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Chapter 1

Random graphs: Motivation
and Background

1.1 Motivation

Graphs G = (V,E) consist of a finite or countably infinite set V of vertices
and a set E of edges, where an edge is an unordered pair of vertices, or more
formally a subset e ⊂ V with exactly two elements. They are often a tool
for a rough description of highly complex situations, for example

• social relations, like friendship. The vertices are individuals and an edge
is established if the individuals are friends. This includes formalisation
of the concept of friends in social media.

• technical networks like the internet (vertices are computers and edges
are wired or wireless links) or telecommunication networks.

• biological networks like the brain (vertices are neurons and edges are
established if they interconnect) or brain functional networks (vertices
are spots in the brain and edges are established if the electrical activity
signals received at the spots are correlated).

• many others like collaboration networks or the world-wide web.

A common feature of our examples is that the graphs are finite (i.e. have a
finite number of vertices) but extremely large. We can often only access a
very small part of the graph and do not have a complete global description.
It is therefore natural to take samples from a randomly chosen part of a
graph and look at the distribution of such a random sample. This leads to a
a description which is local and random. We use such a description to build
the models we investigate in this lecture.
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We consider models that are

• finite random graphs,

• given by local descriptions,

• studied in the limit as the number of vertices goes to infinity.

In particular we are interested in global features that emerge from the local
description (for example, whether the graph is connected or if it is, what is
the length of the shortest path between two randomly chosen vertices).

Our focus is on sparse graphs which means that in the limit as the number
of vertices goes to infinity the number of edges goes to infinity with the same
speed, more precisely we have a sequence of graphs Gn = (Vn, En) such that
the limit

ρ := lim
n→∞

|En|
|Vn|

exists and is finite. It is called the edge density.

In Section 1.2 I will give some general thoughts on large graphs before
introducing some examples in Section 1.2 and then, in Section 1.3 the general
framework for this lecture.

1.2 Sampling from large graphs

Given a finite graph G = (V,E) we can associate to every vertex u ∈ V its
degree by

d(u) :=
∣

∣{v ∈ V : {u, v} ∈ E}
∣

∣.

Picking a vertex U from the finite set V uniformly at random we get a random
variable d(U), its distribution (a probability measure on N0) is called the
empirical degree distribution. The number of edges in the graph is then

|E| = 1

2

∑

u∈V

d(u) =
|V |
2

Ed(U).

Hence a sequence of graphs Gn = (Vn, En) is sparse if for a sequence of
uniformly picked vertices Un ∈ Vn the expected degrees converge

Ed(Un) → 2ρ.

A sequence of graphs Gn = (Vn, En) is distributionally sparse if there exists
a probability distribution µ on N0 such that

P{d(Un) = k} n→∞−→ µ(k) for all k ∈ N0.
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The probability here refers to the random choice of the vertex Un. When we
apply this definition to random sequences of graphs the probabilities on the
left are random variables and we ask this convergence to hold in probability.
We always insist on the asymptotic degree distribution µ being deterministic.

Of particular interest are random graph sequences where the asymptotic
degree distribution is heavy tailed, i.e. decays polynomially.

Definition 1.1. A distributionally sparse random graph sequence is called
scale-free if the asymptotic degree distribution µ satisfies

lim
k→∞

log µ(k)

log(1/k)
= τ

for some τ > 0 called the power-law exponent.

Many of the examples which motivate our theory the graphs are scale-
free and the power-law exponent can be measured. The measured values
typically lie in the interval (2, 4). Also, we will see that often properties of
the graph depend just on the edge density ρ and power-law exponent τ of the
graphs. But naturally, this can only be verified rigorously in the framework
of particular models and cannot hold in general.

Here is a general result that limits the possible range of power-law exponents.

Lemma 1.1. If a graph sequence is sparse and scale-free, then τ ≥ 2.

Proof. We first assume that the graphs are not random. Suppose τ < 2.
Then there exists K0 > 1 such that

logµ(k)

log(1/k)
≤ 2

and hence µ(k) ≥ k−2 for all k ≥ K0. Fix K ≥ K0, then

|En| =
|Vn|
2

Ed(U) ≥ |Vn|
2

K
∑

k=K0

kP{d(Un) = k}.

Now we choose n0 such that for all n ≥ n0 and 1 ≤ k ≤ K,

P{d(Un) = k} ≥ µ(k)− k−3.

Altogether we get

|En|
|Vn|

≥ 1
2

K
∑

k=K0

k(µ(k)− k−3) ≥ 1
2

K
∑

k=K0

k − 1

k2
.
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As the sum on the right diverges to infinity as K ↑ ∞ we see that the graph
sequence is not sparse. In the random case the penultimate inequality holds
with high probability (i.e. the probability that it holds converges to one as
n→ ∞) and the same conclusion can be drawn.

Exercise (Weak law of large numbers):

Let X (n)

ij be independent Bernoulli random variables with expectation p(n)

ij .
Then, if

1

n

n
∑

i,j=1

p(n)

ij → c,

then
1

n

n
∑

i,j=1

X (n)

ij → c in probability.

1.3 Examples of random graphs

Here are some random graph models of interest that will also fit into our
general framework.

1.3.1 The Erdős-Rényi graph.

This is the easiest nontrivial model. We let Gn = (Vn, En) with Vn = [n] and
we connect each pair of distinct vertices independently with probability c/n.
As n→ ∞ the total number of edges is the sum of

(

n
2

)

independent Bernoulli
random variables with expectation c/n. Divided by n this converges to c/2
by the weak law of large numbers, so that the Erdős-Rényi graph is sparse
with edge density ρ = c/2. Then the degree of any vertex is the sum of n−1
independent Bernoulli random variables with expectation c/n and hence it is
binomially distributed with parameters n− 1 and c/n. The empirical degree
distribution therefore converges to a Poisson distribution with parameter c,
hence the graph is distributionally sparse and its asymptotic degree dis-
tribution µ is a Poisson distribution. As the Poisson distribution has super-
exponentially decreasing tails the Erdős-Rényi graph is not scale-free.

1.3.2 The stochastic block model.

Assume now that Vn = V (1)
n ∪V (2)

n = [n] and vertices from V (1)
n are of type one,

vertices from V (2)
n are of type two. We connect each pair of distinct vertices

independently, with probability a/n if they are of the same type, and with
probability b/n if they are of different types. This is a special instance of
the stochastic block model, the most used model in the statistics of random
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graphs. A typical question in statistics would be, from observation of a very
large sample graph, whether a 6= b and if so to associate a type to each
vertex.

1.3.3 The Chung-Lu graph.

We let Gn = (Vn, En) with Vn = [n] and take positive weights w1, . . . , wn
either at random or deterministically. We interpret wi as weight of vertex
i. Given the weights we connect two vertices i and j independently with a
probability pij proportional to the product of the weights, more precisely

pij =
wiwj
ℓn

∧ 1, where ℓn :=
n

∑

i=1

wi.

The case of constant weights corresponds to the Erdős-Rényi graph. If

n
max
i=1

wi ≤
√

ℓn (1.1)

we can drop the ∧1. As twice the expected total number of edges is

n
∑

i=1

n
∑

j=1
j 6=i

pij =
1

ℓn

n
∑

i=1

wi

n
∑

j=1
j 6=i

wj =
(

n
∑

i=1

wi√
ℓn

)2

−
n

∑

i=1

( wi√
ℓn

)2

the graphs are sparse with edge density 1
2
(m2

1 −m2) if the limits

m1 = lim
n→∞

1√
n

n
∑

i=1

wi√
ℓn

and m2 = lim
n→∞

1

n

n
∑

i=1

( wi√
ℓn

)2

exist. A possible choice is wi = (i/n)−γ for 0 < γ < 1
2
. Without assuming

(1.1) for this choice the sparsity can even be obtained for all 0 < γ < 1.

1.3.4 The simple preferential attachment model.

There is an abundance of models for scale-free networks, but a particularly
interesting concept is preferential attachment. The idea, popularised 20 years
ago by Barabasi and Albert, is that a graph is built by adding new vertices,
which connect themselves at random but preferably to powerful vertices. In
the classical models the power of a vertex is measured by its current degree,
hence vertices arriving early are typically the most powerful. In this lecture
we discuss the probably simplest incarnation of preferential attachment.

Vertices arrive one-by-one and vertex n attaches to each vertex m ∈
{1, . . . , n − 1} independently with a probability proportional to m−γ for
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some parameter 0 ≤ γ < 1 parametrising the strength of the preference of
early vertices. To make the model sparse the proportionality factor is chosen
so that the expected number of connections of a vertex is asymptotically
constant. As

n−1
∑

m=1

m−γ ∼ cn1−γ

the proportionality factor has to be of order nγ−1. Altogether, the connection
probabilities of two distinct vertices with number (or rank) i and j is

pij = β(i ∨ j)γ−1(i ∧ j)−γ

where 0 < β < 1 is a fixed parameter and all connections are independent.

1.4 Inhomogeneous random graphs

We now present a general framework for random graphs that includes all the
examples above and a lot more. The idea is that the individual properties of
vertices are expressed by their type, which is taken from a separable metric
space S. Types can play different roles, for example the weight associated
with a vertex or the birthtime of a vertex in a dynamical graph model. The
vertex set of Gn = (Vn, En) consists of n vertices with types (x1, . . . , xn).
Given the types of vertices, independently for every pair of distinct vertices
with types xi and xj we set an edge with probability

1

n
κ(xi, xj),

where κ : S2 → [0,∞) is a symmetric function that encodes the different
features that can be built in the model. Note that the existence of potential
edges are conditionally independent events given the types, but if the types
are chosen at random this allows to model unconditionally rather strong
dependencies between these events.

We now give the formal definition.

Definition 1.2.

(a) A type space is a pair (S, µ) where S is a separable metric space and
µ is a Borel probability measure on S.

(b) A vertex space is a type space (S, µ) and a sequence (xn) of vectors
xn = (x1, . . . , xn) consisting of n types from the type space such that

1

n

∣

∣{v ∈ [n] : xv ∈ A}
∣

∣ → µ(A),

for every µ-continuity set A ⊂ S.
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(c) A kernel κ : S2 → [0,∞) is a symmetric measurable function.

(d) The inhomogeneous random graph associated with a vertex space and
sequence (κn)n of kernels is the graph sequence (Gn)n with Gn = (Vn, En)
where Vn = {1, . . . , n} and for vertices i 6= j we have {i, j} ∈ En
independently with probability

pij :=
1

n

(

κn(xi, xj) ∧ n
)

.

If the type space is finite, we say that the associated inhomogeneous graphs
are of finite type. Not all kernels give good graphs. We formulate some useful
conditions.

Definition 1.3. A kernel κ is called graphical if

(a) κ : S2 → [0,∞) is continuous µ-almost everywhere,

(b)

∫∫

S2

κ(x, y)µ(dx)µ(dy) <∞,

(c)
1

n2

∑

1≤i<j≤n

(

κ(xi, xj) ∧ n
)

−→ 1

2

∫∫

S2

κ(x, y)µ(dx)µ(dy) <∞.

A sequence (κn)n of kernels converges graphically to κ if κ is a graphical
kernel and

(d) for µ-almost every x, y, we have that xm → x, ym → y imply that

sup
n≥m

∣

∣κn(xm, ym)− κ(x, y)
∣

∣ → 0,

(e)
1

n2

∑

1≤i<j≤n

(

κn(xi, xj) ∧ n
)

−→ 1

2

∫∫

S2

κ(x, y)µ(dx)µ(dy) <∞.

A useful consequence of this definition is sparsity of the graph.

Lemma 1.2. The inhomogeneous random graph associated with a sequence
(κn)n converging graphically to a kernel κ is sparse with edge density

1

2

∫∫

S2

κ(x, y)µ(dx)µ(dy).

Proof. By the weak law of large numbers for Bernoulli variables, it suffices
to show convergence of the expectations. This convergence is precisely given
in (e).
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We now look at the examples from Section 1.3 and show how they fit into
our framework.

The Erdős-Rényi graph. Take S = {1} and κ(1, 1) = c.

The stochastic block model. Take S = {1, 2} and

κ(i, j) = a+ (b− a)1i 6=j

and xi = k if i ∈ V (k)
n . We assume that there are numbers µ(1), µ(2) with

|V (k)
n |

|Vn|
−→ µ(k) for k ∈ {1, 2}.

The Chung-Lu graph. Take S = [0, 1] with µ the Lebesgue measure.
Take F the cummulative distribution function associated with a probability
measure P on the positive reals. Let ψ = (1 − F )−1 the generalized inverse
so that ψ(U), for U uniform on (0, 1) has the distribution P . Let xi = i/n
for i = 1, . . . , n and

κn(x, y) =
n

ℓn
ψ(x)ψ(y)

with wi = ψ(xi) and ℓn =
∑n

i=1wi. This is the Chung-Lu model as before
with the given weights. It coincides with the inhomogeneous random graph
with the given kernel sequence on the type space (S, µ). If Eψ(U) <∞ then
ℓn/n→ Eψ(U) and the kernel sequence converges graphically to the kernel

κ(x, y) =
1

Eψ(U)
ψ(x)ψ(y)

We have used that that ψ and hence κ are continuous except for at most
countably many points.

The simple preferential attachment model. We take S = (0, 1] with the
Lebesgue measure µ and types xi = i/n for all i ∈ {1, . . . , n}. The kernel is
given by

κ(x, y) = β(x ∨ y)γ−1(x ∧ y)−γ,
where β > 0 is arbitrary. The kernel is graphical if 0 ≤ γ < 1. The special
case γ = 0 is also known as the Dubins model.
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Chapter 2

The degree distribution of
inhomogeneous random graphs

In this section we prove the following theorem.

Theorem 1. Suppose (κn)n converges graphically to the kernel κ. Then
the sequence of inhomogeneous random graphs Gn = (Vn, En) associated with
these kernels is distributionally sparse and its asymptotic degree distribution ν
is given by

ν(k) =

∫

S

λ(x)k

k!
e−λ(x) µ(dx), for k ∈ N0,

where

λ(x) =

∫

S

κ(x, y)µ(dy).

Equivalently, if Nk(n) is the number of vertices in Gn with degree k then,
in probability,

1

n
Nk(n) −→

∫

S

Pλ(x){X = k}µ(dx),

where X under Pλ is Poisson distributed with mean λ. The distribution
on the right hand-side is called the mixed-Poisson distribution with mixing
distribution µ ◦ λ−1.

We interpret this as follows: The degree of a vertex of type x is asymptoti-
cally Poisson distributed with mean λ(x), while the distribution of types is
given by µ. This interpretation can be made rigorous for a finite type space,
and this is what we show first.

2.1 Finite type space

We suppose
S = {1, . . . , m}.
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Let d(u, i) be the number of edges linking vertex u ∈ Gn with vertices of
type i ∈ S. Then

d(u) =
m
∑

i=1

d(u, i).

Let Ni,k(n) be the number of vertices in Gn of type i with degree k. Then

ni(n) :=
n

∑

k=0

Ni,k(n)

is the number of vertices of type i and we have, by definition of the vertex
space,

ni(n)

n
→ µ(i).

The probability that vertices of type j, i are connected is

1

n

(

κn(j, i) ∧ n
)

.

For a vertex u of type j the random variables d(u, i) with i = 1, . . . , m are
independent and binomially distributed with parameters

ni(n)− 1i=j and
1

n

(

κn(j, i) ∧ n
)

.

This binomial law converges to a Poisson distribution with parameter

lim
n→∞

ni(n)− 1i=j
n

(

κn(j, i) ∧ n
)

= µ(i)κ(j, i).

Hence the law of d(u) converges to a Poisson distribution with parameter

λ(j) =

m
∑

i=1

µ(i)κ(j, i) =

∫

κ(j, i)µ(di).

To obtain the convergence of 1
n
Nj,k(n) we look at its expectation and variance.

We have

ENj,k(n) = nj(n)P{d(u) = k} ∼ nµ(j)
λ(j)k

k!
e−λ(j).

For distinct vertices u, v of type j we have

P{d(u) = k, d(v) = k} = P{d(u) = k}2 + o(
1

n
)

+
1

n
κ(j, j)

(

( λ(j)k−1

(k − 1)!
e−λ(j)

)2

− 2
λ(j)k−1

(k − 1)!
e−λ(j)

λ(j)k

k!
e−λ(j) +

(λ(j)k

k!
e−λ(j)

)2
)

.
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and therefore

EN2
j,k(n) = n2

j(n)P{d(u) = k}2+nj(n)
(

λ(j)k

k!
e−λ(j)−

(λ(j)k

k!
e−λ(j)

)2
)

+O(n),

and hence Var(Nj,k(n)) = O(n). By Chebyshev’s inequality

P

(

|Nj,k(n)− ENj,k(n)| > εn
)

=
Var(Nj,k(n))

ε2n2
→ 0.

Summarising,

Nj,k(n)

n
→ µ(j)

λ(j)k

k!
e−λ(j) in probability,

from which the result follows in the case of finite type space.

2.2 General case

This is based on an approximation argument, which we carefully prepare.
We first construct suitable partitions of the type space S.

Lemma 2.1. For every m ∈ N there exists a partition Pm of S into M =
M(m) Borel sets A(m)

1 , . . . , A(m)

M such that

• each set A(m)

i is a µ-continuity set,

• Pm+1 refines Pm, i.e. each A(m)

i is a union of sets in Pm+1,

• if im(x) is the unique index such that x ∈ A(m)

im(x) we have

diam(A(m)

im(x)) → 0 as m→ ∞,

for µ-almost every x.

Proof. Let (zi) be a dense sequence in S. For any zi the balls

Bd(zi) = {y ∈ S : d(y, zi) ≤ d},

for d > 0 have disjoint boundaries and hence at most countably many of
them fail to be µ-continuity sets. Hence, for any m ≥ 1, we can choose balls
Bm,i = Bdm,i

(zi) that are continuity sets and have radii satisfying

1

m
< dm,i ≤

2

m
.
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Then (Bm,i)i cover S for every m. Then

B′
m,i := Bm,i \

⋃

j<i

Bm,j

defines a for each m an infinite partition (B′
m,i)i into continuity sets of

diameter at most 4/m. To get a finite partition we choose qm large so that

B′
m,0 :=

⋃

i>qm

B′
m,i

satisfies µ(B′
m,0) < 2−m. Then (B′

m,i)
qm
i=0 is a partition into continuity sets

with diameter of B′
m,i, i ≥ 1 at most 4/m.

Finally, let Pm consist of all intersections

m
⋂

l=1

B′
l,il

with 0 ≤ il ≤ ql. Then this is a partition of S satisfying the first two
bulletpoints. To verify the third bulletpoint we note that

∞
∑

m=1

µ(B′
m,0) ≤

∞
∑

m=1

2−m <∞,

hence by Borel-Cantelli µ-almost every x is in only finitely many sets B′
m,0,

m ∈ N. Hence diam(A(m)

im(x)) ≤ 4/m for all sufficiently large m.

We use Lemma 2.1 to construct approximating kernels of finite type. We
define

κm(x, y) = inf{κ(x′, y′) : x′ ∈ A(m)

im(x), y
′ ∈ A(m)

im(y)}.
We then have

κm(x, y) ≤ κ(x, y) on S × S.
Hence we can construct the inhomogeneous random graphs Gn associated
with these kernels on a joint probability space such that every edge present
in the graph associated with κm is also present in the graph associated with κ.

As κm is constant on the partition sets of Pm we can reduce the graph
with this kernel to a graph where the type space is {1, . . . ,M(m)} with the
measure µ′ given by

µ′(j) := µ(A(m)

j ),

and the types are
im(xn) := (im(x1), . . . , im(xn)).
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This means in particular that if N (m)

k (n) is the number of vertices with
degree k in Gn with kernel κm we get from the finite type case that

lim
n→∞

N (m)

k (n)

n
→

M(m)
∑

j=1

µ(A(m)

j )
λkj
k!
e−λj in probability,

where, for any x ∈ A(m)

j , we have

λj =

∫

S

κm(x, y)µ(dy).

It remains to show that for large m the left had side approximates

lim
n→∞

Nk(n)

n

and the right hand side approximates

∫

S

λ(x)k

k!
e−λ(x) µ(dx), where λ(x) =

∫

S

κ(x, y)µ(dy).

We will do this now in the slightly more general context of kernels κn
converging graphically to some κ.

Proof of Theorem 1. Suppose (κn) converges graphically to κ. Define

κm(x, y) = inf{(κ ∧ κn)(x′, y′) : x′ ∈ A(m)

im(x), y
′ ∈ A(m)

im(y), n ≥ m}.

Then κm ≤ κn, for all n ≥ m, and κm ≤ κ. For µ-almost every x, y, we have

sup
n≥m

x′∈A
(m)
im(x)

,y′∈A
(m)
im(y)

∣

∣κn(x
′, y′)− κ(x, y)

∣

∣ → 0.

Hence κm(x, y) → κ(x, y) for µ-almost every x, y and, by dominated convergence,
there exists, for every ε > 0, an m0 such that for all m ≥ m0,

∫∫

κm(x, y)µ(dx)µ(dy) >

∫∫

κ(x, y)µ(dx)µ(dy)− ε.

Fix k ∈ N0, ε > 0 and m as above. We couple the graph associated with κm
to the graphs associated with κn, n ≥ m, so that every edge in the former
also exists in the latter. Let En,m be the set of edges in Gn with kernel κm.
Then

En,m ⊂ En,

17



and, recalling Lemma 1.2,

1

n

∣

∣En \ En,m
∣

∣ =
1

n

∣

∣En
∣

∣− 1

n

∣

∣En,m
∣

∣

n→∞−→ 1

2

∫∫

S2

κ(x, y)µ(dx)µ(dy)− 1

2

∫∫

S2

κm(x, y)µ(dx)µ(dy)

<
ε

2
.

Let N (m)

k (n) be the number of vertices with degree k in Gn with kernel κm.
Then, for large n,

∣

∣

∣

Nk(n)

n
− N (m)

k (n)

n

∣

∣

∣
≤ 2

n

∣

∣En \ En,m
∣

∣ ≤ 2ε, (2.1)

with high probability. As explained above, the finite type calculation gives
that

lim
n→∞

N (m)

k (n)

n
→ P{D(m) = k}, (2.2)

where the law of D(m) is the mixed Poisson distribution where the parameter
equals

λj = inf
x∈A

(m)
j

∫

S

κm(x, y)µ(dy)

with probability µ(A(m)

j ). As κm ≤ κ we have λj ≤ λ(x) for x ∈ A(m)

j and

hence we can couple D(m) and D such that D(m) ≤ D. Then

P{D 6= D(m)} = P{D −D(m) ≥ 1} ≤ E[D −D(m)]

=

∫∫

S2

κ(x, y)µ(dx)µ(dy)−
∫∫

S2

κm(x, y)µ(dx)µ(dy)

< ε. (2.3)

Combining (2.1), (2.2), (3) and choosing first m and then n large yields

∣

∣

∣

Nk(n)

n
− P{D = k}

∣

∣

∣
≤ 4ε,

and the result follows as ε > 0 was arbitrary.

2.3 Scale-free graphs and networks

Recall that the asymptotic degree distribution of an inhomogeneous random
graph is, by Theorem 1, a mixed Poisson distribution with mixing measure
µ◦λ−1. While the Poisson distribution itself has light tails, the mixed Poisson
distribution can have polynomially decaying tails if the mixing distribution
has such tails. We now state one (of several possible) results of this nature.
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Theorem 2. Suppose (κn) converges graphically to κ and assume

cλ−τ ≤ µ ◦ λ−1(dλ)

dλ
≤ Cλ−τ for all λ > λ∗,

where τ > 2 and

λ : S → [λ∗,∞), λ(x) =

∫

S

κ(x, y)µ(dy).

Then the inhomogeneous random graph associated with the sequence (κn) is
scale-free with power-law exponent τ .

Proof. We even show the stronger statement,

(c+ o(1))k−τ ≤
∫

S

λ(x)k

k!
e−λ(x) µ(dx) ≤ (C + o(1))k−τ .

Recall the following well-known property of the Gamma function

Γ(k + x)

Γ(k)
∼ kx as k → ∞, for all x ∈ R.

By assumption,

∫

S

λ(x)k

k!
e−λ(x) µ(dx) =

∫ ∞

λ∗

λk

k!
e−λ µ ◦ λ−1(dλ)

≤ C
1

k!

∫ ∞

0

λk−τe−λ dλ = C
Γ(k + 1− τ)

Γ(k + 1)
∼ Ck−τ .

Similarly,

∫

S

λ(x)k

k!
e−λ(x) µ(dx) ≥ c

1

k!

(

∫ ∞

0

λk−τe−λ dλ− (λ∗)k
)

∼ ck−τ ,

which completes the proof.

We now look at our examples. It is easy to see that graphs with a finite
type space are never scale-free. In that case the measure µ ◦ λ−1 on [0,∞)
has finite support and vanishing tails. The more interesting cases arise when
S is infinite.

The Chung-Lu graph. Recall that S = [0, 1] with µ the Lebesgue measure.
Take a cumulative distribution function F satisfying, for some τ > 2,

F (x) = 1− x−τ+1 for all x > 1.
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Then ψ(u) = u1/(1−τ). Then

κn(x, y) =
n

ℓn
(xy)1/(1−τ)

with

ℓn/n→ Eψ(U) =

∫ 1

0

u1/(1−τ) du =
τ − 1

τ − 2
.

As the kernel sequence converges graphically to the kernel

κ(x, y) =
τ − 2

τ − 1
(xy)1/(1−τ)

we get
λ(x) = x1/(1−τ).

Hence, for r > 1,
µ{x ∈ S : λ(x) > r} = r−τ+1

and taking the derivative, for λ > λ∗ = 1,

µ ◦ λ−1(dλ)

dλ
= (τ − 1)λ−τ .

We infer from Theorem 2 that the Chung-Lu graph with the given F is
scale-free with power-law exponent τ .

The simple preferential attachment model. We take S = (0, 1] with the
Lebesgue measure µ and types xi = i/n for all i ∈ {1, . . . , n} kernel

κ(x, y) = β(x ∨ y)γ−1(x ∧ y)−γ,

where β > 0 is arbitrary and 0 < γ < 1,

λ(x) = β

∫ 1

0

(x ∨ y)γ−1(x ∧ y)−γ dy

= β

∫ x

0

xγ−1y−γ dy + β

∫ 1

x

yγ−1x−γ dy

=
β

1− γ
xγ−1x1−γ +

β

γ
x−γ(1− xγ)

=
β

γ
x−γ +

β

1− γ
.

Hence

µ{x ∈ S : λ(x) > r} = µ{x ∈ S : x−γ > γ
β
r − γ

1−γ
} =

(

γ
β
r − γ

1−γ

)−1/γ
,
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and taking the derivative, for λ > λ∗ = β
γ(1−γ)

, we get

µ ◦ λ−1(dλ)

dλ
= 1

β

(

γ
β
λ− γ

1−γ

)−(1+1/γ)
.

From Theorem 2 we infer that the simple preferential attachment model is
scale-free with power-law exponent τ = 1 + 1

γ
. Observe that in the special

case γ = 0, the Dubins model, is not scale-free.
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Chapter 3

Local convergence of
inhomogeneous random graphs

The asymptotic degree distributions tell us about the number of neighbours
of a randomly chosen vertex in Gn. We can go further and ‘explore’ the
graph: Starting from a random vertex we look at its neighbours, then the
neighbours of these neighbours, and so fourth. This way we get a connected
random graph with a marked vertex called the root. If we take a limit
in distribution under random choice of the vertex at which we start the
exploration, the limit will again be a random graph with a root vertex. This
graph may be easier to study than the original one.

Suppose for example that Gn does not have many short cycles. Then
we have a good chance to explore for some (fixed) time without revisiting
a vertex that we have seen before. In this case, due to the nature of the
limit we take, the limiting graph will be a tree, i.e. a simpler object than
the one we started with. In the case of inhomogeneous random graphs (and
many other cases) this tree can be studied using the theory of branching
processes. From the behaviour of the branching process we will get useful
information about the underlying graph sequence. This is our programme for
this and the following chapter. We first formalize the concept of weak local
limit (Section 3.1), then learn some branching process theory (Section 3.2)
and show existence of weak local limits for inhomogeneous random graphs
given in terms of branching processes (Section 3.3). In Section 3.4 and also
in Chapter 4 we apply the theory thus developed to an in-depth study of
inhomogeneous random graphs.
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3.1 Weak local limits: General theory

3.1.1 The space G of rooted graphs

Our local limits will be probability measures on the metric space G of locally
finite, rooted graphs. Elements (G, o) of G are graphs G with a finite or
countably infinite vertex set and a distinguished vertex o ∈ G called the
root, such that every vertex has a finite degree. We need to clarify when we
consider two rooted graphs to be the same, so formally we will now define
an equivalence relation and then G is really the space of equivalence classes,
though we will still see them as rooted graphs.

For (G, o) ∈ G and n ∈ N we denote by G ∧ n the embedded finite
subgraph consisting of all vertices in G that can be reached from o by a path
with no more than n edges. Two elements (G1, o1), (G2, o2) ∈ G have metric
distance d(G1, G2) =

1
N+1

where

N = max
{

n : ∃ bijection φ : G1 ∧ n→ G2 ∧ n with φ(o1) = o2 and

{u, v} is an edge in G1 iff {φ(u), φ(v)} is an edge in G2

}

.

We identify (G1, o1) and (G2, o2) if N = ∞. In particular, we identify a
rooted graph with the connected component of its root. We call a rooted
graph infinite if it is equivalent to an infinite connected graph. Note that
this means it is not equivalent to a finite graph.

Lemma 3.1. G is a complete, separable metric space.

Proof. It is easy to check that G is a metric space. To check separability we
build a sequence containing all finite rooted graphs. This sequence is dense
as for every rooted graph (G, o) the finite graphs G∧n appear in the sequence
and

d(G,G ∧ n) ≤ 1

n + 1
−→ 0.

To see completeness we take a Cauchy sequence (Gn) in G . We takeG0
n = Gn.

Suppose, for k ∈ N a sequence (Gk−1
n )n has been constructed such that, for

all j ≤ k − 1,

• (Gj−1
n )n is a subsequence of (Gj

n)n

• (Gj
n ∧ j)n is constant.

Then (Gk−1
n ∧k)n is a sequence of graphs which contains a constant subsequence,

as by the Cauchy property there is n0 such that, for all n,m ≥ n0,

d(Gk−1
n , Gk−1

m ) ≤ 1

k + 1
.
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We take (Gk
n)n to be this sequence. To find the convergent subsequence we

now pick the diagonal sequence (Gn
n)n which has the property that (Gn

n∧k)n
is constant for n ≥ k and hence convergent to the unique graph with the
property Gn

n ∧ n = G ∧ n.

Remark 3.1. Actually G is even an ultrametric space, as two balls in G are
either disjoint or one is contained in the other.

Exercise: G is not compact.

Lemma 3.2. A closed set K ⊂ G is compact iff for every k ∈ N it can be
covered by a finite number of pairwise disjoint balls of radius 1

k+1
.

Proof. Suppose K is compact and fix k ∈ N. The collection of balls around
x of radius 1/(1+k) with x ∈ K is an open cover of K and hence has a finite
subcover. If two balls in this cover are intersecting, then one is contained in
the other and hence can be removed from the collection.

Suppose now, for every k, the set K can be covered by a finite number of
pairwise disjoint balls of radius 1

k+1
. From every sequence (Gn) in G we can

take a subsequence such that all elements are in the same ball. Doing this
successively for every k ∈ N and taking the diagonal sequence we arrive at a
subsequence (G′

n) such that for any n all G′
m, m ≥ n are contained in a ball

of radius 1
n+1

. Hence (G′
n) is a Cauchy sequence and therefore convergent. If

K is closed the limit is in K and therefore K is compact.

Recall that a sequence (µn) of probability measures is called tight iff for
every ε > 0 there is a compact set K ⊂ G such that µn(K) > 1 − ε for all
n ∈ N. We say that (µn) converges weakly to a probability measure µ if, for
all f : G → R continuous and bounded,

lim
n→∞

∫

f dµn =

∫

f dµ.

Lemma 3.3. If the sequence (µn) of probability measures is tight, then there
exists a weakly convergent subsequence.

Proof. Let ε > 0 and A > 1. Pick a compact set K such that µn(K) > 1− ε
8A

for all n. Let f : G → R continuous and bounded by A. As f is uniformly
continuous on K there exists m such that

|f(x)− f(y)| ≤ ε

16A
for all x, y ∈ K with d(x, y) <

1

1 +m
.

We take the finitely many disjoint balls of radius 1
m+1

needed to cover K
and suppose we have a sequence (µ′

n) such that for each of those balls B the
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sequence (µ′
n(B)) converges to a limit m(B). For every probability measure

µ with µ(B) = m(B) we get

lim
n→∞

|
∫

f dµ′
n−

∫

f dµ| ≤ lim
n→∞

∑

B

|
∫

B

f dµ′
n −

∫

B

f dµ|

+ lim
n→∞

∫

Kc

|f | dµ′
n +

∫

Kc

|f | dµ

≤ lim
n→∞

∑

B

A|µ′
n(B)−m(B)|+ 4

ε

16A
+ 2A

ε

8A

≤ ε.

Given (µn) we can use the diagonal procedure to construct a subsequence
(µ′

n) such that for every ball B the sequence (µ′
n(B)) converges to a limit

m(B). Our consideration implies that if there is a probability measure µ
such that µ(B) = m(B) for every ball, then (µ′

n) converges weakly to this
measure µ. We use Caratheodory’s theorem for the construction of such a µ.
By ultrametricity the finite disjoint unions of the set difference of a ball with
finitely many balls contained in it form an algebra. We can easily extend m
to a finitely additive measure on this algebra. We now use tightness to see
that m is a σ-additive measure on this algebra. Indeed, if B =

⋃

Bk is a ball
represented as a union of pairwise disjoint balls, then

m(B) = lim
n→∞

µn

(

∞
⋃

k=1

Bk

)

= lim
n→∞

∞
∑

k=1

µn
(

Bk

)

≥ lim
n→∞

M
∑

k=1

µn
(

Bk

)

=

M
∑

k=1

m
(

Bk

)

→
∞
∑

k=1

m
(

Bk

)

.

On the other hand, given ε > 0 we find a compact K with µn(K
c) < ε. The

balls (Bk) form an open cover of the compact set B ∩K and we can assume
B1, . . . , BM are a finite subcover. Then

m(B) = lim
n→∞

µn

(

∞
⋃

k=1

Bk

)

≤ lim
n→∞

µn

(

∞
⋃

k=1

Bk ∩K
)

+ ε

= lim
n→∞

µn

(

M
⋃

k=1

Bk ∩K
)

+ ε ≤ lim
n→∞

M
∑

k=1

µn
(

Bk

)

+ ε

≤
∞
∑

k=1

m
(

Bk

)

+ ε.

By Caratheodory’s theorem this m can be extended to a probability measure
µ on the Borel σ-algebra. Hence (µ′

n) converges weakly to the probability
measure µ.

26



3.1.2 Definition of weak local limit

We take a sequence of graphs (G(N))N such that G(N) has aN → ∞ vertices.
We say that (G(N))N converges weakly locally to a random rooted graph (G, o)
if, for every bounded continuous h : G → R, we have

1

aN

∑

o∈G
(N)

h
(

G(N), o
) N→∞

−→ E
[

h(G, o)
]

. (3.1)

This is just a weak limit (or limit in distribution) where the deterministic
graphG(N) is turned into a random rooted graph by picking the root uniformly
at random from the vertices of G(N) .

If the graphs (G(N))N themselves are random, the objects on the left hand
side of (3.1) are random variables and the convergence is supposed to hold
in probability.

3.1.3 Criteria and examples for weak local convergence

The following result is useful for the identification of weak local limits.

Lemma 3.4. The sequence (G(N))N converges weakly locally to a random
rooted graph (G, o) iff, for every finite rooted graph (H, r) and k ∈ N, we
have in probability,

1

aN

∑

o∈G
(N)

1{(G(N) ,o)∧k=(H,r)}

N→∞

−→ P
{

(G, o) ∧ k = (H, r)
}

.

Proof. As (G, o) 7→ 1{(G,o)∧k=(H,r)} is the indicator of a set which is both
closed and open in G , it is a continuous and bounded function. Hence the
condition of the lemma follows from weak local convergence.

We prove the converse for deterministic sequences (G(N))N , as the case
of random graphs follows by picking a first a subsequence such that the
convergence holds for all k and (H, r) almost surely. Under the conditions
of the lemma we have to show (a) for every subsequence the existence of a
subsubsequence such that the weak local limit exists and (b) that this limit
equals (G, o). To see (a) we need to show for every k tightness of the laws of
GN ∧ k with GN := (G

(N)
, oN), where oN is uniformly chosen.

Let ε > 0 and denote by µ the law of (G, o). Then there exists a compact
set K with µ(K) ≥ 1− ε. Indeed, we can take the dense sequence (gn) in G

and observe
G =

⋃

n

B
(

gn,
1

m+1

)

.
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Hence

1 = lim
N→∞

µ
(

N
⋃

n=1

B
(

gn,
1

m+1

)

)

.

We choose Nm so large that

µ
(

Nm
⋃

n=1

B
(

gn,
1

m+1

)

)

> 1− 2−mε.

Then

K :=

∞
⋂

m=1

Nm
⋃

n=1

B
(

gn,
1

m+1

)

is a compact set with µ(K) ≥ 1− ε.

Fix k ∈ N and consider

G ∧ k := {G ∧ k : G ∈ G }.

As φ : G → G ∧ k,G 7→ G∧ k is a continuous map, the set K ∧ k is compact
in the space G ∧ k. As this space is discrete, probability measures νn on
G ∧ k converge to a probability measure ν on G ∧ k iff νn(G) → ν(G) for
every G ∈ G ∧ k. Therefore our assumption implies

lim
N→∞

1

aN

∑

o∈G
(N)

1{φ(G(N),o)∈K∧k} = P(φ(G, o) ∈ K∧k) = µ◦φ−1(K∧k) ≥ 1−ε,

as required to show tightness and hence (a).

(b) follows because if (G′, o′) is any of the limits constructed in (a) then,
for every finite rooted graph (H, r) and k ∈ N,

P
{

(G′, o′) ∧ k = (H, r)
}

= P
{

(G, o) ∧ k = (H, r)
}

,

because they are the limits of the same subsequence. This implies that the
laws of (G′, o′) and (G, o) agree on a ∩-stable generator of the Borel σ-algebra
and hence are the same.

Lemma 3.5. Suppose (G, o) is a random element of G and T ⊂ G a Borel
set with P((G, o) ∈ T ) = 1. Then the sequence (G(N))N converges weakly
locally to the random rooted graph (G, o) if, for every finite rooted graph
(H, r) ∈ T ∧ k and k ∈ N, we have

1

aN

∑

o∈G
(N)

1{(G(N),o)∧k=(H,r)}

N→∞

−→ P
{

(G, o) ∧ k = (H, r)
}

,

in probability.
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Proof. Again we can focus on a deterministic sequence (G(N))N . As T ∧ k
is countable and P((G, o) ∈ T ) = 1, for every ε > 0 there exists m and a
subset T (k,m) of size at most m such that P{(G, o)∧k ∈ T (k,m)} ≥ 1−ε.
Then, with oN a uniform random vertex from G(N) we get

P ((G(N), oN) ∧ k 6∈ T ∧ k} ≤ 1− P ((G(N), oN) ∧ k ∈ T (k,m)}.
Therefore

lim sup
N→∞

P ((G(N), oN) ∧ k 6∈ T ∧ k} ≤ 1− P{(G, o) ∧ k ∈ T (k,m)} ≤ ε.

This implies, for (H, r) 6∈ T ∧ k, that
1

aN

∑

o∈G
(N)

1{(G(N) ,o)∧k=(H,r)}

N→∞

−→ 0 = P
{

(G, o) ∧ k = (H, r)
}

,

as required.

Example 3.1. Regular trees. In a d-regular tree every vertex has d − 1
children and a parent, except for the root, which has d children and no parent.
We look at the graph sequence (G(N))N , which consists of all vertices in a d-
regular tree up to generation N . The graph G(N) has

1 + d+ (d− 1)d+ · · ·+ (d− 1)N−1d

vertices. We identify its weak local limit.

Take G(N) and place a temporary root at any of the (d − 1)N−1d leaves.
Then let N → ∞. This gives an infinite rooted graph G, which has a unique
infinite self-avoiding path starting at the root. We let o0, o1, o2, . . . be the
vertices along this path. We take the random rooted tree (G, o) with

P{o = ol} = (d− 2)(d− 1)−(l+1), l ∈ N0.

This random rooted tree is the weak local limit of the sequence (G(N)).

Proof. We use the criterion in the lemma above. Let ON be a random vertex
from G(N) . We have, for N ≥ k > l,

(G(N) , ON) ∧ k = (G, ol) ∧ k
iff ON is precisely l steps from the nearest leaf.

There are d(d− 1)N−l−1 vertices satisfying this, and

1 + d+ (d− 1)d+ · · ·+ (d− 1)N−1d ∼ d(d− 1)N

d− 2

vertices altogether. Thus,

P
(

(G(N), ON) ∧ k = (G, ol) ∧ k
)

∼ (d− 2)(d− 1)−l−1,

as required.
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3.2 Multitype branching processes

We now take a finite vertex space S = {1, . . . , m} and the distribution of a
random matrix

L = (Li,j : i, j ∈ S)
with entries in N0. We denote mi,j = ELi,j and let M = (mi,j : i, j ∈ S). We
build a random tree from independent copies of the random matrix L, say

L(k,n) = (L
(k,n)
i,j : i, j ∈ S), for all k ∈ N, n ∈ N0.

We start with one vertex in generation zero of arbitrary type. Given the
vertices v1, . . . , vk in generation n ≥ 0 we build the next generation using the
matrices

L(1,n), . . . , L(k,n).

If vertex vℓ has type xℓ, then for every j it has exactly L
(ℓ)
xℓ,j

children of type j.
Hence the total number of individuals of type j in generation n+ 1 is

k
∑

ℓ=1

L
(ℓ,n)
xℓ,j

,

and if the number of individuals of each type in generation n is given as

Zn = (Z(1)
n , . . . , Z(m)

n ),

then

Z
(j)
n+1 =

m
∑

i=1

Zn
∑

k=1

1xk=iL
(k,n)
i,j ,

where

Zn := Z(1)
n + . . .+ Z(m)

n .

The process (Zn) is a multitype Galton-Watson process and the associated
tree a multitype Galton-Watson tree.

3.2.1 Multitype Galton-Watson trees

We now explore properties of the multitype Galton-Watson tree. A lot can be
read from the matrix M with nonnegative entries mij denoting the expected
number of children of type j by a parent of type i.

Lemma 3.6. If EZ0 = v we have EZn = vMn.
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Proof. Argue by induction. The case n = 0 is clear, suppose the result holds
for n. Then

E
[

Z
(j)
n+1

∣

∣Zn

]

=

m
∑

i=1

Zn
∑

k=1

1xk=imi,j =

m
∑

i=1

Z(i)
n mi,j,

and using the induction hypothesis

E
[

Z
(j)
n+1

]

=

m
∑

i=1

(vMn)imi,j = (vMn+1)j ,

as required.

We assume that M is positive regular, i.e. there is a power of M with all
entries positive. This assumption is a kind of irreducibility and allows us to
use the following result from the spectral theory of nonnegative matrices.

Lemma 3.7. There is an eigenvalue ρ of the matrix M which is single,
real and positive and is strictly larger than the absolute value of all other
eigenvalues. It is called the principal eigenvalue. Corresponding right, resp.
left, eigenvectors a, b can be taken to have positive entries summing to one.

Proof. This is the Perron-Frobenius theorem, which is an exercise.

Lemma 3.8. If a and b are right, resp. left, eigenvectors corresponding to
the principal eigenvalue of M normalised such that ba = 1, then, as k → ∞,
we have

Mk ∼ ρkab.

Proof. By Lemma 3.7 we have for every v ⊥ b that (λb+v)Mk ∼ ρkλb. Hence
Mk/ρk converges to the orthogonal projection P onto the space spanned by b.
This can be represented as P = ab for some column vector a with ba = 1.
Then Mka ∼ ρkPa = ρka(ba) = ρka, hence a is a right eigenvector.

We additionally assume that (Zn) is nonsingular in the sense that

P(Zn = 1) 6= 1 for some n ∈ N.

This assumption does not depend on the type of the initial particle and only
rules out a degenerate case. We now look at the event

{extinction} := {Zn → 0} = {∃N such that Zn = 0 for all n ≥ N}.

Lemma 3.9.
P{extinction}+ P{Zn → ∞} = 1.
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Proof. We have to show that, for every N ,

P{0 < Zn < N for infinitely many n} = 0.

Suppose the event has positive probability. Then there exists z ∈ N
k
0 with z 6=

(0, . . . , 0) such that Zn = z for infinitely many n with positive probability. By
the strong Markov property, if the process started in z has positive extinction
probability, it will become extinct almost surely, a contradiction. Hence the
process started in z cannot become extinct. In particular there exists a
nonempty set E of types such that the process started with a particle of
that type survives almost surely. Nonextinction is then equivalent to the
occurrence of a type E vertex in the tree.

Using nonsingularity we see that the tree started with a vertex of type E
will eventually branch. When it branches by positive regularity every branch
has a positive probability of containing a vertex of type E and at least one
of the branches will survive and hence contain such a vertex. We conclude
that the tree has infinitely many disjoint subtrees rooted in elements of E
and hence Zn → ∞ almost surely, which contradicts the assumption.

Proposition 3.1. The event

{nonextinction} := {Zn > 0 for all n ∈ N}

has positive probability if and only if ρ > 1.

Remark 3.2. If ρ > 1 the process (Zn) is called supercritical.

Proof. Because of positive regularity the positivity of the nonextinction pro-
bability does not depend on the type of the initial vertex. If we start with a
particle with random type distributed according to the probability vector b,
then EZn = bMn = ρnb. If ρ ≤ 1 this implies EZn ≤ 1 and hence P{Zn →
∞} = 0. By Lemma 3.9 this implies P{extinction} = 1 and hence

P{nonextinction} = 0.

Now suppose ρ > 1. Take a vertex of type i and look at the expected number
of offspring of type i after d generations, by Lemma 3.6 this is

(eiM
d)i ∼ ρd(eiab)i = ρdaibi.

As aibi > 0 we can pick d large so that this number exceeds one. Then there
is a supercritical single-type Galton-Watson process (Xk) with Z

(i)
kd ≥ Xk.

Hence Xk → ∞ implies Z (i)

kd → ∞. We infer that P{nonextinction} > 0.

Our next result concerns the asymptotic distribution of the types in a
generation. This is given by the left eigenvalue of M which we constructed
in Lemma 3.7.
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Proposition 3.2. Almost surely on nonextinction,

lim
n→∞

Zn

Zn
= b.

The proof relies on a version of the strong law of large numbers.

Lemma 3.10. Suppose (Nk) are random variables and (X
(k)
n : n ≥ 1, k ≥ 1)

iid random variables with mean zero. If {lim infk→∞Nk = ∞} with positive
probability, then almost surely on this event

lim
k→∞

1

Nk

Nk
∑

n=1

X(k)
n = 0.

Proof. By the classical strong law of large numbers there exist (kN) such
that, for fixed k, ε > 0,

P

{

∣

∣

∣

1

n

n
∑

m=1

X(k)
m

∣

∣

∣
< 2−N ∀n ≥ kN ∀N ≥ 1

}

> 1− ε2−k.

The assumption ensures that for every N we haveNk ≥ kN for k large enough.
The result follows by summing the complementary probabilities over k.

Remark 3.3. Fix i ∈ S and suppose ρ > 1. As seen in the proof of
Proposition 3.1 there exists d such that in every subtree emanating from any
vertex of the multitype Galton-Watson tree there is a supercritical (single
type) Galton-Watson tree embedded in every dth generation of the subtree.
Such a Galton-Watson process goes to infinity unless it becomes extinct.
Hence on survival of the multitype Galton-Watson process for Nn = Z

(i)
n

we have lim infk→∞Nk = ∞.

Proof of Proposition 3.2 (Kurtz et al (1997)). Fix i, j. By the strong law of
large numbers and the following remark,

lim
n→∞

1

Z
(i)
n

Zn
∑

k=1

1xk=i
(

L
(k,n)
i,j −mi,j

)

= 0,

almost surely on survival. Averaging over the types i gives

lim
n→∞

1

Zn

(

Z
(j)
n+1−

m
∑

i=1

Z(i)
n mi,j

)

= lim
n→∞

m
∑

i=1

Z
(i)
n

Zn

(

1

Z
(i)
n

Zn
∑

k=1

1xk=i
(

L
(k,n)
i,j −mi,j

)

)

= 0.
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Write
vn := Zn/Zn, A :=M/ρ, γn+1 := Zn+1/(ρZn).

We have shown that, with | · | denoting the sum of entries of a vector,

lim
n→∞

∣

∣γn+1vn+1 − vnA
∣

∣ = 0.

Fix k ∈ N. As

vn

k−1
∏

ℓ=0

γn−ℓ − vn−kA
k =

k−1
∑

r=0

(γn−rvn−r − vn−r−1A)A
r

k−1
∏

ℓ=r+1

γn−ℓ,

and the product on the right hand side is bounded from zero and infinity
by random constants, the triangle inequality gives, almost surely on non-
extinction,

lim
n→∞

∣

∣vn

k−1
∏

ℓ=0

γn−ℓ − vn−kA
k
∣

∣ = 0.

As Ak → ab for a suitable right eigenvalue a, we can choose k large enough
such that

lim sup
n→∞

∣

∣vn

k−1
∏

ℓ=0

γn−ℓ − vn−kab
∣

∣

is arbitrarily small, which implies that

lim sup
n→∞

∣

∣vn − (vn−ka
k−1
∏

ℓ=0

γ−1
n−ℓ)b

∣

∣

is arbitrarily small. As both vn and b are nonnegative vectors summing to
one we infer that vn → b almost surely on nonextinction, as required.

3.2.2 Poisson Galton-Watson trees

We now move to Galton-Watson trees with infinite type space, as they will
appear in our study of inhomogeneous random graphs. We specialize to the
case of Poisson Galton-Watson trees, when the children of a vertex form
a Poisson process in the type space. In the finite case this means that
the random variables Li,j , for i, j ∈ S are independent Poisson distributed
random variables with mean mi,j . The role of the matrix M will now be
taken by a linear operator, given by a kernel.

In the general case, let S be a separable metric space and ν a locally finite
Borel measure on S, i.e. all balls have finite measure. A Poisson process with
intensity ν is a random Borel measure P such that

34



• for every Borel set A with ν(A) < ∞ the random variable P (A) is
Poisson distributed with mean ν(A),

• for disjoint Borel sets A,B the random variables P (A) and P (B) are
independent.

A Poisson process exists for every intensity ν. The intuition is that P (A)
counts the number of points that have landed in the set A. Given that
P (A) = n the points X1, . . . , Xn falling in A are independent uniformly
distributed random variables with distribution 1

ν(A)
ν|A.

Let now (S, µ) be a type space and take an integrable and almost everywhere
continuous function

κ : S × S → [0,∞),

which need not be symmetric. Then the Poisson Galton-Watson tree associated
with κ is given as follows:

• the offspring of every vertex in a given generation is independent,

• each vertex of type x has children given by a Poisson process with
intensity

κ(x, y)µ(dy),

which means that for every Borel set A the number of children with
type in A are Poisson distributed with intensity

∫

A

κ(x, y)µ(dy).

If the root has a random type sampled according to µ the Poisson Galton-
Watson tree is called unimodular. We denote this process by (Zn) and
interpret the state Zn at generation n as either a finite random (multi-)set
of elements in S, or as a random measure on the set S taking values in N0.

Let us quickly match this definition with the finite case. Suppose a
particle of type i has a Poisson number of type j children with mean mij ,
independently for all j. We take a positive probability vector µ on S as the
law of the initial particle and let

κ(i, j) := mi,j/µ(j)

If µ satisfies the detailed balance equation

µ(i)mi,j = µ(j)mj,i,
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then κ is a symmetric kernel, but for the branching process this is not
necessary. Then the number of children of type in A is indeed Poisson with
mean

∑

j∈A

κ(i, j)µ(j) =

∫

A

κ(i, j)µ(dj),

And for disjoint sets A and B the number of particles with corresponding
types is independent. Hence the multitype Galton-Watson tree with indepen-
dent Poisson offspring numbers is a Poisson Galton-Watson tree with kernel κ.

We define the operator Tκ acting on measurable functions f : S → R by

(Tκf)(x) =

∫

S

κ(x, y)f(y)µ(dy).

This is defined if f ≥ 0 with Tκf possibly taking the value ∞, or if f is
bounded with Tκf ∈ L1(S, µ). We define the norm of the operator as

‖Tκ‖ = sup{|Tκf | : f ≥ 0, |f | ≤ 1},

where |f | =
√

∫

f 2 dµ. The following result is easy to check.

Lemma 3.11. ‖Tκ‖ is finite iff Tκ is a bounded linear operator on L2(S, µ).
The operator Tκ plays a similar role as the matrix M in the case of finite

type space, for example in describing the average state of the process.

Lemma 3.12. For every f : S → [0,∞) we have

E

∑

x∈Zn

f(x) =

∫

S

(T nκ f)(x)µ(dx).

Proof. This can be shown by induction. It trivially holds for n = 0. Suppose
it holds for n−1. With every x ∈ Zn−1 we associate an independent Poisson
process Px and note that

E

∑

y∈Px

f(y) =

∫

κ(x, y)f(y)µ(dy) = (Tκf)(x).

This follows by an application of the monotone class theorem to the definition.
We conclude that

E

∑

x∈Zn

f(x) = E

∑

x∈Zn−1

∑

y∈Px

f(y) = E

∑

x∈Zn−1

(Tκf)(x),

and by the induction hypothesis this equals
∫

S

(T n−1
κ Tκf)(x)µ(dx) =

∫

S

(T nκ f)(x)µ(dx),

as required.
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We henceforth assume that κ is bounded from zero and the Poisson
Galton-Watson process is nonsingular (with the same definition as in the
finite type case). As the following proposition shows, the norm ‖Tκ‖ plays
the role of the principal eigenvalue ρ and characterises supercriticality.

Proposition 3.3. The Poisson Galton-Watson process associated with κ has
a positive survival probability if and only if ‖Tκ‖ > 1.

Proof. If ‖Tκ‖ > 1 we find f > 0 with |f | = 1 such that

∫

S

(
∫

S

κ(x, y)f(y)µ(dy)

)2

µ(dx) > 1.

On a finite type space we can approximate κ from below by a positive regular
and nonsingular kernel κ and the function f by a vector (fj) with

∑

f 2
j ≤ 1

such that
m
∑

i=1

( m
∑

j=1

κ(i, j)µ(Aj)fj

)2

µ(Ai) > 1. (3.2)

Let M = (mi,j) be the matrix given by

mi,j = κ(i, j)µ(Aj).

Then the Poisson Galton Watson process dominates the multitype Galton
Watson process with Poisson offspring with expectation matrix M . Then

‖M‖ ≥ ‖M‖ |f | ≥ |Mf | > 1,

where the last inequality is (3.2) and ‖M‖ is the spectral norm of M , which
is equal to the principal eigenvalue ρ. Hence the multitype Galton Watson
process is supercritical, has a positive survival probability and by stochastic
domination this also applies to the Poisson Galton Watson process.

If ‖Tκ‖ ≤ 1 we use an argument as in Lemma 3.9 (see exercises) to see
that

P{extinction}+ P{Zn → ∞} = 1.

If we start with a particle with random type distributed according to µ, then,
for |f | = 1, we have

E

∑

x∈Zn

f(x) =

∫

S

(T nκ f)(x)µ(dx) ≤ ‖Tκ‖n ≤ 1.

This implies EZn ≤ 1 and hence P{Zn → ∞} = 0. By the observation above
this implies P{extinction} = 1 and hence P{nonextinction} = 0.
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3.3 Weak local limits of inhomogeneous random

graphs

In this section we prove the following theorem.

Theorem 3. If (κn) is a sequence of kernels converging graphically to a
kernel κ, which is bounded from zero. Then the inhomogeneous random
graphs (Gn), where Gn is associated with κn, converge weakly locally to the
unimodular Poisson Galton-Watson tree associated with κ.

We prove the result first for the case of finite type space and then use
approximation to pass to the general case.

3.3.1 Finite type space

A technical problem here is to properly address the vertices in a tree. We use
the Ulam-Harris labelling, in which the children of any vertex are ordered.
⊘ denotes the root, a its ath child, and a1 . . . ar with ai ∈ N denotes the
arth child of a1 . . . ar−1. We write (t,q) for a finite ordered tree t and an
allocation

q : t → S, v 7→ q(v)

of types to its vertices. Given a graph Gn with vertex set {1, . . . , n} and
type space S and a root o we now think of (Gn, o) ∧ k as the ordered typed
graph, in which vertices are explored breadth first in the order of the vertex
set and are given the type they have in the graph. This allows us to compare
(Gn, o) ∧ k with (t,q) and define

Nn,k(t,q) =
∑

o∈Gn

1{(Gn,o)∧k=(t,q)}.

In order to prove Theorem 3, by Lemma 3.5 we need to show that

1

n
Nn,k(t,q) −→ P

{

T ∧ k = (t,q)
}

,

in probability, where T is the multitype Galton-Watson tree where

• the root has type chosen according to µ,

• a vertex of type i has a Poisson number of children with parameter

λ(i) =
∑

j∈S

κ(i, j)µ(j),
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• every child independently gets a type according to the probability
vector p = (p1, . . . , pm) given by

pj =
κ(i, j)µ(j)

∑

j′∈S κ(i, j
′)µ(j′)

=
κ(i, j)µ(j)

λ(i)
.

This convergence is now proved using the second moment method. We first
show the convergence of the expectations and then show that the variance is
of order o(n2), so that the result follows from Chebyshev’s inequality.

Convergence of expectations

We start by giving a sufficiently explicit formula for the distribution of the
Poisson Galton-Watson tree.

Lemma 3.13.

P
{

T ∧ k = (t,q)
}

=

|t∧k−1|
∏

i=1

e−λ(q(vi))
1

d(vi)!

d(vi)
∏

j=1

κ(q(vi), q(vij))µ(q(vij)),

where v1, . . . , v|t∧k−1| are the vertices of t∧k−1 in the lexicographic ordering
based on the Ulam-Harris labelling.

Proof. Fix a vertex v of type q(v). The probability of seeing a sequence of
d(v) children of types q(v1), . . . , q(vd(v)) equals

e−λ(q(v))
λ(q(v))d(v)

d(v)!

d(v)
∏

j=1

κ(q(v), q(vj))µ(q(vj))

λ(q(v))

=
e−λ(q(v))

d(v)!

d(v)
∏

j=1

κ(q(v), q(vj))µ(q(vj)).

This is true independently for every vertex v with |v| ≤ k − 1. Hence

P
{

T ∧ k = (t,q)
}

=
∏

|v|≤k−1

e−λ(q(v))
1

d(v)!

d
∏

j=1

κ(q(v), q(vj))µ(q(vj)).

Rewriting this by enumerating the vertices in t∧(k−1) in the lexicographical
order of the Ulam-Harris labelling gives the result.

Now we look at the inhomogeneous random graph Gn (as always with
fixed types and random edges). Fix a vertex v of type q(v) and explore its
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neighbourhood. The probability of seeing a sequence of d neighbours of type
(q(v1), . . . , q(vd)) equals

∏

q∈S

(

nq

mq

)

(

d
mq : q∈S

)

∏

q∈S

(1− 1
n
κn(q(v), q))

nq−mq

d
∏

j=1

1
n
κn(q(v), q(vj)),

where

• nq is the number of vertices of type q in the graph excluding v,

• mq is the number of vertices of type q in q(v1), . . . , q(vd).

This equals

1

d!

∏

q∈S

(1− 1
n
κn(q(v), q))

nq−mq

d
∏

j=1

1
n
κn(q(v), q(vj))(nq(vj) −mq(vj)(j − 1)),

where

• mq(j) is the number of type q vertices in q(v1), . . . , q(vj).

As n→ ∞ we have nq/n→ µ(q) and the expression above converges to

1

d!
e−λ(q(v))

d
∏

j=1

κ(q(v), q(vj))µ(q(vj)).

If we want to iterate this, i.e. explore the neighbourhood of neighbouring
vertices just found, we need to take into account the depletion effect: Some
vertices already discovered no longer participate in the exploration.

To manage this effect we recall the lexicographic ordering of elements in
t ∧ (k − 1) as v1, . . . , v|t∧(k−1)|. For a type q let

• mq(i) be the number of type q vertices in the set {v1, . . . , vi},

• mq(i, j) the number of type q vertices in the set consisting of v1, . . . , vi−1,
their children and the first j children of vi.

Let dv be the number of children of vertex v in t. Then

P
{

(Gn, o) ∧ k =(t,q)
}

=

|t∧(k−1)|
∏

i=1

1

dvi !

∏

q∈S

(1− 1
n
κn(q(vi), q))

nq−mq(i−1)

×
dvi
∏

j=1

1
n
κn(q(vi), q(vij))(nq(vij) −mq(vij)(i, j − 1)),

which as above converges to the right hand side in Lemma 3.13.
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Bounding the variance

We start by computing

ENn,k(t,q)
2

n2
= P{(Gn, o1) ∧ k = (Gn, o2) ∧ k = (t,q)},

where the randomness refers to Gn as well as two independently chosen
vertices o1, o2 from Gn. The following auxilliary result is based on the
convergence of expectations shown above.

Lemma 3.14. For any fixed k ∈ N we have, as n→ ∞,

P{∃ path of length ≤ k between o1 and o2} → 0.

Proof. We have

P{∃ path of length ≤ k between o1 and o2} =
1

n
E
∣

∣(Gn, o1) ∧ k
∣

∣.

Note that 1
n
|(Gn, o1) ∧ k| ≤ 1 and, by the first part,

1

n
|(Gn, o1) ∧ k| → 0 in P-distribution,

and hence also in probability. By dominated convergence we hence get

1

n
E
∣

∣(Gn, o1) ∧ k
∣

∣ → 0,

as claimed.

Hence we have

E[Nn,k(t,q)
2]

n2
= P{(Gn, o1)∧k = (Gn, o2)∧k = (t,q), o2 6∈ (Gn, o1)∧2k}+o(1).

We now condition on the event (Gn, o1) ∧ k = (t,q) and write

P{(Gn, o1) ∧ k = (Gn, o2) ∧ k = (t,q), o2 6∈ (Gn, o1) ∧ 2k}
= P{(Gn, o1) ∧ k = (t,q) | (Gn, o2) ∧ k = (t,q), o2 6∈ (Gn, o1) ∧ 2k}
× P{(Gn, o2) ∧ k = (t,q), o2 6∈ (Gn, o1) ∧ 2k}.

From the first part and Lemma 3.14 we can infer that

P{(Gn, o2) ∧ k = (t,q), o2 6∈ (Gn, o1) ∧ 2k} → P
{

T ∧ k = (t,q)
}

.

To study the conditional probability we note that the probability of {(Gn, o1)∧
k = (t,q)} under the conditioning is the same as if the vertices in (Gn, o2)∧k
and adjacent edges are removed from the graph. As the number of these
vertices is o(n) the limit of our expectation calculation remains in place.
Therefore, also

P{(Gn, o1) ∧ k = (t,q) | (Gn, o2) ∧ k = (t,q), o2 6∈ (Gn, o1) ∧ 2k}
→ P

{

T ∧ k = (t,q)
}

.

Therefore Var(Nn,k(t,q)/n) → 0 and the proof in the finite case is complete.
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3.3.2 General case

The generalisation to arbitrary type space is very similar to the argument
given for the convergence of the degree distributions.

Suppose (κn) is a sequence of kernels converging graphically to κ. Recasll
that, for every m ∈ N, there exists a partition Pm of S into M = M(m)
Borel sets A(m)

1 , . . . , A(m)

M such that

• each set A(m)

i is a µ-continuity set,

• Pm+1 refines Pm, i.e. each A(m)

i is a union of sets in Pm+1,

• if im(x) is the unique index such that x ∈ A(m)

im(x) we have

diam(A(m)

im(x)) → 0 as m→ ∞,

for µ-almost every x.

Define

κm(x, y) = inf{(κ ∧ κn)(x′, y′) : x′ ∈ A(m)

im(x), y
′ ∈ A(m)

im(y), n ≥ m}.

Then κm ≤ κn, for all n ≥ m, and κm ≤ κ. For µ-almost every x, y, we have

sup
n≥m

x′∈A
(m)
im(x)

,y′∈A
(m)
im(y)

∣

∣κn(x
′, y′)− κ(x, y)

∣

∣ → 0.

Hence κm(x, y) ր κ(x, y) for µ-almost every x, y.

Lemma 3.15. Let (κm) be a sequence of kernels such that κm(x, y) ր κ(x, y)
for µ-almost every x, y. Let Tm be the unimodular Poisson Galton-Watson
tree with kernel κm, and T be the unimodular Poisson Galton-Watson tree
with kernel κ. Then, for every k ∈ N,

Tm ∧ k ⇒ T ∧ k in distribution.

In particular, for µ-almost every x, the probability Pm(x,≥ k) that an indivi-
dual of type x in Tm has at least k descendants converges monotonically to
P (x,≥ k), the corresponding probability in T .

Proof. With ∆κm(x, y) = κm(x, y) − κm−1(x, y) and κ0(x, y) = 0 we can
write

κ(x, y) =

∞
∑

m=1

∆κm(x, y).

42



For every m, define an independent Poisson process given by its intensity
∆κm(x, y)µ(dy) and label the individuals by m. Then, the sum of these
Poisson processes determines a Poisson process with intensity κ(x, y)µ(dy)
and additionally every individual has a label. We use these processes as
offspring distributions in a Poisson-Galton Watson process. Then Tm is the
process consisting of the individuals with label at most m, T is the process
consisting of all individuals, and Tm ∧ k ⇒ T ∧ k because one can choose
M such that the probability of T ∧ k containing a label larger than M is
arbitrarily small. Finally, we can start the procedure in a fixed vertex of
type x and as the indicator of the event that the tree has at most k − 1
vertices is a continuous and bounded function on ∧k we note that Pm(x,≥
k) = 1− Pm(x,< k) → 1− P (x,< k) = P (x,≥ k).

Fix n ≥ m as above. We couple the graph associated with κm to the
graph associated with κn, so that every edge in the former also exists in the
latter. Let En,m be the set of edges in G(m)

n with kernel κm and En the set of
edges in Gn with kernel κn. Then

En,m ⊂ En,

and, recalling Lemma 1.2, for given ε > 0, and large enough m, we have

1

n

∣

∣En \ En,m
∣

∣ =
1

n

∣

∣En
∣

∣− 1

n

∣

∣En,m
∣

∣

n→∞−→ 1

2

∫∫

S2

κ(x, y)µ(dx)µ(dy)− 1

2

∫∫

S2

κm(x, y)µ(dx)µ(dy)

< ε.

Let N (m)

k,n (t,q) be the number of vertices o ∈ G(m)
n with kernel κm such that

(G(m)
n , o) ∧ k = (t,q),

and Nk,n(t,q) for the corresponding quantity using the kernel κn. Denote by
K the largest degree occurring in t. Then, for large n,

∣

∣

∣

N (m)

k,n (t,q)

n
− Nk,n(t,q)

n

∣

∣

∣

≤
∑

u,v∈G
(m)
n

1
{u∈(G

(m)
n ,v)∧k−1,(G

(m)
n ,v)∧k=(t,q)}

1{d(u)6=d(m)(u)}

+
∑

u,v∈G
(m)
n

1{u∈(Gn,v)∧k−1,(Gn,v)∧k=(t,q)}1{d(u)6=d(m)(u)},

because if a vertex v ∈ G(m)
n has (G(m)

n , v) ∧ k = (t,q) but not (Gn, v) ∧ k =
(t,q) then one of the vertices in (G(m)

n , v) ∧ k − 1 has a different degree in
G(m)
n and in Gn. Similarly, if v ∈ G(m)

n has (Gn, v) ∧ k = (t,q) but not
(G(m)

n , v) ∧ k = (t,q).
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For fixed u we have

∑

v∈G
(m)
n

1
{u∈(G

(m)
n ,v)∧k−1,(G

(m)
n ,v)∧k=(t,q)}

≤
k−1
∑

l=0

K l ≤ Kk − 1

K − 1
.

Analogously,

∑

v∈G
(m)
n

1{u∈(Gn,v)∧k−1,(Gn,v)∧k=(t,q)} ≤
Kk − 1

K − 1
.

Hence

∣

∣

∣

N (m)

k,n (t,q)

n
− Nk,n(t,q)

n

∣

∣

∣
≤ 2

Kk − 1

K − 1
× 1

n

∑

u∈G
(m)
n

1{d(u)6=d(m)(u)}

≤ 2
Kk − 1

K − 1
× 2

n

∣

∣En \ En,m
∣

∣,

which we have seen to be arbitrarily small. We have thus seen, for any ε > 0
and sufficiently large n ≥ m that

∣

∣

∣

N (m)

k,n (t,q)

n
− Nk,n(t,q)

n

∣

∣

∣
≤ ε,

and from the finite type case

N (m)

k,n (t,q)

n
→ P{Tm ∧ k = (t,q)}.

By Lemma 3.15 we can take m so large that

|P{Tm ∧ k = (t,q)} − P{T ∧ k = (t,q)}| < ε,

which finishes the proof of Theorem 3.

3.4 Examples and applications

3.4.1 Exploiting weak local convergence

We first look at some general consequences of the existence of weak local
limits. They all come from the choice of suitable continuous, bounded
functions h : G → R. For simplicity we assume, as in all our examples,
that |Gn| = n. We also assume that the weak local limit (G, o) has a positive
probability of being more than the root.
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Proposition 3.4. Let (Gn) be a sequence of random graphs converging weakly
locally to a random rooted graph (G, o). Then (Gn) is distributionally sparse
and the asymptotic degree distribution µ is given as

µ(k) = P{d(o) = k}.

Proof. Let g : N0 → R be bounded and continuous. Then pick h : G → R

as h(G, o) = g(d(o)), which is also bounded and continuous. Hence, in
probability,

1

n

∑

v∈Gn

g(d(v)) =
1

n

∑

v∈Gn

h((Gn, v))
n→∞−→ Eh((G, o)) = Eg(d(o)),

which implies (Gn) is distributionally sparse and
∫

g(k)µ(dk) = Eg(d(o)).

We now look at the number of edges in the graph. To get sparsity from
weak local convergence we need an extra uniform integrability condition.

Proposition 3.5. Let (Gn) be a sequence of random graphs converging weakly
locally to a random rooted graph (G, o). Assume further that for a uniformly
chosen vertex On ∈ Gn the random variables d(On) are uniformly integrable.
Then

|En|
n

−→ 1

2
E[d(o)] in probability,

and hence (Gn) is sparse if E[d(o)] <∞.

Proof. Note that while
∑

v∈Gn
d(v) = 2|En| we cannot simply apply the weak

local limit with h(G, o) = d(o) as this continuous function is unbounded.
Here uniform integrability is coming in. For every ε, δ > 0 we find K such
that, for all k ≥ K such that

P

{

∑

v∈Gn

d(v)1d(v)>k > δn
}

≤ δ−1
E[d(On)1d(On)>k] < ε.

If E[d(o)] <∞ fix k ≥ K such that

0 ≤ E[d(o)]− E[d(o)1d(o)≤k] ≤ δ.

Using weak local convergence

1

n

∑

v∈Gn

d(v)1d(v)≤k −→ E[d(o)1d(o)≤k] in probability,

and noting that ε, δ > 0 were arbitrary and using the triangle inequality
yields the result in the case E[d(o)] < ∞. If E[d(o)] = ∞ an analogous
argument shows convergence to infinity.
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Remark 3.4. The uniform integrability condition is discussed in the exercises.
It holds in all our examples. Note that for any inhomogeneous random graph
(Gn) with kernels (κn) converging graphically to κ we have

|En|
n

−→ 1

2
E[d(o)] =

1

2

∫∫

κ(x, y)µ(dy)µ(dx) in probability

even without a uniform integrability assumption, see Lemma 1.2 where the
weak law of large numbers was used.

We next address the number of connected components in the graph.

Proposition 3.6. Let (Gn) be a sequence of random graphs converging weakly
locally to a random rooted graph (G, o). Let Kn be the number of connected
components of Gn. Then, in probability,

Kn

n
−→ E[ 1

|G|
] ≥ 0.

Proof. This is an exercise. Recall that we identify G with the connected
component of the root in (G, o). The proof is based on choosing h : G → R

as h(G, o) = |G|−1 if |G| < ∞, and h(G, o) = 0 otherwise. This function is
bounded and can be checked to be continuous.

Theorem 4. For any inhomogeneous random graph (Gn) such that the kernels
κn converge graphically, there exists a constant c > 0 such that the number
Kn of connected components satisfies

Kn

n
−→ c > 0 in probability.

Proof. The conditions of Proposition 3.6 are met and |G| <∞ with positive
probability if (G, o) is a unimodular Poisson Galton-Watson tree.

Now we look at the size of connected components. We are interested in
components of fixed size in Gn, but also in the existence of a component of
macroscopic size, i.e. with size of order n. We say that (Gn) has a giant
component if the size Sn of the largest component in Gn satisfies

Sn
n

−→ θ > 0 in probability.

Proposition 3.7. Let (Gn) be a sequence of random graphs converging weakly
locally to a random rooted graph (G, o). Let K(k)

n be the number of connected
components with exactly k vertices in Gn. Then, in probability,

K(k)
n

n
−→ 1

k
P{|G| = k}.
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In particular, if (G, o) is almost surely finite then

Sn
n

−→ 0 in probability

and (Gn) has no giant component

Proof. The proof is based on choosing h : G → R as h(G, o) = 1
k
1{|G|=k}. This

function is bounded and continuous. Note that, for the connected component
Cv of a vertex v in Gn we have

K(k)
n

n
=

1

n

∑

v∈Gn

1
k
1{|Cv|=k} =

1

n

∑

v∈Gn

h((G, v)) → Eh(G, o) = 1
k
P{|G| = k},

as claimed. Now, if (G, o) is almost surely finite, for given ε, δ > 0 there is k
such that P{|G| ≥ k} < εδ. Then

lim sup
n→∞

P{∃ component of size ≥ δn} ≤ lim sup
n→∞

E
1

δn

∑

v∈Gn

1{|Cv |≥δn}

≤ 1

δ
P{|G| ≥ k} < ε.

This shows that there cannot be a giant component.

Remark 3.5. In our examples there is also a converse result, as the quantity
Sn

n
converges in probability to the probability that (G, o) is infinite. This

implies that there is a giant component if and only if (G, o) is infinite with
positive probability. This does not follow from the existence of the weak local
limit alone and we will look at this for particular models in Chapter 4.

Theorem 5. In the inhomogeneous random graph with kernels (κn) converging
graphically to κ there is no giant component if ‖Tκ‖ ≤ 1.

Proof. This follows from Proposition 3.7 and the fact that (G, o) is finite
almost surely if and only if ‖Tκ‖ ≤ 1.

Next, we look at clustering of (Gn). We define the clustering coefficient
at v ∈ Gn as

Cn(v) =
∆(Gn, v)

1
2
d(v)(d(v)− 1)

,

if d(v) ≥ 2 and zero otherwise, where ∆(G, v) is the number of triangles in
G that contain v ∈ G. Note that this is the proportion of wedges based at
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v that complete to a triangle. The local clustering coefficient of Gn is now
defined as

Cn =
1

n

∑

v∈Gn

Cn(v).

The limit of Cn as n → ∞, if it exists, is the asymptotic local clustering
coefficient.

Proposition 3.8. Let (Gn) be a sequence of random graphs converging weakly
locally to a random rooted graph (G, o). Then

Cn −→ E

[ ∆(G, o)
1
2
d(o)(d(o)− 1)

]

in probability.

Proof. Let

h(G, o) =
∆(G, o)

1
2
d(o)(d(o)− 1)

,

if d(o) ≥ 2 and zero ohterwise. This function is bounded by one and
continuous, as it only depends on (G, o)∧2. The result follows by taking the
weak local limit.

Remark 3.6. Note that averaging over local quantities avoids putting too
much weight on powerful vertices. By contrast, the global clustering coefficient
of Gn is defined as

C ′
n =

∑

v∈Gn
Cn(v)

1
2

∑

v∈Gn
d(v)(d(v)− 1)

,

i.e. the overall proportion of wedges that complete to a triangle. If (Gn) is a
sequence of random graphs converging weakly locally to a random rooted graph
(G, o) and the sequence (d(On)

2) of random variables is uniformly integrable,
then this quantity converges to

E∆(G, o)
1
2
Ed(o)(d(o)− 1)

.

But for scale-free random graphs with τ < 3 the uniform integrability typically
fails and C ′

n → 0, see exercises. In particular the global clustering coefficient
is unsuitable to measure clustering for scale-free networks with small τ .

If the weak local limit (G, o) is a tree, then the asymptotic local clustering
coefficient is zero. This is a major motivation to study geometric random
graph models, i.e. spatially embedded graphs, for which weak local limits
are not trees and there is clustering.
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Theorem 6. For any inhomogeneous random graph (Gn) with kernels (κn)
converging graphically to κ the asymptotic local clustering coefficient is zero.

Finally, we look at the degrees of vertices at the end of a uniformly selected
edge. For k, l ∈ N0 we let

Nn(k, l) =
1

2|En|
∑

e∈En

1d(e)=k,d(e)=l + 1d(e)=l,d(e)=k,

where e = {e, e} and we observe that this is well-defined. The probability
measure Nn on N0 × N0 is called the empirical degree-degree distribution.

Proposition 3.9. Let (Gn) be a sequence of random graphs converging weakly
locally to a random rooted graph (G, o). Assume further that for a uniformly
chosen vertex On ∈ Gn the random variables d(On) are uniformly integrable.
Then, for k, l ∈ N0 we have

Nn(k, l) →
k

E[d(o)]
P{d(o) = k, d(V ) = l} in probability,

where V is a uniformly chosen neighbour of o in (G, o).

Proof. We rewrite

1

n

∑

e∈En

1d(e)=k,d(e)=l + 1d(e)=l,d(e)=k =
k

n

∑

u∈Gn

1d(u)=k

(

1

k

∑

v∼u

1d(v)=l

)

= kE
[

1d(On)=k,d(Vn)=l

]

,

where Vn is a uniformly chosen neighbour of On in Gn and E refers to the
choice of On and Vn with fixed Gn. As h(G, o) = 1d(o)=kP{d(V ) = l} with P
referring to V dependis only on (G, o)∧2 it defines a bounded and continuous
function and

E
[

1d(On)=k,d(Vn)=l

]

= Eh(Gn, On) → Eh(G, o) = P{d(o) = k, d(V ) = l},

in probability. A reference to Proposition 3.5 completes the proof.

Remark 3.7. (a) Summing over all l ∈ N gives

1

2|En|
∑

e∈En

1d(e)=k + 1d(e)=k →
k

E[d(o)]
P{d(o) = k},

the size-biased degree distribution.
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(b) Note that Nn is a symmetric measure, and hence the limit must be
symmetric, too. We infer that

1

l
P{d(o) = k, d(V ) = l} =

1

k
P{d(o) = l, d(V ) = k},

which is a version of the unimodularity property of (G, o) shown in the
exercises.

Theorem 7. For any inhomogeneous random graph (Gn) with kernels (κn)
converging graphically to κ the empirical degree-degree distribution converges
to the probability measure ν given by

ν(k, l) = c−1

∫∫

λ(x)k

(k − 1)!
e−λ(x)κ(x, y)

λ(y)l

l!
e−λ(y)µ(dx)µ(dy),

with c =
∫

κ(x, y)µ(dx)µ(dy).

Proof. Note that uniform integrability in Proposition 3.9 was only used to
ensure sparsity. So it is not required in this example and the result follows by
calculating kP{d(o) = k, d(V ) = l} for the Poisson Galton-Watson tree.

3.4.2 The Chung-Lu graph

We now do some calculations for the Chung-Lu graph. In this case the
limiting kernel κ has the ’rank one’ form

κ(x, y) = c ψ(x)ψ(y),

with c = 1/E[ψ(U)]. For such kernels

Tκf(x) = c ψ(x)

∫

S

ψ(y)f(y)µ(dy).

By Cauchy-Schwarz for any f ≥ 0 with |f | = 1,

Tκf(x) ≤ c ψ(x)|ψ|,

and so

‖Tκ‖ ≤ c |ψ|2.
Conversely, for f = ψ we get

Tκψ(x) = c ψ(x)

∫

S

ψ2(y)µ(dy).
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Hence ψ is an eigenvector of Tκ with eigenvalue c|ψ|2 and we infer that

‖Tκ‖ = c

∫

S

ψ2(y)µ(dy).

Hence in the Chung-Lu model there is no giant component if

∫ 1

0

ψ2(y) dy ≤
∫ 1

0

ψ(y) dy. (3.3)

This criterion is sharp, but this requires a more involved proof (given in the
cited book by van der Hofstad, Chapter 4 of Volume II). In this course we
will instead give a proof for the corresponding result for simple preferential
attachment model.

Theorem 8. For the Chung-Lu model with limiting kernel

κ(x, y) = 1
E[ψ(U)]

ψ(x)ψ(y)

the giant component exists if and only if the weights ψ(U) satisfy

E[ψ(U)2] > E[ψ(U)].

For example, look at the case that, for some τ > 2,

F (x) = 1− βx−τ+1 for all x > β1/(τ−1).

Recall that in this case the graph is scale-free with power law exponent τ .
Then ψ(u) = (u/β)1/(1−τ) and

∫ 1

0

ψ(y) dy = β
1

τ−1
τ − 1

τ − 2
.

Also
∫ 1

0

ψ2(y) dy = β
2

τ−1
τ − 1

τ − 3
if τ > 3,

and ∞ otherwise. Hence there is no giant component if τ > 3 and

β ≤
(

τ − 3

τ − 2

)τ−1

.

The converse is also true: If τ ≤ 3 there is a giant component no matter what
the edge density is (robust case), but if τ > 3 there is a giant component if
and only if the edge density is large enough

β > βc :=

(

τ − 3

τ − 2

)τ−1

.
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3.4.3 The simple preferential attachment graph

Now look at the simple preferential attachment graph, which is the inhomogeneous
random graph with kernel

κ(x, y) = β(x ∨ y)γ−1(x ∧ y)−γ,

where β > 0 is arbitrary and 0 < γ < 1. Recall that this is a scale-free
random network with power law exponent

τ = 1 +
1

γ
.

We look at the operator

Tκf(x) = β

(

xγ−1

∫ x

0

y−γf(y) dy + x−γ
∫ 1

x

yγ−1f(y) dy

)

.

Getting an upper bound for arbitrary |f | = 1 is nontrivial as we cannot use
the Cauchy-Schwarz inequality, or in other words (other than in the case of
the Chung-Lu graph) this is not a Hilbert-Schmidt integral operator, as

∫∫

κ(x, y)2µ(dx)µ(dy) = 2β2

∫ 1

0

x2γ−2

∫ x

0

y−2γdydx = ∞.

To get some idea for the correct answer we now give a lower bound for ‖Tκ‖.
Suppose γ < 1

2
and pick γ < α < 1

2
and f(x) = cx−α. Then

∫ 1

0

f(x)2 dx = c2
1

1− 2α

and choosing c =
√
1− 2α ensures |f | = 1. Then

Tκf(x) = cβ
(

xγ−1 x1−γ−α

1−γ−α
+ x−γ 1−xγ−α

γ−α

)

= cβ
(

1
1−γ−α

x−α + 1
γ−α

x−γ − 1
γ−α

x−α
)

= cβ
(

1−2γ
(1−γ−α)(α−γ)

x−α − 1
α−γ

x−γ
)

.

We obtain
∫

T 2
κf(x) dx

= c2β2
(

(

1−2γ
(1−γ−α)(α−γ)

)2 1
1−2α

− 2 1−2γ
(1−γ−α)(α−γ)2(1−α−γ)

+ 1
(α−γ)2(1−2γ)

)

= β2
(

(

1−2γ
(1−γ−α)(α−γ)

)2 − 2 (1−2α)(1−2γ)
(1−γ−α)(α−γ)2(1−α−γ)

+ 1−2α
(α−γ)2(1−2γ)

)

.
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Letting α ↑ 1
2
we get

‖Tκ‖ ≥ β
(

1−2γ

( 1
2
−γ)2

)

.

Assuming that this is sharp we conjecture that there is no giant component
if 0 ≤ γ < 1

2
and

0 ≤ β ≤ ( 1
2
−γ)2

1−2γ
= 1

4
− γ

2
,

and that there is one otherwise. This is indeed true and constitutes the
following theorem.

Theorem 9. For the simple preferential attachment model with parameters
β > 0 and 0 < γ < 1 the giant component exists if and only

γ ≥ 1

2
or β > βc :=

1

4
− γ

2
.

In Chapter 4 we will use special properties of the simple preferential
attachment graph to prove this result (and further interesting stuff) by purely
probabilistic means.
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Chapter 4

Simple preferential attachment
revisited

4.1 Coupling to a branching random walk

Although the operator Tκ in the case of simple preferential attachment is
not a Hilbert-Schmidt operator and therefore does not look very nice at a
first glance, it does have a special property that reveals itself when we are
transforming the type space. We look at

φ : S = (0, 1] → (−∞, 0], t 7→ log t,

which maps types to positions, and first check what happens to the unimodular
Poisson Galton-Watson tree in this case.

The type of the root, which was uniform, now becomes position −X :=
φ(U), where X is standard exponential. The children of a vertex of type
s ∈ S, which were a Poisson process with intensity

κ(s, t)µ(dt) = β(s ∨ t)γ−1(s ∧ t)−γ dt
become the children of a vertex of position x = φ(s), which is a Poisson
process with intensity

κ(φ−1(x), φ−1(y))µ ◦ φ−1(dy) =

β(φ−1(x) ∨ φ−1(y))γ−1(φ−1(x) ∧ φ−1(y))−γ dφ−1(y),

which is

βe(γ−1)(x∨y)e−γ(x∧y) ey dy = β(eγ(y−x)1y−x>0 + e(1−γ)(y−x)1y−x<0) dy.

The remarkable fact is that this depends only on y − x and not on both x
and y. This means that when you follow the positions of the first children in
the Poisson-Galton Watson tree they form a random walk — up to the fact
that positions to the right of the origin are not allowed.
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For a σ-finite continuous measure ν on the reals we formally define the
Poisson branching random walk starting at x(< 0) with offspring intensity ν
(killed at the origin) as follows:

• in generation zero there is a single individual at position x,

• given the individuals in generation n and their positions x1, x2, . . . (< 0)
we sample independent Poisson processes

P1 =
∑

i

δ
y
(1)
i

, P2 =
∑

i

δ
y
(2)
i

, . . .

with intensity ν,

• and form the n + 1st generation of the branching random walk by
declaring

xk + y(k)

i for all i (such that xk + y(k)

i < 0)

the children of the individual xk for k = 1, 2, . . . .

The Poisson branching random walk consists of a rooted tree (possibly with
countably infinite offspring numbers) together with the positions of the indi-
viduals. Here we consider the intensity

π(dy) = β(eγy1y>0 + e(1−γ)y1y<0) dy

and say that the corresponding killed branching random walk is unimodular
if it is started in −X where X is standard exponentially distributed. Note
that for this choice of π every individual in the (not killed) Poisson branching
random walk has infinite offspring, but the killed process defines a rooted
random tree with finite offspring number. This rooted tree is denoted by T.

The exploration process of a rooted graph successively collects information
about the graph by defining an order of vertices and checking the existence
of edges adjacent to these vertices in that order, starting at the root. We
will explain the exploration process below. The exploration process yields a
filtration and associated stopping times. For a rooted graph (G, o) we denote
by (G, o) f T the rooted graph consisting of the vertices and edges seen up
to time T . Our aim in this section is to construct a coupling of the simple
preferential attachment graph (Gn, On) for a uniform random root On with
the tree T defined above such that the exploration processes of the graph and
the tree in such a way that up to a stopping time, which is typically large,
the explored part of the graph and the tree coincide.
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4.1.1 The exploration process

We now define the exploration process of a rooted graph, i.e., we specify
the way we collect information about the connected component of a root
vertex o. In the first step, we explore all immediate neighbours of o in the
graph. To explain a general exploration step we classify the vertices in three
categories:

• veiled vertices : vertices for which we have not yet found connections to
the component of o;

• active vertices : vertices for which we already know that they belong to
the component, but for which we have not yet explored all its immediate
neighbours;

• dead vertices : vertices which belong to the cluster and for which all
immediate neighbours have been explored.

After the first exploration step the vertex o is marked as dead, its immediate
neighbours as active and all the remaining vertices as veiled. In a general
exploration step, we choose the leftmost active vertex, set its state to dead,
and explore its immediate neighbours. The newly found veiled vertices are
marked as active, and we proceed with another exploration step until there
are no active vertices left.

We define stopping times Tn depending on sequences (nn) and (cn) both
with values in {1, . . . , n} as the first time when in the exploraton of Gn either

(A) the number of dead and active vertices exceeds cn, or

(B) one vertex in {1, . . . , nn} is activated, or

(C) there are no more active vertices left.

The main result of this section is the following.

Proposition 4.1. Suppose the sequences (cn)n∈N and (nn)n∈N satisfy

lim
n→∞

cn

n1−γ
n

= 0 and lim
n→∞

cnn
γ

nγ+1
n

= 0 and lim
n→∞

c2n
nn

= 0.

Then each (Gn, On) can be coupled to T such that with high probability

(Gn, On)f Tn = Tf Tn.
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4.1.2 A random labelled tree

We prove the coupling in two steps. In the first step we couple the rooted
graph (Gn, on) to an easier object, namely a random labelled tree T(on). To
both of these objects we associate the exploration process as described above.

The tree T(o) describes a simplified neighbourhood of a vertex o ∈ Gn.
Any vertex in the tree is labelled by its location, an element of {1, . . . , n}. The
root is given as a vertex with location o. A vertex with location i produces
independently descendants in the locations j ∈ {1, . . . , i−1, i+1, . . . n} with
probability

β(i ∨ j)γ−1(i ∧ j)−γ.
Note that in this tree different vertices can be labelled by the same location.
The link between this labelled tree and the simple preferential attachment
graph is given in the following lemma.

Lemma 4.1. Suppose that (cn)n∈N, (nn)n∈N satisfy

lim
n→∞

c2n
nn

= 0.

Then one can couple (Gn, On) with the tree T(On) such that with high probability

(Gn, On)f Tn = T(On)f Tn,

including equality of locations.

We will see that the bad event (E) which leads to Gn being different from
T(On) occurs when the descendants of the explored vertex in the labelled tree
include a vertex located at a dead or active vertex in the exploration process
of the graph. In this case we stop the exploration so that, before stopping, the
explored part of Gn is a tree with each node having a unique location. When
(E) occurs we say that the coupling fails. If we stop the exploration without
(E) being the case, we say that the coupling succeeds. In this case the veiled
parts of the random tree and the network may be generated independently
of each other with the appropriate probabilities and we have coupled the
random labelled tree and the graph.

Lemma 4.2. Suppose that (cn)n∈N, (nn)n∈N are sequences of integers such
that

lim
n→∞

c2n
nn

= 0.

Then the coupling of the exploration processes satisfies

lim
n→∞

sup
o∈{1,...,n}

P
(

coupling with initial vertex o ends in (E)
)

= 0,

i.e. the coupling succeeds with high probability.
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Proof. We may assume that o ∈ {nn + 1, . . . , n}. To distinguish both
exploration processes, we use the term descendant for a child in the labelled
random tree and the term immediate neighbour in the context of the neigh-
bourhood exploration in Gn. In the initial step, we explore the root and find
all its immediate neighbours in Gn and all its descendants in T(o). Both
explorations are identically distributed and they therefore can be perfectly
coupled. Suppose now that we have performed k steps and that we have
not yet stopped the exploration. In particular, we have seen at most cn
vertices, there are still active vertices, both explored subgraphs coincide and
any unveiled (i.e. active or dead) elements of the labelled random tree can
be uniquely referred to by its location. We now explore the descendants and
immediate neighbours of the leftmost active vertex, say i.

We sample the descendants of i as in the labelled tree T(o). Only if
these descendants include a dead or active vertex (E) occurs. Otherwise we
take the descendants as immediate neighbours of Gn, so that the coupling
is perfect. We stop if (A), (B) or (C) occur due to these neighbours and
otherwise continue. All that remains is to estimate the probability of the
descendants including a dead or active vertex. There are at most cn such
unveiled vertices and their locations are j ≥ nn+1. For each the probability
of a connection is

β(i ∨ j)γ−1(i ∧ j)−γ ≤ βn−1
n .

As there are at most cn exploration steps until we end in one of the states
(A), (B), or (C), the coupling fails due to (E) with a probability bounded
from above by

β
c2n
nn

→ 0 ,

in other words, the coupling succeeds with high probability.

4.1.3 Coupling to the killed branching random walk

We now map the locations {1, . . . , n} of vertices in Gn to positions on the
negative halfline such that

ϕ(i) = −
n

∑

j=i+1

1

j
.

Note that the youngest vertex is placed at the origin, and older vertices are
placed to the left with decreasing intensity. In particular the position of the
particle corresponding to a vertex with fixed location will move to the left as
n is increasing.
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Looking at a fixed observation window [a, b] on the negative halfline, as
n ↑ ∞, we see that the number of vertices in the window is increasing. At the
same time the location of the vertex at (or closest to) a fixed position in the
window is increasing, which means that the probability of edges between two
such vertices is decreasing. As we shall see below, the combination of these
two effects leads to convergence of the distribution of offspring locations on
the halfline. In particular, thanks to the independence of edges, offspring
converges to a Poisson process by the law of small numbers. Our main
aim now is to prove the following result. We follow the convention that a
sequence of events depending on the index n holds with high probability if
the probability of these events goes to one as n ↑ ∞.

Lemma 4.3. Suppose that (cn)n∈N and (nn)n∈N are sequences of integers with

lim
n→∞

cn

n1−γ
n

= 0 and lim
n→∞

cnn
γ

nγ+1
n

= 0.

Then the tree T(On) can be coupled with T such that with high probability

T(On) ∧ Tn = T ∧ Tn.

To establish the relationship between T(On) and T we define the projection

πn : (−∞, 0] → {1, . . . , n},

which maps t onto the smallest m ∈ {1, . . . , n} with t ≤ ϕ(m). We apply this
to each location of T and obtain a branching process with location parameters
in {1, . . . , n}, which we call πn-projected process. We need to show, using
a suitable coupling, that when T is started with a vertex −X , where X is
standard exponentially distributed, then up to the stopping time Tn this
agrees with a random tree T(On) with high probability.

We first look at the location of the root in both processes.

Lemma 4.4. Let X be standard exponentially distributed. Then πn(−X)
and U Laplace distributed on {1, . . . , n} can be coupled such that

P(πn(−X) 6= U) → 0.

Proof. We have πn(−X) = i iff ϕ(i− 1) < −X ≤ ϕ(i), which happens if

n
∑

j=i

1

j
> X ≥

n
∑

j=i+1

1

j
.
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This event has probability

exp(−
n

∑

j=i+1

1
j
)− exp(−

n
∑

j=i

1
j
) = exp(−

n
∑

j=i+1

1
j
)(1− e−1/i)

The coupling follows from the fact that

n
∑

i=1

∣

∣ exp(−
n

∑

j=i+1

1
j
)(1− e−1/i)− 1

n

∣

∣ → 0.

Further details are an exercise.

We now start the principal task of coupling the offspring variables by
coupling Poisson and Bernoulli variables.

Lemma 4.5. Let λ ≥ 0 and p ∈ [0, 1], X (1) Poisson distributed with para-
meter λ, and X (2) Bernoulli distributed with parameter p. Then there exists
a coupling of these two random variables such that

P(X (1) 6= X (2)) ≤ λ2 + |λ− p|.

Proof. This is an exercise.

Recall that in the πn-projected process a vertex in position v with i =
πn(v) < 0 produces a Poissonian number of πn-projected descendants at the
location 1 ≤ i−m ≤ i− 1 with parameter

λi−m :=

∫ ϕ(i−m)−v

ϕ(i−m−1)−v

β(e(1−γ)y1y<0) dy, (4.1)

and at the location n ≥ i+m ≥ i+ 1 with parameter

λi+m :=

∫ ϕ(i+m)−v

ϕ(i+m−1)−v

β(eγy1y>0) dy, (4.2)

and at the location i itself with parameter

λi :=

∫ ϕ(i)−v

ϕ(i−1)−v

β(eγy1y>0 + e(1−γ)y1y<0) dy. (4.3)

A vertex in location i in T(On) produces a Bernoulli distributed number of
descendants in i−m with success probability

pi−m = βiγ−1(i−m)−γ.
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This needs to be compared with

λi−m = β

∫ ϕ(i−m)−v

ϕ(i−m−1)−v

e(1−γ)y dy = β
1−γ

(e(1−γ)(ϕ(i−m)−v) − e(1−γ)(ϕ(i−m−1)−v)),

which by the mean value theorem equals

βe(1−γ)ξ(ϕ(i−m)− ϕ(i−m− 1)),

for some ξ ∈ (ϕ(i−m−1)−ϕ(i), ϕ(i−m)−ϕ(i−1)). The following lemma
compares these quantities.

Lemma 4.6. There exists a constant C > 0 such that the following holds:
Let m ∈ N and v ≤ 0 with i := πn(v) and define λi±m as in (4.1-4.3). Then

∣

∣λi−m − pi−m
∣

∣ ≤ Ciγ−1(i−m)−γ−1 and λ2i−m ≤ Ci2γ−2(i−m)−2γ,

and
∣

∣λi+m − pi+m
∣

∣ ≤ Ci−γ−1(i+m)γ−1 and λ2i+m ≤ Ci−2γ(i+m)2γ−2,

If m = 0, a Poisson distributed random variable Υ with parameter λi satisfies

P(Υ 6= 0) ≤ C
1

i
.

Proof. We first focus on the minus sign. In this case, as seen above,

λi−m = βe(1−γ)ξ 1
i−m

,

for some ξ ∈ (−∑i
j=i−m

1
j
,−∑i−1

j=i−m+1
1
j
). By the Euler-MacLaurin formula

the lower limit of this interval is at least

log i−m
i

− C
i−m

,

and the upper limit at most

log i−m
i

+ C
i−m

.

Hence
λi−m ≤ βiγ−1(i−m)−γe

C
i−m ≤ pi−m + pi−m(e

C
i−m − 1)

and
λi−m ≥ βiγ−1(i−m)−γe−

C
i−m ≥ pi−m − pi−m(1− e−

C
i−m ).

The estimates for the minus sign follow from this.
For the plus sign the argument is analogous. For m = 0 we have

λi =

∫ 0

ϕ(i−1)−v

βe(1−γ)y dy +

∫ ϕ(i)−v

0

βeγy dy

≤ β
1−γ

(1− e(1−γ)(ϕ(i−1)−ϕ(i))) + β
γ
(eγ(ϕ(i)−ϕ(i−1)) − 1),

which is O(1/i). This implies the second statement of the lemma.
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Proof of Lemma 4.1. We look at the exploration of T. At every exploration
step we couple the Poisson variables in the πn-projected process to the
Bernoulli variables in the corresponding labelled tree as in Lemma 4.5. For
the exploration of i = πn(v) the probability of failure is bounded by a
constant multiple of

1

i
+ iγ−1

i−1
∑

j=1

j−γ−1 + i2γ−2
i−1
∑

j=1

j−2γ + i−γ−1
n

∑

j=i+1

jγ−1 + i−2γ
n

∑

j=i+1

j2γ−2.

This bound behaves like

O(iγ−1) +O(nγi−γ−1).

The probability that the coupling fails before we have seen cn vertices or a
vertex with index smaller than nn therefore goes to zero if cn/n

1−γ
n → 0 and

also cnn
γ/nγ+1

n → 0.

4.1.4 The component of powerful vertices

We now give a criterion that when the exploration stops because a vertex in
{1, . . . , nn} was found, then adding the immediate neighbours of this vertex
makes the component of the root larger than cn with high probability.

Lemma 4.7. Let (cn)n∈N and (nn)n∈N be sequences of positive integers such
that

lim
n→∞

cnn
γ
n

nγ
= 0.

Suppose that F(Tn) is the σ-algebra of the exploration process of (Gn, On) at
the stopping time Tn. Then, on the event that the process has stopped because
a vertex in {1, . . . , nn} was found, we have

P
(

|(Gn, On)| < cn
∣

∣F(Tn)
)

−→ 0.

Proof. Suppose o is the leftmost vertex discovered at the stopping time and
In the set of vertices seen in the exploration up to Tn. Note that |In| ≤ cn.
Then the number of right neighbours of o not already discovered is the sum
Sn of independent Bernoulli variables with expectation

n
∑

i=o+1
i 6∈In

o−γiγ−1 ∼ 1
γ
o−γnγ

and variance
n

∑

i=o+1
i 6∈In

o−γiγ−1(1− o−γiγ−1) ∼ 1
γ
o−γnγ .
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By Chebyshev’s inequality

P
(

|(Gn, On)| < cn
∣

∣F(Tn)
)

≤ P(Sn < cn) ≤ P(|Sn − ESn| > 1
γ
o−γnγ − cn)

≤ o−γnγ

(o−γnγ − γcn)2
≤ nγn
nγ

(1 + o(1)) −→ 0,

as required.

4.2 Survival of the killed branching random

walk

We will come back to the coupling and check how to use it to get information
about the giant in the third section. But before that we collect information
on the limiting object, the killed branching random walk by a probabilistic
analysis based on martingale theory.

4.2.1 Martingales associated with branching random
walks

We first look at a branching random walk with offspring distribution given
by a Poisson process with intensity ν without killing. Given α > 0 we define

ρ(α) :=

∫

e−αt ν(dt).

Although we need the results only for a specific ν (i.e. the π defined above)
we will work with the general case assuming just that ν is not degenerate
in the sense that there is mass on the left half-axis and there exists an open
interval I ⊂ (0,∞) (possibly empty) such that ρ(α) < ∞ for all α ∈ I
and ρ(α) diverges to infinity when α approaches the boundary points of the
interval I.

We describe the nth generation of this process started with a particle in
the origin as a sequence of measures (Y (n)(dx))n. With every generation of
particles we associate a score

Xn :=

∫

e−αx Y (n)(dx).

This score will be used to define martingales and supermartingales.

Lemma 4.8.

(a) If ρ(α) <∞, then (ρ(α)−nXn : n ∈ N) is a martingale.
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(b) If ρ(α) ≤ 1, then (Xn : n ∈ N) is a supermartingale.

Proof. With the natural filtration (Fn) we have

E[Xn+1 | Fn] = E
[

∫∫

e−α(x+y)Px(dy)Y
(n)(dx) | Fn

]

,

where Px are independent Poisson processes with intensity ν, which are also
independent of Fn. Hence this equals

∫

E
[

∫

e−α(x+y)P (dy)
]

Y (n)(dx),

where the Poisson process P has intensity ν. Hence

E
[

∫

e−α(x+y)P (dy)
]

=

∫

e−α(x+y)ν(dy) = e−αxρ(α).

Altogether

E[Xn+1 | Fn] = ρ(α)Xn,

from which the claim follows.

Proposition 4.2. If there exists α > 0 such that ρ(α) ≤ 1 the killed
branching random walk becomes extinct almost surely.

Proof. Suppose that such an α exists. Then (Xn : n ∈ N) is a supermartingale
and thus almost surely convergent. Now fix some N > 1, an integer n ≥ 2 and
the state at generation n − 1. Suppose there is an individual with location
x < N in the (n − 1)st generation. Then there is a positive probability
(depending on N but not on n) that |Xn − Xn−1| > 1 and, as (Xn : n ∈
N) converges, this can only happen for finitely many n. Hence either the
branching random walk dies out in finite time or the location of the leftmost
particle in (Y (n)(dx))n diverges to +∞ almost surely. This implies that the
killed process dies out almost surely.

4.2.2 A Kesten-Stigum result

We define a nonnegative martingale by

W (n) = ρ(α)−n
∫

e−αx Y (n)(dx),

and find a sharp criterion that the almost sure limit W is positive.
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Lemma 4.9. The mapping

log ρ : (0,∞) → (−∞,∞], α 7→ log ρ(α)

is convex.

Proof. This is an easy exercise.

Proposition 4.3 (Biggins (1977)). The martingale (W (n))n∈N converges almost
surely on survival to a strictly positive limit W if

log ρ(α)− α ρ′(α)

ρ(α)
> 0 and E

[

W (1) log+W (1)
]

<∞. (4.4)

Moreover, under this assumption the survival probability is positive and almost
surely on survival there exist a ray (vn) of individuals in the tree with positions
xn in generation n satisfying

xn
n

−→ −ρ
′(α)

ρ(α)
.

The result is sharp, as when (4.4) fails, then W = 0 almost surely, but
we will only use the claimed direction. The rest of this subsection is devoted
to the proof of this result, we follow Lyons (1995). Given a rooted tree (with
distinguishable children) with vertices labelled by displacements on the real
line, a ray is an infinite line of descent starting at the root. The space of
rooted labelled trees gives rise to a filtration (Fn), as does the space of rooted
labelled trees with a distinguished ray, we denote the latter by (F∗

n).

We write (t, X) for a tree and its labels X : t→ R. For a vertex σ ∈ t we
write X(σ) for its label and

S(σ) =
∑

o<τ≤σ

X(τ)

for its position. Let

W (n)(t, X) = ρ(α)−n
∑

|σ|=n

e−αS(σ),

which when (t, X) is the labelled tree given by the Poisson branching random
walk defines the martingale above. We denote by µ the law of (t, X). We
now define an associated law µ̂∗ on the infinite rooted labelled trees with a
distinguished ray. Let µn be the restriction of µ to Fn. Any F∗

n-measurable
function f can be written as

f(t, X, ξ) =
∑

|σ|=n

fσ(t, X)1ξn=σ.
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Define µ∗
n as the (not necessarily probability) measure on F∗

n given by
∫

f(t, X, ξ) dµ∗
n =

∫

∑

|σ|=n

fσ(t, X)dµ,

and a probability measure µ̂∗
n on F∗

n by

dµ̂∗
n

dµ∗
n

(t, X, ξ) = ρ(α)−ne−αS(ξn).

Lemma 4.10. There exists a (unique) probability measure µ̂∗ such that the
restriction to F∗

n is µ̂∗
n for all n.

Proof. We define P̂ as the random variable with law given by the density
∫

e−αxP (dx)

ρ(α)

with respect to the law of the Poisson process P . We generate an iid sequence
P̂0, P̂1, P̂2, . . . of random variables with this law. To define µ̂∗ we start with
an individual v0 at the origin and use P̂0 to generate its offspring. Out of
the (nonvanishing) offspring pick an individual v1 = v with respect to the
probability vector

e−αX(v)

∫

e−αxP̂0(dx)
.

We use the positions of all individuals v 6= v1 to start independent branching
random walks and use P̂1 to determine the offspring of v1 and its displacements.
Continue by picking v2 = v using the probability vector

e−αX(v)

∫

e−αxP̂1(dx)
,

use the positions of all offspring v 6= v2 to start independent branching
random walks, use P̂2 to determine the offspring of v2 and continue like
this ad infinitum.

Now let µ̂∗ be the joint law of the random labelled tree and distinguished
ray (v0, v1, v2, . . .). Then we have

dµ̂∗
n+1

dµ∗
n+1

(t, X, ξ) =
dµ̂∗

n

dµ∗
n

(t, X, ξ)

∫

e−αxPn(dx)

ρ(α)

e−αX(ξn+1)

∫

e−αxPn(dx)

=
e−αX(ξn+1)

ρ(α)

dµ̂∗
n

dµ∗
n

(t, X, ξ).

The claimed property of µ̂∗
n follows from this by induction.

67



The projection of µ̂∗ onto the space of rooted labelled trees (forgetting
which ray has been distinguished) is denoted by µ̂ and satisfies

dµ̂n
dµn

(t, X) = W (n)(t, X), (4.5)

for all n and labelled trees (t, X), where µ̂n is the restriction of µ̂ to Fn.

Let (v0, v1, v2, . . .) be the distinguished ray generated by µ̂∗. Then, for
any k ∈ N, we have

∫

X(vk) dµ̂
∗ = E

[

X(vk)
e−αX(vk)

∫

e−αyPvk−1
(dy)

∫

e−αyPvk−1
(dy)

ρ(α)

]

= ρ(α)−1
E
[

∫

ye−αyP (dy)
]

= −ρ
′(α)

ρ(α)
.

As under µ̂∗ the labels (X(vk) : k ∈ N) are iid, the strong law of large numbers
gives

S(vn)

n
=

1

n

n
∑

k=1

X(vk) → −ρ
′(α)

ρ(α)
µ̂∗-almost surely.

In particular a ray with
xn
n

−→ −ρ
′(α)

ρ(α)

exists µ̂-almost surely.

Now denote P̂k be the random variable used to generate the offspring of
distinguished vertex vk and let G be the σ-algebra generated by P̂0, P̂1, P̂2, . . .
and v1, v2, . . .. Let

Vk+1 =

∫

e−αxP̂k(dx).

Further let Ê∗ be the the expectation with respect to µ̂∗. Then

Ê
∗
[

W (n)(t, X)
∣

∣G
]

=

n−1
∑

k=0

e−αS(vk)

ρ(α)k+1

(

Vk+1 − e−αX(vk+1)
)

+
e−αS(vn)

ρ(α)n

=

n−1
∑

k=0

e−αS(vk)

ρ(α)k+1
Vk+1 −

n−1
∑

k=1

e−αS(vk)

ρ(α)k
.

The terms e−αS(vk)/ρ(α)k decay exponentially by our assumption, while Vk+1

grow at most subexponentially as

E[log+ Vk] = ρ(α)−1
E
[

W (1) log+W (1)
]

<∞,
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using Fubini and Borel-Cantelli. Therefore the series on the right both
converge µ̂∗-almost surely. By Fatou’s lemma we get

lim inf
n→∞

W (n)(t, X) <∞ µ̂-almost surely.

Now (4.5) implies that 1/W (n)(t, X) defines a martingale with respect to µ̂.
Hence (W (n)(t, X))n converges µ̂-almost surely and together with the result
on the liminf we get that the limit, denotedW (t, X), is µ̂-almost surely finite.

We conclude the argument by noting that

dµ̂(t, X) =W (t, X) dµ(t, X),

which implies that P(W > 0) is positive. Because of the independence of the
offspring one can infer that W > 0 almost surely on survival, see exercises
for details. In particular the existence of the convergent ray holds µ-almost
surely on survival.

4.2.3 A sharp criterion for survival

We now complement Proposition 4.2 with the converse result to give a
necessary and sufficient criterion for a positive survival probability.

Proposition 4.4. If for all α > 0 we have ρ(α) > 1, then the killed branching
random walk survives with positive probability.

Proof. First, assume that 1 < ρ(α) < ∞ and the second condition in (4.4)
holds for all α > 0 and that there exists α0 > 0 such that

ρ(α0) = min
α>0

ρ(α) > 1.

By convexity and continuous differentiability of log ρ there exists α > α0

such that

log ρ(α)− α ρ′(α)

ρ(α)
> 0 and

ρ′(α)

ρ(α)
> 0.

Then, by Proposition 4.3, with positive probability the limit W is positive
and there exists a ray with

lim
n→∞

xn
n

= −ρ
′(α)

ρ(α)
< 0.

Second, to ensure that the second condition in (4.4) holds we can use a
cut-off procedure, and replace the offspring distribution Y (1)(dx) by one that
takes only the offspring within distance N to the parent into account. It is
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easy to see that, for fixed α and sufficiently large N , we can ensure that the
new (finite) value ρ(N)(α) replacing ρ(α) is close to the original one if this
was finite, and as large as we wish if it was infinite, i.e.

ρ(N)(α) ր ρ(α).

By our assumptions on ρ there exists an α0 such that

ρ(α0) = min
α∈I

ρ(α) > 1.

Using the fact that a sequence of convex functions, which converges pointwise,
converges uniformly on every closed set, we can choose N so that the function
ρ(N) takes its minimum in an open interval around α0 and this minimum is
strictly bigger than one, while the cut-off ensures that the second criterion
in (4.4) automatically holds. The argument above can now be applied and
yields the existence of an ancestral line of particles diverging to −∞, which
then automatically also exists in the original branching random walk.

We get that in the (not killed) branching random walk with positive
probability there exists an ancestral line of particles diverging to−∞. Because
ν has mass on the left half-axis, for any M > 0, with positive probability the
killed branching random walk has a particle in a position < −M . These two
statements together imply that the killed branching process started in any
position on the left half-axis has a positive probability of survival.

4.3 Existence of the giant component

Recall that we say that a giant component exists in the sequence of graphs
(Gn)n∈N if the proportion of vertices in the largest connected component
Cn ⊂ Gn converges, for n ↑ ∞, in probability to a positive number.

Theorem 10 (Existence of a giant component). The proportion of vertices
in the largest component Cn of the simple preferential attachment graph Gn

converges, as n ↑ ∞, in probability to

P(|T| = ∞),

where T is the tree associated with the unimodular killed Poisson branching
random walk with intensity π. In particular, a giant component exists if and
only if T is infinite with positive probability.
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We prove this result in several step in the remainder of this section.
Theorem 9 follows from this as we have seen that the tree T is almost surely
finite if there exists α > 0 such that ρ(α) ≤ 1 for

ρ(α) =

∫

e−αt dπ(t)

= β

∫ ∞

0

e(γ−α)t dt+ β

∫ 0

−∞

e(1−γ−α)t dt

=
β

α− γ
+

β

1− γ − α
,

if γ < α < 1 − γ and infinity otherwise. Only if γ < 1
2
we can pick α with

ρ(α) finite and in this case α = 1
2
minimizes ρ(α) and gives

ρ(1
2
) =

2β
1
2
− γ

,

which is no bigger than one if

β ≤ 1

4
− γ

2
.

4.3.1 Sprinkling

Our proofs, in particular the crucial sprinkling technique, relies on the following
continuity property of the survival probability

p(β) := P(|T| = ∞)

of the killed branching random walk as a function of the edge density parameter β.

Lemma 4.11. We have

lim
εց0

p(β − ε) = p(β).

Proof. We only need to consider the case where p(β) > 0, as otherwise both
sides of the equation are zero. This assumption implies, by Lemma 4.4, that
for all 0 < α < 1 we have ρ(α, β) := ρ(α) > 1. As

ρ(α, β) =
β

α− γ
+

β

1− γ − α
for γ < α < 1− γ

and infinity otherwise, for all sufficiently small ε > 0 we have ρ(α, β− ε) > 1
for all 0 < α < 1. Thus, using again Lemma 4.4, we have p(β − ε) > 0.
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Now we look at the killed branching random walk started with one particle
in position t, constructed using edge intensity parameter β−ε. We denote by
E(ε, t) the event this process survives forever, and by V (ε, t, κ) the probability
that a particle reaches a site < κ. Then we have

lim
κ→−∞

inf
t≤κ

P
(

E(ε, t)
)

= 1.

For fixed κ < 0 and 0 ≤ ε ≤ ε0 we have

P
(

E(ε, t)
)

≥ P
(

V (ε, t, κ)
)

P
(

E(ε0, κ)
) ε↓0−→ P

(

V (0, t, κ)
)

P
(

E(ε0, κ)
)

.

Note that the first probability on the right is greater or equal to p(β) and
that the second probability tends to one, as κ tends to −∞.

The crucial tool of this section is the ‘sprinkling’ argument in Proposi-
tion 4.5, which shows that the extra edges generate when increasing β by
ǫ suffice to connect large components to a giant. Recall that a sequence of
events depending on the index n holds with high probability if the probability
of these events goes to one as n ↑ ∞.

Proposition 4.5 (Sprinkling argument). Suppose that (cn)n∈N is a sequence
of integers with

c2n
n

→ 0, cn − log n→ ∞

and that, for the graphs (Ḡn)n∈N with density 0 < β̄ < β and κ > 0 we have

n
∑

i=1

1{|C̄n(i)| ≥ 2cn} ≥ κn with high probability,

where C̄n(i) is the connected component of the vertex i in Ḡn. Then there
exists a coupling of the graph sequences (Gn)n∈N and (Ḡn)n∈N such that Ḡn ≤
Gn and all connected components of Ḡn with at least 2cn vertices belong to one
connected component in Gn with at least κn vertices, with high probability.

Proof. Let ε = β − β̄ > 0. Note that we can couple Ḡn and an independent
Erdős-Rényi graph GER

n with edge probability ε/n with Gn such that

Ḡn ≤ Ḡn ∨GER
n ≤ Gn. (4.6)

Here, Ḡn ∨GER
n denotes the graph in which all edges are open that are open

in at least one of the two graphs, and G′ ≤ G′′ means that all edges that are
open in G′ are also open in G′′. We denote by V ′

n the vertices in Ḡn that
belong to components of size at least 2cn and write V ′

n as the disjoint union
C1 ∪ · · · ∪ CM , where C1, . . . , CM are sets of vertices such that,

72



• |Cj| ∈ [cn, 2cn] and

• Cj belongs to one component in Ḡn, for each j = 1, . . . ,M .

Recall (4.6), and note that given Ḡn and the sets C1, . . . , CM , the Erdős-
Rényi graph GER

n connects two distinct sets Ci and Cj with probability at
least

pn := 1−
(

1− ε
n

)c2n ≥ 1− e−
ε
n
c2n ∼ ε

n
c2n.

By identifying the individual sets as one vertex and interpreting the GER
n -

connections as edges, we obtain a new random graph. Certainly, this domi-
nates an Erdős-Rényi graph with M vertices and success probability pn,
which has edge intensity Mpn. By assumption, 1

2
κn
cn

≤ M ≤ n with high
probability. Hence M → ∞ and Mpn− logM → ∞ in probability as n ↑ ∞.
We have seen in an exercise that the new Erdős-Rényi graph is connected
with high probability. Hence, all vertices of V ′

n belong to one connected
component in Gn, with high probability.

4.3.2 The variance of the cluster size

In this section we provide the second moment estimate needed to show that
our key empirical quantity, the number of vertices in connected components
of a given size, concentrate asymptotically near their mean.

Proposition 4.6. Suppose that (cn)n∈N and (nn)n∈N are sequences of integers
satisfying 1 ≤ cn, nn ≤ n. Then, for a constant C > 0 we have

V ar
(1

n

n
∑

v=1

1{|Cn(v)| ≥ cn}
)

≤ 2P
(

|Cn(On)| < cn and Cn(On) ∩ {1, . . . , nn} 6= ∅
)

+
cn
n

+ C c2nn
−1
n + Ccnn

γ−1
n ,

where On is independent of Gn and uniformly distributed on {1, . . . , n}.
Proof. Let v, w be two distinct vertices of Gn. We start by exploring the
neighbourhood of v similarly as before. As before we classify the vertices
as veiled, active and dead, and in the beginning only v is active and the
remaining vertices are veiled. In one exploration step we pick the leftmost
active vertex and consecutively (from the left to the right) explore its immediate
neighbours in the set of veiled vertices only. Newly found vertices are activated
and the vertex explored is set to dead after the exploration. We immediately
stop the exploration once one of the events

(A) the number of unveiled vertices in the cluster reaches cn,
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(B) one vertex in {1, . . . , nn} is activated, or

(C) there are no more active vertices left,

happens. Note that when we stop due to (A) or (B) the exploration of the
last vertex might not be finished. In that case we call this vertex semi-active.

We proceed with a second exploration process, namely the exploration
of the cluster of w. This exploration follows the same rules as the first
exploration process, where we treat the vertices that remained active or semi-
active at the end of the first exploration as veiled. In addition to the stopping
in the cases (A), (B), (C) we also stop the exploration once a vertex is unveiled
which was also unveiled in the first exploration, calling this event (D). We
consider the following events:

Ev : the first exploration started with vertex v ends in (A) or (B);

Ev,w
1 : w is unveiled during the first exploration (that of v);

Ev,w
2 : w remains veiled in the first exploration and the second exploration

ends in (A) or (B) but not in (D);

Ev,w
3 : w remains veiled in the first exploration and the second exploration

ends in (D).

We have

n
∑

v=1

n
∑

w=1

P(|Cn(v)| ≥ cn, |Cn(w)| ≥ cn) ≤
n

∑

v=1

n
∑

w=1

3
∑

k=1

P(Ev ∩ Ev,w
k )

=

n
∑

v=1

P(Ev)

3
∑

k=1

n
∑

w=1

P(Ev,w
k | Ev).

As the first exploration immediately stops once one has unveiled cn vertices,
we conclude that, for fixed v,

n
∑

w=1

P(Ev,w
1 | Ev) = E

[

n
∑

w=1

1Ev,w
1

∣

∣

∣
Ev

]

≤ cn. (4.7)

To analyse the remaining terms, we fix distinct vertices v and w and note
that the configuration after the first exploration can be formally described
by an element k of

{open, closed, unexplored}En,

where En := {(i, j) ∈ {1, . . . , n}2 : i < j} denotes the set of possible edges.
We pick a feasible configuration k and denote by Ek the event that the first
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exploration ended in this configuration. On the event Ek the status of each
vertex (veiled, active, semi-active or dead) at the end of the first exploration is
determined. Suppose k is such that w remained veiled in the first exploration,
which means that Ek and Ev,w

1 are disjoint events. Next, we note that

P(Ev,w
2 | Ek) ≤ P(Ew). (4.8)

Indeed, if in the exploration of w we encounter an edge which is open in the
configuration k, we have unveiled a vertex which was also unveiled in the
exploration of v, the second exploration ends in (D) and hence Ev,w

2 does not
happen. Otherwise, the event Ek does not influence the exploration of w and
hence we obtain (4.8).

Finally, we analyse the probability P(Ev,w
3 | Ek). If the second exploration

process ends in state (D) we have discovered an edge connecting the second
exploration to an active or semi-active vertex from the first exploration.
Recall that there are at most cn such vertices and at most one of them
is in {1, . . . , nn}. For each of these we have to test the existence of edges no
more than cn times. Hence we find C > 0 such that

P
(

Ev,w
3

∣

∣Ev
)

≤ Cc2nn
−1
n + Ccnn

γ−1
n .

Summarising our steps, we have

V ar
(1

n

n
∑

v=1

1{|Cn(v)| ≥ cn}
)

≤ E

[ 1

n2

n
∑

v=1

n
∑

w=1

1{|Cn(v)| ≥ cn, |Cn(w)| ≥ cn}
]

− 1

n2

n
∑

v=1

n
∑

w=1

P(Ev)P(Ew)

+ 2
1

n

n
∑

v=1

P
(

|Cn(v)| < cn and Cn(v) ∩ {1, . . . , nn} 6= ∅
)

≤ 2P
(

|Cn(On)| < cn and Cn(On) ∩ {1, . . . , nn} 6= ∅
)

+
cn
n

+ C c2nn
−1
n + Ccnn

γ−1
n ,

as required to complete the proof.

4.3.3 Proof of Theorem 10

We start by proving the lower bound. Suppose therefore that p(β) > 0, fix
δ > 0 arbitrarily small and use Lemma 4.11 to choose ε > 0 such that the
survival probability of β̄ = β − ε is larger than p(β) − δ. We denote by
(Ḡn)∈N a sequence of random graphs with edge intensity parameter β̄ and
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let C̄n(v) the connected component of v in Ḡn. Suppose a vertex V is chosen
uniformly at random from {1, . . . , n}. We choose

cn := ⌈(log n)2⌉

and

nn := ⌈n
γ

γ+1 (log n)5⌉.
Observe that

lim
n→∞

cn

n1−γ
n

= 0 and lim
n→∞

cnn
γ

nγ+1
n

= 0 and lim
n→∞

c2n
nn

= 0.

and

lim
n→∞

cnn
γ
n

nγ
= 0.

As, by Proposition 4.1 and Lemma 4.7,

E

[ 1

n

n
∑

v=1

1{|C̄n(v)| ≥ cn}
]

= P{(Ḡn, On) f Tn stops in (A) or (B)}+ o(1)

= P{T̄f Tn stops in (A) or (B)}+ o(1) −→ P{|T̄| = ∞}, (4.9)

where T̄ is the unimodular branching random walk using intensity parameter β̄.
We infer from this that

lim
n→∞

E

[ 1

n

n
∑

v=1

1{|C̄n(v)| ≥ cn}
]

≥ p(β)− δ,

as n tends to infinity. By Proposition 4.6 we have

V ar
( 1

n

n
∑

v=1

1|C̄n(v)|≥cn

)

≤ 2P
(

|C̄n(On)| < cn and C̄n(On) ∩ {1, . . . , nn} 6= ∅
)

+
cn
n

+ C c2nn
−1
n + Ccnn

γ−1
n .

The first summand goes to zero by Lemma 4.7 and so do the remaining terms,
by the choice of our parameters. Hence

lim inf
n→∞

1

n

n
∑

v=1

1{|C̄n(v)| ≥ cn} ≥ p(β)− δ in probability,

and as
c2n
n

→ 0, cn − logn→ ∞,
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Proposition 4.5 implies that, with high probability, there exists a component
comprising at least a proportion p(β) of all vertices, proving the lower bound.

To see the upper bound we work with the original intensity β. In analogy
to (4.9) we obtain

lim
n→∞

E

[ 1

n

n
∑

v=1

1{|Cn(v)| ≥ cn}
]

= p(β).

As in the lower bound, the variance goes to zero, and hence we have

lim
n→∞

1

n

n
∑

v=1

1{|Cn(v)| ≥ cn} = p(β) in probability.

From this we infer that, in probability, the size of the largest component Cn
satisfies

lim sup
n→∞

|Cn|
n

≤ lim sup
n→∞

cn
n

∨
(1

n

n
∑

v=1

1{|Cn(v)| ≥ cn}
)

≤ p(β)

proving the upper bound.

Corollary 4.1. The proportion of vertices of Gn, which are not in the
largest component but in components of size at least (logn)2 goes to zero
in probability. In particular the proportion of vertices in the second largest
component of Gn vanishes asymptotically.

Proof. Note that we have seen, with cn as before, that

lim
n→∞

1

n

n
∑

v=1

1{|Cn(v)| ≥ cn} = p(β) in probability,

so that, with high probability, the proportion of vertices in clusters of size ≥
cn is asymptotically equal to the proportion of vertices in the giant component.
Hence the proportion of vertices, which are not in the giant component but
in components of size at least cn goes to zero in probability.

4.4 The phase transition: A closer look at

cluster sizes

For the simple preferential attachment one can ask further questions, that
may be suitable topics for master thesis research. The following questions
(and many others) come to mind:
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• When γ < 1
2
, how quickly does the size of the giant component go to

zero when β ↓ βc > 0? This has been studied for a more sophisticated
model by Eckhoff, Mörters and Ortgiese.

• When γ < 1
2
and β < βc , how quickly does

lim
n→∞

P{|(Gn, On)| ≥ k}

decay as k → ∞? There is a useful recent paper on the corresponding
problem for killed Poisson branching random walks, see Aidekon, Hu
and Zindy.

• When γ < 1
2
and β > βc what is the size of the second largest

component? Can this be related to P{k ≤ |T| < ∞} for k → ∞
and can we find its asymptotic behaviour?

• When γ < 1
2
and β < βc, what is the size of the largest component?

Here the branching process approximation cannot be used directly,
which makes this harder. The answer is known for the Chung-Lu model,
see van der Hofstad II, Theorem 3.22.

• When γ ≥ 1
2
, how does the size of the giant component behave as β ↓ 0?

The paper by Eckhoff, Mörters and Ortgiese might have some clues in
this case, too, but the answer is less clear.

• When γ ≥ 1
2
, what is the size of the second largest component? Same

problem as before and equally interesting and challenging problem.
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