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1 Introduction

We study the empirical cycle distributions in models of random permutations with weights
depending on the length of the cycles. In this model, for any cycle of length j the weight
of the permutation gets multiplied with a factor proportional to θj. More precisely, the
probability of a permutation π of n elements is defined as

Pn(π) =
1

hnn!

∏
j≥1

θ
rj(π)
j , (1)

where rj(π) is the number of cycles in the permutation π of length j, and hn is a nor-
malisation. The case of constant cycle weights θj = θ corresponds to the Ewens measure
from population biology and is well studied. In this paper our focus is on cycle weights
(θj) which form a diverging sequence of regular variation. Studying random permutation
with cycle weights described by their asymptotic behaviour was considered in [BG05]
and is also motivated by the study of the quantum Bose gas [BU09, BU11]. The case of
convergent sequences (θj) has also been studied, see e.g. [BG05, BUV11, Lug09].

The case of diverging cycle weights was treated by Betz et al. [BUV11], Ercolani and
Ueltschi [EU13], Nikeghbali and Zeindler [NZ13] and by Maples et al. [MNZ12]. If the
growth of the cycle weights is of polynomial order the length of a typical cycle goes to zero.
Moreover, Ercolani and Ueltschi [EU13] show for a particular choice of the sequence (θj)
that the length L1 of the cycle containing one, behaves like

L1 ∼ n
1

γ+1 X,

where γ := lim
log θj
log j

> 0 and X is gamma distributed with shape parameter γ + 1.

The aim of this paper is to generalise this result in several ways. First we allow for
completely general sequences (θj) of regular variation with positive index, going well
beyond the setting of [EU13]. See [BGT87] for definitions and general results on this
class of sequences. Second, we considerably refine the asymptotics and obtain a full
local limit theorem. And third, building on this result, we extend the convergence to full
convergence of the empirical cycle length distribution to a gamma distribution. The latter
fact brings this result in line with similar results obtained in the study of condensation
phenomena recently obtained by the authors in [DM13] and [Der13].

While the studies carried out for this model so far rely on the (often quite heavy) machin-
ery of analytic combinatorics, like saddle-point analysis [EU13], singularity analysis [NZ13]
or further generating function methods [MNZ12], our proofs rely on a direct analysis of
the renewal-type equations relating the normalisation factors hn to the cycle weights. The
flexibility of this method is due to the fact that no inversion of generating functions has
to be performed. One can expect that this method can also be used to extend further
results from [EU13] and other papers in this area.
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2 Statement of the main results

Recall the definition (1) of the random partitions and impose the following assumptions
on the sequence (θj) of cycle weights:

(A1) (θj) is regularly varying, i.e. there exists an index γ > 0 and a slowly varying
function ` such that θj = jγ`(j) for all j ∈ N.

(A2) (θj) is nondecreasing.

We let β0 = 0 and βn :=
∑n

j=1 θj for integers n ≥ 1. By Lemma 3.4 below we have

βn ∼ 1
γ+1

nγ+1 `(n)

and, denoting by

β←(t) := min{n ≥ 0 : βn > t}, for t ∈ [0,∞),

its generalised inverse, there is a slowly varying function `← : [0,∞)→ [0,∞) such that

β←(t) = t
1

γ+1 `←(t),

or in other words that (β←(t)) is regularly varying with index 1
γ+1

. Finally, define

dγ := Γ(γ + 2)
1

γ+1

and recall that (γ + 1) xγ e−dγx, x > 0 is the probability density of a gamma distribution
with shape parameter γ+1. We denote by Lk = Lk(σ), the length of the cycle containing
the symbol k ∈ {1, . . . , n}. The following local limit theorem is the first main result of
this paper.

Theorem 2.1 (Local limit theorem). For every M > 0 we have

sup
j 6Mβ←(n)

∣∣∣ n
θj
Pn{L1 = j} − e−dγj/β←(n)

∣∣∣→ 0 as n→∞.

Moreover, for every ε > 0 there exist M > 0 with

lim sup
n→∞

Pn
{
L1 >Mβ←(n)

}
< ε.

Theorem 2.1 implies that a typical cycle under Pn has length of order β←(n). The following
corollary is a slightly weaker version of Theorem 2.1, which is more illuminating in the
case that j is of the order of a typical cycle length, and readily implies a global limit
theorem.
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Corollary 2.2. For every M > 0 we have

sup
j 6Mβ←(n)

∣∣∣β←(n)Pn{L1 = j} − (γ + 1)
(

j
β←(n)

)γ
e−dγj/β

←(n)
∣∣∣→ 0 as n→∞,

and therefore we have the global limit theorem

L1

β←(n)

Pn=⇒ X,

where X is gamma distributed with shape parameter γ + 1.

We now define the empirical cycle length distribution as the random probability measure
on [0, 1] given by

µn =
1

n

n∑
k=1

δ Lk
β←(n)

=
1

n

∑
i≥1

λi δ λi
β←(n)

,

where the integers λ1 > λ2 > · · · are the ordered cycle lengths of a permutation chosen
randomly according to Pn. We derive a limit theorem for the empirical cycle length
distribution, showing that it converges in probability to a deterministic limit given by a
gamma distribution.

Theorem 2.3 (Asymptotic shape of the cycle length distribution). For every x > 0,

lim
n→∞

µn
[
0, x
]

= (γ + 1)

∫ x

0

yγe−dγ y dy, in probability.

Our interest in Theorem 2.3 stems mostly from the analogy to results on the emergence of
condensation, which also exhibit an incomplete gamma function describing the empirical
distribution of a condensing quantity prior to condensation, see [DM13] for a speculative
treatment of this universal phenomenon and results in the case of Kingman’s model of
selection and mutation and [Der13] for results on random networks.

3 Proofs

3.1 Some first observations

The following two lemmas hold without any assumptions on (θj). Crucial in the analysis
of the model is the sequence (hn)n≥0 of normalisations.

Lemma 3.1.

(a) The sequence of normalisations is determined by the recurrence equation

h0 = 1 and hn =
1

n

n∑
j=1

θj hn−j for n ∈ N. (2)
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(b) The law of L1 is given by

Pn
{
L1(σ) = j

}
=
θjhn−j
nhn

for j > 1.

Proof. See also Proposition 2.1 in [EU13]. We have that (a) follows from (b) by summing
over all j ∈ {1, . . . , n}. For (b) we first sum over all the possible elements of the cycle
containing one, in order, and then look at all the permutations of the remaining indices.
This yields

Pn{L1 = j} =
θj
n!hn

(n− 1)(n− 2) · · · (n− j + 1) (n− j)!hn−j =
θjhn−j
nhn

. �

Lemma 3.2. Given the cycle containing one, the conditional distribution of the permu-
tation on the remaining indices is given by Pn−L1.

Proof. Note that the number of possible cycles of length l containing one is (n− 1)(n−
2) · · · (n− l + 1), and by Lemma 3.1 (b) the law of L1 is given as

Pn{L1 = l} =
θlhn−l
nhn

.

Hence the conditional weight of any permutation σ containing the given cycle is

Pn(σ)
θlhn−l

hn n(n−1)···(n−l+1)

=

∏
j≥1 θ

rj(σ)
j

(n− l)!θlhn−l
= Pn−l(σ̃),

where σ̃ is obtained from σ by removing the cycle containing one and relabelling the
remaining indices as {1, . . . , n− l}. �

The next lemma is a simple consequence of assumption (A2).

Lemma 3.3. The sequence (nhn)n≥0 is nondecreasing.

Proof. Let n ∈ N and observe that

nhn =
n∑
j=1

θj hn−j 6
n∑
j=0

θj+1 hn−j = (n+ 1)hn+1

by the nonnegativity of (hn) and assumption (A2). Further, 0h0 = 0 6 1h1. �

We collect relevant asymptotic estimates in the following lemma.

Lemma 3.4 (Asymptotic estimates).

(i) βn =
n∑
j=1

θj ∼ 1
γ+1

nγ+1 `(n)

(ii) There exists a slowly varying function `← : (0,∞)→ [0,∞) such that

β←(t) := min
{
n ∈ N ∪ {0} : βn > t

}
= t

1
γ+1 `←(t)

(iii) lim
n→∞

β←(n) θβ←(n)

n
= 1 + γ.
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Proof. (i) This follows immediately from Karamata’s theorem (direct half), see [BGT87,
Proposition 1.5.8]. (ii) This follows immediately from the asymptotic inversion princi-
ple for regularly varying functions, see [BGT87, Theorem 1.5.12]. (iii) One has βN ∼
(1 + γ)−1N θN . Replacing N by β←(n) and letting n tend to infinity, one gets n ∼
1

1+γ
β←(n) θβ←(n), which immediately implies (iii). �

3.2 Proof of Theorem 2.1

The key to our analysis is to study the asymptotic behaviour of the normalising sequence
(hn) using the recurrence relation (2). Our main technical step, Proposition 3.9, shows
that defining

g(N)

t := hN+btβ←(N)c for t ∈ R, (3)

with the convention that hn = 0 for n ∈ −N, we have

lim
N→∞

g(N)

b

g(N)
a

= edγ (b−a) (4)

uniformly in the values a, b taken from a compact interval.

Let us first see how Theorem 2.1 follows from this. By Lemma 3.1 (b)

n

θj
Pn{L1 = j} =

hn−j
hn

=
g(N)

− j
β←(n)

g(N)

0

,

so that by (4), for every M > 0, we have

sup
j 6Mβ←(n)

∣∣∣ n
θj

Pn{L1 = j} − e−dγj/β←(n)
∣∣∣→ 0 as n→∞.

The additional statement of Theorem 2.1 will be proved in Subsection 3.2.1. It constitutes
the first step in the proof of (4), which will be carried out in four steps in Subsections 3.2.1
to 3.2.4. Subsection 3.2.5 is devoted to the proof of Corollary 2.2.

3.2.1 The recurrence equation

In this section we show that for every ε > 0 there exist M > 0 with

lim sup
n→∞

Pn
{
L1 >Mβ←(n)

}
< ε. (5)

This is a direct consequence of the following lemma.

Lemma 3.5. For every ε > 0 there exists M ∈ N and n0 ∈ N such that, for all n > n0,

1

n

n∑
j=dMβ←(n)e

θjhn−j 6 εhn−1.
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Indeed, using Lemma 3.1(b), Lemma 3.3, and Lemma 3.5 we get for every ε > 0 some M
and n0 such that, for all n > n0,

Pn
{
L1 >Mβ←(n)

}
=

n∑
j=dMβ←(n)e

θjhn−j
nhn

6
1

n− 1

n∑
j=dMβ←(n)e

θjhn−j
hn−1

< ε.

Proof. We analyse the sequence (hn) at a large reference time N ∈ N. By Lemma 3.4,
there exists n0 ∈ N such that for any n > n0

β←(2n) < n/2 and β←(2(n+ 1))− β←(2n) ∈ {0, 1};

and we define a sequence (α(N)

k ) inductively by letting α(N)

0 := N and α(N)

k+1 = α(N)

k −
β←(2α(N)

k ) as long as α(N)

k > n0. We denote by K = K(N) the largest index for which
α(N)

K > n0 so that we end up with a sequence α(N)

0 , . . . , α(N)

K+1 of positive integers. The
sequence is used to partition {0, . . . , N − 1} into sets

I(N)

k = {α(N)

k+1, . . . , α
(N)

k − 1}

for k = 0, . . . , K, and the remainder I(N)

K+1 := {0, . . . , α(N)

K+1 − 1}. For k = 0, . . . , K, we
consider

M (N)

k := min{hn : n ∈ I(N)

k }.

First we prove that, for k = 1, . . . , K,

M (N)

k−1 > 2M (N)

k .

Let n = α(N)

k which is the smallest index in I(N)

k−1. Since n−β←(2n) = α(N)

k+1 and ββ←(2n) > 2n
by definition, we get (conveniently dropping the round-off symbols in the summation)

hn >
1

n

β←(2n)∑
j=1

θjhn−j >M (N)

k

1

n

β←(2n)∑
j=1

θj > 2M (N)

k .

Next, let n = α(N)

k + 1. By assumption n − 1 > n0 so that n − β←(2n) > α(N)

k+1 and as
above

hn >
1

n

(
θ1 hn−1︸︷︷︸
> 2M

(N)
k

+

β←(2n)∑
j=2

θjhn−j

)
> 2M (N)

k .

Similarly, it follows by induction over n, that

M (N)

k−1 = min{hn : n = α(N)

k , . . . , α(N)

k−1 − 1} > 2M (N)

k . (6)
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Second, we provide an estimate for hn where n ∈ I(N)

k and k ∈ {0, . . . , K + 1}. To begin
with, let k ∈ {1, . . . , K} and let m ∈ I(N)

k−1 be the index where (hn) takes its mimimum on
the set I(N)

k−1. Then, by Lemma 3.3 and (6), one has

hn 6
m

n
hm =

m

n
M (N)

k−1 6 4 2−(k−1) hN−1,

where we used that α(N)

k /α(N)

k+1 6 2 for k ∈ {0, . . . , K}, by construction. The estimate
remains true for n ∈ I(N)

0 and, for n ∈ I(N)

K+1\{0}, one has

hn 6 α(N)

K+1hα(N)
K+1
6 4n0 2−K hN−1. (7)

Since β←(2n0) 6 n0/2, one has βbn0/2c =
∑bn0/2c

j=1 θj > 2n0. Hence, there exists n ∈
{1, . . . , bn0/2c} ⊂ I(N)

K+1 with θn > 4 and one obtains hn > θn
n
> 4

n0
. Consequently,

h0 = 1 6
n0

4
hn 6 n2

0 2−KhN−1.

by (7). Altogether, we get that there is a constant c only depending on n0 such that, for
k ∈ {0, . . . , K + 1} and n ∈ I(N)

k ,

hn 6 c 2−k hN−1. (8)

Fix a constant M ∈ 2N and analyse

ξN :=
1

N

N∑
j=Mβ←(2N)/2+1

θj hN−j

For j ∈ N, we set

i(N)(j) := max{l ∈ {0, . . . , K + 1} : N − α(N)

l + 1 6 j}

which is the unique index l for which one has N − j ∈ I(N)

l . By (8), one has

ξN 6 c
1

N

N∑
j=Mβ←(2N)/2+1

θj 2−i
(N)(j) hN−1.

Since, for k = 0, . . . , K + 1,

N − α(N)

k =
k∑
l=1

β←(2α(N)

l−1) 6 k β←(2N),

one has

i(N)(j) > max{l ∈ {0, . . . , K + 1} : 1 + lβ←(2N) 6 j} =
⌊ j − 1

β←(2N)

⌋
∧ (K + 1).
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Therefore, as long as β←(2N) > n0, one has

ξN 6 c hN−1

∞∑
k=M/2

2−k
1

N

(k+1)β←(2N)∑
j=kβ←(2N)+1

θj 6 c hN−1

∞∑
k=M/2

2−k
β((k + 1)β←(2N))

N
.

Clearly, one has β(β←(2N)) ∼ 2N as N → ∞. Further, the Potter bound [BGT87,
Theorem 1.5.6] implies that for sufficiently large n and any m > n one has

β(m) 6 2
(m
n

)γ+2
β(n).

Consequently, one gets that, for sufficiently large N ,

ξN 6 5c hN−1

∞∑
k=M/2

2−k(k + 1)γ+2.

Since Mβ←(2N)/2 + 1 ∼ M2−γ/(1+γ)β←(N) and 2−γ/(1+γ) < 1, we have for sufficiently
large N that

1

N

N∑
j=Mβ←(N)

θjhN−j 6 ξN 6 5c hN−1

∞∑
k=M/2

2−k(k + 1)γ+2.

The statement follows by choosing M sufficiently large. �

3.2.2 Estimates against the Volterra equation

Our aim is to show that g(N), as defined in (3), is close to the solution of an integral
equation on an interval [−L,L] with L > 0 being fixed, but arbitrarily large.

Lemma 3.6. For any ε > 0, there exists κ > 0 such that for any L > 0 one has, for all
sufficiently large N ∈ N and all t ∈ [−L,L],

g(N)

t 6 eε(1 + γ)

∫ κ

0

sγ g(N)

t−s ds

Conversely, for every ε, κ > 0 and L > 0 one has, for all sufficiently large N ∈ N and all
t ∈ [−L,L],

g(N)

t > e−ε(1 + γ)

∫ κ

0

sγ g(N)

t−s ds.

Proof. We only prove the first statement, as the second can be proved analogously. Fix
ε ∈ (0, 1/2) and choose M > 0 according to Lemma 3.5. In the following, we denote by
0 < ι1 < ι2 < . . . constants that can be chosen arbitrarily small and that do not depend
on N and t. The following estimates are valid for sufficiently large N and all t ∈ [−L,L].
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We let K ∈ N and set δ = M/K. Applying Lemma 3.5, we get

g(N)

t =
1

N + btβ←(N)c

N+btβ←(N)c∑
j=1

θj g
(N)

t− j
β←(N)

6
1

N + btβ←(N)c

K∑
k=1

bkδβ←(N)c∑
j=b(k−1)δβ←(N)c+1

θj g
(N)

t− j
β←(N)

+ εg(N)

t .

For large N , one has N/(N + b−Lβ←(N)c) 6 eι1 so that

g(N)

t 6 eι1
K∑
k=1

β←(N) θbkδβ←(N)c

N

bkδβ←(N)c∑
j=b(k−1)δβ←(N)c+1

g(N)

t− j
β←(N)

β←(N)
+ εg(N)

t .

By definition of g(N)

t , one has

bkδβ←(N)c∑
j=b(k−1)δβ←(N)c+1

g(N)

t− j
β←(N)

β←(N)
=

∫ ak

ak−1

g(N)

t−s ds

for ak := a(N,t)

k := t − btβ
←(N)c−bkδβ←(N)c

β←(N)
. Here we used that g(N)

t−· is constant on intervals

of length β←(N). Hence,

g(N)

t 6 eι1
K∑
k=1

β←(N) θbkδβ←(N)c

N

∫ ak

ak−1

g(N)

t−s ds+ εg(N)

t .

We note that, for each k = 1, . . . , K,

θbkδβ←(N)c ∼ (kδ)γ θβ←(N)

Further, by Lemma 3.4, we have
β←(N) θβ←(N)

N
→ 1 + γ. Consequently,

g(N)

t 6 eι2(1 + γ)
K∑
k=1

(kδ)γ
∫ ak

ak−1

g(N)

t−s ds+ εg(N)

t . (9)

So far we have not imposed any assumptions on the positive constants ε and δ. We now
assume that K is sufficiently large (or, equivalently, δ = M/K is sufficiently small) in
order to guarantee existence of a nonnegative integer K0 < K with

(1 + γ)(K0δ)
γ+1 6 ε/2 and eι2

(K0 + 1)γ

Kγ
0

6 eι3 .

One has

eι2(1 + γ)

K0∑
k=1

(kδ)γ
∫ ak

ak−1

g(N)

t−s ds 6 eι2(1 + γ)(K0δ)
γ

∫ aK0

0

g(N)

t−s ds.
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From Lemma 3.3 we infer that

sup
u,v∈[−L,L]

u 6 v

g(N)
u

g(N)
v

→ 1, as N →∞.

Further, aK0 → K0δ uniformly in t as N → ∞ and assuming that eι2 < 2, we conclude
with the definition of K0, that, for N sufficiently large,

eι2(1 + γ)(K0δ)
γ

∫ aK0

0

g(N)

t−s ds 6 εg(N)

t .

Combining this with (9) and the estimate eι2kγ/(k − 1)γ 6 eι3 for k > K0, yields that

g(N)

t 6 eι4(1 + γ)

∫ aK

aK0

sγ g(N)

t−s ds+ 2εg(N)

t ,

where we used that

sup
k=K0+1,...,K

sup
s∈[ak−1,ak]

sγ

(kδ)γ
→ 1,

which is a consequence of the uniform convergence ak → kδ as N →∞.

Finally, we subtract 2εg(N)

t , divide by 1−2ε to deduce that for all sufficiently large N and
all t ∈ [−L,L]

g(N)

t 6
1

1− 2ε
eι3(1 + γ)

∫ aK

aK0

sγ g(N)

t−s ds 6
1

1− 2ε
eι3(1 + γ)

∫ M+1

0

sγ g(N)

t−s ds

which proves the statement since ε and ι3 can be chosen arbitrarily small. �

3.2.3 Analysis of the Volterra equation

Lemma 3.6 relates our problem to the Volterra equation

gε(t) =

∫ t

0

kε(t− s)gε(s) ds+ f(t), for t > T, (10)

where ε ∈ R, T ∈ R, kε(u) = eε(1 + γ)uγ, for u > 0, and f : [T,∞)→ R denotes a locally
integrable function, see Remark 3.8 below for more details on this relation. We now collect
some facts about this equation taken from [GLS90, Chapter 2]. We only consider the case
T = 0, since the general case can be easily obtained from the particular case by applying
a time change. Further we write g = g0 and k = k0.

The unique solution to (10) can be expressed in terms of a fundamental solution. It is
the unique solution to

rε(t) =

∫ t

0

kε(t− s) rε(s) ds+ kε(t), for t > 0. (11)
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Again we abbreviate r = r0. With the fundamental solution we can represent the unique
solution gε to (10) as

gε(t) =

∫ t

0

rε(t− s) f(s) ds+ f(t).

We will make use of the following properties.

Lemma 3.7.

(1) We have rε(t) = eε/(γ+1)r(eε/(γ+1)t).

(2) We have r(t) ∼ µ−1edγt as t→∞ where µ := (1 + γ)
∫∞
0
e−dγuuγ+1 du.

Proof. (1) is easy to verify. For (2) we multiply (11) (with ε = 0) by e−dγt and observe
that the structure of the equation is retained with a new kernel k̄(u) := e−dγuk(u), which
is directly Riemann integrable and defines a probability density on the positive halfline.
Hence, by the renewal theorem for densities (see for instance the ‘alternative form’ of the
renewal theorem in [Fel71, XI.1]), one has for the corresponding fundamental solution
r̄(t) = e−dγtr(t) that limt→∞ r̄(t) = µ−1, as required. �

Remark 3.8. Lemma 3.6 allows to compare g(N) with a solution to the Volterra equation
on an arbitrarily fixed window [−L,L]. Fix ε > 0 and choose κ > 2L as in the lemma.
For sufficiently large N , one has

g(N)

t 6
∫ t+L

0

kε(s) g
(N)

t−s ds+

∫ κ

t+L

kε(s) g
(N)

t−s ds︸ ︷︷ ︸
=:F

(N,L,κ)
ε (t)

,

for t ∈ [−L,L], where we used that κ exceeds the length of the window [−L,L]. This is
dominated by the unique solution G(N,L,κ)

ε : [−L,L]→ [0,∞) of the equation

G(N,L,κ)

ε (t) =

∫ t+L

0

kε(s)G
(N,L,κ)

ε (t− s) ds+ F (N,L,κ)

ε (t).

As this is a Volterra equation we use the above representation of its solution to get that,
for sufficiently large N ,

g(N)

t 6 G(N,L,κ)

ε (t) =

∫ t

−L
rε(t− s)F (N,L,κ)

ε (s) ds+ F (N,L,κ)

ε (t), (12)

for t ∈ [−L,L]. Analogously, we obtain that, for sufficiently large N and t ∈ [−L,L],

g(N)

t > G(N,L,κ)

−ε (t) =

∫ t

−L
r−ε(t− s)F (N,L,κ)

−ε (s) ds+ F (N,L,κ)

−ε (t).

12



3.2.4 Exponential behaviour of g(N)

t

In this section we finish the proof of (4) and hence of Theorem 2.1. We achieve this by
combining the approximation and the results on the Volterra equation.

Proposition 3.9. Let L, δ > 0. One has, for sufficiently large N ∈ N, that

e−δedγ(b−a) 6
g(N)

b

g(N)
a

6 eδedγ(b−a)

for −L 6 a 6 b 6 L.

Proof. Given ε > 0 and κ > 2L we defineFε as in Remark 3.8 and note that F (N,L,κ)
ε (t) =

eεF (N,L,κ)(t) with F := F0. We use the properties of the fundamental solution provided
by Lemma 3.7 to rephrase (12) as follows

g(N)

t 6 eε+ε/(γ+1)

∫ t

−L
r(eε/(γ+1)(t− s))F (N,L,κ)(s) ds+ eε F (N,L,κ)(t).

We start with the derivation of an upper bound. Let δ ∈ (0, 1] be arbitrary. We will
suppose that ε ∈ (0, δ] is a sufficiently small parameter, the actual value of which will be
chosen later in the discussion. This choice may depend on L and κ but not on N or t.
Assuming that ε 6 δ we get that, for sufficiently large N ,

g(N)

t 6 e2δ
∫ t

−L
r(eε/(γ+1)(t− s))F (N,L,κ)(s) ds+ eδ F (N,L,κ)(t). (13)

By Lemma 3.7, there exists T > 0 only depending on δ such that

r(t) 6 eδ µ−1edγt for t > T.

We restrict attention to t ∈ [−L+T, L]. We split the integral in (13) into two parts. The
dominant part is∫ t−T

−L
r(eε/(γ+1)(t− s))F (N,L,κ)(s) ds 6 eδ µ−1

∫ t−T

−L
exp{dγeε/(γ+1)(t− s)}F (N,L,κ)(s) ds.

Assuming that (eε/(γ+1) − 1)2Ldγ 6 δ we arrive at∫ t−T

−L
r(eε/(γ+1)(t− s))F (N,L,κ)(s) ds 6 µ−1e2δ

∫ t−T

−L
edγ(t−s)F (N,L,κ)(s) ds. (14)

In order to show that the remaining part of the integral is asymptotically negligible, we
first derive an estimate for F (N,L,κ)(s) for s ∈ [−L+ 1, L]. One has

F (N,L,κ)(s) = (1 + γ)

∫ −L
s−κ

(s− u)γg(N)

u du

13



and we observe that for the relevant values of u we have

(s− u)γ = (s+ L− (L+ u))γ = (s+ L)γ
(
1 + −(L+u)

s+L

)γ
6 (s+ L)γ(1− L− u)γ,

where we have used that s+ L > 1 and that the numerator is nonnegative. Hence,

F (N,L,κ)(s) 6 (1 + γ)(L+ s)γ
∫ −L
s−κ

(−L+ 1− u)γg(N)

u du 6 (L+ s)γ F (N,L,κ)(−L+ 1).

Consider now the remaining part of the integral in (13) for t ∈ [−L+ T + 1, L]. One has∫ t

t−T
r(eε/(γ+1)(t− s))F (N,L,κ)(s) ds 6 µ−1eδ exp{dγeε/(γ+1)T}

∫ t

t−T
F (N,L,κ)(s) ds

and using the above estimate for F (N,L,κ)(s) we arrive at∫ t

t−T
r(eε/(γ+1)(t− s))F (N,L,κ)(s) ds 6 e−2δCT (L+ t)γ+1F (N,L,κ)(−L+ 1), (15)

where CT > 1 is a constant only depending on T but not on the choice of L, κ, δ and ε.

Combining (13) with (14) and (15) we get

g(N)

t 6 µ−1e4δ
∫ t−T

−L
edγ(t−s) F (N,L,κ)(s) ds+ 2CT (L+ t)γ+1 F (N,L,κ)(−L+ 1).

Next, we compare the negligible with the dominant term. For s ∈ [−L + 1
2
,−L + 1] we

find

F (N,L,κ)(s) > (1 + γ)

∫ −L
−L+1−κ

(s− u)γg(N)

u du > 2−γF (N,L,κ)(−L+ 1),

where we have used that s− u > 1
2
(−L+ 1− u) on the domain of integration. Hence, for

t ∈ [−L+ T + 1, L],∫ t−T

−L
edγ(t−s) F (N,L,κ)(s) ds >

∫ −L+1

−L+ 1
2

edγ(t−s) F (N,L,κ)(s) ds > 1
2γ+1 e

dγ(t+L−1) F (N,L,κ)(−L+1).

Consequently, there exists T ′ > T + 2 only depending on CT (and thus on T ) but not on
L and δ so that, for sufficiently large N and t ∈ [−L+ T ′, L],

g(N)

t 6 µ−1e5δ
∫ t−T

−L
edγ(t−s) F (N,L,κ)(s) ds.

An analogous lower bound can be proved similarly. By switching variables we get that,
for δ ∈ (0, 1] arbitrary, there exist T, T ′ > 0 such that for any L > 0 and sufficiently large
κ > 2L one has, for N sufficiently large and t ∈ [−L+ T ′, L],

µ−1e−δ
∫ t−T

−L
edγ(t−s)F (N,L,κ)(s) ds 6 g(N)

t 6 µ−1eδ
∫ t−T

−L
edγ(t−s)F (N,L,κ)(s) ds.

This implies that, for −L+ T ′ 6 a < b 6 L,

e−2δedγ(b−a) 6
g(N)

b

g(N)
a

6 e2δedγ(b−a),

finishing the proof. �
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3.2.5 Proof of Corollary 2.2

Using regular variation of (θj) and Lemma 3.4(iii), for any κ > 0,

sup
j 6 κβ←(n)

θj = θbκβ←(n)c ∼ κγ(1 + γ)
n

β←(n)
. (16)

Plugging this into Theorem 2.1 with M in the role of κ gives

β←(n)

n
sup

j 6Mβ←(n)

∣∣∣nPn{L1 = j} − θj e−dγj/β
←(n)

∣∣∣→ 0 as n→∞.

Hence we are done with the local result once we show that

sup
j 6Mβ←(n)

∣∣∣θj β←(n)

n
− (γ + 1)

( j

β←(n)

)γ∣∣∣→ 0 as n→∞.

Note that if j/β←(n)goes to zero, the second term inside the supremum vanishes asymp-
totically, and so does the first term by an application of (16) with an arbitrarily small
value of κ > 0. Hence we can assume that the supremum is over εβ←(n) 6 j 6Mβ←(n),
for some fixed ε > 0. But on this domain we can exploit again that (θj) is regularly
varying and Lemma 3.4 (iii) to obtain

θj
β←(n)

n
∼
( j

β←(n)

)γ
θβ←(n)

β←(n)

n
∼ (γ + 1)

( j

β←(n)

)γ
uniformly on the domain, which completes the proof of the local result in Corollary 2.2.

To infer that this implies the global limit theorem we observe that

Pn{L1(σ) 6 xβ←(n)} =
1

β←(n)

bxβ←(n)c∑
j=1

β←(n)Pn{L1(σ) = j}

=

(
(γ + 1)

1

β←(n)

bxβ←(n)c∑
j=1

( j

β←(n)

)γ
e−dγ

j
β←(n)

)
+ o(1).

The term in brackets is a Riemann sum and therefore asymptotically equal to

(γ + 1)

∫ x

0

yγ e−dγy dy,

which is the distribution function of a gamma distribution with shape parameter γ + 1.

3.3 Proof of Theorem 2.3

We now derive Theorem 2.3 from Corollary 2.2 using the first two moments of µn[0, x],
for fixed x > 0. The first moment is

Eµn[0, x] =
1

n

n∑
k=1

Pn{Lk(σ) 6 xβ←(n)} = Pn{L1(σ) 6 xβ←(n)}

∼ (γ + 1)

∫ x

0

yγ e−dγy dy.
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Now let L(1) := L1 and L(2) be the length of the cycle containing the smallest index not
in the cycle of one. The second moment is

Eµn
[
0, x]2 =

1

n2

bxβ←(n)c∑
k=1

n∑
i=1

n∑
j=1

Pn
{
Li = k, Lj 6 xβ←(n)

}
=

bxβ←(n)c∑
k=1

(
n−k
n

Pn
{
L(1) = k, L(2) 6 xβ←(n)

}
+ k

n
Pn{L(1) = k}

)
.

By Corollary 2.2 we have,

bxβ←(n)c∑
k=1

k
n
Pn{L(1) = k} 6 x2β←(n)

n

(
(γ + 1)xγ + o(1)

)
−→ 0.

To estimate the main term we use Lemma 3.2 to see that

Pn
{
L(1) = k, L(2) 6 xβ←(n)

}
=

bxβ←(n)c∑
l=1

Pn{L1 = k}Pn−k{L1 = l}.

Using this together with Corollary 2.2 we get

bxβ←(n)c∑
k=1

n−k
n

Pn
{
L(1) = k, L(2) 6 xβ←(n)

}
∼ (1 + γ)2

(∫ x

0

yγ e−dγy dy

)2

,

which implies that the variance of µn
[
0, x] goes to zero. Hence the convergence in Theo-

rem 2.3 holds in the L2 sense, completing its proof.
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