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1 École Normale Supérieure de Lyon
2 University of Bath

Abstract. We study robustness under random attack for a class of net-
works, in which new nodes are given a spatial position and connect to
existing vertices with a probability favouring short spatial distances and
high degrees. In this model of a scale-free network with clustering one can
independently tune the power law exponent τ > 2 of the degree distribu-
tion and a parameter δ > 1 determining the decay rate of the probability
of long edges. We argue that the network is robust if τ < 2 + 1

δ
, but fails

to be robust if τ > 2 + 1
δ−1

. Hence robustness depends not only on the
power-law exponent but also on the clustering features of the network.
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1 Introduction

Scientific, technological or social systems can often be described as complex net-
works of interacting components. Many of these networks have been empirically
found to have strikingly similar topologies, shared features being that they are
scale-free, i.e. the degree distribution follows a power law, small worlds, i.e. the
typical distance of nodes is logarithmic or doubly logarithmic in the network
size, or robust, i.e. the network topology is qualitatively unchanged if an arbi-
trarily large proportion of nodes chosen at random is removed from the network.
Barabási and Albert [2] therefore concluded fifteen years ago ‘that the devel-
opment of large networks is governed by robust self-organizing phenomena that
go beyond the particulars of the individual systems.’ They suggested a model
of a growing family of graphs, in which new vertices are added successively and
connected to vertices in the existing graph with a probability proportional to
their degree, and a few years later these features were rigorously verified in the
work of Bollobás and Riordan, see [8],[5],[6].

A characteristic feature present in most real networks that is not picked up
by preferential attachment is that of clustering, the formation of clusters of nodes
with an edge density significantly higher than in the overall network. A natural
way to integrate this feature in the model is by giving every node an individual
feature and implementing a preference for edges connecting vertices with similar
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features. This is usually done by spatial positioning of nodes and rewarding short
edges, see for example [17], [1], [21]. Here we investigate a model, introduced
in [19], which is a generalisation of the model of Aiello et al. [1]. It is defined
as a growing family of graphs in which a new vertex gets a randomly allocated
spatial position on the torus. This vertex then connects to every vertex in the
existing graph independently, with a probability which is a decreasing function
of the spatial distance of the vertices, the time, and the inverse of the degree
of the vertex. The relevance of this spatial preferential attachment model lies
in the fact that, while it is still a scale-free network governed by a simple rule
of self-organisation, it has been shown to exhibit clustering. The present paper
investigates the problem of robustness.

In mathematical terms, we call a growing family of graphs robust if the criti-
cal parameter for vertex percolation is zero, which means that whenever vertices
are deleted independently at random from the graph with a positive retention
probability, a connected component comprising an asymptotically positive pro-
portion of vertices remains. For several scale-free models, including non-spatial
preferential attachment networks, it has been shown that the transition between
robust and non-robust behaviour occurs when the power law exponent τ crosses
the value three, see for example [5], [14]. Robustness in scale-free networks relies
on the presence of a hierarchically organised core of vertices with extremely high
degrees, such that every vertex is connected to the next higher layer by a small
number of edges, see for example [22]. Our analysis of the spatial model shows
that, if τ < 3, whether vertices in the core are sufficiently close in the graph
distance to the next higher layer depends critically on the speed at which the
connection probability decreases with spatial distance, and hence depending on
this speed robustness may hold or fail. The phase transition between robustness
and non-robustness therefore occurs at value of τ strictly smaller than three.

The main structural difference between the spatial and classical model of pref-
erential attachment is that the former exhibits clustering. Mathematically this
is measured in terms of a positive clustering coefficient, meaning that, starting
from a randomly chosen vertex, and following two different edges, the probability
that the two end vertices of these edges are connected remains positive as the
graph size is growing. This implies in particular that local neighbourhoods of
typical vertices in the spatial network do not look like trees. However, the main
ingredient in almost every mathematical analysis of scale-free networks so far
has been the approximation of these neighbourhoods by suitable random trees,
see [7], [13], [4], [16]. As a result, the analysis of spatial preferential attachment
models requires a range of entirely new methods, which allow to study the ro-
bustness of networks without relying on the local tree structure that turned out
to be so useful in the past.

2 The model

While spatial preferential attachment models may be defined in a variety of met-
ric spaces, we focus here on homogeneous space represented by a one-dimensional
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torus of unit volume, given as T1 = (−1/2, 1/2] with the endpoints identified.
We use d1 to denote the torus metric. Let X denote a homogeneous Poisson
point process of finite intensity λ > 0 on T1 × (0,∞). A point x = (x, s) in X is
a vertex x, born at time s and placed at position x. Observe that, almost surely,
two points of X neither have the same birth time nor the same position. We say
that (x, s) is older than (y, t) if s < t. For t > 0, write Xt for X ∩ (T1 × (0, t]),
the set of vertices already born at time t.

We construct a growing sequence of graphs (Gt)t>0, starting from the empty
graph, and adding successively the vertices in X when they are born, so that
the vertex set of Gt equals Xt. Given the graph Gt− at the time of birth of a
vertex y = (y, t), we connect y, independently of everything else, to each vertex
x = (x, s) ∈ Gt−, with probability

ϕ

(
t

f(Z(x, t−))
d1(x, y)

)
, (1)

where Z(x, t−) is the indegree of vertex x, defined as the total number of edges
between x and younger vertices, at time t−. The model parameters in (1) are
the attachment rule f : N ∪ {0} → (0,∞), which is a nondecreasing function
regulating the strength of the preferential attachment, and the profile function
ϕ : [0,∞)→ (0, 1), which is an integrable nonincreasing function regulating the
decay of the connection probability in terms of the interpoint distance. The con-
nection probabilities in (1) may look arcane at a first glance, but are in fact
completely natural. To ensure that the probability of a new vertex connecting
to its nearest neighbour does not degenerate, as t ↑ ∞, it is necessary to scale
d1(x, y) by 1/t, which is the order of the distance of a point to its nearest neigh-
bour at time t. The linear dependence of the argument of ϕ on time ensures that
the expected number of edges connecting a new vertex to vertices of bounded
degree remains bounded from zero and infinity, as t ↑ ∞, as long as x 7→ ϕ(|x|)
is integrable.

The model parameters λ, f and ϕ are not independent. If
∫
ϕ(|x|) dx = µ > 0,

we can modify ϕ to ϕ ◦ (µ Id) and f to µf , so that the connection probabilities
remain unchanged and ∫

ϕ(|x|) dx = 1. (2)

Similarly, if the intensity of the Poisson point process X is λ > 0, we can replace
X by {(x, λs) : (x, s) ∈ X} and f by λf , so that again the connection probabil-
ities are unchanged and we get a Poisson point process of unit intensity. From
now on we will assume that both of these normalisation conventions are in place.
Under these assumptions the regime for the attachment rule f which leads to
power law degree distributions is characterised by asymptotic linearity, i.e.

lim
k↑∞

f(k)

k
= γ,

for some γ > 0. We henceforth assume asymptotic linearity with the additional
constraint that γ < 1, which excludes cases with infinite mean degrees.
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We finally assume that the profile function ϕ is either regularly varying at
infinity with index −δ, for some δ > 1, or ϕ decays quicker than any regularly
varying function. In the latter case we set δ = ∞. Intuitively, the bigger δ, the
stronger the clustering in the network. See Figures 1 and 2 for simulations of the
spatial preferential attachment network indicative of the parameter dependence.

Fig. 1. Simulations of the network for the two-dimensional torus, based on the same
realisation of the Poisson process, with parameters γ = 0.75 and δ = 2.5 (left) and
δ = 5 (right). Both networks have the same edge density, but the one with larger δ
shows more pronounced clustering. The pictures zoom into a typical part of the torus.

Fig. 2. Simulations of the network for the one-dimensional torus, the vertical axis
indicating birth time of the nodes. Parameters are γ = 0.75 and δ = 2 (left), resp.
δ = 5 (right) and both networks have the same edge density and power law exponent.
Our results show that the network on the left is robust, the one on the right is not.

A similar spatial preferential attachment model was introduced in [1] and
studied further in [20], [10]. There it is assumed that the profile functions has
bounded support, more precisely ϕ = p1[0,r], for p ∈ (0, 1] and r satisfying (2).
This choice, roughly corresponding to the boundary case δ ↑ ∞, is too restrictive
for the problems we study in this paper, as it turns out that robustness does not
hold for any value of τ . Other spatial models with a phase transition between a
robust and a non-robust phase are the scale-free percolation model of Deijfen et
al. [11], and the Chung-Lu model in hyperbolic space, discussed in Candellero
and Fountoulakis [9]. In both cases the transition happens when the power law
exponent of the degree distribution crosses the value 3.



Robustness of spatial preferential attachment networks 5

Local properties of the spatial preferential attachment model were studied
in [19], where this model was first introduced. It is shown there that

– The empirical degree distribution of Gt converges in probability to a deter-
ministic limit µ. The probability measure µ on {0} ∪ N satisfies

µ(k) = k−(1+
1
γ )+o(1) as k ↑ ∞.

The network (Gt)t>0 is scale-free with power-law exponent τ = 1+ 1
γ , which

can be tuned to take any value τ > 2. See [19, Theorem 1 and 2].

– The average over all vertices v ∈ Gt of the empirical local clustering coef-
ficient at v, defined as the proportion of pairs of neighbours of v which are
themselves connected by an edge in Gt, converges in probability to a positive
constant cav∞ > 0, called the average clustering coefficient. In other words the
network (Gt)t>0 exhibits clustering. See [19, Theorem 3].

3 Statement of the result

Recall that the number of vertices of the graphs Gt, t > 0, form a Poisson
process of unit intensity, and is therefore almost surely equivalent to t as t ↑ ∞.
Let Ct ⊂ Gt be the largest connected component in Gt and denote by |Ct| its
size. We say that the network has a giant component if Ct is of linear size or,
more precisely, if

lim
ε↓0

lim sup
t→∞

P
(
|Ct|
t
≤ ε
)

= 0;

and it has no giant component if Ct has sublinear size or, more precisely, if

lim inf
t→∞

P
(
|Ct|
t
≤ ε
)

= 1 for any ε > 0.

If G is a graph with vertex set X , and p ∈ (0, 1), we write Gp for the random
subgraph of G obtained by Bernoulli percolation with retention parameter p on
the vertices of G. We also use Xp for set of vertices surviving percolation. The
network (Gt)t>0 is said to be robust if, for any fixed p ∈ (0, 1], the network
( Gp t)t>0 has a giant component and non-robust if there exists p ∈ (0, 1] so that
( Gp t)t>0 has no giant component.

Theorem 1. The spatial preferential attachment network (Gt)t>0 is

(a) robust if γ > δ
1+δ or, equivalently, if τ < 2 + 1

δ ;

(b) non-robust if γ < δ−1
δ or, equivalently, if τ > 2 + 1

δ−1 .

Remark 1 The network is also non-robust if γ < 1
2 or, equivalently, if τ > 3.

But the surprising result here is that for δ > 2 the transition between the two
phases occurs at a value strictly below 3. This phenomenon is new and due to the
clustering structure in the network. It offers a new perspective on the ‘classical’
results on network models without clustering.
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Remark 2

– We conjecture that the result in (a) is sharp, i.e. nonrobustness occurs if
γ < δ

1+δ . If this holds, the critical value for τ equals 2 + 1
δ . Our proof tech-

niques currently do not allow to prove this.

– Our approach also provides heuristics indicating that in the robust phase
δ(τ − 2) < 1 the typical distances in the robust giant component are asymp-
totically

(4 + o(1))
log log t

− log(δ(τ − 2))
,

namely doubly logarithmic, just as in some nonspatial preferential attach-
ment models. The constant coincides with that of the nonspatial models in
the limiting case δ ↓ 1, see [15],[12], and goes to infinity as δ(τ − 2)→ 1. It
is an interesting open problem to confirm these heuristics rigorously.

4 Proof ideas and strategies

Before describing the strategies of our proofs, we briefly summarise the tech-
niques developed in [19] in order to describe the local neighbourhoods of typical
vertices by a limit model.

Canonical representation We first describe a canonical representation of our
network (Gt)t>0. To this end, let X be a Poisson process of unit intensity on
T1× (0,∞), and endow the point process X ×X with independent marks which
are uniformly distributed on [0, 1]. We denote these marks by Vx,y or V(x,y),
for x,y ∈ X . If Y ⊂ T1 × (0,∞) is a finite set and W : Y × Y → [0, 1] a map,
we define a graph G1(Y,W) with vertex set Y by establishing edges in order of
age of the younger endvertex. An edge between x = (x, t) and y = (y, s), t < s,
is present if and only if

W(x,y) ≤ ϕ
(

sd1(x, y)

f(Z(x, s−))

)
, (3)

where Z(x, s−) is the indegree of x at time s−. A realization of X and V then
gives rise to the family of graphs (Gt)t>0 with vertex sets Xt = X ∩ (T1× (0, t]),
given by Gt = G1(Xt,V), which has the distribution of the spatial preferential
attachment network.

Space-time rescaling The construction above can be generalised in a straight-
forward manner from T1 to the torus of volume t, namely Tt = (− 1

2 t,
1
2 t],

equipped with its canonical torus metric dt. The resulting functional, mapping
a finite subset Y ⊂ Tt × (0,∞) and a map from Y × Y → [0, 1] onto a graph, is
now denoted by Gt. We introduce the rescaling mapping

ht : T1 × (0, t]→ Tt × (0, 1],
(x, s) 7→ (tx, s/t)



Robustness of spatial preferential attachment networks 7

which expands the space by a factor t, the time by a factor 1/t. The mapping ht
operates on the set X , but also on V, by ht(V)ht(x),ht(y) := Vx,y. The operation
of ht preserves the rule (3), and it is therefore simple to verify that we have

Gt(ht(Xt), ht(V)) = ht(G
1(Xt,V)) = ht(Gt),

that is, it is the same to construct the graph and then rescale the picture, or
to first rescale the picture, then construct the graph on this rescaled picture.
Observe also that ht(Xt) is a Poisson point process of intensity 1 on Tt × (0, 1],
while ht(V) are independent marks attached to the points of ht(Xt) × ht(Xt)
which are uniformly distributed on [0, 1].

Convergence to the limit model We now denote by X a Poisson point
process with unit intensity on R × (0, 1], and endow the points of X × X with
independent marks V, which are uniformly distributed on [0, 1]. For each t > 0,
identify (− 1

2 t,
1
2 t] and Tt, and write X t for the restriction of X to Tt × (0, 1],

and Vt for the restriction of V to X t × X t. In the following, we write Gt or
Gt(X ,V) for Gt(X t,Vt). We have seen that for fixed t ∈ (0,∞), the graphs
Gt and ht(Gt) have the same law. Thus any results of robustness we prove for
the network (Gt)t>0 also hold for the network (Gt)t>0. It was shown in [19,
Proposition 5] that, almost surely, the graphs Gt converge to a locally finite
graph G∞ = G∞(X ,V), in the sense that the neighbours of any given vertex
x ∈ X coincide in Gt and in G∞, if t is large enough. It is important to note the
fundamentally different behaviour of the processes (Gt)t>0 and (Gt)t>0. While
in the former the degree of any fixed vertex stabilizes, in the latter the degree
of any fixed vertex goes to ∞, as t ↑ ∞. We will exploit the convergence of Gt

to G∞ in order to decide the robustness of the finite graphs Gt, and ultimately
Gt, from properties of the limit model G∞.

Law of large numbers We now state a limit theorem for the graphs Gp t

centred in a randomly chosen point. To this end we denote by Pp the law of X ,V
together with independent Bernoulli percolation with retention parameter p on
the points of X . For any x ∈ R × (0, 1] we denote by Pp x the Palm measure,
i.e. the law Pp conditioned on the event {x ∈ Xp }. Note that by elementary
properties of the Poisson process this conditioning simply adds the point x to
Xp and independent marks Vx,y and Vy,x, for all y ∈ X , to V. We also write
E
p

x for the expectation under Pp x. Let ξ = ξ (x, G) be a bounded functional of
a locally-finite graph G with vertices in R × (0, 1] and a vertex x ∈ G, which
is invariant under translations of R. Also, let ξt = ξt (x, G) be a bounded family
of functionals of a graph G with vertices in Tt × (0, 1] and a vertex x ∈ G,
invariant under translations of the torus. We assume that, for U an independent
uniform random variable on (0, 1], we have that ξt((0, U), Gp t) converges to
ξ((0, U), Gp ∞) in Pp (0,U)-probability. By [19, Theorem 7], in Pp -probability,

1

t

∑
x∈ Xp t

ξt
(
x, Gp t

)
−→
t→∞

p

∫ 1

0

Ep (0,u)[ξ((0, u), Gp ∞)] du. (4)
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4.1 Robustness: strategy of proof

Existence of an infinite component in the limit model We first show
that, under the assumptions that γ > δ

1+δ , or equivalently γ
δ(1−γ) > 1, the per-

colated limit model Gp ∞ has an infinite connected component. This uses the
established strategy of the hierarchical core. Young vertices, born after time 1

2 ,
are called connectors. We find α > 1 such that, starting from a sufficiently old
vertex x0 ∈ Gp ∞, we establish an infinite chain (xk)k≥1 of vertices xk = (xk, sk)
such that sk < sαk−1, i.e. we move to increasingly older vertices, and xk−1 and
xk are connected by a path of length two, using a connector as a stepping stone.
The following lemma is the key. Roughly speaking, we call a vertex born at time
s good if its indegree at time 1

2 is close to its expectation, i.e. of order s−γ .

Lemma 1. Choose first α ∈ (1, γ
δ(1−γ) ) then β ∈ (α, γδ (1 + αδ)). If x is a good

vertex born at time s, then with very high probability there exists a good vertex y
born before time sα with |x− y| < s−β such that x and y are connected through
a connector.

Proof (Sketch).

– The existence of a good vertex y is easy because it just needs to be located
in a box of sidelengths sα and 2s−β , and sαs−β →∞.

– At time 1
2 the good vertex x has indegree of order s−γ . The number of connec-

tors at distance ≤ s−γ , which are connected to x is therefore stochastically
bounded from below by a Poisson variable with intensity s−γ .

– For each of these connectors the probability that they connect to a good y
is at least

ϕ
( 1

2d(x, y)

s−αγ

)
≤ cst.s−δ(αγ−β).

We succeed because −γ − δ(αγ − β) < 0.

Transfer to finite graphs using the law of large numbers To infer robust-
ness of the network (Gt)t>0 from the behaviour of the limit model we use (4) on
the functional ξt(x, G) defined as the indicator of the event that there is a path
in G connecting x to the oldest vertex of G. We denote by ξ(x, G) the indicator
of the event that the connected component of x is infinite and let

θp :=

∫ 1

0

Pp (0,u)

{
the component of (0, u) in Gp ∞ is infinite

}
du. (5)

If lim ξt((0, U), Gp t) = ξ((0, U), Gp ∞) in probability, then the law of large num-
bers (4) implies that lim(1/t)

∑
x∈ Xp t ξt(x, G

p t) = p θp . The sum is the number
of vertices in Gp t connected to the oldest vertex, and we infer that this number
grows linearly in t so that a giant component exists in ( Gp t)t>0. This implies
that (Gt)t>0 and hence (Gt)t>0 is a robust network. However, while it is easy to
see that lim supt↑∞ ξt((0, U), Gp t) ≤ ξ((0, U), Gp ∞), checking that

lim inf
t↑∞

ξt((0, U), Gp t) ≥ ξ((0, U), Gp ∞), (6)

is the difficult part of the argument.
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The geometric argument The proof of (6) is the most technical part of the
proof. We first look at the finite graph Gp t and establish the existence of a core
of old and well-connected vertices, which includes the oldest vertex. Any pair of
vertices in the core are connected by a path with a bounded number of edges, in
particular all vertices of the core are in the same connected component. This part
of the argument is similar to the construction in the limit model. We then use a
simple continuity argument to establish that if the vertex (0, U) is in an infinite
component in the limit model, then it is also in an infinite component for the
limit model based on a Poisson process X with a slightly reduced intensity. In
the main step we show that under this assumption the vertex (0, U) is connected
in Gp t with reduced intensity to a moderately old vertex. In this step we have
to rule out explicitly the possibilities that the infinite component of Gp ∞ either
avoids the set of eligible moderately old vertices, or connects to them only by a
path which moves very far away from the origin. The latter argument requires
good control over the length of edges in the component of (0, U) in Gp ∞. Once the
main step is established, we can finally use the still unused vertices, which form
a Poisson process with small but positive intensity, to connect the moderately
old vertex we have found to the core by means of a classical sprinkling argument.

4.2 Non-robustness: strategy of proof

Using the limit model If γ < 1
2 it is very plausible that the spatial preferential

attachment network is non-robust, as the classical models with the same power-
law exponents are non-robust [5], [14] and it is difficult to see how the spatial
structure could help robustness. We have not been able to use this argument for a
proof, though, as our model cannot be easily dominated by a non-spatial model
with the same power-law exponent. Instead we use a direct approach, which
turns out to yield non-robustness also in some cases where γ > 1

2 . The key is
again the use of the limit model, and in particular the law of large numbers. We
apply this now to the functionals ξ(k)(x, G) defined as the indicator of the event
that the connected component of x has no more than k vertices. By the law of
large numbers (4) the proportion of vertices in Gp t which are in components no
bigger than k converge, as first t ↑ ∞ and then k ↑ ∞ to 1− θp . Hence if θp = 0
for some p > 0, then (Gt)t>0 and hence (Gt)t>0 is non-robust. It is therefore
sufficient to show that, for some sufficiently small p > 0, there is no infinite
component in the percolated limit model Gp ∞.

Positive correlation between edges We first explain why a näıve first mo-
ment calculation fails. If (0, U) has positive probability of belonging to an in-
finite component of Gp ∞ then, with positive probability, we could find an in-
finite self-avoiding path in Gp ∞ starting from x0 = (0, U). A direct first mo-
ment calculation would require to give a bound on the probability of the event
{x0↔x1↔· · ·↔xn} that a sequence (x0, . . . ,xn) of distinct points xi = (xi, si)
conditioned to be in X forms a path in G∞. If this estimate allows us to bound
the expected number of paths of length n in G∞ starting in x0 = (0, U) by Cn,
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for some constant C, we can infer with Borel-Cantelli that, if p < 1/C, almost
surely there is no arbitrarily long self-avoiding paths in Gp ∞. The problem here
is that the events {xj↔xj+1} and {xk↔xk+1} are positively correlated if the
interval I = (sj , sj+1)∩ (sk, sk+1) is nonempty, because the existence of a vertex
in X ∩ (R× I) may make their indegrees grow simultaneously. Because the posi-
tive correlations play against us, it seems not possible to give an effective upper
bound on the probability of a long sequence to be a path, therefore making this
first moment calculation impossible.

Quick paths, disjoint occurrence, and the BK inequality As a solution to
this problem we develop the concept of quick paths. If Gp ∞ contains an infinite
path, then there is an infinite quick path in G∞ with at least half of its points
lying in Gp ∞. The expected number of quick paths of length n can be bounded
by Cn, for some C > 0, and the näıve argument above can be carried through.

Starting with a geodesic path x0↔· · ·↔x` in Gp ∞
0 we first construct a sub-

sequence yn = xϕ(n) by letting ϕ(0) = 0 and ϕ(n+ 1) be the maximal k > ϕ(n)
such that there is y ∈ G∞ younger than xϕ(n) and xk with xϕ(n)↔y↔xk. We
emphasise that y need not be in Gp ∞ but only in G∞. The vertex y is called
a common child of the vertices xϕ(n) and xϕ(n+1), and if there is no common
child we let ϕ(n + 1) = ϕ(n) + 1. The quick path z0↔· · ·↔zm associated with
the geodesic path x0↔· · ·↔x` is obtained by inserting between yn and yn+1, if
they are not connected by an edge, their oldest common child y ∈ G∞. Quick
paths are characterised by the properties;

(i) A vertex which is not a local maximum (i.e. younger than its two neighbours
in the chain) cannot be connected by an edge to a younger vertex of the path,
except possibly its neighbours.

(ii) Two vertices zn and zn+j , with j ≥ 2, which are not local maxima, can have
common children only if j = 2 and zn+1 is a local maximum. In that case,
zn+1 is their oldest common child.

Introduce a splitting at index i if either zi is younger than both zi−1 and zi−2,
or younger than both zi+1 and zi+2. We write n0 = 0 < n1 < · · · < nk = m for
the splitting indices in increasing order. Let

Aj = {znj−1
↔· · ·↔znj}.

Then if z0↔· · ·↔zm is a path in G∞ that satisfies (i) and (ii), then A1, . . . , Ak
occur disjointly. The concept of disjoint occurrence is due to van den Berg and
Kesten. Two increasing events A and B occur disjointly if there exists disjoint
subsets of the domain of the Poisson process such that A occurs if the points
falling in the first subset are present, and B occurs if the points falling in the
second subset are present. The famous BK-inequality, see [3] for the variant most
useful in our context, states that the probability of events occurring disjointly is
bounded by the probability of their product. The events Aj involve five or fewer
consecutive vertices and Figure 3 shows the six possible types, up to symmetry.
The probability of these types can be estimated by a direct calculation.
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(i) (ii) (iii)

(iv) (v) (vi)

Fig. 3. Up to symmetry there are six types of small parts after the splitting. Illustrated,
with the index of a point on the abscissa and time on the ordinate, these are (i) one
single edge, (ii) a V shape with two edges, (iii) a V shape with three edges and the end
vertex of the short leg between the two vertices of the long leg, (iv) a V shape with
three edges and both vertices of the long leg below the end vertex of the short leg,
(v) a W shape with the higher end vertex on the side of the deeper valley, (vi) a W
shape with the lower end vertex on the side of the deeper valley.

An refinement of the method The method described so far, allows to show
non-robustness only in the case τ > 3. To show non-robustness in the case
τ > 2 + 1

δ−1 a refinement is needed, which we now briefly describe.

A vertex z born at time u has typically of order u−γ younger neighbours,
which may be a lot. As most of these neighbours are close to z, namely within
distance u−1, and their local neighbourhoods are therefore strongly correlated,
our bounds are far from sharp. No matter how many vertices within distance
u−1 of z belong to the component of z, it will not help much to connect z to
vertices far away. Indeed, defining the region around z as

Cz = {z′ born at u′ ≥ u, |z′ − z| ≤ 2u−1 − u′−1},

we show that the typical number of vertices outside Cz that are connected to z,
or any other vertex in Cz, is only of order log(u−1). To estimate the probability
of a path it therefore makes sense to take all the points within Cz for granted and
consider only those edges of a quick path straddling a suitably defined boundary
of Cz. This improves our bounds because few edges straddle the boundary, and
the boundary remains small as u becomes small.
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