CHAPTER 1

Martingales: Basic Properties and Stopping Theory

1. The framework

Martingales are a class of real-valued stochastic processes in discrete time. The mathematical
model for a stochastic process has two ingredients,

e a probability space (2, A,P) consisting of a set Q endowed with
— a o-algebra A C P(0),
— and a probability measure P : 4 — [0, 1],
e a sequence X = {X;, X, X3,...} of random variables, modelled as measurable map-
pings X, : 2 = R

The o-algebra A consists of all events, i.e. the outcomes of the random experiment, which
can be observed. The fact that X;, Xs, X3,... are measurable ensures that we can assign
probabilities, for example, to the following events,

e {X, € A}, for A C R an open (or even Borel) set,
e {X, € A for infinitely many n} = (o_, s>, {X, € A},
° {limn_)oo X, = c} = ﬂ:zl Uzo:m ﬂ;’;n {|Xj —c| < %}
The exact form of the underlying probability space (€2, A, P) is irrelevant in most cases, at

the end of the day it is just a tool to consistently assign probabilities to events, which involve
several of the random variables X, X5, X3, .. ..

2. Information and filtrations

If we have information about the outcome of a random event, this can be described by a subset
F C A consisting of all the events about which we know whether they have happened or not.
It is easy to check that this subset must satisfy the axioms of a o-algebra. In other words,

Information can be modelled by a sub-g-algebra F C A.

Examples (1) Suppose Q2 = {1,2,3,4,5,6}, A = P(Q2) and P given by P{i} = 1/6 for all
1 € ). This is the model for throwing a die. The information whether an even number was
thrown is encoded in the o-algebra F = {(Z), {2,4,6},{1,3,5}, Q}

(2) Suppose X : Q@ = {1,...,n}and Y : Q — {1,...,m} are two random variables on the same
probability space (2, .4,P). If we have observed the value for Y we know whether the events
{V =k} = Y"Hk}, k = 1,...,m, have taken place and thus we have received information

encoded in the o-algebra
oYV):={Y1(4) :Ac{1,...,m}}.
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(3) In our example of the stochastic process X, if we have observed X, X, ..., X,
we let F, = o(Xy,...,X,) be the smallest o-algebra that makes the random variables
X1, X, ..., X, : © = R measurable. This o-algebra represents the information available from
observing the process up to time n.

In the last example we have seen that a stochastic process X gives rise to a whole nested
sequence of g-algebras F,,n > 0, which model the increase of information obtained from
observing a longer and longer part of the process. This situation is so important that it
deserves a definition of its own.

Definition A sequence {F, : n € N} of g-algebras such that F, C F,.1 C A, for every n € N
is called a filtration. As seen in example (3) any stochastic process gives rise to a filtration
{F, : n € N}, which is called the natural filtration induced by the process.

3. Conditional expectation

The second step is, given information, how does this change the probability of events? Note first
that it is obvious that probabilities change when additional information is present. For example
in Example (1), if we know that an even number was thrown, the new (conditional) probability
that three was thrown is zero, and the probabilities that two, four or six were thrown must go
up accordingly.

Let us look more closely at Example (2). Suppose that (2, A, P) is a probability space and X
and Y are random variables on this space. We assume for simplicity that both random variables
take on finitely many real values {1,...,n} resp. {1,...,m} each with positive probability. We
suppose that X and Y are not independent. How does knowledge about the outcome of X
influence the outcome of Y7 This can be described by means of conditional probabilities

P{X =iand Y = j}

P{Y = j}
One way to look at this is the following: if we have observed the event {Y = j} this changes
our perception of the random variable X, it is now defined on a different probability space, on

which only those w can occur, which satisfy Y (w) = j. The new space still consists of the set
Q2 and the o-algebra A, but the probability measure is now P{-|Y = j}, given by

P(ANn{Y =})

P{Y = j}
The random variable X is still be defined on the space, but its distribution has changed and is
now the conditional distribution given Y = j. Its expectation is now

P{X =i|Y =j}:=

P{A|Y =} :=

E{X|Y =j}:=) kP{X=k|V =j}.
k=1
This conditional expectation depends on j and can be interpreted as a random wvariable on 2
namely by
E{X|Y}:Q—>R, E{X|Y}(w=E{X|Y=Yw)}.
The random variable E{ X |Y } has the following properties :



(1) it is measurable with respect to the o-algebra o(Y'),

(2) for every A C {1,...,m} we have / | E@)ape) = /Y 1y XP)

The first property means that it is constant on each set Y~1{;j} for j = 1,...,m. The second
property follows from the calculation,

/Y_I(A)E{X V) dBw) = SRIXY = 1B = ) = 3OS TRR{X = k| v = j}R(Y =}

JEA JEA k=1
= Z Z k']P’{X =kand Y = j} = /Z Z k 1{X(w):k}1{Y(w):j} dIF’(w)
JEA k=1 JEA k=1
= /X(w)zl{X(w)—k}Zl{Y(w)—j} dP(w) =/ X (w) dP(w) .
k=1 jEA Y=1(4)

In this example the additional information we had consisted of the knowledge of the cell
Y14} C Q in which the random w was to be found.

What we need is an extension of the notion of conditional expectation to general o-algebras
representing information. We have formulated the properties of the conditional expectation in
the special case in such a way that it can be used as a basis for a new definition.

THEOREM 1.1. Let (2, A,P) be a probability space, F C A a sub-o-algebra and X a random
variable with E|X| < co. Then there is a random variable Z = E{ X |F} with ]E|Z| < 00 called
the conditional expectation of X given F with the following two properties:

1) E{X|F} is F-measurable,
2) forall F € F, /]E{X|.7-"}dIP’= / X dP.
F F
Any two random wvariables Z satisfying these two conditions coincide almost surely.
If F =Y 1(A') is the o-algebra of preimages of all Borel sets under a random variable Y, one
also writes E{X|Y'} for E{X|F} and says this is the conditional expectation of X given Y.
By choosing F' = Q in the last property, we see that E{E{X|F}} =EX .

Handout 1 gives a proof of almost sure uniqueness and existence for conditional expectations.
More can be found in Williams, Chapter 9. We now formulate some important properties of
conditional expectations, which can be proved from the definition and uniqueness.

THEOREM 1.2. Let (2, A,P) be a probability space, F C A a sub-c-algebra and X,Y random
variables with E| X |, E|Y| < co. Then the conditional expectations have the following properties.

Linearity: For all a,b real, almost surely,
]E{aX+bY|.7—"} =aE{X | F} + 0E{Y | F}.

Positivity: If X > 0, then E{X|F} > 0 almost surely.
Monotone Convergence: If0 < X, 1 X, then E{X,,|F} 1 E{X|F} almost surely.



Fatou: If0 < X,, and E{X,,|F} < oo, then
E{liminf X,, | F} < liminf E{X,, | F} almost surely.

Dominated Convergence: If there is a random variable Z such that EZ < oo and
| Xn| < Z for all n, and if X,, — X almost surely, then E{ X, |F} — E{X|F}.

As an EXERCISE you should try to prove at least two of the statements.

The next set of properties is of more probabilistic nature. Try to get an intuition for the
meaning of the statement.

THEOREM 1.3. Let (Q, A, P) be a probability space, F C A a sub-o-algebra and X a ran-
dom wariable with E|X| < co. Then every conditional probability B{X|F} has the following
properties.

Tower property: If G C F is a sub-o-algebra, then E{E{X\}“}‘g} =E{X|G} almost
surely.

Taking out what is known, TOWIK: If 7 is F-measurable and bounded, then
E{ZX|F} = ZE{X|F} almost surely. If X itself is F-measurable, then E{X|F} = X
almost surely.

Independence: If X is independent of F, then IE{X | f} =E{X} almost surely.

Proof: By linearity we can assume that X > 0 in all parts of the proof.

For the tower property note that the left hand side is G measurable and, for every G € G C F,

LE{]E{XV}‘Q}CZ]Pz/G]E{X|}"}dIP’:/GXdIP.

Hence the integrand on the left hand side satisfies all the properties of conditional expectation
E{X|G} and must be a conditional expectation of X given G.

To check TOWIK, we observe that ZE{ X |F} is F-measurable and integrable. We just have
to show, for every F' € F,

/ZXd]P’:/Z]E{XU—"}d]P’,
F F

then it follows that ZE{X|F} is a conditional expectation of ZX given F. The given equality
holds for 7 = 1y, H € F, by definition and follows for bounded F-measurable Z by an
application of the monotone class theorem.

The particular case mentioned at the end of TOWIK holds, because in the given situation, X
itself satisfies the conditions of a conditional expectation of X given F.

For the independence property observe that the constant function E{ X' } is F-measurable. Recall
that, if X is independent of F this means that X is independent of every F-measurable random
variable Y, and hence E{ XY } = E{X}E{Y }. In particular, for F' € F, we get

/FX(w) dP(w) =E{1;X} =E{17} E{ X} = P(F)E{X} = /F]E{X} dP(w).

This proves that the constant function E{X} is a conditional probability of X given F. [ ]



4. Martingales and super-martingales

In this chapter we get to know the processes which correspond to fair games, the martingales.
Symmetric random walk and the critical Galton-Watson process (with expected offspring num-
ber one) turn out to be important examples. The word martingale originally denotes a special
gambling strategy, indicating the connection to fair games.

Let {X,, : n > 0} be a stochastic process in discrete time and let {F(n) : n > 0} be a
filtration, i.e. an increasing sequence
FOcFQ)ycF2)c...cA
of o-algebras. We call the process {X,,} an {F(n)}-adapted process, if
X, is F(n)-measurable, for all n > 0,

In most cases we consider the natural filtration. Clearly, every process is adapted to its natural
filtration.

Definition
A discrete time process {X,, : n > 0} is called a martingale relative to the filtration {F(n)} if

e {X,}is {F(n)}-adapted,
e E{|X, |} < oo for all n, and
e E{X, | F(n—1)} = X,_; almost surely, for all n > 1.

If we have just < in the last condition, then {X,} is called a supermartingale, if > holds in
the last condition, then {X,} is called a submartingale .

Let us convince ourselves, before starting the discussion of martingales, that there are plenty
of interesting examples.

(1) Random walk Suppose that X7, Xs, ... are independent random variables with E|X,,| < oo
and EX,, = 0. Let S,, = >_,_, Xj be the partial sums and F(n) be the natural filtration of the
{S,}. Observe that this is also the natural filtration for the {X,}. Then

n—1 n—1
E{S, | F(n—1)} = ]E{ 3 Xi+ X | Fln— 1)} =3 Xy +EX, = S, as.
k=1 k=1

Hence the random walk {S,} is a martingale.

(2) Random product Suppose that X7, Xs, ... are independent nonnegative random variables

with EX,, = 1. Let M,, = [][,_, X&. Let F(n) be the natural filtration. Then,
E{M,|F(n—1)} = My \E{X,| F(n - 1)} = M,, 1EX,, = M,,_;.

Hence {M,,} is a martingale.

(3) Accumulating data about a random variable Let the filtration {F(n)} be arbitrary
and X an integrable random variable. Define X,, = E{X|F(n)}, one should interpret X, as
the data accumulated about X at time n. The martingale property of {X,} follows from the
tower property of conditional expectation

E{X, | F(n - 1)} = B{E{X | F(n)} | F(n - 1)} =E{X | F(n— 1)} = X,_1.



(4) Galton Watson process The Galton Watson process { X, } is constructed in the usual way.
Choose an offspring distribution on the nonnegative integers characterized by the probability
masses (po, p1, P2, -..). There are independent random variables Y, k,n > 1, with P{Y;" =
i} = p;, and define {X,,} recursively by X, =1 and

Xpy1 = ZY"“ for all n > 0.
k=1

We assume that p:= >, kps, the expected offspring number, is finite. Let
Fn)=oY;" : m<n,k>1)
and note that {X,,} is adapted to the filtration {F(n)}. Then

E{Xn+1|f' } ZE{1k<X‘n L F(n) } Zlk<xn]E{Y”+l}_NX

k=1

where we have taken out what is known and used independence. Hence {X,} is a martingale
if and only if the expected number of offspring is 4 = 1, and a supermartingale if p < 1.

(5) Polya’s Urn At time 0, an urn contains one black ball and one white ball. At each time
n=1,2,..., a ball is chosen at random from the urn and is replaced together wit a new ball of
the same colour. Just after time n, there are n + 2 balls in the urn, of which B, + 1 are black,
where B, is the number of black balls chosen by time n. Let

B,+1

n—+2
be the proportion of black balls in the urn after time n. We argue that {M, } is a martingale
in the natural filtration {F(n)} of {B,}.

We consider a sequence of random variables { X, }, where X,, takes the value 1 if a black ball
is chosen at time n, and zero otherwise. Then B, = X; + ---+ X,,. We have P{X; = 1} =
P{X; =0} =1/2 and

M, =

P{anl‘Bn_lzk}zi_i_iforO§k§n—1,n22.

In terms of conditional expectations this means that
n—1+1
E{X,|F(n—1) }—;fornzz.
n+1

Now, forn > 1,

Bn—1+Xn+]-
E{M,|F(n-1)} = B e ‘]—"(n—l)}
Bo_i+1 X
o o)
n+ 2 * n+2 (n )
Buoi+1  Bug+1  Bai+1

= = :Mn,.
nt2 T mADm+2) n+l '



Let us discuss some consequences of the definition. First note that, for every martingale { X},
from the tower property of conditional expectation, for all m < n,

E{Xo|F(m)} = E{E{X,[F(n - 1)} | F(m)} = E{Xo1[F(m)} = ... = X
Taking expectations gives,
E{X,} = E{X,} for all n.
It is immediate from the definition that, for every martingale {X,,},
(4.1) E{X, — X,-1|F(n—-1)} =0.

Considering {X,,} to be the capital of a gambler at time n, this can be interpreted as saying
that the game is fair, the expected profit in each step is 0. In the supermartingale case this is
< 0 and the game is unfavourable. Let us explore this interpretation a bit more.

Suppose that {C,, : n > 1} is your stake on game n. You have to base your decision on C,, on
the history of the game up to time n — 1. Formally, C,, has to be F(n — 1)-measurable. We use
this to define:

A process {C,, : n > 1} is called previsible if C, is F(n — 1)-measurable.

Your winnings in game n are then C,(X,, — X,,_1) and the total winnings up to time n are given
by

Yo=Y Cio(Xp—Xpy) =: (CoX),.
k=1
The process {(C @ X),, } is called the martingale transform of {X,} by {C,}. The big question
is now: Can you choose {C,} such that your expected total winnings are positive? A positive
answer to this question would be the most useful result of this lecture, however, we can prove:

THEOREM 1.4 (You can’t beat the system). Let {C,} be a previsible process, which is bounded,
i.e. there exists C > 0 such that |Cp(w)| < C for alln > 1 and w € Q. Then, if {X,} is a
martingale, so is {(CeX),}. Moreover, (C®X )y =0 and hence E{(C ¢ X),} =0 for alln > 0.

Proof: It is clear that (C' e X),, is integrable (as C,, is bounded) and by definition the process
{V,} ={(C e X),} is adapted to the filtration {F(n)} and starts in 0. We calculate

E{Y,|F(n—1)} = ]E{ Y Cu(Xk — Xi)

k=1

]—"(n—l)}

i
L

Ck(Xk - ch—l) + Cn]E{Xn - Xn_1|f(7?, - 1)} = Yn—l .
1
This proves it all. [ ]

=
Il

Remarks:

e The proof also shows, if also C,, > 0 and {X,,} is a supermartingale, so is {(C e X),}.
e In a continuous time setting the equivalent of the martingale transform is the stochastic
integral, an advanced topic of great relevance.



5. Stopping Times and Doob’s Optional Stopping Theorem

We now study stopping times for martingales. The intuition is that a stopping time is a random
time such that the knowledge about a random process at time n suffices to determine whether
the stopping time has happened at time n or not, in other words, at any time you know whether
you have reached the stopping time or not.

Suppose that {F(n)} is a filtration on a probability space (2, A,P). A map T : Q — NU {oco}
is called a stopping time if

{T<n}={w : T(w) <n} e F(n)forall n < .

One can equivalently require {T" = n} € F(n) for all n < oco. This is easy to see, as the first
definition implies {T'=n} = {T < n}\{T <n—1} € F(n), and the second definition implies
{T <n} = UeofT =k} € F(n).

Interpreting a martingale { X, } as a fair game we interpret the stopping times as those instances
when we can quit playing (and obtain your winnings or pay your losses). If we follow this
strategy and play unit stakes up to time 7" and then quit playing, the stake process C' is

Cn = 1{n§T} =1- 1{T§n71}a
which is F(n — 1)-measurable and hence {C,,} is previsible. The winnings process is
(CoX)y=> Cie(Xy—Xp_1) = Xpan — Xo,
k=1
We define X7, the process X stopped at T, as
X};(w) = XT(w)/\n<W) .

Recall that X7 — X is the martingale transform of X by the (bounded) stake process C defined
above. Theorem 1.4 can be applied and yields:

THEOREM 1.5 (Elementary stopping theorem). If X is a martingale and T a stopping time,
then X1 is a martingale. In particular,

E{X7rnn} =E{Xo} for alln.
If X is a supermartingale, then so is XT and we still have

E{ X7} <E{Xy} foralln.

Example: We look at a simple symmetric random walk. Let Y7, Y5, ... be a sequence of
independent random variables with distribution P{Y,, = 1} = P{Y,, = —1} = 1, and let

X, = iYk.
k=1

We have seen that {X,,} is a martingale (with respect to the natural filtration) and we have
studied this process a little in previous probability lectures. Let

T=inf{n>0:X,=1}.



Clearly, T is a stopping time. Probably, you already know that P{7" < co} = 1 from lectures
about stochastic processes. The theorem states that

E{ X7} = E{X,} for all n.
However, if T' < oo almost surely, we have X7 = 1 almost surely and hence
1=EXy #EX; =0.
In some sense this means that you can beat the system if you have an infinite amount of time
and credit.

After this example one would very much like to see conditions which make sure that for nice
martingales and stopping times we have EX; = EX,. This is the content of Doob’s optional
stopping theorem.

THEOREM 1.6 (Doob’s optional stopping theorem). Let T be a stopping time and X a martin-
gale. Then X is integrable and

E{Xr} =E{Xo},
if one of the following conditions hold:
(1) T is bounded (i.e. there is N such that T(w) < N for all w),
(2) T is almost surely finite and X is bounded, (i.e. there is a real K such that | X, (w)| < K

for alln and w),
(3) E{T} < oo and there is K > 0 such that, for all n and w, | X,(w) — X,—1(w)| < K.

If {X,} is a super-martingale and either one of the three previous conditions or

(4) X is nonnegative and T almost surely finite.

holds, then Xp is integrable and E{ X} < E{X,}.

Proof: We assume that {X,} is a supermartingale. Then {X7yx,} is a supermartingale and,
in particular, integrable, and

E{X7p, — Xo} < 0.
For (1) the result follows by choosing n = N. For (2) let n — oo and use dominated convergence.
For (3) we observe that

TAn

[Xran = Xol = | 3(Xk = Xi1)| < KT
k=1

By assumption KT is an integrable function and we can use dominated convergence again. For
(4) we use Fatou’s lemma to see

E{X;} = E{lim inf X;r,} < liminf E{X7n,} = E{X,}.
n—ro00 n— 00

The statement for martingales follows by applying the previous to the supermartingales { X, }
and {—X,} separately. n

In the situation of our example these conditions must fail. A glance at the third condition gives
a striking corollary.



COROLLARY 1.7. For a simple random walk the expected first hitting time of level 1 is infinite.

6. Examples and Applications

6.1. The first run of three sixes. A fair die is is thrown independently at each time
step. A gambler wins a fixed amount of money as soon as the first run of three consecutive
sixes appears. What is the mean number of throws of the dice until the gambler wins for the
first time?

Let X1, X, ... be the outcomes of the throws, i.e. an i.i.d. sequence of random variables with
P{X; = k} = 1/6 for every k € {1,...,6}. Write F(n) = o(Xy,...,X,). Let T be the first
time three consecutive sixes appear. Clearly, 7" is a stopping time, and we are looking for E{T'}.

We argue that E{T} < oco. Indeed, in order to observe T" = k we need to have one number
different from six in every tuple (X311, Xsm+2, Xam+3) for 3m+3 < k. The probability of this
is 1 — 1/6% = 215/216 and the events are independent, for each m. Hence
215\ %5°
P{T =k} < (—) ,
{ b 216
and we infer that E{T} = > ;- kP{T = k} converges. Note that this argument is based on a
rough upper bound and does not enable us to find E{T}.

We make the following thought experiment. Just before each time n a gambler appears on the
scene and bets £1 that the nth throw will show six. If he loses, he leaves, if he wins he receives
£6, all of which he bets on the event that the (n + 1)st throw shows six again. Again if he
loses, he leaves, and otherwise he bets all his £36 on a six in the third throw, and so forth. As
the game is fair, at any time n > 3 the expected winnings should be equal to the total money
spent by the gamblers up to time n, which is n. As T is a stopping time satisfying condition (3)
of Doob’s optional stopping theorem, this should hold at time 7" as well, hence

E{T} = 6+ 6 + 6 = 258.

Indeed, E{T} is the expected money spent by the gamblers, and at time T the last gambler
has won £6, the one before has won £36 and the one before that has won the highest prize of
£216. All other gamblers have lost their stakes.

To make this rigorous, we let S, be the total stakes of all players at time n (ie. S, =
14+ 6+---+ 6Fif at time n we are in a run of k sixes) and let M,, = S, — n, in particular
My =1. Then {M,} is a martingale, as

E{M, . | F(n)} = (5/6)(1 — (n+1)) + (1/6)(6S, + 1 — (n+ 1)) = Sp — n = M,.

We look at the stopped martingale MT. We have seen that E{T} < oo and |MI — M | < 260,
hence by Doob’s Optional Stopping Theorem, Part (3), we have

1=E{My} =E{Mr}=1+6+6>+6>—E{T}.

Remark: This problem can also be solved with Markov chain methods, but the argument is
much less elegant and requires a lengthy calculation.

10



6.2. The gambler’s ruin problem. Let X, X5,... be a sequence of i.i.d. random vari-
ables with P{X; = 1} = p, and P{X; = —1} = ¢, where 0 < p=1—-¢g < 1 and p > ¢. Let
F(n)=o0(Xy,...,X,) and pick integers 0 < a < b. Let S,, = a+ X; + -+ -+ X,,, the intuition
is that S,, represents the capital of a gambler, starting with a capital ¢ in a favourable game.
Suppose that the gambler stops playing when he is bankrupt or when his capital reaches b. The
corresponding stopping time is

T=inf{neN:S,=0o0rS, =b}.

We want to find the probability of ruin P{S; = 0}, the expected time E{T} when the game
ends, and the expected capital E{Sr} at this time.

We first show that T satisfies E{T} < oo. This is easy with the same method as in the previous
example: if T = k, any tuple (Xpp41,..., Xmi1s) with (n 4+ 1)b < k contains at least one step
down. This can be used to observe that P{T" = k} decreases exponentially fast.

Recall from the tutorials that

STL
M, = (g) and N, = S, —n(p —q)
p
define martingales. We apply Theorem 1.6 (3) to {M,,}, noting that M} — M, ,| <1, and get

q\* _ _ _ _ AN —
(5> — E{M)} = E{Mr} = P{Sy = 0} + (p) P{Sy = b}.
Note that P{Sy = b} =1 —P{Sy = 0}. Hence

P{Sr = 0} =

(1) - ()
1 .

From this we get

1

E{Sr} = b0P{Sy = b} =bx — 2.
1= ()

Applying Theorem 1.6 (3) to {N,}, noting that |N, — Npy1| <1+ p+q, we get

a=E{No} = E{Np} = E{Sr - T(p— q)} = E{Sr} - E{T}(p — 9),

hence

PR S S

E{T}:zfq P—a1—(

11






CHAPTER 2

Convergence Theorems for Martingales

1. Doob’s Martingale Convergence Theorem

Doob’s famous forward convergence theorem gives a sufficient condition for the almost sure
convergence of martingales { X, } to a limiting random variable.

THEOREM 2.1 (Martingale Convergence Theorem). Let {X,} be a supermartingale, which is
bounded in L', i.e. there is K > 0 such that E|X,| < K for alln. Then there exists a real-valued
random variable X on the same probability space such that

lim X, = X almost surely.
n—00

Important remark: Note that if X, is nonnegative, we have
E X, =E{X,} =E{X,} =K
and thus X, is automatically bounded in L' and lim,_,., X,, = X exists.

The idea of the proof is to count the number of upcrossings of each interval. Basically, if {X,,}
did not converge, it oscillates and hence crosses some interval [a, b] infinitely often. Then we
can run an anticyclic betting strategy: Whenever we are below a, we put unit stakes on an
increase and once we are above b we have won an amount of b — a. But we can’t beat the
system....

Formally, pick two numbers a < b and let I = [a,b]. The number Uyla,b] of upcrossings of
[a, b] made by {X,} up to time N is defined as the largest integer k such that there are integers

0<s51 <t <8<ty < < <tr <N

with X,, < a and X;, > b for all 1 < i < k. Clearly, Uy[a,b] is a random variable. The
following lemma is the key idea of the proof.

LEMMA 2.2 (Doob’s upcrossing lemma). Let {X,} be a supermartingale and a < b. Then, for
all N,

(b—a)E{Un]a,b]} <E{(Xy —a)7}.

Proof: We discuss this in the language of fair games. Suppose that we bet on the game {X,,}
with the following anti-cyclic strategy: Initially our stake Cj is zero. We leave it like this until
X, < a when we choose unit stake C,,,; = 1. We play unit stakes until X,, > b when we stop
and choose C,, 11 = 0, keep it until X,, < a, and so fourth. Formally,

C1 = 1(x4<ay and C,, = Lic, =13 Lix,_1 <t} + L{cu_1=0} 1 {Xn_1<a} -
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C,, is clearly previsible and we study the martingale transform

Yn = (C o X)n = ZCk(Xk — ch—l) .
k=1
Recalling our strategy, we observe that
YN 2 (b - G)UN[CL, b] - (XN - Cl)_ .

Each upcrossing increases the value of Y,, by at least b — a and the last term is responsible for
a possible unfinished upcrossing at the end. As C' is previsible, nonnegative and bounded, Y
is a supermartingale and

0=E{Ys} > E{Yy} > (b— a)E{Uy[a,b]} — E{(Xx —a)}.

This is the claimed inequality. [ ]

From this we can observe that the expected number of upcrossings is bounded if E{(Xy —a) }
is bounded.

LEMMA 2.3. Let {X,} be a supermartingale, which is bounded in L*. Then, for the increasing
limat
Ula,b] :== lim Uyla, b
N—o0
we have
(b —a)E{U]a,b]} < |a|+supE|X,| < oco.

In particular, P{U[a,b] = cc} = 0.

Proof: Recall that, by the upcrossing lemma,
(b— )E{Uxa,b]} < E{(Xy — )"} < |a| + E[Xx| < |a| + sup |, .

Now let N — oo using monotone convergence. [ ]

We are almost done, look at the event
M]a,b] := {liminf X,, < a < b < limsup X, }
n—00 n—o00

and observe that if X, neither converges nor diverges to 00, there are rationals a < b such that
event M|a, b] takes place. But if M|a,b] takes place, then Ula,b] = oo, which has probability
zero. Taking the union over the countable collection of rationals a < b we obtain that almost
surely {X, } converges to a possibly infinite random variable X. But, by Fatou’s lemma,

E|X| = E{liminf | X,|} < liminfE/X,| < K < 00,
n— 00 n—00

hence | X| < oo almost surely. This finishes the proof of Doob’s martingale convergence theorem.

ExampLEs. (a) Let {X,} be a simple, symmetric random walk. Then {X,} is a martingale,
which does not converge. Namely, by the recurrence of simple random walks, both level 0 and
level 1 are reached infinitely often, contradicting convergence. Clearly, {X,} is not L'-bounded.

14



(b) If 7(0) C F(1) C ... is a filtration and X is a nonnegative random variable, then we infer
from the martingale convergence theorem that
lim E{X|F(n)}

n—oo

exists almost surely. Under a suitable condition, more precisely if X is measurable with repect
to the smallest o-algebra containing | J F(n), this limit agrees with X.

(c) We now look at the Galton-Watson process { X, } offspring distribution given by (po, p1, - . .).
Assume that the mean offspring number is

inpn =1.
n=0

As {X,} is a nonnegative martingale it converges almost surely to a random variable X > 0.
Because {X,} is integer-valued we must have X, = X for sufficiently large n almost surely.
Now assume p; < 1 (in the case p; = 1 trivially X,, = 1 for all n). For every & > 0 we then
have, for any K,

M
P{X,=kforalln>K}< lim [] P{X,=k|X.s=k}=0,
M —o00

n=K+1

hence X = 0 almost surely. In other words, the critical Galton-Watson process becomes extinct
in finite time. However, recall that E{X,} = 1 for all n. The convergence in the martingale
convergence theorem does not hold for the expectations.

2. Uniformly integrable martingales

The key to the difference between the two examples is the question when the almost sure
convergence in the martingale convergence theorem can be replaced by L!-convergence. We
first study a general criterion for L!-convergence of an arbitrary sequence of random variables.
Recall that a sequence {X,} of random variables converges in L' to X iff E|X,, — X| — 0. This
also implies that E{X,,} — E{X} by the triangle inequality.

Definition: A sequence {X,} of random variables is called uniformly integrable if, for every
€ > 0 there is K > 0 such that

/ | X, | dP < ¢ for all n.
{|Xn|[>K}
THEOREM 2.4.

(a) Every bounded sequence of random variables is uniformly integrable.

(b) If a sequence of random variables is dominated by an integrable, nonnegative random
variable Y, i.e. if | X,| <Y for all n, then the sequence is uniformly integrable.

(c) Let p> 1. A sequence is LP-bounded if sup, E{|X,|P} < oco. Every sequence, which is
L?-bounded for some p > 1 is uniformly integrable.

(d) Ewery uniformly integrable sequence is L*-bounded.

(e) There are L*-bounded sequences, which are not uniformly integrable.

15



Proof: Clearly, (a) follows from (b), which we now prove. Observe that,

/ | X,| dP < / Y| dP.
{1Xn/>K} {1YI>K)

Now, using monotone convergence,
]E‘Y| = liminf/ 1{|y|<K}|Y‘ dP.
K—o0 -

Hence limg o || (Y|>K} |Y|dP = 0 and this implies uniform integrability of our family.

We come to (c¢) and suppose that sup,, E{| X[’} < C for some p > 1. Observe that, for every
K,

/ | X, | dP < KH’/ | X, [P dP < K'"PC.
{1Xn>K} {1Xn|>K}

Choosing K large gives uniform integrability. (d) is easy, since for ¢ = 1 we find K > 0 with

E|Xn|§/ |Xn\d]P’+/ (Xp|dP <1+ K.
{1Xn|>K} {1 Xn| <K}

Finally, to prove (e), suppose that U is uniformly distributed on (0, 1) and let
Then E|X,,| = 1 and hence the family is L'-bounded, but

/ | X,|dP =1 for alln > K,
{|Xn[>K}

and hence the family cannot be uniformly integrable. [ ]

Recall that every almost surely convergent sequence also converges in probability, which means
that

lim P{|X,, — X|>e}=0foralle >0.

n—oo

We can now state the key theorem of this section.

THEOREM 2.5 (Uniform Integrability Theorem). Suppose that {X,} is a uniformly integrable
sequence of random variables, which converges in probability to a random variable X. Then the
sequence converges also in L.

Proof: By Fatou’s Lemma E|X| < liminfE|X,,| < co. For every K > 0 we define the cutoff-
function

K ifx > K
or(x) =< « if 2| < K
-K ifz<—-K.

By uniform integrability one can choose K such that, for all n,
5 €
E{lox (Xa) = Xal} < 5 and E{lox (X) = X[} < <.

Since
o (X) — o (Xa)| < [X = X5
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we infer that {px(X,)} converges in probability to {cpK( )}. Hence there is N such that

€
— — - >
IF’{|g0K(Xn) (pK(X)| > 6} < D foralln > N.

Then, for n > N,

Eflox (Xn) — o (X[} < / ok (Xn) = ¢ (X)| dP
{lox(Xn)—p (X)|>2/6}

+f [or(X0) = orc(X)] P
{lex (Xn)—ex (X)|<c/6}
< 2KP{Jon(Xa) - ex(X)| > S} + 5 <e/3.
We thus get, from the triangle inequality, for all n > N,

E{1X: — X[} S E{|Xn — ok (X))} + E{lox (Xn) — ox (X)[} + E{[X — o (X)[} <e.
This completes the proof. [ ]

Note that, by Theorem 2.4(b), the uniform integrability theorem is a generalization of the
dominated convergence theorem.

We go back to the study of martingales. Let {F(n)} be a filtration and { X, } a martingale with
respect to this filtration. The next theorem shows that every uniformly integrable martingale
is of the form that data is accumulated about a random variable X.

THEOREM 2.6 (Convergence for uniformly integrable martingales). Suppose that the martingale
{X,} is uniformly integrable. Then there is an almost surely finite random variable X such
that

lim X,, = X almost surely and in L.
n—oo

Moreover, for every n, X,, = E{X|F(n)}.

Proof: Because {X,} is uniformly integrable, it is in particular L!-bounded and thus, by the
martingale convergence theorem, almost surely convergent to a real-valued random variable
X. By the previous theorem this convergence holds also in the L!-sense. To check the last

assertion, we verify the two properties of conditional expectation. F(n)-measurability of X, is
clear by deﬁnltlon so let F' € F(n). For all m > n we have, by the martingale property,

/X dP = /X dP.
We let m — oo. Then

‘/deIF’—/XdIP"§/|Xm—X\dIF’—>O,
F F

hence we obtain, as required,
/ X dP = / X, dP.
F F

17



ExAmMPLE: Exponential increase of a rabbit population.

Suppose that {X,} is a Galton-Watson process. Recall that in the critical case ;1 = 1 we have
seen that the process dies almost surely in finite time. Now we give conditions that the process
grows exponentially with positive probability. Assume that the offspring distribution (given by
the sequence {p,}) has

e mean /1=y o np, > 1 (supercritical case),
e positive and finite variance o2 = - n’p, — p2.

Recall that we have seen earlier that
E{ Xys1|F(n)} = pX,,
and hence M,, = X,,/u"™ defines a martingale. As M}, > 0 there exists a random variable M > 0
with
lim M,, = M almost surely.

n—oo

We want to show that P{M > 0} > 0. For this purpose we show that {M,} is uniformly
integrable. If this holds we have

EM = lim EM, =1,

n—oo

hence M > 0 cannot be identically zero so that P{M > 0} > 0. To check uniform integrability
it suffices to check L2-boundedness (see Theorem 2.4c). We have, almost surely,

E{M;|F(n—1)} = E{M;_|F(n—1)} +E{2M—1 (M — My—1)| F(n — 1)}
+E{(M,, — My—1)*|F(n — 1)}
= My +E{(M, — M,_1)*|F(n—1)}.
To compute the second term observe
E{(M, — My—1)*|F(n = 1)} = p " E{(Xy, — uXo1)’|F(n - 1)}
and that

n—1

B (X, — X[ - )} =E{ (S 07 )

F(n — 1)}

I
]2

> 1k < X} < X} B{(Y = ) (V) = p) | F(n— 1)}

1 1

< T

E{ (V7' — 1} = Xoos0®.

k=1

Combining all terms we get,
E{M;} =E{M;_,} + (0* /1" )E{ X1 }.

Now, E{X,_1} = u" 'E{M,_1} = . Hence,
2
o
E{M;} =E{M; ,} + .

18



which implies by induction,

1
<%

E{M?} < 1+022u’“

k=1
and we infer that the martingale {M,} is L?-bounded. Altogether we have shown that, almost
surely, for all large n,

M
Xn = Mpu" > 7”717
so that if M > 0 the Galton Watson process increases exponentially and the event {M > 0}

has positive probability.
3. Lévy’s Upward and Downward Theorems

Theorem 2.5 shows that every uniformly integrable martingale is of the type that data about
some (hidden) random variable is accumulated (see Example 3). Conversely, every martingale
of this type is uniformly integrable and convergent to the hidden variable. This is the content
of Lévy’s upward theorem.

THEOREM 2.7 (Lévy’s upward theorem). Let X be an integrable random variable and {F(n)}
be a filtration such that X is measurable with respect to the o-algebra generated by the union of
the F(n). Define X,, = E{X|F(n)}. Then {X,} is a uniformly integrable martingale and

lim X, = X almost surely and in L*.
n—oo

The key to the proof of the theorem is the following lemma.
LEMMA 2.8. Let X be an integrable random wvariable and {F(n)} be a sequence of sigma-
algebras. If X, = E{X|F(n)}, the sequence {X,} is uniformly integrable.
Proof: Let ¢ > 0 be given. Choose § > 0 such that, for F' € A,
P(F) < ¢ implies /F|X|d]P’< £.

This is possible, since otherwise we could find a sequence F(n) € A of events with P(F(n)) <
27" and [ F(n) |X|dP > . Then look at the event H that infinitely many of the events F'(n)

happen. We have P(H) =0 as
p(H) <B( | F(n)) < Y B(F@m) < Y27 =27 50,
n>m n>m n>m

At the same time

/ \X\dIP’z/limsuplF(n)\X\dIP’Zlimsup/lp(n)|X|dIP’Zs,
H

n—o0 n—oo

using Fatou’s lemma. This is a contradiction.

Having § at our disposal, we choose K larger than E|X|/d. By considering positive and negative
part of X separately, we obtain, almost surely,

EXIFm}| <E{|1X]|F(n)} .
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Hence,
KP{E(X|F(n)}] > K} = B{ K1 gax sy} < E[E(XIF ()}
< E{E{|X||F(n)}} =EX]|,
which implies
P{E(X|F(n)| > K} < 22l <.

Note that this event is in F(n). We obtain, from the definition of conditional expectation, for
all n,

E{X|F(n)}|dP < / E{|X||F(n)} dP

/{E{le(n)}|>K} {E{X|F(n)}>K}

/ X[ dP < c.
{IE{X|F(n)}>K}

This finishes our proof. [ ]

Proof of the Upward Theorem. We already know that {X,} is a martingale (see example
section) and that it is uniformly integrable. Hence there is a random variable Y such that

lim X, =Y almost surely and in L'.

n—oo

We have to show that X = Y almost surely. We may assume that X > 0, which also implies
X, > 0 and hence Y > 0 almost surely. Observe that

E{X} = E{X,} — E{Y}.

Define probability measures P and @ on A (defined to be the o-algebra generated by the union
of F(n)) by

P(A):ﬁ/f‘Xd]P’ and Q(A):ﬁ/AYd]P’.

Now F :=JF(n) is a m-system which generates A. If A € F(n), then, for all m > n,

P(A):ﬁAXdP:ﬁAdeP.

Also,

) 1 1
gy J, Yo = gy [V A,

where the first equality follows, as before, from L!-convergence. The uniqueness theorem now
yields P(A) = Q(A) for all A € A. Let A ={X > Y} € A Then P(A) > 0 would imply,
by definition, P(A) > Q(A), which is a contradiction. Hence, P(A) = 0, which means X <Y
almost surely. In the same manner one can show X > Y almost surely, and this finishes the
proof of the Upward Theorem.
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THEOREM 2.9 (Lévy’s downward theorem). Suppose that {G(—n) : n > 0} is a collection of
o-algebras such that

:ﬁg<—k)C---Cg(—n)C---cg(—2)cg(—1).

Let X be an integrable random variable and define
X_ ., =E{X|G(—n)}.

Then
lim X , = E{X|G(—c0)} almost surely and in L.

n—ro0

Proof: Fix a positive integer N. We look at the filtration {F(n)} given by
F(n)=G((n—N)A(-1))
and the adapted process Y,, = X((n — N) A (—1)). Because, by the tower property,

E{Y, | F(n—1)} = E{E[X |G((n = N) A (=)} |G((n = 1= N) A (1))}

- E{X ‘ G((n—1—N)A (-1))} ~Y, .,
this is indeed a martingale. We obtain, from the upcrossing lemma,
(b — a)E{Un]a,b]} <E{(X_1 —a)"}.

Letting N — oo shows that, almost surely, the total number of downcrossings of [a, b] by the
process {X_,,} is finite. Now one has this simultaneously for all rationals a < b and we can argue
for {X_,} as in the martingale convergence theorem. Hence, lim X_, = X_, exists almost
surely. By Lemma 2.8 the sequence is even uniformly integrable and hence convergence holds in
L. To see that X ., = E{X|G(—00)}, first observe that, for all m and G € G(—o00) C G(—m),

/Xd]P’ /X_deP’

and then let m — oo to see that X _, satisfies the conditions of a conditional probability of X
given G(—o00). u

4. The Doob Decomposition Theorem

How far, one wonders, is a general adapted process X from being a martingale? Can one define
a drift, which can be subtracted from X to turn it into a martingale? The answer is, under
some mild conditions, affirmative, as the following important result shows.

THEOREM 2.10 (Doob Decomposition Theorem). Let {F(n) : n > 0} be a filtration and
{X,, : n >0} an adapted process with E|X,,| < oo for all n > 0. The there exist

e a martingale {M,, : n > 0} with My =0, and
e a previsible process {A, : n > 1} with Ay =0,
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such that
(4.1) X,=Xo+ M, + A, foralln > 0.
Moreover, any processes M and A, which satisfy this for a given X coincide almost surely.
X is a submartingale if and only if the process A is increasing, i.e. P{A, < A,+1Vn} = 1.
Proof: It is extremely simple. We look at the uniqueness statement first. Suppose that A, M
are as above. Then, almost surely,

E{Xn - Xn—l ‘ fn—l} = E{Mn - Mn—l |fn—1} + E{An - An—l ‘fn—l} = An - An—la

using that {A,} is previsible and {M,} a martingale. This gives an explicit formula for A,,
namely

A, = Z]E{Xk — Xp 1 | Fk— 1)} almost surely.
k=1
This implies uniqueness of {4, } and hence of {M,}. Conversely, this formula can be used to
define {A4,} from {X,}. Then {A,} is clearly previsible, and the display above shows that
M, = X, — A, — X, is a martingale. From this definition of A, it is also obvious that the
submartingale property of { X, } is equivalent to the fact that { A, } is increasing almost surely. m

We now discuss a particularly interesting case of the Doob decomposition. Let {M,, : n > 0}
be a martingale with My = 0 and E{M?} < oo for all n > 0. You can convince yourself easily
that in general X,, = M2 is not a martingale, but a submartingale. {M?2 : n > 0} has an
(essentially unique) Doob decomposition

Mgan-l—An, for n > 0,

with Ny = Ay = 0. The increasing process A is frequently denoted (M) and is called the
angle-brackets (or increasing) process associated with the martingale M. We denote by

(M)oo = lim (M),
n—oo
The next result includes convergence statements not included in the set-up of the martingale
convergence theorem.
THEOREM 2.11.
(a) lim, oo M, exists (and is finite) almost surely on {(M ). < 00}.
(b) lim, o M, /{M), =0 almost surely on {{(M). = co}.
In the proof we will use the follownig little lemma.
LEMMA 2.12. If {M, : n > 1} is a martingale with EM? < oo, then
E{ (Mn, — My_1)? | Facr } =E{ M — M} | Fur}.
Proof: Using the binomial formula, taking out what is known, we get
E{ (M = Mp_1)* | Fac1} = B{M? | Foer} — 2M B{ M,, | Fruor } + B{ M?_, | Fruir }
=E{M} - M._|Fo 1},
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We now prove Theorem 2.11. We assume that M, is in L?, but not that M is L?>-bounded, so
that convergence does not follow from the martingale convergence theorem.

Proof of (a) Because A = (M) is previsible, for every k > 1,
S := S(k) := inf {n >0:A,41 > k}
is a stopping time. We now show that (M%) = (M)®. Note that

(4.2) {As < 00} = | J{S(k) = o0}.

For any fixed k, the stopped process A° is previsible because, for any Borel set B C R,
n—1

(A5 € By = U{Szr,ATeB}U({AneB}ﬂ{Sgn—l}”).

Hence (M*%)? — A5 = (M? — A)® = N¥ is a martingale and this implies (M°) = A%.
However, the process A° is bounded by &, and

E{(M;)*} = E{AJ} + E{N; } = E{47} <k,
hence MS is L2-bounded. We infer that lim, ., Mis'" exists almost surely. By (4.2) we have
on {{(M) < oo} that there exists a k£ with S(k) = oo, which completes the proof of (a).
Proof of (b) Define a process {W,, : n > 0} by Wy =0 and

My, — My,
Y o M),,
Wn Z 1+ A = e M)

where YV, =1/(1+ A,) is a bounded, prev181ble process. By Theorem 1.4, W is a martingale.
Moreover, almost surely, using Lemma 2.12,

2 _ 1 _ 2
E{ (W = Wye1)?| Frm1} = WE{ (M, = My—y)*| Foa}
1 ) ) B 1 B
(IT]E{M —M?_ || Fui} = mmn A1)
(1+An) —(1+An) 1 1

< = - ,
ST 0+ A+ A 144, 1+A4,

hence, using Lemma 2.12 once more,

B(W), = EW? = Z]E{Wk Wi b =) E{(Wy = W)’} <1
k=1
We infer, using Fatou’s Lemma, that E{(W),, = ]E{ lim infn_m(W}n} < liminf, E{ (W}n} <
1, and hence (W), < oo almost surely, so that by part (a) lim,_, ., W, exists a.s. By Kronecker’s
lemma we infer that, almost surely,

lim Zk 1Mk_Mk !

=0

which implies the result.
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CHAPTER 3

Examples and Applications

1. Martingale proofs and improvements of classical probability theorems

The Kolmogorov 0-1-law is an extremely useful tool to see that certain events necessarily have
probability zero or one.

THEOREM 3.1. Suppose that {X,} is a sequence of independent and identically distributed
random variables. Define

7;1 = U(X’ﬂ-l-laX'rH—Q, .. -), and T = ﬂ 7;1
n=1

T is called the tail-o-algebra. Every event A € T has P(A) =0 or P(A) = 1.

Examples of tail events A € T are

e {X, € A, for infinitely many n},

e {lim, ,, X, exists }, or {lim,Hoo IS X = u}.
Proof: Let F, = o(X1, Xy,...,X,) and Fyy = 0(X1, Xs,...). F, and T, are independent.
Now let A € T and X = 14. Then X is bounded and F,,-measurable. Hence Lévy’s upward

theorem gives
X = lim E{X | F,} almost surely.
n—0o0

As X is T,-measurable, it is independent of F,,, hence the right hand side equals E{ X} = P(A).
The result follows, because the left hand side only takes on the values zero or one. [ ]

We now give a very short proof of Kolmogorov’s strong law of large numbers under minimal
moment, conditions. Martingale theory will serve as the major tool.

THEOREM 3.2. Suppose that {X,} is a sequence of independent and identically distributed
integrable random variables. Then

1 n
lim — Z Xy, = p almost surely and in L',
where p is the common expectation of the X,,.

Proof: Abbreviate S, = >.;_; Xx. Let G(—n) be the o-algebra generated by the random
variables Sp, Spi1, Sni2, ... and G(—oo) the intersection of all these algebras. From Problem
Sheet 2 we know that

Sn
E{X|G(—n)} = — almost surely.
n
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Hence, by Lévy’s downward theorem,
1
lim — E X = lim E{X;|G(—n)} = E{X;|G(—00)} almost surely and in L'.
n— 00

Now the limit is measurable with respect to the tail o-algebra 7 of the sequence {X,}
and, as this has only events of probability zero or one (by Kolmogorov’s 0-1-law), we have
E{X:|G(—o0)} = i almost surely for some constant value u. Integrating over Q gives

= /]E{X1 | G(—00)} dP = /X1 dP = E{X,} for all n,

and this finishes the proof. [ ]

As an application of the Doob decomposition we discuss a strengthening of the Borel-Cantelli
Lemma.

THEOREM 3.3 (Borel-Cantelli Lemma). Let {E, : n > 0} be a sequence of events with E,, € F,.
Define X,, = P{E, | F,—1}. Then, almost surely,

(a) If Y07 X, < 0o, then only finitely many of the events in {E,, : n > 0} occur.
(b) If > 7 | X, = oo, then infinitely many of the events in {E, : n > 0} occur.

Remark: For the classical Borel-Cantelli Lemma note the following.

(a) E{Xy} =P(E) and hence > -2 P(E,) < oo implies > > | X,, < co almost surely.

(b) If the events {E, : n > 0} are independent, then let F, = o(F,..., E,) and note
Proof: Let Z, = Y ;_, 15, be the number of events which occur up to time n, and Y, =
> oy Xi. Then M,, = Z, — Y, is a martingale, and Z,, = M,, +Y,, is the Doob decomposition
of the submartingale {Z, : n > 0}. Now we have,

(M), = ZXk(l — X) <Y, almost surely.
k=1
Indeed the first equality follows by checking that the difference of M2 and the right hand side
is a martingale.

E{ M} - zn:Xka — Xp) | Faci} = M2 + E{(1g, — X0)* | Fui} — ixm — X3)

k=1 k=1
n—1
=M? | — ZXk(l — X}) almost surely.
k=1

First suppose that Yoo := Y | X,, < oo, then (M), < co and we infer from Lemma 2.11(a)
that lim M,, exists and is finite. Hence ) 7, 1p < oo. Now suppose that Y, = oo,
but (M)e, < oco. Then also lim M, exists and is finite, hence Y - 15 = oo. Fi-
nally, suppose (M), = co. Then, by Lemma 2.11(b), we have lim,_, ., M, /(M), = 0, hence
lim, 0o M, /Y, = 0 and hence lim,_, Z,/Y;, = 1. This implies >~ 15, = lim, ,oc Z, = 00. B
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2. Martingales in optimisation problems: The Bellman optimality principle

Suppose you are playing a favourable game such that your winnings X;, Xs,..., Xy per unit
stake are i.i.d. random variables with

P{X,=1}=p,P{X,=-1}=q:=1—-plor J<p< 1.

Starting with an initial capital Yy you want to choose your stakes C), in such a way that the

expected interest
Yy
B s (35 )
0g Y,

is maximized. Let F,, = 0(Xj,...,X,). Here we obviously assume

oY, =Y, 1+ C,X, is your capital at time n,
e your stakes C,, must be previsible and C,, <Y, ;.

What is the best strategy and the expected interest when this stratregy is used?

To answer this question we let R, = C,,/Y,_1 be the proportion of your captial you put in the
nth game. Then R = (Ry,..., Ry) represents a strategy.

LEMMA 3.4. Let R be any (previsible) strategy and let
a = plog(2p) + qlog(29)
be the entropy of (p,q) relative to (1/2,1/2). Then

Y,
M, =log (?) —na, My =20
0

defines a supermartingale.
Proof: We have

E{ M, | Fo_i} =1E{ log (%) —na‘fn_l} — log (Yg/ol) —na+E{ log(%)‘fn_l}.

The last expression is

]E{ log( Ya ) ‘fn_l} =E{ log (1 + R.X,,) |]-"n_1} =plog (1 + R,) +qlog (1 — R,).

Ynfl
We wish to show that this is < «, which is equivalent to
plog( + )-l—qlog( )go.
2p 2q

As log is a concave function we get

1+ R, 1-R, 1+R, 1-R,
pIOg(i)Jrqug( ) §10g<p +q )=0,
2p 2q 2p 2q

as claimed. Altogether we have shown

Y,
E{Mn|fn71} S10g< Yl) —na+a=M, ;.
0

This is the supermartingale property. |
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The last proof also indicates for which strategy we get a martingale.
LEMMA 3.5. Let R=R*=(2p—1,...,2p—1). Then (M, : n > 0) is a martingale.

Proof: We have equality in the proof of Lemma 3.4 if we choose R,, such that
1+ R, 1—-R,
plog(i)ﬁ—qlog( )20.
2p 2q

This is the case if (and only if) 1 + R, = 2p and 1 — R,, = 2¢, and both these equations are
equivalent to R, = 2p — 1. [ ]

To answer the initially asked question we now note from Lemma 3.4 that, for any strategy R,

]E{ log (}%)} < Na,

whereas for the strategy R* = (2p —1,...,2p — 1) we have

IE{ log (}%)} — Na,

which makes this strategy optimal.

3. Martingales in optimisation problems: The secretary problem

The following optimisation problem is known as the secretary problem: N candidates present
themselves for a job interview. The ith candidate’s suitability for the job is X; and the X, are
independent random variables, uniformly distributed on [0, 1]. The boss interviews each in turn
and can determine the value of X; perfectly. He must immediately decide whether to accept or
reject the candidate, no recall of rejected candidates is possible.

The problem is that the boss has to find a stopping time 7" which maximises EX7. We now
use martingale theory to solve this problem.

THEOREM 3.6. The stopping time T* = inf{n >0 : X,, > a,,}, for ay =0, and

1 2
an,1=§+%f0r1§n§N,

maximises EXr.

Proof: We proceed in four steps. The first step is to show that, for any 0 < o < 1, we have

CYQ

(3.1) E{X, Va}= % +5-

To verify (3.1) just note that

1
E{X,Va} = /av\/ad:v
0

e 1
= / adx—i—/xda:
0 a

1\3|Qw



The second step is to show that, for any stopping time 7', the process Y defined by
Yo = ap, and Y,, = (X7an) V o, for n > 1,
is a supermartingale. Indeed, on the event {7"<n — 1}, we have
E{Y,|Fn—1)} = E{XrmVan|Fln—1)}=XrVa,<XrVa,i =Y,

using that «, is decreasing. On the event {T" > n — 1}, we have

2
E{Y,|F(n—1)} = E{Xnv@n}:%+%:anlgynl,

which shows the supermartingale property.

As a third step we show that for 7" = T the process Y is a martingale. Indeed, on the event
{T* < n —1}, we have, from above,

E{Y,|F(n—1)} = Xr+ V oy, = Xpv,

as Xp« > ars > ap 1 > ap. Note that YV, 1 = X7« V ay, 1 = Xp-. On the event {T* > n} we
have, as before,

E{Y,|F(n-1)} = E{X,Va,}= %721 +

= 0p_1 = Yn—17

DN | —

which completes the third step.
Finally, as a fourth step, we show that, for any stopping time 7', we have EXy < EX7«. For
this we use Doob’s optimal stopping theorem (note that all stopping times are bounded), to
see that, for arbitrary stopping times,
E{Xr} <E{XrVoar}=E{Yr} <E{Yp} = a,

and for the special choice T,

]E{XT*} = E{XT* V O[T*} = E{YT*} = E{Yb} = (p.
This completes the proof. [ ]

For more sophisticated examples, see the Mabinogion sheep problem, Chapter 15.3 in Williams,
and references quoted there.

4. Noisy observations: a simple filtering problem

A random number © is chosen uniformly between 0 and 1, and a coin with probability © of
heads is minted. The coin is tossed repeatedly, and the outcomes are Xi, Xo,... with X,, =1
denoting heads in the nth toss.

Let B,, denote the number of heads in the first n tosses and F(n) = o(X; ..., X,). The aim of
this section is to find out how, by observing X, X5, ..., we accumulate information about the
hidden random variable ©, i.e. the coin. The idea here is that we cannot observe the random
variable © directly, but we try to recover it from the coin tosses X, Xo, X3, ..., which represent
a noisy observation. Here the term noisy refers to the fact that other random effects (noise)
interfer with the randomness of ©. The problem is to

(a) find out whether the value of © can be recovered by observing the coin tosses,

29



(b) find the random variable E{© ‘ Fu}.

The first problem can be solved by means of the strong law of large numbers. Consider © = 6
as fixed. Then, almost surely,

o1
lim —
n—oo N

Zxk =Fy X, = 0.
k=1

Making © random, we get

I ! 1 ¢
(4.1) IF’{ lim = sz@}z/ ]P’g{ lim = sze}d0=1,
LD RQE. P
giving us the means to get © from the infinite sequence X, Xo, X3,.. ..

For the second problem we have to look deeper into the structure of the problem. The solution
can be given using martingale theory.

THEOREM 3.7. E{© |F(n)} = E=tLl almost surely.

n+2
Proof: To give an overview over the proof, we first show that, for all £ =0,...,n, we have
(a) P{B, =k} = 17,
(b) P{B, =k, B,1=k—1} = (nfl)n-
Using this we show as a second step that M, = Zatl defines a martingale with respect to

{F(n) : n > 0}. From this the result follows almost immediately, as we shall see.

To verify the first step we use the formula

1 1(n — k)
(4.2) / door(1— oy = B =R <k <,
0 (n+1)!

This can be checked by induction using partial integration. For (a), using (4.2),

P{B, =k} = /1 dfPe{ B, = k} = /1 dg o (1 - 9)" " (Z)

_ kKl (n —k)! n! 1
o+ D! Kn—k)! n+1

For (b) we see similarly,

IF’{Bn:k,Bn1:k—1}:/1d9P9{Bn:k,Bn1:l<:—1}
[ E—1 nek (=1 _ kl(n—k) (n—1)! Kk
_/0 999" (1-6) (k—l) 4+ E=D!n—k)! nm+1)

Recall that the event {B,, = k} means that there are exactly k heads in the first n tosses. We
infer that

P{B, =k|B,1=k—1} =2 and P{B, =k — 1| B, , =k — 1} = "2k,
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Because all paths By,..., B,_; with the same terminal value B,_; are equally likely (as they
have the same numbers of heads and tails) we infer that

P{B, = By1+ 1| F(n—1)} = “25 and P{B, = Boy | F(n— 1)} = 25

Hence,

E{B, |F(n—1)} = (By1 +1) 22t 4+ B, 2Bt = B, | 4 BB

n+1 n+1
Let My =1/2 and
_ B, +1

n=— forn=1,2,....
n+2
Then {M,, : n > 0} is a martingale. Indeed,
1 14+ B,_1 1 n+2 n+4+2
E{M, |F_ :—(1 B,_ ): ( - ):Mn_.
WMo [Faa = o5 (U Boi = n+2\n+1 "n+1 !

This completes the proof of the second step. Finally, note that 0 < M,, < 1. By Theorem 2.6
the martingale {M, : n > 0} converges almost surely and in L' to a finite limit random
variable M and, moreover,

M, =E{M | F,.}.
But, using (4.1), almost surely,

Hence E{@ | fn} = Bntl [

n+2

This and related problems are classical in filtering theory, more sophisticated examples of noisy
observations are discussed in Williams, Chapter 15.

5. The second hearts problem

In a deck of 52 cards, well-shuffled, we turn the cards from the top until the first hearts appears.
If we turn one more card, what is the probability that this card shows hearts again?

Let X,, be the proportion of hearts remaining in the deck after the nth card is turned. Let Y,
be the indicator of the event that the nth card is hearts, and let

f<n) = 0-<YE)’ T Y’n) = U(XO’ SRR Xn)
LEMMA 3.8. {X, : 0 <n <51} is a martingale.

Proof: Indeed, for 1 < n < 51, we have

(53 —n)X,1 —1 (53 —n) X, 4
E{X, | F(n—-1)} = X,._ - (1-X,,_
(X, | Fln—1)} = 220 e (e )
_ (3=m)X2, — Xy + (53— m)(X, — X2)
- 52 —n I

Now let 77 = min{n : Y, = 1} be the first time hearts appear. Note that, given Xr, the
probability that the 7" 4 1st card is again hearts is exactly X7. Hence the unconditional
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probability that the 7"+ 1st card is hearts is E{Xr}. As T is a bounded stopping time, by

Doob’s optional stopping theorem, we have that
1
The probability that the 7"+ 1st card is again hearts is therefore exactly %.
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