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Abstract The parabolic Anderson problem is the Cauchy problem forhbat
equationdu(t,z) = Au(t,z) + &(t,2)u(t,z) on (0,0) x Z4 with random potential
(&(t,2): ze 79) and localized initial condition. In this paper we considetgntials
which are constant in time and independent exponentiadlyiduted in space. We
study the growth rate of the total mass of the solution in teafweak and almost
sure limit theorems, and the spatial spread of the mass iimstef a scaling limit
theorem. The latter result shows that in this case, justiikbe case of heavy tailed
potentials, the mass gets trapped in a single relevandsigth high probability.

1 Introduction and main results
1.1 Overview and background

We consider the heat equation with random potential on ttegér latticezZ® and
study the Cauchy problem with localised initial datum,

au(t,z) = Au(t,2) + & (t,2)u(t,2), for (t,2) € (0,00) x Z9,
Iti[g u(t,z) = 1o(2), forze 79,
where
af)2 =S [fy) - @) forze 79 f: 729 - R,
y~z

is the discrete Laplacian, and the potent&l(t,z): t > 0,z € Z9) is a random field.
This equation is known as ttparabolic Anderson model
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In the present paper we assume that the potential field istaaini® time and
independent, identically distributed in space accordmgame nondegenerate dis-
tribution. Under this hypothesis the solutions are belieteexhibitintermittency
which roughly speaking means that at any late time the @wlu$i concentrated in a
small number ofelevant islandst large distance from each other, such that the di-
ameter of each island is much smaller than this distancedsigeee 1 for a schematic
picture. The relevant islands are located in areas wherpdtential has favourable
properties, e.g. a high density of large potential valuestitie progresses new rel-
evant islands emerge in locations further and further away the origin at places
where the potential is more and more favourable, while dhigs lose their rele-
vance. The main aim of the extensive research in this modethwas initiated by
Gartner and Molchanov in [3, 4], is to get a better undeditagof the phenomenon
of intermittency for various choices of potentials.

.|
\
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\ 0 :

Fig. 1 A schematic picture of intermittency: the mass of the soluis concentrated on relevant
islands (indicated by shaded balls) with radius of or@leand distances of ordey > a;.

Natural questions about the nature of intermittency arddtewing:

e What s the diameter of the relevant islands? Are they grgwrirtime?
How much mass is concentrated in a relevant island?
How big is the potential on a relevant island?
e Where are the relevantislands located? What is the distfrdtifferent islands?
How many relevant islands are there?
How do new relevant islands emerge? What is the lifetime elevant island?
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Explicit answers to these questions and, more generabByltseon the precise
geometry of solutions to the parabolic Anderson model apicgtly very difficult
to obtain. In the related context of Brownian motion amongsfanian obstacles,
Sznitman [14] provides methodology to study properties oivian paths con-
ditioned on survival, which offer a possible route to the metry of solutions,
at least in the case of bounded potentials. In a seminal gaaener, Konig and
Molchanov [2] follow a different route to analyse size andition of relevant is-
lands in the case of double exponential potentials. Theiulte also offer some
insight into potentials with heavier tails. In [7] and [9] aroplete picture of the
geometry of the solutions is given in the case of Paretoibigtd potentials, build-
ing on the work of [2]. In this case of an extremely heavy @ifotential it can
be shown that, for ang > 0 at sufficiently late times, there exists a single point
carrying a proportion of mass exceeding-E with probability converging to one.
This point constitutes the single relevant island and vegcise results about the
location, lifetime and dynamics of this island can be ol#dirsee also [10] for a
survey of this research.

For more complicated potentials however, one has to relgss éxplicit results.
A natural way forward is to investigate the growth rates @ftihtal mass

U(t):= z u(t,z)

ze74

of the solution. If the potential is bounded from above we rethe (quenched)
Lyapunov exponersts

. 1
A ::tllm Lt whereL; := i logU (1),

whenever this limit exists in the almost sure sense. If themital is unbounded one
expects superexponential growth and is interested in ampi®jic expansion of;.

If the tails of the potential distribution are sufficientight so that the logarithmic
moment generating function

H(x) :=logEe®©
is finite for allx > 0, a large deviation heuristics suggests that,we get

H(Ba %)

1
Li=————-+>——(k+0(1)), almost surely as{ o,
ho o2l )

wherea, 3 are deterministic scale functions ards a deterministic constant. Ac-
cording to the heuristics, the quantity can be interpreted as the diameter of the
relevant islands at timg and the leading term as the size of the potential values on
the island. The constamt is given in terms of a variational problem whose max-
imiser describes the shape of a vertically shifted and tedgaotential on an island.
More details and a classification of light-tailed poterst@tcording to this paradigm
are givenin [5].
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If the potential is such that the moment generating funestidmnot always exist,
this approach breaks down. Indeed, one can no longer expettading terms in
an expansion of; to be deterministic. Instead, one should expect the saistio
to be concentrated in islands consisting of single sitesthadexpansion ok to
reflect fluctuations in the size of the potential on thesessi@me would expect the
sites of the islands to be those with the largest potentiagbime time-dependent
centred box and the fluctuations to be similar to those se¢herorder statistics
of independent random variables. This programme is caigdn detail in [6] for
potentials with Weibull (stretched exponential) and Rafpblynomial) tails. In the
present paper we add the case of standard exponential ja¢gearid present weak
(see Theorem 1) and almost sure (see Theorem 2) asymptpansions fol in
this case. These results are taken from the first authorshiighed master thesis [8]
and were announced without proof in [6].

Very little has been done so far to get a precise understgrafithe number and
position of the relevant islands, the very fine results fa Erareto case being the
only exception. A natural idea to approach this with somewgbéer techniques is
to prove a scaling limit theorem. To this end we define a praibadistribution v
onZ4 associating to each si#a weight proportional to the solutiarit, 2), i.e.

u(t,2)
Vi =
2,00
whered(z) denotes the Dirac measure concentratel@iR9. Fora > 0, we also
define the distribution of mass at the titni& the scalea as

vi=w(z) = ult-2) 5 2 ,

t (a) zeZZd U(t) (a)
which is considered as an element of the spatéRY) of probability measures
onRY. Identifying the scale; of the distances between the islands and the origin,
intermittency would imply that islands are contracted tong@and that* con-
verges in law to a random probability measure, which is puagbmic with atoms
representing intermittent islands and their weights repnéing the proportion of
mass on the islands. In the case of Pareto potentials sucsul fellows easily
from the detailed geometric picture, see [9, Propositia, hut in principle could
be obtained from softer arguments. It therefore seemseithlalt scaling limit the-
orems like the above can be obtained for a large class of paleimcluding some
which are harder to analyse because they have much ligliter ta

In Theorem 3 of the present paper we show that in the case ohexpial poten-
tials forr; =t/loglogt the random probability measure$ converge in distribution
to a point mass in a nonzero random point. In particular th@s that for expo-
nential potential we also hawanly one relevant islandVoreover, the solution of
the parabolic Anderson problem spreablinearlyin space. Our arguments can
be adapted to the easier case of Weibull, or stretched expiahgotentials, where
there is also only one relevantisland but the solution tegparlinear spreadlhese
results are new and open up possibilities for further redearojects, which we
briefly mention in our concluding remarks.

0(z), foranyt >0,
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1.2 Statement of results

We now assume thd€ (z): z < Z9) is a family of independent random variables
with
P(¢(2) > x) =e *forx>0.

Suppos€u(t,z): t > 0,z Z%) is the unique nonnegative solution to the parabolic
Anderson model with this potential, and Igi (t): t > 0) be the total mass of the
solution. We recall that

L = %Iogu(t)

and first ask for a weak expansionlgfup to the first nondegenerate random term.
This turns out to be the third term in the expansion, whichfisamstant order. In
the following we use= to indicate convergence in distribution.

Theorem 1 (Weak asymptoticsfor the growth rate of the total mass).
We have
L; — dlogt +dlogloglogt = X,

where X has a Gumbel distribution
P(X <x) =exp{ — 2%} forxeR.
In an almost sure expansion already the second term exfibitsations.

Theorem 2 (Almost sure asymptoticsfor the growth rate of the total mass).
Almost surely,
. L; —dlogt
limsup——— =
tio  lOglogt

)

and
. Ly—dlogt

tio logloglogt —(d+1).

Remark 1 Note that neither of these almost sure asymptotics agrdethdtasymp-
totics

im L. —dlogt = —d in probability,

t1o logloglogt
which follows from Theorem 1. The almost sure results pickluptuations on both
sides of the second term in the weak expansion, with thoseeabeing signifi-
cantly stronger than those below the mean. This is diffeirettie stretched expo-
nential case studied in [6], where the liminf behaviour cades with the weak limit
behaviour. The limsup behaviour in the exponential casediided in the results
of [6] and therefore not proved here.
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Recall that the distribution of the mass of the solution @ett > 0 and on the
scalea > 0 is defined as a (random) element of the spaZéR?) of probability
measures oY by
ut,z) .,

w=w(z)=y

ze7d
The following theorem is the main result of this paper.
Theorem 3 (Scaling limit theorem). Defining the sublinear scale function

t

N=———o0
'~ loglogt’

we have
lim v{* = 5(Y) in distribution,

t]oo

whered(x) denotes the Dirac measure concentrated in R and Y is a random
variable in RY with independent coordinates given by standard exponieveid
ables with uniform random sign.

Remark 2In the case of a Weibull potential with parameter. ¢ < 1 given by
P(E(2) >x) =™ forx>0,

a variant of the proof gives convergencewf for the superballistic scale function

11
. t(logt)¥
'~ Tloglogt

)

to a limit measur&(Y) where the components &fare independent exponentially
distributed with parametet!~1/Y and uniform sign. Details are left to the reader.

2 Proof of the main results

2.1 Overview

The proofs are based on the Feynman-Kac formula

ut,z) = ]E[exp{ /OtE(Xs)ds}]l{Xt = Z}},

where (Xs: s> 0) is a continuous-time simple random walk @fl started at the
origin and the probability? and expectatioif refer only to this walk and not to the
potentials. Recall thatXs: s> 0) is the Markov process generated by the discrete
LaplacianA featuring in the parabolic Anderson problem. It is shown3hthat the
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Feynman-Kac formula gives the unique solution to the pdi@aBmderson problem
under a moment condition on the potential, which is satisfi¢kde exponential case.
By summing over all sites the Feynman-Kac formula implied the total mass is

given by t
U(t):E{exp{/O E(Xs)dsH.

An analysis of this formula allows us to approximate= %IogU (t) almost surely
from above and below by variational problems for the potniihese variational
problems have the structure that one optimizes over ab giteZ the difference
between the potential valuégz), corresponding to the reward for spending time in
the site, and a term corresponding to the cost of gettingdaitie, which is going to
infinity whenz — o0 and thus ensure that the problem is well-defined.

We can use the result for the lower bound given in [6, Lemmas@d 2.3]. Here
and throughout this paper we usse| to denote thé*-norm onR¢.

Lemma 1 (Lower bound on Ly). Let

2

N(t) == max{&(2) - =

ze74

log¢ (Z)},
then, almost surely, for all sufficiently large t, we have
Lt > N(t) —2d+0o(1).

The appearance d(z) in the cost term can be explained by the fact that part
of the cost arises from the fact that the optimal paths leathrz spend a positive
proportion of the overall time traveling to the site and #fere miss out on the
optimal potential value for some considerable time, sedi®@ed.3 in [6] for a
heuristic derivation of this formula.

The corresponding upper bound will be our main concern here.

Lemma 2 (Upper bound on L;). For any c> 0 let

N 4
Ne(t) 1= max 212 (ogloalz £o L.
£ t/(|09t)2§\z\§tlogt{f( ) t ( glog|Z )}

Then, for anye > 0 there exists e= c(g) > 0 such that, almost surely, for all suffi-
ciently large t, we have

L < Nc(g) (t) —2d+€e+ 0(1)

This lemma will be proved in two steps: We first remove patlad tto not make
an essential contribution from the average in the Feynmaafdrmula using an
ad-hoc approach, see Lemma 7 and Lemma 8. Then we use thet@®epéthe re-
maining paths to refine the argument and get an improved ha@ed”roposition 1.
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The variational problems for the upper and lower bound can the studied using
an extreme value analysis, which follows along the linesflf turns out that the
weak and almost sure asymptotics of the two problems caéngjdto the accuracy
required to prove Theorem 1 and Theorem 2.

For the proof of the scaling limit we need to give an upper lztban the growth
rate of the contribution of all those paths ending in a sitdistance more thaar;,
for somed > 0, from the site with the largest potential among those sftascan
be reached by some path with the same number of jumps. Thisdoweeds to be
strictly better than the lower bound on the overall growtierdo this end, in a first
step, we again use Lemma 7 and Lemma 8 to eliminate some psitits ad-hoc
arguments. In the second step we remove paths that nevéiehsite with largest
potential that is within their reach. This is done on the baxithe gap between
the largest and the second largest value for the variatipraddlem in the upper
bound. In the third step it remains to analyse the contrilbutif paths that hit the
optimal site but then move away by more th@m. Again it turns out that the rate
of growth of the contribution of these paths is strictly slaathan the lower bound
on the growth rate of the total mass. Proposition 1 is set goiain a way that it can
deal with both the second and third step. We conclude fromtht the solution is
concentrated in a single island of diameter at m@staround the optimal site. An
extreme value analysis characterizes the location of thienapsite and concludes
the proof of Theorem 3.

The remainder of the paper is structured as follows: In $adi2 we give some
notation and collect auxiliary results from [6]. SectioB 2ontains the required up-
per bounds and constitutes the core of the proof. Sectiost@dles the variational
problem arising in the upper bound. Using these approxiomnative complete the
proof of Theorem 2 in Section 2.5 and of Theorem 1 in Secti@n Phe proof of
the scaling limit theorem, Theorem 3, is completed in Sec?id .

2.2 Auxiliary results

LetB, = {|z] < r} be the ball of radius centered at the origin iZi9. The numbet

of points inB, grows asymptotically like9. More precisely, there exists a constant
Kq such that, lim_e|,r~9 = kg. We defineM, = MaXy < & (2) to be the maximal
value of the potential oB;. The behavior oM, is described quite accurately in [6,
Lemma 4.1], which we restate now.

Lemma 3 (Boundsfor M;). Letd € (0,1) and ¢> 0. Then, almost surely,

M; < dlogr +loglogr + (loglogr)? for all sufficiently large r
M; > dlogr — (14 c)logloglogr  for all sufficiently large r

In particular, for any pair of constant,cand ¢ satisfying ¢ < d < ¢,, we have

c1logr <M, <czlogr for all sufficiently large r
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LetM\” denote thé-th biggest value taken by the potential in the ball of radius
centered at the origin. The next lemma gives us estimatesgioer order statistics
for the potential.

Lemma 4 (Rough asymptotic behaviour for upper order statistics). LetO < 8 <
1 be a fixed constant. Then, almost surely,

B
) M(L" 1))
lim —— =d—p.
n—e logn

Proof. Recalling that, is the number of points in a ball of radinsn Z9 we get

p(MQnﬁJ) < X) _ Inf)-1 <|n> e (1—e ) )
n = i:E |
We fix € > 0 and infer that

P(M{™) < (d~ B~ ¢)logn) < L;: (Inn*d““‘?)i (1-nroepee) In—rf

< (nﬁ + 1) ((Kd + o(l))n‘”e) v exp[—(Kd + o(l))n‘”f}
= exp{—nB“(Kd + o(l))} :

Since this sequence is summable, we can use the Borel-Crteha to obtain
the lower bound. Similarly, for the upper bound, we use (1gdb

In ‘
P(Mr(,LnBJ) >(d—B+e) Iogn) <y (lin) n(d-B+e)i (2)
i=[nB|

We now use a rough approximation for the binomial coefficiaatnely

(1)<8 ()’
(1 | A
wheni is big enough. Combining this with (2) and using that the fiesin in the

ensuing sum is the largest, we obtain, for all sufficienthgém,

nB

| i
n el el
P(Mr&mﬁj) > (d fB+£)Iogn) < Z <ﬁ) <Iy (nd—:£> < einB-
=10

Using the Borel-Cantelli lemma again we obtain an upper dpaampleting the
proof of our statement.
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LetO<o<p< % be some fixed constants. We define
kn=[n?] and my = |nP]

Combining Lemma 3 and Lemma 4, we get the following result.
Lemma 5. For any constant ¢> 0, for all sufficiently large n, we have
(i) MY =M™ > (o —c)logn;
([iyMI —M™ > (p — o —c)logn.

Finally, we use Lemma 3 to give a lower bound foft).
Lemma 6 (Eventual lower bound for N(t)). For any smalle > O, we have

N(t) > dlogt — (d+ 1+ ¢)logloglogt,

for all sufficiently large t, almost surely.

Proof. Using Lemma 3 we get, for any fixert> 0 andc; > d,

N(t) > me(l)x dlogr — (14 c)logloglogr — ;Iog logr — %Iogcz ,
r>
if the maximum of the expression in the square brackets (avie denote by (r))
is attained at a poirt, large enough so that Lemma 3 holds.
The solutiorr =r; of f/(r) = 0 satisfies

loglogr

= (140(1)).

r)
d
r t

Writing ry =t (r¢), where (r) = d(loglogr)~1(1+ o(1)) we get that

log¢ (r) = —logloglogr +logd +o(1) 3)

and hence log = logt +log¢ (r1) = logt + o(logrt), which implies logt /logt =
1+ 0(1). Note that this implies; — o« ast — o, which justifiesa posteriorithe
application of Lemma 3. Combining this with (3) we get,

f(re) =d(log(tg(rt))) — (1+c)logloglogry — ¢ (rt)(loglogr: + logcy)
=dlogt — (1+d+c)logloglogt + O(1).

2.3 Upper bounds

We start by showing ad-hoc bounds for the growth rates ofdinéribution of certain
families of paths. These can be compared to the lower bourttiéagrowth rate of
U (t) showing that the paths can be be neglected. For a @&ths > 0) on the
lattice Z9 we denote by} the number number of jumps up to timeRecall that
M denotes th&™ largest potential value on the sites Z4 with |z < n.
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Lemma7.Fix0< o < 1 and k, = n°. Let

Ua(t) = E{GXD{ /(:E(Xs)ds}ll{m < & <tlogt, maxz (¥ < thkWH_

Then
Ux(t)

}Io = —00
theo t gU(t)_ '

Proof. Simply replacing (Xs) in the integral by the maximum, we get

Ua(t) = ]E[GXp{ /Ot E(Xs)ds}]l{‘]t = n’ongfgf(XS) < Mgkm}}

t/(Iogt)Zgngt logt

<

(kn) (kn)
Z g Py =n) < max &M,
t/(logt)*<n<tlogt t/(logt)?<n<tlogt

By Lemma 4 we havér <) = (d—o)logn+ o(logn) and hence

% logUs(t) < (d — o) logt + o(logt),

so that the result follows by comparison with Lemma 1 and Len6m

Lemma 8. Let

Us(t) = E | exp{ /Oté(xs)ds} (1{% < ok} + 1{% > thogt} ) .

Then

1 Ug(t) o
Itmt log uit) <

Proof. We first show that almost surely,

1 n n
—logUj(t) < Mp—-log——; —2d 1). 4
t 9 3( ) _n<tr}’2%;(t)2{ . t 9 2det} +0( ) ( )

Indeed, we have

Ust) < ) gMp(g =n) = S etan

!
{n<t/(logt)2} {n<t/(logt)2} -
U{n>tlogt} U{n>tlogt}

<y exp(tMy — 2dt+ nlog 2dt — lognt!). (5)
{n<t/(logt)?}
U{n>tlogt}

To estimaten! we use Stirling’s formula,

Nl = V2rm (2) "M with lim &(n) = 0.

nfoeo
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Fixing somee > 0 we know from Lemma 3, tha¥l, < (d + €)logn for all suffi-
ciently largen, so fort large enough, we obtain for all> tlogt,

tMn — 2dt+ nlog 2dt — logn! <t(d+ €)logn — nlog > — 8(n)

St(d+£)|ogn(1—lgﬁe Iog( )+o(1))
—2logn,

by noticing thain — log 5oq; is decreasing oft logt, «). Hence, almost surely,

tlogn

Z exp(tM, — 2dt+ nlog2dt — logn!) = o(1),
n>tlogt

so that using (5) the following upper bound fdg

t
max exp(tMp — 2dt+ nlog2dt — logn!) 4+ o(1
(0912 nei 12X, p(tMn g gn!)+0o(1)

t
(|Ogt) n<tr}1%z;(t) exp(tMn — 2dt — nlog 55, +o(t)) +0(1)

Ug(t) <

and hence (4) follows. As a second step we show that
% logUs(t) < dlogt — (2d — 1)loglogt + o(loglogt). (6)
Recall that — M, is a non-decreasing function and check that

ro. .
1 Iogﬁet is decreasing of0, 2det),

hence, replacingin the bracket by/(logt)?

ol 1).
r<tr/12€§t> { ¢ o9 2det} My (1ogt)2 +0(1)

By Lemma 3 we hav#, <dlogr +loglogr +o(loglogr) for all sufficiently larger,
we get, fort large enough

max { Iog

} < dlogt — (2d — 1) loglogt + o(loglogt),  (7)
r<t/(logt)2

2det

and combining (4) and (7), we have proved (6). Using Lemmadllaamma 6,

%Iog %38 ZlogUs(t) — N(t) — 2d + o(1)
—(2d—1)loglogt + o(loglogt) — —oo,

and hence our statement is proved.
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The following versatile upper bound is the main tool in thegdrof all our the-
orems and will be used repeatedly. Note for example thagttey with Lemmas 7
and 8 it implies Lemma 2 if the parameters(in) are chosen ds=1 andd = 0.

Proposition 1. For a path(Xs: s> 0) on the latticeZ? we denote byithe number

of jumps up to time t. We denote by{Mhe K" largest potential value on the sites
ze 79 with |z <n, and let 2 be the site where this maximum is attained. Further
fix0<o<3andleth=|n’|anda | 0.

(@) Forne N et
" ' (kn)
UL = E[exp{ [ £(x)ds} 13 =n} 1{ max& (%) > Mg},
Then, for alle > 0 there exists €> 0 such that uniformly for all ta< n <tlogt,
% logu,” (t) <MY — % (loglogn—C¢) +€—2d+0(1) ast] c.

(b) For fixedd > 0and kn € N let

UPe(t) = | exp{ /0 () ds}
1{% =np1{ sup £06) & (M, M}
0<s<t
1{Z¥ € {Xs: 0< s<t},|% —2Z¥| > 5rt}]

Then, almost surely,

uniformly in k< kq and“o;—t)2 <n<ta,

we have that

1z

1 Z
10gU™ " (1) < M

— loglog|Z¥| —2d—5+0(1) astf c.

The first step in the proof is to integrate out the waiting tnoé the continuous
time random walk paths. The following fact taken from [6]peelvith this.

Lemma9. Letny,...,Nn be fixed real numbers attaining their maximum only once,
i.e. there is anindeR < k < nwith ng > nj for all i # k. Then, for all t> 0,

1

/JRQ exp{ Tz:tir)i + (t?iti)nn}]l{r:z:ti < t}dto...dtnA < i';!( r—
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Proof. First, we prove the result for the cake=n, i.e. ny > n; for all i < n. We
have

/Rn exp{ T]thini + (t _Eti)nn}l{zti <t >0vi<n— 1}dt0...dtn,l
:énn/n exp{ T]thi(ni nn)}]l{ﬁzjti <t}dt0...dtn,1

gem”/R exp{ Z}t }dto dt, 1e“7"||:l|1nnim.

Now we show that any permutation of the indices does not ahémgvalue of the
integral above and this will be sufficient to prove the staamFirst, it is obvious
that transposition of and j does not change the integraliiff < n—1. Now we
consider the case of a transpositioon j andn, wherej < n. We change variables
suchthat/ =t if i # j,i <n—1landt/ =t— 37t and get

n-1

/Rexp{%t.nﬁr( IZ}t)nn}l{Tthi<t}dto...dtnl
~ [ e gtnr ~(t _”th{)mm)}ﬂ

{Zat <tt>0vi<n-— }dt{)...dtr’,,l,

which completes the proof.

For the proof of Proposition 1 (b) denote by

PN = {y: (Yor---.¥n): Yo =0, [yi-a —yi| =1,
{y07"' ayn}m{zrgll)a"'azr('ril)} = 07Zr<']k) € {YOa---aYn}7|yn—Z,<1k)| Z 5“}

the set of all ‘good’ paths and I¢t;) be a sequence of independent, exponentially
distributed random variables with parametedr 2
Denote byE the expectation with respect (@ ). We have

n—1 n—-1

Ut =y (2d)E [exp{ ; Tié (i) + (t - ; ri)f (yn>}

ye 2 Bkn) = i=
(8)

{Sn< g

OMD
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In the further proof we apply Lemma 9 to the values of the ptig¢§ along a
pathy. However, to do so we need the maximung€ailong the patly to be attained
only once. Therefore we have to modify the potential aloregithth slightly.

We fixy € 2200%" and let

i(y)=min{i € {0,...,n}:yi =Z}}

be the index of the first instant where the maximum of the patkover the path is
attained. Now we define a slight variation®bny in the following way. Fixe > 0
and defineY: {0,...,n} — Rby &' = &(vi) if i #i(y), and&y, = & (¥i(y)) +&. We
obtain, using (vi) < &, that

n—1

elewn{ '3 e+ (-3 n)eomfr{T n <t S not)]

= i
n—1

cefon{ g (- F)a(n s g1

= (2d) n+l/R exp{ zotf +< Z}t.)f }
1{_thi <t,_Z}ti >t}e 20510t ity .. dty_1dty

-1

:(Zd)”e*Zdt/Rd exp{?zjtifiu( Z} ) } {ﬁitia}dto...dtnl

< (2d)"e Ml I'I &0 : g ©)
iy

where the last line follows from Lemma 9. Using the definitafrour function&¥
we get

&yt (E(yigy)) +et 1
e’ily) — =@\ Viy
) |_| Eiy o Eiy

ity €+ EViy) — &)

(€€t g
< &) et 1 o
<e<yi<y>>|j<'<yi>>>1 & Oiy)) = &)

Next recall thap is fixed, andm, = |n°|. Let
Gn={ZV,....Z™} c {ze 2 |4 <n},

and call the complemef@§ the set of sites with very low potential. Note that there
are at leasz\’| + | dr¢ | — m, points in the patly that belong taG¢. Hence there are
at least

|Z5]+ [ort] —
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terms in the product in the left hand side of (10) that are En#ian

provided this is less than 1. Combining this with (8), (9) &bd), we get

ULk (1) < gfne(M,gkuede)t (Mékn) -~ Mr(]mq))f\zék)\fwrdmwn
ye 2Bk

_ [P _ 7\Zr<1k)\f ort|+mn

< (2d)nengMn’+e 2d)t(pTG|ogn) Lore]+mn

Taking the log of the above and defini6g := log(Z) — log(57 ) we get

% logu> " (t) < MlogZ + MY —2d + & — (|1ZY] + | 81| — my) log (252 logn)

fgMﬁtfﬂzwuogmmzw|f2d+e+$c5f5ﬁ$£?+oay
where we use thaZ)’| + | 8r; | < n. Observing that loglog > (1+ o(1))loglogt
and{C¢ = o(1), uniformly for all nin the given range, concludes the proof of (b).

To prove part (a) we show that regardless of the distanceltea/by the path, it
hits a site with very low potential in every other step. Rett@t a seH of vertices
of z9 is totally disconnectedf there is no pair of verticegx,y) € H? such that
x—y=1.

Lemma 10. Almost surely, for sufficiently large n, the setiStotally disconnected.

Proof. We prove the statement far > 2 first. If i and j are distinct integers in
{1,...,my}, the random pair of point&Z)’, Z{) is uniformly distributed over all
possible pairs of points in the ball of radinsAs no vertex has more tharl 2eigh-

bours, we hav®(Z))) — Z') < 2d/1,,. Summing over all possible pairsj we get

P(Gn not totally disconnected< > P(zi -2 < (th> ?—d <crfP 4. (11)
i n

i<)

for some constar@. Sincep < % andd > 2 we can apply the Borel-Cantelli lemma
and obtain the result. We now prove the the same result wiherd. We introduce
a new quantity

m, = [n?'| withp < p’ < 1
Let G, be the set of the, vertices in the ball of radius where the biggest values
of & are taken, and lep, be the biggest integer power of 2, which is less than

Note that, by (11), the se}’pn is totally disconnected for all sufficiently large
We now prove that

Gn C Gy, forall sufficiently largen. (12)
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For this it suffices to show that at leas} points ofG), are in the ball of radius.
Indeed, if we assume this and also t&atZ G, we can find a vertex, satisfying,
|zo] <n,zp€ G’2pn andzy ¢ Gy. This implies that every € Gy satisfiest (z) > & (),
becauseds, is the set where the largest valueséofare achieved. Then, because
7€ G’an, we have

Gn € {&(2) > &(20)} NBn € {&(2) > §(20)} NBap, € Grp,,

which leads to a contradiction to our assumption.

In fact we will prove the slightly stronger statement thagrhare at leasiyp,
vertices ofG’2pn in the ball of radiugp,, and we will now writep instead ofp,. We
write

,2p = {a()a"'vairépfj_}v

whereg is the vertex wheré (&) = Mg;l) and introduce

nﬁépfl
X = (Xi)OSiSrT'épfl with X4 = ]1{\a{\§p} and|X| = izo X4
Observing tham(Zp =o(p) and thath2p is uniformly distributed over all possible
ordered sets and recalling that the box of ragiw®ntains D+ 1 vertices, it is easy
to see that fop big enough,
P(Xj=1|X =x.vi < j) <2 andP(X; =0|X =x,Vi < j) < 3,

for all j < mj, — 1 and for all fixed(X, ..., xj_1) € {0,1}). Hence

p—1
P(IX| < mgp) = > |  PX=x)

Y ) ) <min ()

= exp(—r‘r{Zp log(4/3) + (mgp— 1) logmy, + log Map)

= e*(Zp)p/(:Ho(:L)) < e,np’ asn < 2pn.
Using the Borel-Cantelli lemma we can prove (12), which ilepthe statement.

We define the set of path#®, to be

Py = {y: (Yo,---»¥n): Yo=0, lyi-1—Vi| =1,
{yo)'"7yn}m{zlgll)""7zlglknil)} # 0}7

so that
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n—-1 n-1

() = " i& (Vi =Y 1)&(yn
uro =3 @ elexp{ 3 nén+(t- 3 7)E0m)}
n-1 n

XH{ZOKLZO““H'

We can now argue similarly as for part (b) but using this timefact that for any
path in#7, the number of step out @, is at least n/2|. More precisely,

3

Ul () < Z/, g—ne(Mrgluefzd)t(Ml{lkn)7Mr(]mn))*L”/2J
YESn

and taking the log of the above and defin@g:= 2Iog(2—£d) — Iog(p’Ta) we get

%IogU{”)(t) < MogZ + MY —2d+ €& — ¥ [n/2]log (5% logn)
=My’ — 5 (loglogn—C¢) —2d+ £+ 0(1),

which concludes the proof of (a).

2.4 Analysis of the variational problem

We use the point process framework established in [6, Se&id] adapting the
approach of [11, Chapter 3]. We only give an outline of thefesvork and sketched
proofs here, see [6, Section 2.2] for more details.

Observe thaju(dy) := e Ydy is a Radon measure 0B := (—o,]. For any
ze 79, x € R andr > 0, we have
rdP(E(z) —dlogr >x) = rdeg-dlogr—x _ g=x _ p([x,]).

Define, for anyg, T > 0 the seH{ := {(x,y) € R4 x G: y > q|x| + 1}, whereR¢ is
the one-point compactification . As in [6, Lemma 4.3] we see that the point

process
G=3 5((2.£@ ~ diogr))

ze74

converges in law to the Poisson procéssith intensity Lely ® u in the sense that,
for any pairwise disjoint compact seig, ..., Ky C Hy with Leby,1(dK) = 0, we
have tha{ ¢, (K1),..., ¢ (Kn)) converge in law to

é PoisgLeby @ u(Ki)).
i=1
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We further note that foz = t1°) we have

2 loglog|z = &(2) — 2 (1+0(2)).

W =& -7 :

Asin [6, Lemma 4.4] applied t® (z, X) := (z,X— |Z|) we infer from this the conver-
gence of the point process

@ = Z 5((%,1,[;{(2)—dlogrt))

ze79

in law to a Poisson process with intensity
(Leby@ p) o Tt = e @ Vdzdy

where now the compact seffg, . ..,K, can be chosen from the sdf := R‘”l\
(RY x (-0, T)). The form of these and the previous domains, and in parti¢htar
use of the compactification, ensure that we can use theseexgance results to
analyse the right hand side of the final formula in Proposifio

Lemma 11. Let X* and X® be the sites corresponding to the largest and second
largest value ofjt(2), ze Z9. Thenyx (X") — g (X?) converges in law to a stan-
dard exponential random variable.

Proof. Using careful arguments in the convergence step we obtaiayfya > 0,
P(i1(%") — th(X?) > a)
= ;P(m(Rd x (y,0)) = 0,@(R? x {y}) = L, m (R x (y—a)y)) =0)
- /P(W(Rd x (y,»)) = 0)P(w(RY x (y—a,y)) =0)e Ydy
= /exp(—e’y*a)e*ydy: e
Lemma 12. Let X" be the site corresponding to the largest valuelg(z), ze Z9.

Then %" /r; converges in law to a random variable&f with coordinates given by
independent standard exponential variables with unifoamdom signs.

Proof. As above we obtain, for ang c RY Borel with Leky(dA) =0,
Xt(l) .
P(T EA) - ZP(E}(R x (ya°°)) :O,LT.{(AX {y}) = 1)
y
— / dZ/dye*‘Z‘*yp(w(]Rd % (y,oo)) _ 0)
A

= [dz[ dyexpi—e eV = [20e az
A A

Observe that this implies that the limit variable has thesgidistribution.
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2.5 Proof of the almost sure asymptotics

Note that combining Lemma 1 and Lemma 6 establishes the alsuos lower
bound for the liminf result in Theorem 2. To find a matching eppound, recall
from Lemma 2 that, for sufficiently large

Li <Ng(t)—2d+¢
for Ne(t) := N (t). We now approximate the distribution b (t).
Lemma 13 (Approximation for thedistribution of N¢(t)). Letk 1 oo, then
log (P(Ng(t) <by)) = —e ™rf2% (1+0(1)).
Proof. Observe that
P(Ne(t) <bx) = J_| F (b[+|t£|(loglog|z|—cg)>.
t/(logt)?<[z|<tlogt

The values whichz| can take are such that loglfy= loglogt + o(1) uniformly
for all z, and sincdy; — o, we have,

log (P(Ne (t) < bx))

= > log (1fexp(fbtf%(IoglogthSwLo(l))))
t/(logt)?<|z|<tlogt

——(1401) Y el
t/(logt)?<|z|<tlogt

by ..d —[x|(14+0(1
=-€ btrt (1+0(1))/Rde (ol ))]1{IogIogt/(logt)zg\x\glogtIoglogt} dx

To obtain our final result, we apply the dominated convergeheorem to the inte-
gral, which converges to®2

We are now ready to prove the upper bound. We consider a sequdrimes
tn := exp(n?) for which Ng(t,) are independent random variables, in order to use
Borel-Cantelli.

Lemma 14 (Upper bound for lower envelope of Ng(t,)). For any small c> O,
almost surely there are infinitely many n such that

Ne (tn) < dlogt, — (1+d —c)logloglogty.

Proof. Note that(Ng(tn))n>n IS @ Sequence of independent variablell ifs large
enough. To see this it suffices to notice that the diffef®att,))n>n depend on the
values of the potential on disjoints areas. Indeed
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thy1  exp(n+2n+1)
(|09tn+1)2 (n+1)*

> n?exp(n?) = tylogt, for all largen.

Now we use Lemma 13 withy = dlogt — (1+ d— c)logloglogt and we get,

log (P(N(tn) < by,)) = —29 (loglogty)*°(1+ 0(1)) > —logn,

for all sufficiently largen. Hence the sum over the probabilities diverges and we
obtain our result by applying the converse of the Borel-@linemma.

2.6 Proof of the weak asymptotics

To prove Theorem 1 we show that the upper and lower bounds wedfearlier for
L; both satisfy the required limit statement. We first state#salt of [6, Proposition
4.12], which describes the limit result for the lower bouxd).

Lemma 15 (Weak asymptoticsfor N(t)). As t tends to infinity,
N(t) — dlogt +dlogloglogt = X, where RX <x) =exp(—2%e™).

Next we check the analogous limit theorem for the upper bdw{t) and thus
complete the proof of Theorem 1.

Lemma 16 (Weak asymptoticsfor Ng(t)). As t tends to infinity,
Ng(t) —dlogt +dlogloglogt = X, where RX < x) =exp(—2%e™).
Proof. Fix x € R and apply Lemma 13 withy = dlogt — dlogloglogt + x to get
log (P(Ng(t) — dlogt +dlogloglogt < x)) = —e 2% (1+0(1)),

which proves our result.

2.7 Proof of the scaling limit theorem

We recall thatx¥' (k= 1, 2) is the site at which

A

W@ =§@- 5

loglog|Z|

takes itsk!" largest value. Fixd > 0 and write

U (t) = Us(t) +Ua(t) +-Us(t) 4 Ua(t) +Us(t) + Us(t),
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whereU; andU3 were defined in Lemma 7, resp. Lemma 8, and
Us(t) = exp / &(Xs) ds}]l{ Togi? , < J <ta, maxE(Xs) > M(th }

L{X" € {Xs: 0<s<t}, % —XY| < 6rt}},

Us(t) ]E[GXP{ /Otf(Xs }]l{tat < J <tlogt, maxE(Xs) > M(k*)}},

Us(t) ]E{exp{ /Ot }]1{ﬁ <} <ta, maxE(Xs) > M(le }

1{X" ¢ {%: 0<s<t}}],
(ky)
Us(t) = exp /Exsds ]l{ Togiz < X <tay, maxE( s) > Myt
1Y € (X 0<s<th[X —X| > ore } .
Observe that our result follows if the contributionsléft) fori =2,...,6 to the

total mass are negligible, &k (t) only contributes to the mass distributed on points
close toX" on ther; scale.

Lemma 17. Suppose@| 0 and aloglogt — . Then we have, in probability,

_Us(t) . Us(t) . Uglt)
v IR AT

Proof. For the first statement we use Proposition 1 (a) to see that
1 L
= logUy4(t) < sup {Mn — — (loglogn—C;) } +&—2d+0(1).
t nztat 2t

By Lemmas 12 and 11 the limit of the right hand side is stristiyaller than the
growth rate ol (t), proving that the first limit in the statement equals zero.

Using Proposition 1 (b) witl® = 0 and summing over all & k < t@ with X” #
Zy, and over alh with 2t/(logt)? < n < ta; we get

%IogU5()< max W (2) —2d+0(1) = ¢ (X?) —2d+0(1) in probability.
2%V}

By Lemma 11 we find > 0 such that, with a probability arbitrarily close to one

L10gUs(t) < t(x") ~2d e+ o(1),

and a comparison with the lower bouNdt) for the growth rate ot (t) proves the
second result.
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For the third statement we use Proposition 1 (b) with the @hoifé > 0 from
the statement. Summing over alklk < t° andn with 2t/(logt)? < n < ta; we get,
as above,

210gUs(t) < h(x") 20— 5 +-0(1).

We can now argue as before that this rate is strictly smdilen the lower bound
N(t) for U(t), proving the final statement.

We can now complete the proof of Theorem 3. By definition weshav

1> liminfw{ze 74 | |z—X"| < Sri} > liminf Us(t) =1—limsup ; Yit)
Tt - T tte U(t) t1oo sz U(t)

Combining Lemmas 7, 8 and 17 we see that the limsup is zerbasove get
ItiTm w{zez®|z—XY|<ér} =1 in probability.

Combining this with the convergence K(f”/rt given in Lemma 12 and recalling
thatd > 0 was arbitrary concludes the proof.

3 Concluding remarks

It would be interesting to study scaling limit theorems fatgntials with lighter
tails and thus shed further light on the number of relevdahigs in these cases.

The techniques of the present paper appear suitable tacaeas where the rele-
vantislands are single sites, which is the case for poteriteavier than the double-
exponential distributions. For the double-exponentiatribution itself and lighter
tails, arguments related to classical order statisticsiaf irandom variables need
to be replaced by eigenvalue order statistics for the ran8chrédinger operator
A + & on ¢?(Z%), making the problem much more complex. Work in an advanced
state of progress by Biskup and Konig [1] deals with the dexdxponential case
and strongly hints at localization in a single island of #ngize in this and other
cases of unbounded potentials.

For boundedpotentials the question of the number of relevant islandsthe
formulation of a scaling limit theorem at present seems veigden and constitutes
an attractive research project. Sznitman in [12] discusse&lliptic version’ of
the Anderson problem, describing Brownian paths in a Paissopotential condi-
tioned to reach a remote location. Sznitman'’s techniqualairgement of obstacles,
described in [14], offers a possible approach to the scdiing theorem, leading
in [13] to a study of fluctuations of the principal eigenveadue the operatoA + &
and moreover an analysis of variational problems somevitméies to those that we
expect to arise in the proof of a scaling limit theorem.
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In the light of our result and this discussion it would be oftfmalar interest
to know whether there at all exist potentials which lead taertban one relevant
island, and if so, to find the nature and location of the titzmsibetween phases of
one and several islands.
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