 4(1− γ2).

(3) E0

[
T(−∞,X] log T(−∞,X]

]
= ∞.

Proof. In what follows, for two sequences (ak)k and (bk)k, the notation ak ≍ bk means that there exists
a constant C such that C−1bk ≤ ak ≤ Cbk for all k. Furthermore, C denotes a finite positive constant
whose value may change from line to line.

We first prove item (1), following Aidekon [1]. We translate the γ-branching random walk by −X
so that particles are killed upon entering (0,∞), and consider the value y of X. Let Min be the total
minimum of the killed γ-BRW. We first prove that for L ≥ 1 and y ≥ 0,

P−y(Min ≤ −L) ≍ e−(L−y)/2 y + 1

L+ 1
. (9.1)

To see this, fix L ≥ 1 and stop particles whenever they first enter (−∞,−L). Let H−L denote the number
of those particles. Let (Sn)n≥0 denote the Laplacian random walk from the beginning of Section 5 and
denote by τ− the hitting time of (−∞,−2βcL) and by τ+ the hitting time of (0,∞). By Lemma 5.1,

E−y[H−L] = ey/2E−2βcy

[ ∞∑
n=0

1{Sn < −2βcL, Sk ∈ [−2βcL, 0]∀k ≤ n− 1}eSn/(4βc)

]
= e−(L−y)/2E−2βcy[e

(Sτ−+2βcL)/(4βc)
1{τ−<τ+}].

On the event in the indicator, −(2βcL+Sτ ) is an independent Exp(1) random variable by the memoryless
property. So,

E−y[H−L] = e−(L−y)/2 1

1 + 1/(4βc)
P−2βcy(τ− < τ+) ≍ e−(L−y)/2 y + 1

L+ 1
, (9.2)

using for instance Lemma 2.2 in [1] to bound the ‘gambler’s ruin’ probability in the last step. This shows
the upper bound in (9.1) since, by Markov’s inequality,

P−y(Min ≤ −L) = P−y(H−L ≥ 1) ≤ E−y[H−L]. (9.3)

For the lower bound, we upper bound the second moment of H−L. By Lemma 5.2, we have

E−y[H
2
−L] ≤ E−y[H−L] + ey/2E−2βcy

(τ−∧τ+)−1∑
n=0

eSn/(4βc)ESn/(2βc)[H−L]
2

 (9.4)
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We use (9.2) to bound the second term on the right-hand side (bounding the fraction y+1
L+1 by one).

Recalling the definition of H−
b from (6.8), and the identity with H+

b from (6.14), the second term on the
right-hand side of (9.4) is upper bounded by

Cey/2−LE−2βcy

(τ−∧τ+)−1∑
n=0

eSn/(4βc)e−Sn/(2βc)

 = Cey/2−LH−
1/(4βc)

(
2βc(L− y), 0, 2βcL

)
= Cey/2−3L/2H+

1/(4βc)

(
2βcy, 0, 2βcL

)
.

Using the asymptotics from Corollary 6.8, with Si(x, 0, L) = x and Co(x, 0, L) = 1 by (6.1), for all L
sufficiently large and y ∈ [0, L],

E−y[H
2
−L] ≤ E−y[H−L] + Cey/2−3L/2

(y + 1

L
eL + ey

)
≤ CE−y[H−L]. (9.5)

The Paley–Zygmund inequality then yields

P−y(Min ≤ −L) = P−y(H−L ≥ 1) ≥ E−y[H−L]
2

E−y[H2
−L]

≥ e−(L−y)/2 y + 1

C(L+ 1)
,

which, together with (9.3), implies (9.1).
Armed with (9.1), we now finish the proof of the first item of the lemma. It is enough to prove the

inequalities for k ≥ k0 for some k0 ∈ N. Let k ≥ 2 and let L be such that eL/2/(1 + L) = k, so that
L = 2 log k + 2 log log k + O(1) as k → ∞. Hence, there is k0 ∈ N, such that L ≥ 1 for k ≥ k0. Aiming
for the lower bound first, note that it is enough to prove the lower bound under P0, since

P0(T(−∞,X] ≥ 0) ≥ P0(T(−∞,0] ≥ 0).

Bounding from below the total progeny by the total progeny of the particle reaching the minimum
position, we have for all k′ ∈ N,

P0(T(−∞,0] ≥ k′) ≥ P0(Min ≤ −L)P−L(T[−L,0] ≥ k′). (9.6)

By (9.1), we have for all y ∈ [0, x],

P−y(Min ≤ −L) ≍ e−(L−y)/2 1 + y

1 + L
≍ ey/2(y + 1)

1

k(log k)2
. (9.7)

Furthermore, by Proposition 6.2, we have for L large enough (hence, for k large enough),

E−L[T[−L,0]] = E0[T[0,L]] ≍ eL/2/(1 + L) ≍ k. (9.8)

It follows from (9.8) and Corollary 6.5 that

P−L(T[−L,0] ≥ C−1k) ≥ 1/2. (9.9)

Plugging (9.7) and (9.9) into (9.6), we get for k large enough,

P0(T(−∞,0] ≥ C−1k) ≥ C−1 1

k(log k)2
,

and therefore, for k large enough,

P0(T(−∞,0] ≥ k) ≥ C−1 1

k(log k)2
,

which, proves the lower bound in the first item of the lemma.
We now prove the upper bound. Using that on the event {Min > −L}, we have T(−∞,0] = T[−L,0],

P−y(T(−∞,0] ≥ k) ≤ P−y(Min ≤ −L) + P−y(T[−L,0] ≥ k). (9.10)

The first term was upper bounded in (9.7). For the second term, using (9.8) we get from Corollary 6.4,

P−y(T[−L,0] ≥ k) = PL−y(T[0,L] ≥ k) ≤ Ce−(L−y)/2 y + 1

L+ 1
≤ Cey/2(y + 1)

1

k(log k)2
.

Plugging this into (9.10) and using (9.7), it follows that for y ≤ L, we have

P−y(T(−∞,0] ≥ k) ≤ Cey/2(y + 1)
1

k(log k)2
. (9.11)
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It remains to integrate over y. Since L = 2 log k + 2 log log k +O(1) as k → ∞,

P0(T(−∞,X] ≥ k) ≤
∫ L

0

P−y(T(−∞,0] ≥ k)e−y dy + e−L

≤ C

k(log k)2

∫ L

0

(y + 1)e−y/2 dy + C
1

(1 + L)eL/2

≤ C

k(log k)2
.

This concludes the proof of the upper bound in the first part of the lemma.
Item (2) of the lemma could be proved directly, using the many-to-one lemma and an expression

of the Green’s kernel of the Laplacian random walk killed above 0, but we can also deduce it from
Proposition 6.2. The expectation is finite by item (1) of the lemma. By the monotone convergence
theorem, we have for every y ≥ 0,

E−y[T(−∞,0]] = lim
L→∞

E−y[T[−L,0]] = lim
L→∞

EL−y[T[0,L]] = (1 + 4βc)e
y/2 + 1− (4βc)

2,

using Proposition 6.2 for the last equality. It follows that

E0

[
T(−∞,0]

]
=

∫ ∞

0

(
(1 + 4βc)e

y/2 + 1− (4βc)
2
)
e−y dy = 2(1 + 4βc) + 1− (4βc)

2.

After using βc = 1/4− γ/2, this gives the expression in item (2) of the lemma.
Item (3) is a direct consequence of item (1), using that E[Z logZ] =

∫∞
0

(log z+1)P(Z ≥ z) dz for any
positive random variable Z. □

Proof of Theorem 2.8. Immediate from Lemma 9.1 and Corollary 4.7. □

10. Finite susceptibility in the critical window

We aim to prove Theorem 2.10, for which we use the following auxiliary lemma that quantifies the
intuition that the mean component size is driven by components of size O(1).

Lemma 10.1 (Large components contribute negligibly to the mean). Consider the the γ-growing random
graph with γ ∈ [0, 1/2). Assume βn → βc such that lim sup 4βc(βn − βc)(log n)

2 < π2. For all ε > 0,
there exists k = k(ε) > 0 such that for all n sufficiently large,

Eβn

[
n∑

v=1

∣∣Cn(v)
∣∣1{|Cn(v)|≥k}

]
≤ εn.

Proof. We distinguish components containing old vertices—that are likely to be larger than a large
constant k—from components containing only young vertices that arrived after time δn for some small
δ > 0—that are unlikely to be larger than k. For convenience, we assume δn ∈ N, and decompose

n∑
v=1

|Cn(v)|1{|Cn(v)≥k} =
∑

C :C∩[1,δn−1]̸=∅

|C |21{|C≥k} +

n∑
v=δn

|Cn(v)|1{|Cn(v)|≥k,Cn(v)∩[1,δn−1]=∅}. (10.1)

We increase the two sums on the right-hand side, starting with the first sum. If v is the oldest vertex
in its component Cn(v), then Cn(v) = C[v,n](v). Therefore, ordering components according its oldest
vertex yields, ∑

C :C∩[1,δn−1]̸=∅

|C |21{|C |≥k} ≤
δn−1∑
v=1

|C[v,n](v)|2.

We next increase the second sum on the first line on the right-hand side in (10.1): We include all vertices
arrived after δn− 1 in the sum, but for each vertex we consider the component induced on vertices with
label in [δn, n]. We obtain,

Eβn

[
n∑

v=1

|Cn(v)|1{|Cn(v)|≥k}

]
≤ Eβn

[
δn−1∑
v=1

|C[v,n](v)|2
]
+ Eβn

[
n∑

v=δn

|C[δn,n](v)|1{|C[δn,n](v)|>k}

]
. (10.2)

We apply the stochastic domination from Proposition 4.3, and use that real particles of the γ-branching
random walk started from log v restricted to I+[v,n] = (log(2v − 3), log(2n− 1)] all have position at least
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log(2v − 1) by Definition 4.1. Translating the branching random walk by − log(2v − 1), and using
(2n− 1)/(2v − 1) ≤ 2n/v, we obtain

Eβn

[
δn−1∑
v=1

|C[v,n](v)|2
]
≤

δn−1∑
v=1

Eβn

[∣∣Real(T +
[v,n](v)

)∣∣2]
≤

δn−1∑
v=1

Eβn

log(2v−1)

[
T 2
[log(2v−1),log(2n−1]

]
≤

δn−1∑
v=1

Eβn

0

[
T 2
[0,log(2n/v)]

]
.

We aim to use the upper bounds from Proposition 6.3. So we assume that n is sufficiently large and δ
sufficiently small. We abbreviate αv = 4βc(βn − βc) log

2(2n/v) and Lv = log(2n/v). The upper bounds
from Propositions 6.2 and 6.3 yield for some absolute constant C1 > 0 (only depending on γ) that

Eβn

[
δn−1∑
v=1

|C[v,n](v)|2
]
≤ C1

δn−1∑
v=1

Si(αv) + 1/Lv

L2
vSi(αv)3

n

v

= C1

δn−1∑
v=1

(
1

L2
vSi(αv)2

n

v
+

1

L3
vSi(αv)3

n

v

)
.

We recall that α 7→ Si(α) defined in (2.5) is decreasing. Thus, we may assume that n is sufficiently large,
such that

Si(αv) = Si
(
4βc(βn − βc) log

2 2n
v

)
≥ min

(
1, 1

2 lim inf
n→∞

Si
(
4βc(βn − βc)(log 2n)

2
))

.

By Lemma 8.1, the right-hand side is strictly positive. Thus, there exists a constant C2 > 0 (depending
on the sequence (βn)n≥1), such that for all n sufficiently large,

Eβn

[
δn−1∑
v=1

|C[v,n](v)|2
]
≤ C2n

δn−1∑
v=1

(
1

v log2(2n/v)
+

1

v log3(2n/v)

)
.

Switching summation to integrals, there exist constants C3 > 0 and δ = δ(ε), such that for all n
sufficiently large,

Eβn

[
δn−1∑
v=1

|C[v,n](v)|2
]
≤ C3n

(
1

log(2/δ)
+

1

log2(2/δ)

)
≤ (ε/2)n. (10.3)

This bounds the first sum on the right-hand side in (10.2). We next show that also the second in (10.2)
is negligible when k is large depending on δ. Its summands are decreasing, and hence, by Markov’s
inequality, and the domination by the γ-branching random walk,

n∑
v=δn

Eβn

[
|C[δn,n](v)|1{|C[δn,n](v)|≥k}

]
≤ nEβn

[
|C[δn,n](δn)|1{|C[δn,n](δn)|≥k}

]
≤ n

k
Eβn

[
|C[δn,n](δn)|2

]
≤ n

k
Eβn

log(2δn−1)

[
|T[log(δn−1),log(2n−1)]|2

]
≤ n

k
Eβn

0

[
|T[0,log(2/δ)]|2

]
.

The expectation on the right-hand side is bounded from above by a constant depending on δ by Propo-
sition 6.3, which applies when δ is sufficiently small. Therefore, we can pick k = k(δ, ε) sufficiently
large such that the right-hand side is at most (ε/2)n for all n sufficiently large. Combined with (10.2)
and (10.3), this finishes the proof. □

This establishes all preliminaries for the last proof of the paper.

Proof of Theorem 2.10. We first prove the convergence in probability of (2.7). By Lemma 9.1, for every
ε > 0, there exists k = k(ε) ∈ N, such that

Eβc

0

[
T(−∞,X]1{T(−∞,X]≤k}

]
≥ 4(1− γ2)− ε.

By the law of large numbers in (4.18), for all n sufficiently large,

Pβn

(
1

n

n∑
v=1

|Cn(v)| ≥ 4(1− γ2)− 2ε

)

≥ Pβn

(
1

n

n∑
v=1

|Cn(v)|1{|Cn(v)|≤k} ≥ Eβc

0

[
T(−∞,0]1{T(−∞,0]≤k}

]
− ε

)
≥ 1− ε.
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The lower bound of the convergence in probability in (2.7) follows as ε > 0 is arbitrarily small.
We turn to a matching upper bound. By Lemma 10.1, there exists for each ε > 0 some k = k(ε2)

such that for all n sufficiently large, by Markov’s inequality,

Pβn

(
n∑

v=1

|Cn(v)|1{|Cn(v)|≥k} ≥ εn

)
≤ ε2n

εn
= ε.

As a result, also invoking the law of large numbers in (4.18), and that Eβc

0

[
T(−∞,X]1{T(−∞,X]≤k}

]
is

strictly smaller than 4(1− γ2), it follows that as n → ∞,

Pβn

(
1

n

n∑
v=1

|Cn(v)| ≤ 4(1− γ2) + ε

)

≥ Pβn

(
1

n

n∑
v=1

|Cn(v)|1{|Cn(v)|≤k} ≤ 4(1− γ2)

)
− ε −→ 1− ε.

This proves the upper bound of the convergence in probability in (2.7). Convergence in expectation
follows similarly, and convergence in L1 is then implied.

We finish the proof of the theorem with a proof of (2.8). Let M be arbitrary large. By Lemma 9.1,
there exists k ∈ N such that

Eβc

0

[
T(−∞,X] log T(−∞,X]1{T(−∞,X]≤k}

]
≥ M + 1.

By the law of large numbers (4.19), it follows that

Pβn

(
1

n

n∑
v=1

|Cn(v)| log |Cn(v)| ≥ M

)
≥ Pβn

(
1

n

n∑
v=1

|Cn(v)| log |Cn(v)|1{|Cn(v)|≤k} ≥ M

)
n→∞−→ 1.

Since M is arbitrarily large, (2.8) follows. □
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