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RANDOM NETWORKS WITH SUBLINEAR
PREFERENTIAL ATTACHMENT: THE GIANT

COMPONENT

By Steffen Dereich and Peter Mörters∗

Philipps-Universität Marburg and University of Bath

We study a dynamical random network model in which at every
construction step a new vertex is introduced and attached to every
existing vertex independently with a probability proportional to a
concave function f of its current degree. We give a criterion for the
existence of a giant component, which is both necessary and sufficient,
and which becomes explicit when f is linear. Otherwise it allows the
derivation of explicit necessary and sufficient conditions, which are
often fairly close. We give an explicit criterion to decide whether the
giant component is robust under random removal of edges. We also
determine asymptotically the size of the giant component and the
empirical distribution of component sizes in terms of the survival
probability and size distribution of a multitype branching random
walk associated with f .

1. Introduction.

1.1. Motivation and background. Since the publication of the highly in-
fluential paper of Barabási and Albert [BA99] the preferential attachment
paradigm has captured the imagination of scientists across the disciplines
and has led to a host of, from a mathematical point of view mostly non-
rigorous, research. The underlying idea is that the topological structure of
large networks, such as the World-Wide-Web, social interaction or citation
networks, can be explained by the principle that these networks are built
dynamically, and new vertices prefer to be attached to vertices which have
already a high degree in the existing network.

Barabási and Albert [BA99] and their followers argue that, by building a
network in which every new vertex is attached to a number of old vertices
with a probability proportional to a linear function of the current degree,
we obtain networks whose degree distribution follows a power law. This
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2 S. DEREICH AND P. MÖRTERS

degree distribution is consistent with that observed in large real networks,
but quite different from the one encountered in the Erdős-Rényi model, on
which most of the mathematical literature was focused by this date. Soon
after that, Krapivsky and Redner [KR01] suggested to look at more general
models, in which the probability of attaching a new vertex to a current one
could be an arbitrary function f of its degree, called the attachment rule.

In this paper we investigate the properties of preferential attachment net-
works with general concave attachment rules. There are at least two good
reasons to do this: On the one hand it turns out that global features of the
network can depend in a very subtle fashion on the function f and only the
possibility to vary this parameter gives sufficient leeway for statistical mod-
elling and allows a critical analysis of the robustness of the results. On the
other hand we are interested in the transitions between different qualitative
behaviours as we pass from absence of preferential attachment, the case of
constant attachment rules f , effectively corresponding to a variant of the
Erdős-Rényi model, to strong forms of preferential attachment as given by
linear attachment rules f . In a previous paper [DM09] we have studied de-
gree distributions for such a model. We found the exact asymptotic degree
distributions, which constitute the crucial tool for comparison with other
models. The main result of [DM09] showed the emergence of a perpetual
hub, a vertex which from some time on remains the vertex of maximal de-
gree, when the tail of f is sufficiently heavy to ensure convergence of the
series

∑
1/f(n)2. In the present paper, which is independent of [DM09],

we look at the global connectivity features of the network and ask for the
emergence of a giant component, i.e. a connected component comprising a
positive fraction of all vertices present.

Our first main result gives a necessary and sufficient criterion for the ex-
istence of a giant component in terms of the spectral radii of a family of
compact linear operators associated with f , see Theorem 1.1. An analysis of
this result shows that a giant component can exist for two separate reasons:
either the tail of f at infinity is sufficiently heavy so that due to the strength
of the preferential attachment mechanism the topology of the network en-
forces existence of a giant component or the bulk of f is sufficiently large
to ensure that the edge density of the network is high enough to connect a
positive proportion of vertices. We show that in the former case the giant
component is robust under random deletion of edges, whereas it is not in
the latter case. In Theorem 1.6 we characterise the robust networks by a
completely explicit criterion.

The general approach to studying the connectivity structure in our model
is to analyse a process that systematically explores the neighbourhood of a
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 3

vertex in the network. Locally this neighbourhood looks approximately like a
tree, which is constructed using a spatial branching process. The properties
of this random tree determine the connectivity structure. We show that
the asymptotic size of the giant component is determined by the survival
probability, see Theorem 1.8, and the proportion of components with a given
size is given by the distribution of the total number of vertices in this tree, see
Theorem 1.9. It should be mentioned that although the tree approximation
holds only locally it is sufficiently powerful to give global results through a
technique called sprinkling.

This approach as such is not new, for example it has been carried out for
the class of inhomogeneous random graphs by Bollobás, Janson and Rior-
dan in the seminal paper [BJR07]. What is new here is that the approach
is carried forward very substantially to treat the much more complex situ-
ation of a preferential attachment model with a wide range of attachment
functions including nonlinear ones. The increased complexity originates in
the first instance from the fact that the presence of two potential edges in
our model is not independent if these have the same left end vertex. This
is reflected in the fact that in the spatial branching process underlying the
construction the offspring distributions are not given by a Poisson process.
Additionally, due to the nonlinearity of the attachment function, informa-
tion about parent vertices has to be retained in the form of a type chosen
from an infinite type space. Hence, rather than being a relatively simple
Galton-Watson tree, the analysis of our neighbourhoods has to be built on
an approximation by a multitype branching random walk, which involves an
infinite number of offspring and an uncountable type space. In the light of
this it is rather surprising that we are able to get very fine explicit results
even in the fully nonlinear case, in particular the explicit characterisation of
robustness, see Theorem 1.6. Moreover, in the nonlinear case the abstract
criterion for the existence of a giant component can be approximated and
allows explicit necessary or sufficient estimates, which are typically rather
close, see Proposition 1.10.

Although our results focus on the much harder case of nonlinear attach-
ment rules, they are also new in the case of linear attachment rules f and
so represent very significant progress on several fronts of research. Indeed,
while the criterion for existence of a giant component is abstract for a gen-
eral attachment function, it becomes completely explicit if this function is
linear, see Proposition 1.3. Similarly our formula for the percolation thresh-
old becomes explicit in the linear case and our result also includes behaviour
at criticality, see Remark 1.7. Fine results like this are currently unavailable
for the most studied variants of preferential attachment models with linear
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4 S. DEREICH AND P. MÖRTERS

attachment rules, in particular those reviewed by Dommers et al. [DHH10].

1.2. The model. We call a concave function f : {0, 1, 2, . . .} −→ (0,∞)
with f(0) 6 1 and

∆f(k) := f(k + 1)− f(k) < 1 for all k > 0,

an attachment rule. With any attachment rule we associate the parameters
γ+ := maxk≥0 ∆f(k) and γ− := mink≥0 ∆f(k), which satisfy 0 6 γ− 6 γ+ <
1. By concavity the limit

(1) γ := lim
n→∞

f(n)

n
exists and γ = γ−.

Observe also that any attachment rule f is non-decreasing with f(k) 6 k+1
for all k > 0.

Given an attachment rule f , we define a growing sequence (GN )N∈N of
random networks by the following iterative scheme:

• The network G1 consists of a single vertex (labeled 1) without edges,
• at each time N > 1, given the network GN , we add a new vertex

(labeled N + 1) and
• insert for each old vertex M a directed edge N + 1→M with proba-

bility
f(indegree of M at time N)

N
,

to obtain the network GN+1.

The new edges are inserted independently for each old vertex. Note that
our conditions on f guarantee that in each evolution step the probability for
adding an edge is smaller or equal to 1. Edges in the random network GN are
dependent if they point towards the same vertex and independent otherwise.
Formally we are dealing with directed networks, but indeed, by construction,
all edges are pointing from the younger to the older vertex, so that the
directions can trivially be recreated from the undirected (labeled) graph.
All the notions of connectedness, which we discuss in this paper, are based
on the undirected networks.

Our model differs from that studied in the majority of publications in one
respect: We do not add a fixed number of edges in every step but a random
number, corresponding formally to the outdegree of vertices in the directed
network. It turns out, see Theorem 1.1 (b) in [DM09], that this random
number is asymptotically Poisson distributed and therefore has very light
tails. The formal universality class of our model is therefore determined by
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 5

its asymptotic indegree distribution which, by Theorem 1.1 (a) in [DM09],
is given by the probability weights

µk =
1

1 + f(k)

k−1∏
l=0

f(l)

1 + f(l)
for k ∈ N ∪ {0}.

Note that these are power laws when f(k) is of order k (but f need not be
linear). More precisely, as k ↑ ∞,

f(k)

k
→ γ ∈ (0, 1) =⇒ − logµk

log k
→ 1 +

1

γ
,

so that the LCD-model of Bollobás et al. [BRST01, BR03] compares to the
case γ = 1

2 .

1.3. Statement of the main results. Fix an attachment rule f and define
a pure birth Markov process (Zt : t > 0) started in zero with generator

Lg(k) = f(k) ∆g(k),

which means that the process leaves state k with rate f(k). Given a suitable
0 < α < 1 we define a linear operator Aα on the Banach space C(S) of
continuous, bounded functions on S := {`} ∪ [0,∞] with ` being a (non-
numerical) symbol, by

Aαg(τ) :=

∫ ∞
0

g(t) eαt dM(t) +

∫ ∞
0

g(`) e−αt dMτ (t),

where the increasing functions M, resp. Mτ , are given by

M(t) =

∫ t

0
e−s E

[
f(Zs)

]
ds, M`(t) = E

[
Zt
]
,

Mτ (t) = E
[
Zt
∣∣∆Zτ = 1

]
− 1l[τ,∞)(t) for τ ∈ [0,∞).

We shall see in Remark 2.6 that Mτ 6 Mτ ′ for all τ > τ ′ > 0 and therefore
M∞ = limτ→∞Mτ is well-defined. We shall see in Lemma 3.1 that

Aα1(0) <∞ ⇐⇒ Aα is a well-defined compact operator.

In particular, the set I of parameters where Aα is a well-defined (and there-
fore also compact) linear operator is a (possibly empty) subinterval of (0, 1).

Recall that we say that a giant component exists in the sequence of net-
works (GN )N∈N if the proportion of vertices in the largest connected com-
ponent CN ⊂ GN converges, for N ↑ ∞, in probability to a positive number.
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6 S. DEREICH AND P. MÖRTERS

Theorem 1.1 (Existence of a giant component). No giant component
exists if and only if there exists 0 < α < 1 such that Aα is a compact operator
with spectral radius ρ(Aα) 6 1.

Example 1.2. A sufficient but not necessary criterion for existence of a
giant component is that γ > 1

2 , where γ is as defined in (1), see Remark 1.11
below for the proof.

The most important example is the linear case f(k) = γk+β. In this case
the family of operators Aα can be analysed explicitly, see Section 1.4.2. We
obtain the following result.

Proposition 1.3 (Existence of a giant component: linear case). If f(k) =
γk + β for some 0 6 γ < 1 and 0 < β 6 1, then there exists a giant compo-
nent if and only if

γ >
1

2
or β >

(1
2 − γ)2

1− γ
.

This result corresponds to the following intuition: If the preferential at-
tachment is sufficiently strong (i.e. γ > 1

2), then there exists a giant compo-
nent in the network for purely topological reasons and regardless of the edge
density. However if the preferential attachment is weak (i.e. γ < 1

2) then a
giant component exists only if the edge density is sufficiently large.

Example 1.4. If γ = 0 the model is a dynamical version of the Erdős-
Rényi model sometimes called Dubins’model. Observe that in this case there
is no preferential attachment. The criterion for existence of a giant compo-
nent is β > 1

4 , a fact which is essentially known from work of Shepp [She89],
see Bollobás, Janson and Riordan [BJR05, BJR07] for more details.

Example 1.5. If γ = 1
2 the model is conjectured to be in the same

universality class as the LCD-model of Bollobás et al. [BRST01, BR03]. In
this case we obtain that a giant component exists regardless of the value
of β, i.e. of the overall edge density. This is closely related to the robustness
of the giant component under random removal of edges, obtained in [BR03].

As the last example indicates, in some situations the giant component is
robust and survives a reduction in the edge density. To make this precise
in a general setup, we fix a parameter 0 < p < 1, remove every edge in the
network independently with probability 1− p and call the resulting network
the percolated network. We say the giant component in a network is robust,
if, for every 0 < p < 1, the percolated network has a giant component.
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 7

Theorem 1.6 (Percolation). Suppose f is an arbitrary attachment rule
and recall the definition of the parameter γ from (1). Then the giant compo-
nent in the preferential attachment network with attachment rule f is robust
if and only if γ > 1

2 .

Remark 1.7. The criterion γ > 1
2 is equivalent to the fact that the size

biased indegree distribution, with weights proportional to kµk, has infinite
first moment. Precise criteria for the existence of a giant component in the
percolated network can be given in terms of the operators (Aα : α ∈ I).

(i) The giant component in the network is robust if and only if I = ∅.
Otherwise the percolated network has a giant component if and only
if

p >
1

min
α∈I

ρ(Aα)
.

(ii) In the linear case f(k) = γk + β, for γ > 0, the network is robust
if and only if γ > 1

2 . Otherwise, the percolated network has a giant
component if and only if

(2) p >
(

1
2γ − 1

) (√
1 + γ

β − 1
)
.

Observe that running percolation with retention parameter p on the network
GN with attachment rule f leads to a network which stochastically dominates
the network with attachment rule pf . Only if f is constant, say f(k) = β,
these random networks coincide and the obvious criterion for existence of
a giant component in this case is p > 1

4β . This is in line with the formal
criterion obtained by letting γ ↓ 0 in (2).

We now define a multitype branching random walk, which represents an
idealization of the exploration of the neighbourhood of a vertex in the infinite
network G∞ and which is at the heart of our results on the sizes of connected
components in the network. A heuristic explanation of the approximation of
the local neighbourhoods of typical points in the networks by this branching
random walk will be given at the beginning of Section 6.

In the multitype branching random walk particles have positions on the
real line and types in the space S.1 The initial particle is of type ` with
arbitrary starting position. Recall the definition of the pure birth Markov

1Although the destinction of type and space appears arbitrary at this point, it turns
out that the resulting structure of a branching random walk with a compact typespace,
rather than a multitype branching process with noncompact typespace, is essential for the
analysis.
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8 S. DEREICH AND P. MÖRTERS

process (Zt : t > 0). For τ > 0, let (Z [τ ]

t : t > 0) be the same process condi-
tioned to have a birth at time τ .

Each particle of type ` in position x generates offspring

• to its right of type ` with relative positions at the jumps of the process
(Zt : t > 0);
• to its left with relative positions distributed according to the Poisson

point process Π on (−∞, 0] with intensity measure

et E[f(Z−t)] dt,

and type being the distance to the parent particle.

(Zt)Π

`-type particles

x

0

types are distances to x

0

Fig 1. Offspring of an `-type particle in the branching random walk. A particle generates
finitely many offspring to its left, but infinitely many offspring to its right.

Each particle of type τ > 0 in position x generates offspring

• to its left in the same manner as with a parent of type `;
• to its right of type ` with relative positions at the jumps of

(Z [τ ]

t − 1l[τ,∞)(t) : t > 0).

`-type particles

x

0

types are distances to x

τ

0

(Z
[τ]

t − 1l{t≥τ})Π

Fig 2. Offspring of a particle of type τ ∈ [0,∞) in the branching random walk. Offspring
to the right have type `, offspring to the left have type given by the distance to the parent.
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 9

This branching random walk with infinitely many particles is called the
idealized branching random walk (IBRW). Note that the functions M featur-
ing in the definition of our operators Aα are derived from the IBRW: M(t)
is the expected number of particles within distance t to the left of any given
particle, and Mτ (t) is the expected number of particles within distance t to
the right of a given particle of type τ .

Equally important to us is the process representing an idealization of the
exploration of the neighbourhood of a typical vertex in a large but finite
network. This is the killed branching random walk obtained from the IBRW
by removing all particles which have a position x > 0 together with their
entire descendancy tree. Starting this process with one particle in position
x0 < 0 (the root), where −x0 is standard exponentially distributed, we
obtain a random rooted tree called the idealized neighbourhood tree (INT)
and denoted by T. The genealogical structure of the tree approximates the
relative neighbourhood of a typical vertex in a large but finite network. We
denote by #T the total number of vertices in the INT and say that the INT
survives if this number is infinite.

The rooted tree T is the weak local limit in the sense of Benjamini and
Schramm [BS01] of the sequence of graphs in our preferential attachment
model. An interesting result about weak local limits for a different variant
of the preferential attachment network with a linear attachment function,
including the LCD-model, was recently obtained by Berger et al. [BBCS09].
In the present paper we shall not make the abstract notion of weak local
limit explicit in our context. Instead, we go much further and give some
fine results based on our neighbourhood approximation, which cannot be
obtained from weak limit theorems alone. The following two theorems show
that the INT determines the connectivity structure of the networks in a
strong sense.

Theorem 1.8 (Size of the giant component). Let f be an attachment
rule and denote by p(f) the survival probability of the INT. We denote by
C(1)N and C(2)N the largest and second largest connected component of GN . Then

#C(1)N
N

→ p(f) and
#C(2)N
N

→ 0, in probability.

In particular, there exists a giant component if and only if p(f) > 0.

The final theorem shows the cluster size distribution in the case that
no giant component exists. In this case typical connected components, or
clusters, are of finite size.
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Fig 3. Simulation of the proportion of vertices in the giant component in the linear case.
The curve forming the lower envelope is determined explicitly in Proposition 1.3. The
plot is based on 15.000 Monte Carlo simulations of the branching process for 80 times 80
gridpoints in the (β, γ)-plane.

Theorem 1.9 (Empirical distribution of component sizes). Let f be an
attachment rule and denote by CN (v) the connected component containing
the vertex v ∈ GN . Then, for every k ∈ N,

1

N

N∑
v=1

1l{#CN (v) = k} −→ P(#T = k) in probability.

1.4. Examples.

1.4.1. Explicit criteria for general attachment rules. The necessary and
sufficient criterion for the existence of a giant component given in terms
of the spectral radius of a compact operator on an infinite dimensional
space appears unwieldy. However a small modification gives upper and lower
bounds, which allow very explicit necessary or sufficient criteria that are
close in many cases, see Figure 4.

Proposition 1.10. Suppose f is an arbitrary attachment rule and let

a[f ] :=
∞∑
k=0

k∏
j=0

f(j)
1
2 + f(j)

and c[f ] :=
∞∑
k=0

k∏
j=0

f(j + 1)
1
2 + f(j + 1)

> a[f ].
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 11

(i) If a[f ] > 1
2 , then there exists a giant component.

(ii) If 1
2

(
a[f ] +

√
a[f ]c[f ]

)
6 1

2 then there exists no giant component.

  

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phase boundary (nonlinear case)

β

γ

Fig 4. For the attachment function f(k) = γ
√
k + β the figure shows the curves a[f ] = 1

2

and a[f ]+
√
a[f ]c[f ] = 1, which form lower and upper bound for the boundary between the

two phases, nonexistence and existence of the giant component, in the (β, γ)–plane.

Remark 1.11.

• The term 1
2(a[f ]+

√
a[f ]c[f ]) differs from a[f ] by no more than a factor

of

1

2

(
1 +

√
1
2 + f(0)

f(0)

)
.

• a[f ] converges if and only if γ < 1
2 . Hence a giant component exists

if γ > 1
2 , as announced in Example 1.2. Otherwise there exists ε > 0

depending on f(1), f(2), . . . such that no giant component exists if
f(0) < ε.

Proof of Proposition 1.10. (i) For a lower bound on the spectral ra-
dius we recall that Mτ > M` and therefore we may replace Mτ in the defini-
tion of Aα by M`. Then Aαg(τ) no longer depends on the value of τ ∈ [0,∞]
but only on the fact whether τ = ` or otherwise. Hence the operator collapses
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12 S. DEREICH AND P. MÖRTERS

to become a 2× 2 matrix of the form

A =

(
a(α) a(1− α)
a(α) a(1− α)

)
with

a(α) =

∫ ∞
0

e−αtEf(Zt) dt.

Recalling that (Zt : t > 0) is a pure birth process with jump rate in state k
given by f(k), we can simplify this expression, using Tk as the entry time
into state k, as follows∫ ∞

0
e−αtEf(Zt) dt = E

∞∑
k=0

f(k)

∫ Tk+1

Tk

e−αt dt

=

∞∑
k=0

f(k) 1
α

[
Ee−αTk − Ee−αTk+1

]
.

Recalling that Tk is the sum of independent exponential random variables
with parameter f(j), j = 0, . . . , k − 1, we obtain

Ee−αTk =
k−1∏
j=0

f(j − 1)

f(j − 1) + α
,

and hence

a(α) =
∞∑
k=0

k∏
j=0

f(j)

f(j) + α
.

Now note that ρ(A) = a(α) + a(1−α) and since a is convex this is minimal
for α = 1

2 , whence ρ(A) > 2a(1
2) = 2a[f ]. This shows that the given criterion

is sufficient for the existence of a giant component.
(ii) For an upper bound on the spectral radius we use Lemma 2.5 to see

that Mτ 6 M0 and therefore we may replace Mτ in the definition of Aα by
M0, again reducing the operator Aα to a 2 × 2 matrix which now has the
form

A =

(
a(α) a(1− α)
c(α) a(1− α)

)
,

with a(α) as before and

c(α) =

∫ ∞
0

e−αtE1[f(Zt)] dt,
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 13

where E1 is the expectation with respect to the Markov process (Zt : t > 0)
started with Z0 = 1. As before we obtain

c(α) = E1
[ ∞∑
k=1

f(k)

∫ Tk+1

Tk

e−αt dt
]

=
∞∑
k=1

f(k) 1
α

[
E1[e−αTk ]− E1[e−αTk+1 ]

]
=

∞∑
k=1

f(k) 1
α

[ k∏
j=2

f(j − 1)

f(j − 1) + α
−
k+1∏
j=2

f(j − 1)

f(j − 1) + α

]

=

∞∑
k=0

k∏
j=0

f(j + 1)

f(j + 1) + α
.

Choosing α = 1
2 , we get ρ(A) = a[f ] +

√
a[f ]c[f ], which finishes the proof.

1.4.2. The case of linear attachment rules. We show how in the linear
case f(k) = γk+β the operators (Aα : α ∈ I) can be analysed explicitly and
allow to infer Proposition 1.3 from Theorem 1.1. We write Pk and Ek for
probability and expectation with respect to the Markov process (Zt : t > 0)
started with Z0 = k.

Lemma 1.12. For f(k) = γk + β we have, for all k > 0,

Ek[f(Zt)] = f(k)eγt, Ek
[
f(Zt)

2
]

=
(
f(k)2 + f(k)γ

)
e2γt − f(k)γeγt,

and therefore

dM(t) = βe(γ−1)t dt, dM`(t) = βeγt dt, dMτ (t) = (β + γ)eγt dt,

for τ ∈ [0,∞].

Proof. Recall the definition of the generator L of (Zt : t > 0). The pro-
cess (Xt : t > 0) given by

Xt = f(Zt)−
∫ t

0
Lf(Zs) ds = f(Zt)− γ

∫ t

0
f(Zs) ds

is a local martingale. Let (τn)n∈N be a localising sequence of stopping times
and note that

Ek[f(Zt)] = lim
n→∞

Ekf(Zt∧τn) = f(k) + γ lim
n→∞

Ek
∫ t∧τn

0
f(Zs) ds

= f(k) + γ

∫ t

0
Ek[f(Zs)] ds.
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14 S. DEREICH AND P. MÖRTERS

We obtain the unique solution Ek[f(Zt)] = f(k)eγt. The analogous approach
with f replaced by f2 gives

Ek
[
f2(Zt)

]
= γ2

∫ t

0
Ekf(Zs) ds+ 2γ

∫ t

0
Ek
[
f2(Zs)

]
ds+ f(k)2

= f(k)γ
(
eγt − 1

)
+ 2γ

∫ t

0
Ek
[
f2(Zs)

]
ds+ f(k)2,

and we obtain the unique solution

E
[
f2(Zt)

]
=
(
f(k)2 + f(k)γ

)
e2γt − f(k)γeγt.

The results for M and M` follow directly from these formulas. To characterize
Mτ for τ ∈ [0,∞), we observe that, for t > τ ,

E[f(Zt) | ∆Zτ = 1] =
∞∑
k=0

P(Zτ = k)
f(k)

Ef(Zτ )
Ek+1[f(Zt−τ )]

=
eγ(t−2τ)

β

∞∑
k=0

P(Zτ = k) f(k)f(k + 1)

=
eγ(t−2τ)

β

(
Ef2(Zτ ) + γ Ef(Zτ )

)
=
eγ(t−2τ)

β
(β2 + βγ)e2γτ = (γ + β)eγt

and, for t < τ ,

E[f(Zt) | ∆Zτ = 1] =
∞∑
k=0

P(Zt = k) f(k)
Ek[f(Zτ−t)]

Ef(Zτ )

=
∞∑
k=0

P(Zt = k) f(k)
f(k)

f(0)
e−γt =

e−γt

β
E
[
f2(Zt)

]
= (γ + β)eγt − γ.

From this we obtain

Mτ (t) = E
[
Z [τ ]

t

]
− 1l[τ,∞)(t) =

(β
γ + 1

)
eγt − 1− β

γ ,

and, by differentiating, this implies dMτ (t) = (β + γ)eγt dt.

Proof of Proposition 1.3. As Mτ depends only on whether τ = ` or
not, the state space S can be collapsed into a space with just two points.
The operator Aα becomes a 2×2-matrix which, as we see from the formulas
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 15

below, has finite entries if and only if γ < α < 1 − γ. This implies that
there exists a giant component if γ > 1

2 , as in this case the operator Aα is
never well-defined. Otherwise, denoting the collapsed state of [0,∞) by the
symbol r, the matrix equals

Aq,rα = β

∫ ∞
0

e(γ+α−1)t dt =
β

1− γ − α
, for q ∈ {r, `},

A`,`α = β

∫ ∞
0

e(γ−α)t dt =
β

α− γ
,

Ar,`
α = (β + γ)

∫ ∞
0

e(γ−α)t dt =
β + γ

α− γ
.

Then ρ(Aα) is the (unique) positive solution of the quadratic equation

x2(1− γ − α)(α− γ)− x(β − 2βγ)− βγ = 0.

This function is minimal when the factor in front of x2 is maximal, i.e. when
α = 1

2 . We note that

ρ
(
A 1

2

)
=

√
β2 + βγ + β

1
2 − γ

,

which indeed exceeds one if and only if

β >
(1

2 − γ)2

1− γ
.

1.5. Overview. The remainder of this paper is devoted to the proofs of
the main results. In Section 2 we discuss the process describing the inde-
gree evolution of a fixed vertex in the network and compare it to the pro-
cess (Zt : t > 0). The results of this section will be frequently referred to
throughout the main parts of the proof. Section 3 is devoted to the study
of the idealized branching random walk and explores its relation to the
properties of the family of operators (Aα : α ∈ I). The main result of this
section is Lemma 3.3 which shows how survival of the killed IBRW can be
characterised in terms of these operators. Two important tools in the proof
of Theorem 1.1 are provided in Section 4, namely the sprinkling argument
that enables us to make statements about the giant component from local
information, see Proposition 4.1, and Lemma 4.2 which ensures by means
of a soft argument that the oldest vertices are always in large connected
components.

The core of the proof of all our theorems is provided in Sections 5 and 6.
In Section 5 we introduce the exploration process, which systematically ex-
plores the neighbourhood of a given vertex in the network. We couple this
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16 S. DEREICH AND P. MÖRTERS

process with an analogous exploration on a random labelled tree and show
that with probability converging to one both find the same local structure,
see Lemma 5.2. This random labelled tree, introduced in Subsection 5.1, is
still dependent on the network size N , but significantly easier to study than
the exploration process itself. Section 6 uses further coupling arguments
to relate the random labelled tree of Subsection 5.1 for large N with the
idealized branching random walk. The main result of these core sections is
summarised in Proposition 6.1.

In Section 7 we use a coupling technique similar to that in Section 5 to
produce a variance estimate for the number of vertices in components of a
given size, see Proposition 7.1. Using the machinery provided in Sections 4
to 7 the proof of Theorem 1.8 is completed in Section 8 and the proof of
Theorem 1.9 is completed in Section 9. Recall that Theorem 1.8 provides a
criterion for the existence of a giant component given in terms of the survival
probability of the killed idealized branching random walk. In Theorem 1.1
this criterion is formulated in terms of the family of operators (Aα : α ∈ I),
and the proof of this result therefore follows by combining Theorem 1.8 with
Lemma 3.3.

The proof of the percolation result, Theorem 1.6, requires only minor
modifications of the arguments leading to Theorem 1.1 and is sketched in
Section 10. In a short appendix we have collected some auxiliary coupling
lemmas of general nature, which are used in Section 6. Throughout the
paper we use the convention that the value of positive, finite constants c, C
can change from line to line, but more important constants carry an index
corresponding to the lemma or formula line in which they were introduced.

2. Properties of the degree evolution process. For m 6 n, we
denote by Z[m,n] the indegree of vertex m at time n. Then, for each m ∈ N,
the degree evolution process (Z[m,n] : n > m) is a time inhomogeneous
Markov process with transition probabilities in the time-step n → n + 1
given by

p(n)k,k+1 =
f(k)

n
∧ 1 and p(n)k,k = 1− p(n)k,k+1 for integers k > 0.

Moreover, the evolutions (Z[m, · ] : m ∈ N) are independent. We suppose
that under Pk the evolution (Z[m,n] : n > m) starts in Z[m,m] = k. We
write

Pm,ng(k) = Ek[g(Z[m,n])] for any g : {0, 1, . . .} → (0,∞).

We provide several preliminary results for the process (Z[m,n] : n > m) and
its continuous-time analogue (Zt : t > 0) in this section. These form the basis
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 17

for the computations in the network. We start by analysing the pure birth
process (Zt : t > 0) and its associated semigroup (Pt : t > 0) in Section 2.1,
and then give the analogous results for the processes (Z[m,n] : n > m) in
Section 2.2. We then compare the processes in Section 2.3.

2.1. Properties of the pure birth process (Zt : t > 0). We start with a
simple upper bound.

Lemma 2.1. Suppose that f is an attachment rule. Then, for all s, t > 0
and integers k > 0,

Ek[f(Zt)] 6 f(k) eγ
+t and Pt+sf(k) 6 eγ

+tPsf(k).

Proof. Note that (Zt : t > 0) is stochastically increasing in f . We can
therefore obtain the result for fixed k > 0 by using that f(n) 6 f(k) +
γ+(n − k) for n > k, and comparing with the linear model described in
Lemma 1.12.

We now look at the conditioned process (Z [τ ]

t : t > 0). The next two
lemmas allow a comparison of the processes (Z [τ ]

t : t > 0) for different values
of τ .

Lemma 2.2. For an attachment rule f , an integer k > 0 and t > 0, one
has

Ptf(k + 1)

Ptf(k)
6
f(k + 1)

f(k)

for all t > 0. Moreover, if f is linear, then equality holds in the display
above.

Proof. In the following, we work under the measure P = Pk+1, and we
suppose that (Uj : j > 0) is a sequence of independent random variables,
uniformly distributed in [0, 1], that are independent of (Zt : t > 0). We
denote by T1, T2, . . . the random jump times of (Zt : t > 0) in increasing
order, set T0 = 0, and consider the process (Yt : t > 0) starting in k that is
constant on each interval [Tj , Tj+1) and satisfies

YTj+1 = YTj + 1l{Uj 6 f(YTj )/f(ZTj )}.(3)

It is straightforward to verify that (Yt : t > 0) has the same distribution as
(Zt : t > 0) under Pk. By the concavity of f we conclude that

f(YTj )

f(ZTj )
>
f(k) + (YTj − k)

f(ZTj )−f(k)

ZTj−k

f(k) + (ZTj − k)
f(ZTj )−f(k)

ZTj−f(k)
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18 S. DEREICH AND P. MÖRTERS

and
f(ZTj )−f(k)

ZTj−k
6 ∆f(k), so that

f(YTj )

f(ZTj )
>
YTj + f(k)

∆f(k) − k

ZTj + f(k)
∆f(k) − k

.(4)

Next, we couple the processes (YTj : j > 0) and (ZTj : j > 0) with a Pólya
urn model. Initially the urn contains balls of two colours, blue balls of weight
B0 = ξ := f(k)/∆f(k), and red balls of weight one. In each step a ball is
picked with probability proportional to its weight and a ball of the same
colour is inserted to the urn which increases its weight by one. Recalling
that the total weight after j draws is j + ξ + 1, it is straightforward to see
that we can choose the weight of the blue balls after j steps as

Bj+1 = Bj + 1l{Uj 6 Bj
j+ξ+1}.

Now (3) and (4) imply that whenever we pick a blue ball in the jth step,
the evolution (Yt : t > 0) increases by one at time Tj . Note that (Zt : t > 0)
is independent of (Uj : j > 0) so that

E
[
Yt
∣∣Zt = n+ k + 1

]
− k > E[Bn −B0] =

ξ

1 + ξ
(n+ ξ + 1)− ξ

=
ξn

1 + ξ
=

f(k)

f(k + 1)
n,

and, by the concavity of f ,

E
[
f(Yt)

∣∣Zt = n+ k + 1
]

> f(k) +
f(n+ k + 1)− f(k + 1)

n

(
E[Yt|Zt = n+ k + 1]− k

)
> f(k) + (f(n+ k + 1)− f(k + 1))

f(k)

f(k + 1)
= f(k)

f(n+ k + 1)

f(k + 1)
,

(5)

so that
Ptf(k + 1)

Ptf(k)
=

E[f(Zt)]

E[f(Yt)]
6
f(k + 1)

f(k)
.

If f is linear all inequalities above become equalities.

Next, we show that the semigroup (Pt) preserves concavity.

Lemma 2.3. For every concave and monotonically increasing g and ev-
ery t > 0, the function Ptg is concave and monotonically increasing.
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PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 19

Proof. We use an urn coupling argument similar to the one of the proof
of Lemma 2.2. Fix k > 0 and let (Y (2)

t : t > 0) be the pure birth process
(Zt : t > 0) started in Z0 = k + 2. Denote T0 = 0 and let (Tj : j = 1, 2, . . .)
be the breakpoints of the process in increasing order. Suppose (Uj : j > 0) is
a sequence of independent random variables that are uniformly distributed
on [0, 1]. For i ∈ {0, 1}, we now denote by (Y (i)

t : t > 0) the step functions
starting in k+ i which have jumps of size one precisely at those times Tj+1,
j > 0, where

Uj 6
f(Y (i)

Tj
)

f(Y (2)

Tj
)
.

By concavity of f we get

P(∆Y (1)

Tj+1
= 1 |∆Y (0)

Tj+1
= 0) =

f(Y (1)

Tj
)− f(Y (0)

Tj
)

f(Y (2)

Tj
)− f(Y (0)

Tj
)
>
Y (1)

Tj
− Y (0)

Tj

Y (2)

Tj
− Y (0)

Tj

.(6)

Let (T̄j : j = 1, 2, . . .) denote the elements of the possibly finite set
{Tj : j > 1,∆Y (0)

Tj
= 0} in increasing order. We consider a Pólya urn model

starting with one blue and one red ball. We denote by Bn the number of blue
balls after n steps. By (6) we can couple the urn model with our indegree
evolutions such that

∆Bj 6 ∆Y (1)

T̄j
,

and such that the sequence (Bj)j∈N is independent of (Y (2)

t : t > 0) and
(Y (0)

t : t > 0). Let ḡ be the linear function on [l, l + 2 + m] with ḡ(l) = g(l)
and ḡ(l + 2 +m) = g(l + 2 +m). Then

E
[
g(Y (1)

t )|Y (0)

t = l, Y (2)

t = l + 2 +m
]

> ḡ
(
E[Y (1)

t |Y
(0)

t = l, Y (2)

t = l + 2 +m]
)
> ḡ
(
l − 1 + EB2+m

)
= ḡ(l + 1 + m

2 ) = 1
2

[
g(l) + g(l + 2 +m)

]
.

Therefore,

Ptg(k+1) = E[g(Y (1)

t )] > 1
2

[
E[g(Y (0)

t )]+E[g(Y (2)

t )]
]

= 1
2

[
Ptg(k)+Ptg(k+2)

]
,

which implies the concavity of Ptg.

The fact that the semigroup preserves concavity allows us to generalise
Lemma 2.2.

Lemma 2.4. For an attachment rule f and integers k > 0 and s, t > 0,
one has

Pt+sf(k + 1)

Pt+sf(k)
6
Psf(k + 1)

Psf(k)
.
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20 S. DEREICH AND P. MÖRTERS

Proof. The statement follows by a slight modification of Lemma 2.2.
We use Z and Y as in the proof of the latter lemma and observe that by
Lemma 2.3 the function

g(k) :=
Psf(k + 1)

Psf(k)

is concave and increasing. Similarly as in (5) we get

E[g(Yt)|Zt = n+ k + 1]

> g(k) +
g(n+ k + 1)− g(k + 1)

n
(E[Yt|Zt = n+ k + 1]− k)

> g(k) + (g(n+ k + 1)− g(k + 1))
f(k)

f(k + 1)

> g(k) + (g(n+ k + 1)− g(k + 1))
g(k)

g(k + 1)
= g(n+ k + 1)

g(k)

g(k + 1)
.

The rest of the proof is in line with the proof of Lemma 2.2.

Lemma 2.5 (Stochastic domination). One can couple the process
(Z [τ ]

t : t > 0) with start in Z [τ ]

0 = k and the process (Zt : t > 0) with start in
Z0 = k + 1 in such a way that

{t > 0: ∆Z [τ ]

t = 1} ⊂ {t > 0: ∆Zt = 1} ∪ {τ}.

In particular, this implies that Z [τ ]

t + 1l{t < τ} 6 Zt for all t > 0. In the
linear case we have equality in both formulas.

Proof. Suppose (Y (2)

t : t > 0) has the distribution of (Zt : t > 0) with
start in Z0 = k+1, let T0 = 0 and (Tj : j = 1, 2, . . .) the times of discontinu-
ities of (Y (2)

t : t > 0) in increasing order. Denote by (Uj : j > 0) a sequence of
independent random variables that are uniformly distributed on [0, 1]. Now
define (Y (1)

t : t > 0) as the step function starting in k which increases by one
(i) at time Tj+1 < τ if

Uj 6
f(Y (1)

Tj
)

f(Y (2)

Tj
)

Pτ−Tj+1f(Y (1)

Tj
+ 1)

Pτ−Tj+1f(Y (1)

Tj
)

,(7)

(ii) at time τ , and (iii) at time Tj+1 > τ if

Uj 6
f(Y (1)

Tj∨τ )

f(Y (2)

Tj
)
.(8)
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Clearly, we have Y (1)

t + 1 6 Y (2)

t for all t ∈ [0, τ) and Y (1)

t 6 Y (2)

t for general
t > 0. Moreover, by Lemma 2.2, the right hand sides of the inequalities (7)
and (8) are not greater than one and it is straightforward to verify that
(Y (1)

t : t > 0) has the same law as the process (Z [τ ]

t : t > 0) with start in
Z [τ ]

0 = k.

Remark 2.6. In analogy to above, one can use Lemma 2.4 to prove that
two evolutions Z [σ] and Z [τ ] started in k with 0 < σ 6 τ can be coupled such
that

{t > 0 : Z [τ ]}\{τ} ⊂ {t > 0 : Z [σ]}\{σ}.

2.2. Properties of the degree evolutions (Z[m,n] : n > m). For the pro-
cesses (Z[m,n] : n > m) we get an analogous version of Lemma 2.1.

Lemma 2.7. For any attachment rule f , and all integers k > 0 and
0 < m 6 n,

Ek[f(Z[m,n])] 6 f(k)
( n
m

)γ+
.

Proof. Note that (Yn : n > m) with Yn := f(Z[m,n])
∏n−1
i=m(1 + γ+

i )−1

is a supermartingale. Hence

Ek
[
f(Z[m,n])

]
6 f(k)

n−1∏
i=m

(1 + γ+

i ) 6 f(k)
( n
m

)γ+
.

We also get the following analogue of Lemma 2.2.

Lemma 2.8. For an attachment rule f and integers k > 0 and 0 < m 6 n
one has

Pm,nf(k + 1)

Pm,nf(k)
6
f(k + 1)

f(k)
.

If f is linear and f(k + 1 + l) 6 m + l for all l ∈ {0, . . . , n −m − 1}, then
equality holds.

Proof. The statement follows by a slight modification of the proof of
Lemma 2.2.

We now provide two lemmas on stochastic domination of the degree evo-
lutions.
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22 S. DEREICH AND P. MÖRTERS

Lemma 2.9 (Stochastic domination I). For any integers 0 < m ≤ n1 <
· · · < nj the process (Z[m,n] : n > m) conditioned on the event ∆Z[m,ni] =
0 for all i ∈ {1, . . . , j} is stochastically dominated by the unconditional pro-
cess.

Proof. First suppose that m < n1. For any k > 0, we have

Pk
(
∆Z[m,m] = 1

∣∣∆Z[m,ni] = 0 ∀i ∈ {1, . . . , j}
)

=
f(k)

m

Pk+1(∆Z[m+ 1, ni] = 0 ∀i)
Pk(∆Z[m,ni] = 0∀i)

.

The denominator on the right is equal to

f(k)
m Pk+1(∆Z[m+ 1, ni] = 0 ∀i) +

(
1− f(k)

m

)
Pk(∆Z[m+ 1, ni] = 0∀i)

> Pk+1(∆Z[m+ 1, ni] = 0∀i),

and hence we get

Pk
(
∆Z[m,m] = 1

∣∣∆Z[m,ni] = 0 ∀i ∈ {1, . . . , j}
)

6
f(k)

m
= Pk

(
∆Z[m,m] = 1

)
,

(9)

which is certainly also true if m = n1. The result follows by induction.

The next lemma is the analogue of Lemma 2.5.

Lemma 2.10 (Stochastic domination II). For integers 0 6 k < m < n
there exists a coupling of the process (Z[m,n] : n > m) started in
Z[m,m] = k and conditioned on ∆Z[m,n] = 1 and the unconditional pro-
cess (Z[m,n] : n > m) started in Z[m,m] = k + 1 such that for the coupled
random evolutions, say (Y (1)[l] : l > m) and (Y (2)[l] : l > m), one has

∆Y (1)[l] 6 ∆Y (2)[l] + 1l{l = n},

and therefore in particular Y (1)[l] 6 Y (2)[l] for all l > m.

Proof. Note that

Pk(∆Z[m,m] = 1|∆Z[m,n] = 1) =
Pk(∆Z[m,m] = 1,∆Z[m,n] = 1)

Pk(∆Z[m,n] = 1)

=
f(k)
m Ek+1[f(Z[m+ 1, n])] 1

n

Ek[f(Z[m,n])] 1
n

=
f(k)

m

Pm+1,nf(k + 1)

Pm,nf(k)
.
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By Lemma 2.8, we get

Pk(∆Z[m,m] = 1|∆Z[m,n] = 1) 6
f(k)

m

Pm+1,nf(k + 1)

Pm+1,nf(k)
6
f(k + 1)

m
.

Now the coupling of the processes can be established as in Lemma 2.5.

Lemma 2.11. For all m 6 n 6 n′ one has

P(∆Z[m,n] = 1) > P(∆Z[m,n′] = 1).

Proof. It suffices to prove the statement for n′ = n + 1 and n > m
arbitrary. The statement follows immediately from

P(∆Z[m,n] = 1) =
1

n
E[f(Z[m,n])] =

1

n

∞∑
k=0

P(Z[m,n] = k)f(k),

and

P(∆Z[m,n+ 1] = 1)

=
1

n+ 1

∞∑
k=0

P(Z[m,n] = k)
[f(k)

n
f(k + 1) + (1− f(k)

n
)f(k)

]
=

1

n

∞∑
k=0

n+ ∆f(k)

n+ 1
f(k)P(Z[m,n] = k).

We finally look at degree evolutions (Z[m,n] : n > m) conditioned on
both the existence and nonexistence of some edges. In this case we cannot
prove stochastic domination and comparison requires a constant factor.

Lemma 2.12. Suppose that (cN )N∈N, (nN )N∈N are sequences of integers

such that limN→∞ nN = ∞ and c2
Nn

γ+−1
N is bounded from above. Then

there exists a constant C2.12 > 0, such that for all I0, I1 disjoint subsets
of {nN , . . . , N} with #I0 6 cN and #I1 6 1 and, for any m ∈ {1, . . . , N}
with n > m, we have

P
(
∆Z[m,n− 1] = 1

∣∣∆Z[m, i] = 1∀i ∈ I1, ∆Z[m, i] = 0∀i ∈ I0

)
6 C2.12 P

(
∆Z[m,n− 1] = 1

∣∣∆Z[m, i] = 1∀i ∈ I1

)
.

Proof. We have

P
(
∆Z[m,n− 1] = 1

∣∣∆Z[m, i] = 1∀i ∈ I1, ∆Z[m, i] = 0∀i ∈ I0

)
6

P(∆Z[m,n− 1] = 1|∆Z[m, i] = 1∀i ∈ I1)

P(∆Z[m, i] = 0∀i ∈ I0|∆Z[m, i] = 1∀i ∈ I1)
,

and it remains to bound the denominator from below by a positive constant.
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Using Lemma 2.10 and denoting k = #I1 we obtain that

P
(
∆Z[m, i] = 0∀i ∈ I0

∣∣∆Z[m, i] = 1∀i ∈ I1

)
> P1

(
∆Z[m, i] = 0∀i ∈ I0

)
>
∏
j∈I0

P1
(
∆Z[m, j] = 0

)
=
∏
j∈I0

{
1− E1[f(Z[m, j])]

j

}
.

By Lemma 2.7 the expectation is bounded from above by f(k)jγ
+

and more-
over f(k) 6 k + 1 6 2cN for N large enough. Hence we get,

∏
j∈I0

{
1− E1[f(Z[m, j])]

j

}
>
∏
j∈I0

{
1− 2 cN j

γ+−1
}
>
(

1− 2 cN nN
γ+−1

)cN
,

using that #I0 6 cN . As c2
NnN

γ+−1 is bounded from above, the expression
on the right is bounded from zero. This implies the statement.

2.3. Comparing the degree evolution and the pure birth process. The aim
of this section is to show that the processes (Z[m,n] : n > m) and (Zt : t > 0)
are intimately related. To this end, we set

(10) tn :=
n−1∑
k=1

1

k
and ∆tn := tn+1 − tn =

1

n
.

Lemma 2.13. For fixed n ∈ N, one can couple the random variables Z∆tn

and Z[n, n+ 1] under Pk such that, almost surely,

P
(
Z∆tn 6= Z[n, n+ 1]) 6 (f(k+ 1) ∆tn)2 and (k+ 1)∧Z∆tn 6 Z[n, n+ 1].

Proof. Note that

Pk(Z∆tn = k + 1) = f(k)∆tne
−f(k)∆tn 1

∆tn

∫ ∆tn

0
e−∆f(k)u du

> f(k)∆tne
−f(k+1)∆tn .

The same lower bound is valid for the probability Pk(Z[n, n + 1] = k + 1).
Moreover,

Pk(Z∆tn = k) = e−f(k)∆tn > (1− f(k)∆tn) ∨ 0 = Pk(Z[n, n+ 1] = k).
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Hence, we can couple Z∆tn and Z[n, n + 1] under Pk such that that they
differ with probability less than

1−
[
f(k)∆tne

−f(k+1)∆tn + 1− f(k)∆tn
]

= f(k)∆tn(1− e−f(k+1)∆tn) 6 (f(k + 1) ∆tn)2,
(11)

and moreover we have (k + 1) ∧ Z∆tn 6 Z[n, n+ 1].

Proposition 2.14. There exist constants n0 ∈ N and C2.14 > 0 such
that for all integers n0 6 m 6 n and 0 6 k < m,∣∣Pm,nf(k)− Ptn−tmf(k)

∣∣ 6 C2.14
f(k)

m
Pm,nf(k).

The proof of the proposition uses several preliminary results on the semi-
groups (Pt : t > 0) and (Pm,n : n > m), which we derive first. For a stochastic
domination argument we introduce a further time inhomogeneous Markov
process. For integers n, k > 0, we suppose that

P̃k(Z[n, n+ 1] = k + 1) = 1− P̃k(Z[n, n+ 1] = k)

=
(f(k)

n
+

1

2
f(k) ∆f(0) e∆f(0) 1

n2

)
∧ 1.

The corresponding semigroup is denoted by (P̃m,n)m 6 n.

Lemma 2.15. Assume that there exists n0 ∈ N such that, for all inte-
gers n > n0,

f(n)

n
+

1

2
f(n) ∆f(0) e∆f(0) 1

n2
6 1.(12)

Then, for all integers n > n0 and 0 6 k 6 n, and an increasing concave
g : {0, 1, 2, . . .} → R,

P∆tng(k) 6 P̃n,n+1g(k).

Proof. Consider f̄(l) = f(k) + ∆f(k)(l − k). Note that by comparison
with the linear model

f(k) + ∆f(k)(Ek[Zt]− k) = Ek[f̄(Zt)] 6 f(k)e∆f(k) t.

Hence, for t ∈ [0, 1], using that ex 6 1 + x+ 1
2 x

2ex for x > 0,

Ek[Zt]− k 6
f(k)

∆f(k)
(e∆f(k) t − 1) 6 f(k) t+ 1

2f(k) ∆f(k) e∆f(k) t t2.
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Therefore, Ek[Z∆tn ] 6 Ẽk[Z[n, n+ 1]] for all n > n0. As g is increasing and
concave and Z has only increments of size one, we get

Ek[g(Z∆tn)] 6 g(k) +
(
g(k + 1)− g(k)

)
Ek
[
Z∆tn − k

]
6 g(k) +

(
g(k + 1)− g(k)

)
Ẽk
[
Z[n, n+ 1]− k

]
= Ẽk[g(Z[n, n+ 1])],

as required to complete the proof.

Lemma 2.16. There exists a constant C2.16 > 0, depending on f , such
that for all integers 0 6 k 6 m and 0 < m 6 n, we have

P̃m,nf(k) 6 C2.16 Pm,nf(k).

Proof. For n,m ∈ N with n > m let cm,n :=
∏n−1
l=m(1 + κ

l2
) where

κ := 1
2(∆f(0))2e∆f(0). We prove by induction (over n − m) that for all

0 < m 6 n and 0 6 k 6 m,

P̃m,nf(k) 6 cm,n Pm,nf(k).

Certainly the statement is true if n = m. Moreover, we have

P̃m,n+1f(k) = Pm,m+1P̃m+1,n+1f(k) + (P̃m,m+1 − Pm,m+1)P̃m+1,n+1f(k),

and applying the induction hypothesis we get

P̃m,n+1f(k) 6 cm+1,n+1Pm,n+1f(k) + (P̃m,m+1 − Pm,m+1)P̃m+1,n+1f(k).

Moreover, for a function g : {0, 1, 2, . . .} → R, we have

(P̃m,m+1 − Pm,m+1) g(k) 6
1

2
f(k) ∆f(0) e∆f(0) 1

m2
∆g(k).(13)

Note that the transition probabilities of the new inhomogeneous Markov
process have a particular product structure: For all integers a > 1 and
b > 0, one has

P̃b(Z[a, a+ 1] = b+ 1) = (ψa · f(b)) ∧ 1, for ψa := 1
a + 1

2 ∆f(0) e∆f(0) 1
a2

.

This structure allows one to literally translate the proof of Lemma 2.8 and
to obtain

P̃a1,a2f(b2)

P̃a1,a2f(b1)
6
f(b2)

f(b1)
,
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for integers a1, a2 > 1 and b1, b2 > 0 with a1 6 a2 and b1 6 b2. Consequently,
using (13) and the induction hypothesis,

(P̃m,m+1−Pm,m+1)P̃m+1,n+1f(k)

6
1

2
f(k) ∆f(0) e∆f(0) 1

m2

∆f(k)

f(k)
P̃m+1,n+1f(k)

6
κ

m2
P̃m+1,n+1f(k) 6

κ

m2
cm+1,n+1Pm+1,n+1f(k).

(14)

Altogether, we get

P̃m,n+1f(k) 6
(
1 +

κ

m2

)
cm+1,n+1Pm,n+1f(k) = cm,n+1Pm,n+1f(k),

and the statement follows since all constants are uniformly bounded by∏∞
l=1(1 + κ

l2
) <∞.

Proof of Proposition 2.14. We choose n0 as in Lemma 2.15 and let
k,m, n be integers with n0 6 m 6 n and 0 6 k 6 m. We represent
Ek[f(Z[m,n])]− Ek[f(Ztn−tm)] as the telescoping sum

Pm,nf(k)− Ptn−tmf(k) =
n−1∑
l=m

Pm,l(Pl,l+1 − Ptl+1−tl)Ptn−tl+1
f(k)︸ ︷︷ ︸

=:Σl

.(15)

In the following, we fix l ∈ {m, . . . , n − 1} and analyse the summand Σl.
First note that by Lemma 2.2, one has for arbitrary integers 0 6 a 6 b,

ϕ(a, b) := Eb[f(Ztn−tl+1
)]− Ea[f(Ztn−tl+1

)]

6
f(b)− f(a)

f(a)
Ea[f(Ztn−tl+1

)].
(16)

In the first part of the proof, we provide an upper bound for

ψ(a) :=
∣∣(Pl,l+1 − Ptl+1−tl)Ptn−tl+1

f(a)
∣∣, for 0 6 a < l.

We couple Z∆tl and Z[l, l + 1] under Pa as in Lemma 2.13 and denote by
Υ(1) and Υ(2) the respective random variables. There are two possibilities for
the coupling to fail: either Υ(1) > a + 2 and Υ(2) = a + 1, or Υ(1) = a and
Υ(2) = a+ 1. Consequently,

ψ(a) 6 P(Υ(1) = a,Υ(2) = a+ 1)ϕ(a, a+ 1)

+ E
[
1l{Υ(1) > a+1}ϕ(a+ 1,Υ(1))

]
.

(17)
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Since, by Taylor’s formula,

P(Υ(1) = a,Υ(2) = a+ 1) = e−f(a)∆tl − (1− f(a)∆tl) 6
1

2
(f(a)∆tl)

2,

we get for the first term of (17), using (16),

P(Υ(1) = a,Υ(2) = a+ 1)ϕ(a, a+ 1)

6
1

2
(f(a)∆tl)

2 ∆f(a)

f(a)
Ea[f(Ztn−tl+1

)]

6 f(a) (∆tl)
2 Ea[f(Ztn−tl+1

)].

(18)

Now consider the second term in (17). We have

E
[
1l{Υ(1) > a+1}ϕ(a+ 1,Υ(1))

]
6 P(Υ(2) = a+ 1)︸ ︷︷ ︸

6 f(a) ∆tl

Ea+1[ϕ(a+ 1, Z∆tl)].(19)

By Lemma 2.1 we have Ea+1[f(Z∆tl)] 6 f(a + 1) e∆f(a+1) ∆tl , so that we
conclude with (16) that

Ea+1[ϕ(a+ 1, Z∆tl)] 6 (e∆f(a+1)∆tl − 1)Ea+1[f(Ztn−tl+1
)]

6 2 ∆tl Ea+1[f(Ztn−tl+1
)],

where we used in the last step that ∆f(a+ 1) < 1 and that ex 6 1 + 2x for
x ∈ [0, 1]. We combine this with the estimates (17), (18), and (19), and get

ψ(a) 6 3 f(a) (∆tl)
2 Ea+1[f(Ztn−tl+1

)].

In the next step, we deduce an estimate for |Σl| defined in (15). One has

|Σl| 6 Pm,lψ(k) 6 3∆tl Ek
[
∆tl f(Z[m, l])EZ[m,l]+1[f(Ztn−tl+1

)]
]

= 3∆tl Ek
[
1l{∆Z[m,l]=1} EZ[m,l+1][f(Ztn−tl+1

)]
]
.

By Lemma 2.10 we get

|Σl| 6 3∆tl Pk(∆Z[m, l] = 1)Ek+1
[
EZ[m,l+1][f(Ztn−tl+1

)]
]

= 3(∆tl)
2 Ek[f(Z[m, l])]Ek+1

[
EZ[m,l+1][f(Ztn−tl+1

)]
]

= 3(∆tl)
2Pm,lf(k)Pm,l+1Ptn−tl+1

f(k + 1).

(20)

We write Ptn−tl+1
f(k + 1) = Ptl+2−tl+1

Ptn−tl+2
f(k + 1) and note that, by

Lemma 2.3, Ptn−tl+2
f is concave. Therefore, we get with Lemma 2.15 that

imsart-aop ver. 2011/05/20 file: clusters_aop_style.tex date: August 10, 2011



PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 29

Ptn−tl+1
f(k + 1) 6 P̃l+1,l+2Ptn−tl+2

f(k + 1). Successive applications of this
estimate and Lemma 2.16 yield

Pm,l+1Ptn−tl+1
f(k + 1) 6 P̃m,nf(k + 1) 6 C2.16 Pm,nf(k + 1).(21)

Recall from Lemma 2.7 that Pm,lf(k) 6 ( l
m)γ

+
f(k). Combining with (15),

(20) and (21) yields

|Pm,nf(k)− Ptn−tmf(k)|

6 3C2.16 f(k)Pm,nf(k + 1)m−γ
+
n−1∑
l=m

l−2+γ+

6 C2.14
f(k)

m
Pm,nf(k),

(22)

for a suitably defined constant C2.14 depending only on f , as required.

3. Properties of the family (Aα : 0 < α < 1) of operators. The
objective of this section is to study the operators Aα and relate them to the
tree INT. We start with two lemmas on the functional analytic nature of
the family (Aα : α ∈ I).

Lemma 3.1.

(a) For any 0 < α < 1 the following are equivalent

(i) Aα1(0) <∞;

(ii) Aαg ∈ C(S) for all g ∈ C(S).

The set of α where these conditions hold is denoted by I.
(b) For any α ∈ I the operator Aα is strongly positive.
(c) For any α ∈ I the operator Aα is compact.

Proof. Recalling the Arzelà-Ascoli theorem, the only nontrivial claim is
that, if Aα1(0) < ∞, then the family (Aαg : ‖g‖∞ < 1) is equicontinuous.
To this end recall that, for τ 6 σ 6 ∞, by Remark 2.6, we have Mτ > Mσ

and hence ∣∣Aαg(τ)−Aαg(σ)
∣∣ 6 ∫ ∞

0
e−αtd(Mτ −Mσ)(t) .

Equicontinuity at ∞ follows from this by recalling the definition M∞ =
limτ↑∞Mτ . Elsewhere, for σ <∞, we use the straightforward coupling of the
processes (Z [τ ]

t : t > 0) and (Z [σ]

t : t > 0) with the property that if Z [σ]

σ−τ = 0
then Z [τ ]

t = Z [σ]

t+σ−τ .
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Hence we get,∫ ∞
0

e−αt d(Mτ −Mσ)(t) 6
(
1− e−α(σ−τ)

) ∫ ∞
0

e−αtdMτ (t)

+ E
[ ∫ ∞

0
e−αtdZ [τ ]

t 1l{Z [σ]

σ−τ > 0}
]
.

(23)

Note that
∫∞

0 e−αtdMτ (t) 6 E[
∫∞

0 e−αtdZ [τ ](t)] 6 Aα1(0) < ∞, and that

P(Z [σ]

σ−τ > 0) 6 P1(Zσ−τ > 1) ↓ 0 as σ ↓ τ . Hence, both terms on the right
hand side of (23) can be made small by making σ − τ small, proving the
claim.

Lemma 3.2. The function α 7→ log ρ(Aα) is convex on I.

Proof. By Theorem 2.5 of [Kat82] the function α 7→ log ρ(Aα) is convex,
if for each positive g ∈ C(S), ε > 0 and triplet α1 6 α0 6 α2 in I, there are
finitely many positive gj ∈ C(S) and functions φj : I → R, j ∈ {1, . . . ,m},
with log φj convex, such that∥∥∥Aαkg − m∑

j=1

φj(αk)gj

∥∥∥ 6 ε for all k ∈ {0, 1, 2}.

This criterion is easily checked using the explicit form of Aα, 0 < α < 1.

With the help of the following lemma, Theorem 1.1 follows from Theo-
rem 1.8. The result is a variant of a standard result in the theory of branching
random walks adapted to our purpose, see, e.g., Hardy and Harris [HH09]
for a good account of the general theory.

Lemma 3.3. The INT dies out almost surely if and only if there exists
0 < α < 1 such that Aα is a compact linear operator with spectral radius
ρ(Aα) 6 1.

Proof. Suppose that such an α exists. By the Krein–Rutman theorem
(see, e.g., Theorem 1.3 in Section 3.2 of [Pin95]) there exists a eigenvector
v : S → [0,∞) corresponding to the eigenvalue ρ(Aα). Our operator Aα is
strongly positive, i.e. for every g > 0 which is positive somewhere, we have

min
τ∈S

Aαg(τ) > 0,

so that v is also bounded away from zero. Let Y (n)
τ (dt dx) be the empirical

measure of types and positions of all the offspring in the nth generation of
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an IBRW started by a single particle of type τ positioned at the origin. With
every generation of particles in the IBRW we associate a score

Xn :=

∫
Y (n)
τ (dt dx) e−αx

v(t)

v(τ)
.

The assumption ρ(Aα) 6 1 implies that (Xn : n ∈ N) is a supermartingale
and thus almost surely convergent. Now fix some N > 1, an integer n > 2
and the state at generation n− 1. Suppose there is a particle with location
x < N in the (n − 1)st generation. Then there is a positive probability
(depending on N but not on n) that Xn −Xn−1 > 1 and, as (Xn : n ∈ N)
converges, this can only happen for finitely many n. Hence the location of
the leftmost particle in the IBRW diverges to +∞ almost surely. This implies
that the INT dies out almost surely.

Conversely, we assume that I is nonempty and fix α ∈ I. The Krein-
Rutman theorem gives the existence of an eigenvector of the dual opera-
tor, which is a positive, finite measure ν on the type space S such that∫
v(t) ν(dt) = 1 and, for all continuous, bounded f : S → R,∫

Aαf(t) ν(dt) = ρ(Aα)

∫
f(t) ν(dt) .

Because Aα is a strongly positive operator, the Krein-Rutman theorem
implies that there exists λ0 < ρ(Aα) such that |λ| 6 λ0 for all
λ ∈ σ(Aα) \ {ρ(Aα)}, where σ(Aα) denotes the spectrum of the opera-
tor. Hence ρ(Aα) is separated from the rest of the spectrum and by Theo-
rem IV.3.16 in [Kat76] this holds for all parameters in a small neighbourhood
of α. Hence, arguing as in Note 3 on Chapter II in [Kat76, pp.568-569], the
mapping α 7→ ρ(Aα) is differentiable and its derivative equals

(24) ρ′(Aα) :=
d

dα

∫
Aαv(t) ν(dt) =

∫
∂

∂α
Aαv(t) ν(dt),

where the second equality can be inferred from the minimax characterisation
of eigenvalues, see e.g. Theorem 1 in [Ram83]. Given τ ∈ S we define a
martingale by

W (n)
τ = ρ(Aα)−n

∫∫
v(t)

v(τ)
e−αxY (n)

τ (dt dx),

and argue as in Theorem 1 of [KRS01] that it converges almost surely to a
strictly positive limit Wτ if

(25) log ρ(Aα)− αρ′(Aα)

ρ(Aα)
> 0 and sup

τ∈S
E
[
W (1)
τ logW (1)

τ

]
<∞.
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Let us assume for the moment that the second condition holds true for all
α ∈ I. Then, if α is such that the limit Wτ exists and is positive, it also exists
for the offspring of any particle of type τ in position x, and we denote it
by Wτ (x). By decomposing the population in the mth generation according
to their ancestor in the nth generation, and then letting m→∞, we get

Wτ = ρ(Aα)−n
∫

v(t)

v(τ)
e−αxWt(x)Y (n)

τ (dt dx).

Denoting by Pτ the law of the IBRW started with a particle at the origin of
type τ , we now look at the IBRW under the changed measure

dQ =

∫
ν(dτ) v(τ)Wτ dPτ .

Given a sample IBRW we build a measure µ on the set of all infinite se-
quences

((x0, t0), (x1, t1), . . .) ,

where xj is the location and tj the type of a particle in the jth generation,
which is a child of a particle in position xj−1 of type tj−1, for all j > 1.
This measure is determined by the requirement that, for any permissible
sequence

µ
{

((y0, s0), (y1, s1), . . .) : y0 = x0, s0 = t0 . . . , yn = xn, sn = tn
}

= ρ(Aα)−n
v(tn)

v(t0)
exp{−αxn}

Wtn(xn)

Wt0(x0)
.

Looking unconditionally at the random sequence of particle types thus gen-
erated, we note that it is a stationary Markov chain on S with invariant
distribution v(t) ν(dt) and transition kernel given by

Pt0(`) = ρ(Aα)−1 v(`)

v(t0)

∫ ∞
0

e−αtdMt0(t),

Pt0(dt) = ρ(Aα)−1 v(t)

v(t0)
eαtdM(t) for t > 0.

Using first Birkhoff’s ergodic theorem and then (24) we see that, Q-almost
surely, µ-almost every path has speed

lim
n→∞

xn
n

=
1

ρ(Aα)

∫
E
[ ∫

Y (1)

t0
(dt dx)xe−αx

v(t)

v(t0)

]
v(t0) ν(dt0)

= − 1

ρ(Aα)

∫
∂

∂α

Aαv(t0)

v(t0)
v(t0) ν(dt0) = −ρ

′(Aα)

ρ(Aα)
= − d

dα
log ρ(Aα).
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Suppose that α0 ∈ I is such that

ρ
(
Aα0

)
= min

α∈I
ρ(Aα) > 1.

From Lemma 3.2 we can infer that there exists α > α0 such that the first
condition in (25) holds and

− d

dα
log ρ(Aα) < 0.

This implies that, Q-almost surely, there exists an ancestral line of particles
diverging to −∞. For the IBRW started with a particle at the origin of
type ` we therefore have a positive probability that an ancestral line goes to
−∞. This implies that the INT has a positive probability of survival.

To ensure that the second condition in (25) holds we can use a cut-off
procedure, and replace the offspring distribution Y (1)(dt dx) by one that
takes only the first N children to the right and left into account. It is easy
to see that, for fixed 0 < α < 1 and sufficiently large N , we can ensure
that the modified operator A(N)

α is close to the original one in the oper-
ator norm, and as large as we wish if the original operator is ill-defined.
Hence the continuity of the spectral radius in the operator norm ensures that
limN→∞ ρ(A(N)

α ) = ρ(Aα), with the spectral radius of an ill-defined opera-
tor being infinity. Using Lemma 3.2 and the fact that a sequence of convex
functions, which converges pointwise, converges uniformly on every closed
set, we can choose N so that for all 0 < α < 1 the modified operators sat-
isfy ρ(A(N)

α ) > 1, while the cut-off ensures that the second criterion in (25)
automatically holds. The argument above can now be applied and yields
the existence of an ancestral line of particles diverging to −∞, which then
automatically also exists in the original IBRW.

Our proofs, in particular the crucial sprinkling technique, relies on the
following continuity property of the survival probability p(f) of the INT for
the attachment rule f .

Lemma 3.4. One has

lim
ε↓0

p(f − ε) = p(f).

Proof. We only need to consider the case where p(f) > 0, as otherwise
both sides of the equation are zero. We denote by ρ(α, f) the spectral radius
of the operator Aα formed with respect to the attachment function f , setting
it equal to infinity if the operator is ill-defined. The assumption p(f) > 0
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implies, by Lemma 3.3, that for all 0 < α < 1 we have ρ(α, f) > 1. As the
operator norm ‖Aα‖ for the operator formed with respect to the attachment
function f − ε depends continuously on ε > 0, we can use the continuous
dependence of the spectral radius on the operator norm to obtain, for fixed α,

lim
ε↓0

ρ(α, f − ε) = ρ(α, f).

As a sequence of convex functions, which converges pointwise, converges
uniformly on every closed set, we find ε > 0 such that ρ(Aα, f − ε) > 1 for
all 0 < α < 1. Thus, using again Lemma 3.3, we have p(f − ε) > 0.

Now we look at the IBRW started with one particle of type ` in position t,
constructed using the attachment rule f − ε, such that any particle with
position > 0 is killed along with its offspring. We denote by E(ε, t) the
event this process survives forever, and by V (ε, t, κ) the probability that a
particle reaches a site < κ. Then we have

lim
κ→−∞

inf
t≤κ

P
(
E(ε, t)

)
= 1.

For fixed κ < 0 and 0 6 ε 6 ε0 we have

P
(
E(ε, t)

)
> P

(
V (ε, t, κ)

)
P
(
E(ε0, κ)

) ε↓0−→ P
(
V (0, t, κ)

)
P
(
E(ε0, κ)

)
.

Note that the first probability on the right is greater or equal to p(f) and
that the second probability tends to one, as κ tends to −∞.

4. The giant component. This section provides two crucial tools: A
tool to obtain global results from our local approximations of neighbour-
hoods given by the ‘sprinkling’ argument in Proposition 4.1, and an a priori
lower bound on the size of the connected components of the oldest vertices
in the system given in Lemma 4.2. We follow the convention that a sequence
of events depending on the index N holds with high probability if the prob-
ability of these events goes to one as N ↑ ∞.

Proposition 4.1 (Sprinkling argument). Let ε ∈ (0, f(0)), κ > 0, and
f̄(k) = f(k) − ε for integers k > 0. Suppose that (cN )N∈N is a sequence of
integers with

lim
N↑∞

[
1
2κεcN − logN

]
=∞ and lim

N→∞

c2
N

N
= 0,

and that, for the preferential attachment graphs (ḠN )N∈N with attachment
rule f̄ , we have

N∑
v=1

1l{|C̄N (v)| > 2cN} > κN with high probability,
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where C̄N (v) denotes the connected component of the vertex v in ḠN . Then
there exists a coupling of the graph sequences (GN )N∈N with (ḠN )N∈N such
that ḠN 6 GN and all connected components of ḠN with at least 2cN vertices
belong to one connected component in GN with at least κN vertices, with high
probability.

Proof. Note that we can couple ḠN and an independent Erdős-Rényi
graph GERN with edge probability ε/N with GN such that

ḠN 6 ḠN ∨ GERN 6 GN .(26)

Here, ḠN ∨GERN denotes the graph in which all edges are open that are open
in at least one of the two graphs, and G′ 6 G′′ means that all edges that are
open in G′ are also open in G′′. We denote by V ′N the vertices in ḠN that
belong to components of size at least 2cN and write V ′N as the disjoint union
C1 ∪ · · · ∪ CM , where C1, . . . , CM are sets of vertices such that,

• |Cj | ∈ [cN , 2cN ] and
• Cj belongs to one component in ḠN , for each j = 1, . . . ,M .

Recall (26), and note that given ḠN and the sets C1, . . . , CM , the Erdős-
Rényi graph GERN connects two distinct sets Ci and Cj with probability at
least

pN := 1−
(
1− ε

N

)c2N > 1− e−
ε
N
c2N ∼ ε

N
c2
N .

By identifying the individual sets as one vertex and interpreting the GERN -
connections as edges, we obtain a new random graph. Certainly, this dom-
inates an Erdős-Rényi graph with M vertices and success probability pN ,
which has edge intensity MpN . By assumption, 1

2
κN
cN

6 M 6 N with high
probability. Hence M →∞ and MpN−logM →∞ in probability as N ↑ ∞.
By [Hof09, Thm. 5.6], the new Erdős-Rényi graph is connected with high
probability. Hence, all vertices of V ′N belong to one connected component
in GN , with high probability.

We need an ‘a priori’ argument asserting that the connected components
of the old vertices are large with high probability. This will in particular
ensure that the connected component of any vertex connected to an old
vertex is large.

Lemma 4.2 (A priori estimate). Let (cN )N∈N and (nN )N∈N be sequences
of positive integers such that

lim
N→∞

cN
logN log logN

= 0 and lim
N→∞

log nN
logN

= 0.

imsart-aop ver. 2011/05/20 file: clusters_aop_style.tex date: August 10, 2011



36 S. DEREICH AND P. MÖRTERS

Denote by CN (v) ⊂ GN the connected component containing v ∈ {1, . . . , N}.
Then

P
(
#CN (v) < cN for any v ∈ {1, . . . , nN}

)
−→ 0.

Proof. We only need to show this for the case when f is constant, say
equal to β > 0, as all other cases stochastically dominate this one. Note
that in this case all edge probabilities are independent. We first fix a vertex
v ∈ {1, . . . , nN} and denote by X1 = X1(v) the number of its direct neigh-
bours in (nN , N/ logN ]. We obtain, for any λ > 0,

Ee−λX1 =

bN/ logNc−1∏
j=nN

(
β
j e
−λ +

(
1− β

j

))
,

and hence, for sufficiently large N ,

logEe−λX1 6 − β
(
1− e−λ

) bN/ logNc−1∑
j=nN

1

j
6 − 3

4 β
(
1− e−λ

)
logN .

By the exponential Chebyshev inequality we thus get for sufficiently large N ,

(27) P
(
X1 <

β
2 logN

)
6 Nλβ

2
− 3β

4
(1−e−λ) 6 N−

β
32 ,

choosing λ = 1
2 and using that 1− e−x > x− 1

2x
2 for x > 0 in the last step.

Now let X2 = X2(v) be the number of direct neighbours in (N/ logN,N ] of
any of the X1(v) vertices who are direct neighbours of v in (nN , N/ logN ].
Since by assumption f(k) = β for all k, we obtain, for any λ > 0,

E
[
e−λX2

∣∣X1

]
=

N−1∏
j=bN/ logNc

(
1 + (e−λ − 1)

(
1− (1− β

j )X1
))
,

and hence, for sufficiently large N , on the event {X1 > β
2 logN},

logE
[
e−λX2

∣∣X1

]
6 − (1− e−λ) 3β

4 X1

N−1∑
j=bN/ logNc

1

j

6 − (1− e−λ) β
2

4 logN log logN.

By (27) and the exponential Chebyshev inequality (with λ = 1) we thus get
for sufficiently large N ,

P
(
X2(v) < cN

)
6 P

(
X1 <

β
2 logN

)
+ P

(
X2(v) < cN

∣∣X1 > β
2 logN

)
6 N−

β
32 +N−

β2

8
log logN+cN/ logN .
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Let λ = 1
2 . By our assumptions on (cN )N∈N and (nN )N∈N the sum of

the right hand sides over all v ∈ {1, . . . , nN} goes to zero, ensuring that
#CN (v) > X2(v) > cN for all v ∈ {1, . . . , nN} with high probability.

5. The exploration process. Our aim is to ‘couple’ certain aspects
of the network to an easier object, namely a random tree. To each of these
objects we associate a dynamic process called the exploration process. In
general, an exploration process of a graph successively collects information
about the connected component of a fixed vertex by following edges ema-
nating from already discovered vertices in a well-defined order, so that at
each instance the explored part of the graph is a connected subgraph of
the cluster. We show that the exploration processes of the network and the
labelled tree can be defined on the same probability space in such a way
that up to a stopping time, which is typically large, the explored part of the
network and the tree coincide.

5.1. A random labelled tree. We now describe a tree T(w) which infor-
mally describes the neighbourhood of a vertex w ∈ GN . Any vertex in the
tree is labelled by two parameters: its location, an element of {1, . . . , N},
and its type, an element of {`} ∪ {1, . . . , N}. The root is given as a vertex
with location w and type `. A vertex v with location i and type ` produces
independently descendants in the locations 1, . . . , i − 1 (i.e. to its left) of
type i with probability

P(v has a descendant in j of type i) = P(∆Z[j, i− 1] = 1).

Moreover, independently it produces descendants to its right, which are all
of type `, in such a way that the cumulative sum of these descendants is
distributed according to the law of (Z[i, j] : i+1 6 j 6 n). A vertex v of type
k produces descendants to the left in the same way as a vertex of type `, and
independently it produces descendants to the right, which are all of type `,
in such a way that the cumulative sum of these descendants is distributed
as (Z[i, j]− 1l[k,∞)(j) : i+ 1 6 j 6 n) conditioned on ∆Z[i, k − 1] = 1.

Observe that, given the tree and the locations of the vertices, we may
reconstruct the types of the vertices in a deterministic way: any vertex whose
parent is located to its left has the type `, otherwise the type of the vertex
is the location of the parent.

The link between this labelled tree and our network is given in the fol-
lowing proposition, which will be proved in Section 5.3.
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Proposition 5.1. Suppose that (cN )N∈N is a sequence of integers with

lim
N→∞

cN
logN log logN

= 0.

Then one can couple the pair (V,GN ) consisting of the network and a uni-
formly chosen vertex V with T(V ) such that with high probability

#CN (V ) ∧ cN = #T(V ) ∧ cN .

5.2. Exploration of the network. We now specify how we explore a graph
like our network or the tree described above, i.e., we specify the way we col-
lect information about the connected component, or cluster, of a particular
vertex v. In the first step, we explore all immediate neighbours of v in the
graph. To explain a general exploration step we classify the vertices in three
categories:

• veiled vertices: vertices for which we have not yet found connections
to the cluster of v;
• active vertices: vertices for which we already know that they belong to

the cluster, but for which we have not yet explored all its immediate
neighbours;
• dead vertices: vertices which belong to the cluster and for which all

immediate neighbours have been explored.

After the first exploration step the vertex v is marked as dead, its immedi-
ate neighbours as active and all the remaining vertices as veiled. In a general
exploration step, we choose the leftmost active vertex, set its state to dead,
and explore its immediate neighbours. The newly found veiled vertices are
marked as active, and we proceed with another exploration step until there
are no active vertices left.

In the following, we couple the exploration processes of the network and
the random labelled tree started with a particle at position v and type `
up to a stopping time T . Before we introduce the coupling explicitly, let
us quote adverse events which stop the coupling. Whenever the exploration
process of the network revisits an active vertex we have found a cycle in the
network. We call this event (E1) and stop the exploration so that, before
time T , the explored part of the neighbourhood of v is a tree with each node
having a unique location. Additionally, we stop once the explored part of the
network differs from the explored part of the random labelled tree, calling
this event (E2), we shall see in Section 5.3 how this can happen. In cases
(E1) and (E2) we say that the coupling fails.
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Further reasons to stop the exploration are, for parameters nN , cN ∈ N
with 1 6 nN , cN 6 N ,

(A) the number of dead and active vertices exceeds cN ,
(B) one vertex in {1, . . . , nN} is activated, and
(C) there are no more active vertices left.

If we stop the exploration without (E1) and (E2) being the case, we say that
the coupling succeeds. Once the exploration has stopped, the veiled parts of
the random tree and the network may be generated independently of each
other with the appropriate probabilities. Hence, if we succeed in coupling
the explorations, we have coupled the random labelled tree and the network.

5.3. Coupling the explorations. To distinguish both exploration processes,
we use the term descendant for a child in the labelled random tree and the
term immediate neighbour in the context of the neighbourhood exploration
in the network. In the initial step, we explore all immediate neighbours of
v and all the descendants of the root. Both explorations are identically dis-
tributed and they therefore can be perfectly coupled. Suppose now that we
have performed k steps and that we have not yet stopped the exploration.
In particular, this means that both explored subgraphs coincide and that
any unveiled (i.e. active or dead) element of the labelled random tree can
be uniquely referred to by its location. We now explore the descendants and
immediate neighbours of the leftmost active vertex, say n.

First, we explore the descendants to the left (veiled and dead) and im-
mediately check whether they themselves have right descendants in the set
of dead vertices. If we discover no dead descendants, the set of newly found
left descendants is identically distributed to the immediate left neighbours
in the network. Thus we can couple both explorations such that they agree
in this case. Otherwise we stop the exploration due to (E2).

Second, we explore the descendants to the right. If the vertex n is not
of type `, then we know already that n has no right descendants that were
marked as dead as n itself was discovered. Since we always explore the left-
most active vertex there are no new dead vertices to the right of n. Therefore,
the explorations to the right in the network and the random labelled tree
are identically distributed and we stop if we find right neighbours in the set
of active vertices due to (E1). If the vertex n is of type `, then we have not
gained any information about its right descendants yet. If we find no right
descendants in the set of dead vertices, it is identically distributed to the
immediate right neighbours of n in the network. We stop if right descen-
dants are discovered that were marked as dead, corresponding to (E2), or if
right descendants are discovered in the set of active vertices, corresponding
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to (E1).

Lemma 5.2. Suppose that (cN )N∈N, (nN )N∈N are sequences of integers
such that

lim
N→∞

c2
N

n1−γ+
N

= 0.

Then the coupling of the exploration processes satisfies

lim
N→∞

sup
v∈{nN+1,...,N}

P
(
coupling with initial vertex v ends in (E1) or (E2)

)
= 0,

i.e. the coupling succeeds with high probability.

Proof. We analyse one exploration step in detail. Let a and d denote the
active and dead vertices of a feasible configuration at the beginning of an
exploration step, that is a, d denote two disjoint subsets of {nN + 1, . . . , N}
with #(a ∪ d) < cN and a 6= ∅.

The exploration of the minimal vertex n in the set a may only fail for one
of the following reasons:

(Ia) the vertex n has left descendants in d,
(Ib) the vertex n has left descendants which themselves have right descen-

dants in d, or
(II) the vertex n has right descendants in a ∪ d.

Indeed, if (Ia) and (Ib) do not occur then the exploration to the left ends
neither in state (E1) nor (E2), and if (II) does not happen the exploration
to the right does not fail.

Conditionally on the configuration (a, d), the probability for the event (Ia)
equals

P(∃a ∈ d such that ∆Z[a, n− 1] = 1) 6
∑
a∈d
a<n

P(∆Z[a, n− 1] = 1),

whereas the probability for (Ib) is by Lemma 2.10 equal to

P(∃a ∈ dc and b ∈ d such that ∆Z[a, n− 1] = ∆Z[a, b− 1] = 1)

6
∑
a∈dc
a<n

∑
b∈d
b>a

P(∆Z[a, n− 1] = ∆Z[a, b− 1] = 1)

6
∑
a∈dc
a<n

∑
b∈d
b>a

P(∆Z[a, n− 1] = 1)P1(∆Z[a, b− 1] = 1).
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If the vertex n is of type τ 6= `, then the conditional probability of (II) is

P
(
∃a ∈ a such that ∆Z[n, a− 1] = 1∣∣Z[n, τ − 1] = 1,∆Z[n, b− 1] = 0∀b ∈ d\{τ}

)
6 C2.12

∑
a∈a∪d
a>n

P1(∆Z[n, a− 1] = 1),

using first Lemma 2.12 and then Lemma 2.10.
If the vertex n is of type `, the conditional probability of (II) is

P
(
∃a ∈ a ∪ d such that ∆Z[n, a− 1] = 1) 6

∑
a∈a∪d
a>n

P(∆Z[n, a− 1] = 1).

Since, by Lemma 2.11, for any a > n,

P1
(
∆Z[n, a− 1] = 1

)
6 P1

(
∆Z[nN + 1, nN + 1] = 1

)
,

we conclude that the probabilities of the events (Ia) and (II) are bounded
by

(2 + C2.12) cN P1
(
∆Z[nN + 1, nN + 1] = 1

)
,

independently of the type τ . Moreover, the probability of (Ib) is bounded
by

cN P1(∆Z[1, nN ] = 1)
n−1∑
a=1

P(∆Z[a, n− 1] = 1).

The sum is the expected outdegree of vertex n, which, by Lemma 2.7, is uni-
formly bounded and, hence, one of the events (Ia), (Ib), or (II) occurs in one
step with probability less than a constant multiple of cN P1(∆Z[1, nN ] = 1).
As there are at most cN exploration steps until we end in one of the states
(A), (B), or (C), the coupling fails due to (E1) or (E2) with a probability
bounded from above by a constant multiple of

c2
N P1(∆Z[1, nN ] = 1) 6 C2.7 f(1)

c2
N

nN 1−γ+ → 0 ,

in other words, the coupling succeeds with high probability.

Proof of Proposition 5.1. Apply the coupling of Lemma 5.2 with
(nN )N∈N satisfying

lim
N→∞

log nN
logN

= 0 and lim
N→∞

(logN log logN)2

n1−γ+
N

= 0.
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Then, by Lemma 4.2, we get that with high probability

coupling ends in (B) =⇒ #CN (V ) ≥ cN .(28)

As in the proof of Lemma 4.2 one gets

lim
N→∞

max
v=1,...,nN

P(#T(v) < cN ) = 0

so that implication (28) is also valid for #CN (V ) replaced by #T(V ). Since
the coupling succeeds we have, with high probability,

coupling ends in (A) or (B) ⇐⇒ #CN (V ) ∧#T(V ) ≥ cN ,

and the statement follows immediately.

6. The idealized exploration process. We now have the means to
explain heuristically the approximation of the local neighbourhood of a ran-
domly chosen vertex V ∈ GN by the idealized random tree T featuring in our
main theorems. Vertices in the network GN are mapped onto particles on the
negative halfline in such a way that the vertex with index n ∈ {1, . . . , N} is
mapped onto position tn − tN , recall (10). Note that the youngest vertex is
placed at the origin, and older vertices are placed to the left with decreasing
intensity. In particular the position of the particle corresponding to a vertex
with fixed index will move to the left as N is increasing.

Looking at a fixed observation window [a, b] on the negative halfline, as
N ↑ ∞, we see that the number of particles in the window is increasing. At
the same time the age of the vertex corresponding to a particle closest to a
fixed position in the window is increasing, which means that the probability
of edges between two such vertices is decreasing. As we shall see below, the
combination of these two effects leads to convergence of the distribution of
offspring locations on the halfline. In particular, thanks to the independence
of edges with a common right endpoint, offspring to the left converges to
a Poisson process by the law of small numbers, while offspring to the right
converges to the point processes corresponding to the pure birth process
(Zt : t > 0) if there is no dependence on previous generations.

The considerations of Section 5 suggest that the only form of dependence
of the offspring distribution of a vertex on previous generations, is via the
relative position of its father. This information is encoded in the type of a
particle, where type ` indicates that its father is to the left of the particle,
and a numerical type τ indicates that the father is positioned τ units to its
right. It should be noted that the relative positions of offspring particles only
depend on the absolute position of the reproducing particle via the removal
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of particles whose position is not in the left halfline, and which therefore
do not correspond to vertices in the network GN . This fact produces the
random walk structure, which is crucial for the analysis of the underlying
tree. Our main aim now is to prove the following result.

Proposition 6.1. Suppose that (cN )N∈N is a sequence of integers with

lim
N→∞

cN
logN log logN

= 0

Then each pair (V,GN ) can be coupled with T such that with high probability

#CN (V ) ∧ cN = #T ∧ cN .

We have seen so far that the neighbourhood of a vertex v in a large
network is similar to the random tree T(v) constructed in Section 5.1. To
establish the relationship between T(V ), for an initial vertex V chosen uni-
formly from {1, . . . , N}, and the idealized neighbourhood tree T we apply
the projection the projection

πN : (−∞, 0]→ {1, . . . , N},

which maps t 6 0 onto the smallest m ∈ {1, . . . , N} with t 6 − tN + tm,
to each element of the INT T. We obtain a branching process with location
parameters in {1, . . . , N}, which we call πN -projected INT. We need to show,
using a suitable coupling, that when the INT is started with a vertex −X,
where X is standard exponentially distributed, then this projection is close
to the random tree T(V ). Again we apply the concept of an exploration
process.

To this end we show that, for every v 6 0, the πN -projected descendants of
v have a similar distribution as the descendants of a vertex in location πN (v)
in the labelled tree of Section 5.1. We provide couplings of both distributions
and control the probability of them to fail.

Coupling the evolution to the right for `-type vertices. We fix v 6 0
and N ∈ N, and suppose that m := πN (v) > 2. For an `-type vertex in
v the cumulative sum of πN -projected right descendants is distributed as
(Ztn−tN−v)m 6 n 6 N . This distribution has to be compared with the distribu-
tion of (Z[m,n])m 6 n 6 N , which is the cumulative sum of right descendants
of m in T(v).
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Lemma 6.2. Fix T,N ∈ N and v 6 0 with πN (v) = m ∈ {2, 3, . . . , N}.
We can couple the processes

(
Ztn−tN−v : n > m

)
and

(
Z[m,n] : n > m) such

that for the coupled processes (Y (1)[n] : n > m) and (Y (2)[n] : n > m) we have

P
(
Y (1)[n] 6= Y (2)[n] for some n 6 τ

)
6 (f(0) + f(T )2)

1

m− 1
,

where τ is the first time when one of the processes reaches or exceeds T .

Proof. We define the process Y = ((Y (1)[n],Y (2)[n]) : n > m) to be the
Markov process with starting distribution L(Ztm−tN−v)⊗ δ0 and transition
kernels p(n) such that the first and second marginal are the respective tran-
sition probabilities of (Ztn−tN−v : n > m) and (Z[m,n] : n > m) and, for
any integer a > 0, the law p(n)((a, a), · ) is the coupling of the laws of
Z∆tn and Z[n, n + 1] under Pa provided in Lemma 2.13. Then the pro-
cesses (Y (1)[n] : n > m) and (Y (2)[n] : n > m) are distributed as stated in the
lemma. Moreover, letting σ denote the first time when they disagree, we get

P(σ 6 τ) =

∞∑
n=m

P(τ > n, σ = n)

6 P(σ = m) +
∞∑
n=m

P
(
σ = n+ 1

∣∣ τ > n, σ > n
)

and, by Lemma 2.13,

P
(
σ = n+ 1| τ > n, σ > n

)
6
(
f(T )

1

n

)2
for n ∈ {m,m+ 1, . . . }.

Moreover, P(σ = m) = P(Y (1)[m] > 0) = 1 − e−(tm−v)f(0) 6 f(0)
m−1 . Conse-

quently,

P(σ 6 τ) 6
f(0)

m− 1
+ f(T )2

∞∑
n=m

1

n2
6 (f(0) + f(T )2)

1

m− 1
.

Coupling the evolution to the left. Recall that a vertex v 6 0 produces a
Poissonian number of πN -projected descendants at the location m 6 πN (v)
with parameter

λ :=

∫ (−tN+tm)∧v

−tN+tm−1

e−(v−u) E[f(Zv−u)] du.(29)

Here we adopt the convention that t0 = −∞. A vertex in location n := πN (v)
in T[v] produces a Bernoulli distributed number of descendants in m with
success probability P(∆Z[m,n− 1] = 1) for m < n and success probability
zero for m = n. The following lemma provides a coupling of both distribu-
tions.
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Lemma 6.3. There exists a constant C6.3 > 0 such that the following
holds: Let m,N ∈ N and v 6 0 with m 6 n := πN (v) and define λ as
in (29). If m < n, one can couple a Poiss(λ) distributed random variable
with ∆Z[m,n − 1], such that the coupled random variables Υ(1) and Υ(2)

satisfy

P(Υ(1) 6= Υ(2)) 6 C6.3
1

m1+γ+

1

n1−γ+ .

If m = n, a Poiss(λ) distributed random variable Υ(1) satisfies

P(Υ(1) 6= 0) 6 C6.3
1

n
.

Proof. It suffices to prove the second statement for m = n > 2. Note
that u 7→ e−uE[f(Zu)] is decreasing so that

λ 6
∫ v

−tN+tn−1

e−(v−u) E[f(Zv−u)] du 6 f(0) 1
n−1 ,

which leads directly to the second statement of the lemma. Next, consider
the case where 2 6 m < n. Note that for u ∈ (−tN + tm−1,−tN + tm], one
has v− u ∈ (tn−1− tm, tn− tm−1) which, using again that u 7→ e−uE[f(Zu)]
is decreasing, implies that

1
m−1 e

−(tn−tm−1) E[f(Ztn−tm−1)] 6 λ 6 1
m−1 e

−(tn−1−tm) E[f(Ztn−1−tm)].

Next, note that by definition of tn we have log n
m 6 tn − tm 6 log n−1

m−1 so
that

(1− 1
m−1) 1

n−1 E[f(Ztn−1−tm)] 6 λ 6
(
1 + 1

m−1

)
1

n−1 E[f(Ztn−1−tm)].(30)

On the other hand, ∆Z[m,n−1] is a Bernoulli random variable with success
probability

p := 1
n−1E[f(Z[m,n− 1])].

By Lemma A.1 it suffices to control λ2 and |λ− p|. By Proposition 2.14 and
(30),

|λ− p| 6 C
1

m− 1

1

n− 1

(
E[f(Ztn−1−tm)] + E[f(Z[m,n− 1])]

)
,(31)

and

λ2 6 4
(

1
n−1

)2E[f(Ztn−1−tm)]2.(32)
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Since tn−1 − tm 6 log n−2
m−1 , we get with Lemma 2.1 and Lemma 2.7 that

E[f(Ztn−1−tm)] + E[f(Z[m,n− 1])] 6 C
( n
m

)γ+
.

Recalling that n > m > 2, it is now straightforward to deduce the statement
from equations (31) and (32). It remains to consider the case where 1 = m <
n. Here, we apply Lemma 2.1 and tn−1 > log(n− 1) to deduce that

λ 6
∫ −tN+t1

−∞
e−(v−u) E[f(Zv−u)] du

6 C

∫ ∞
tn−1

e−(1−γ+)u du 6
C

1− γ+
(n− 1)γ

+−1,

while, by Lemma 2.7, P(∆Z[1, n − 1] = 1) 6 f(0) (n − 1)γ
+−1, so that a

Poiss(λ) distributed random variable can be coupled with ∆Z[1, n − 1] so
that they disagree with probability less than a constant multiple of nγ

+−1.

Remark 6.4. Lemma 6.3 provides a coupling for the mechanisms with
which both trees produce left descendants. Since the number of descendants
in individual locations form an independent sequence of random variables,
we can apply the coupling of the lemma sequentially for each location and
obtain a coupling of the πN -projected left descendants of a vertex v and the
left descendants of n := πN (v) in T[v]. Indeed, under the assumptions of
Lemma 6.3, one finds a coupling of both processes such that

P(left descendants disagree) 6 C6.3
1

n
+C6.3

1

n1−γ+

n−1∑
m=1

1

m1+γ+
6 C6.4

1

n1−γ+ ,

where C6.4 is a suitable positive constant.

Coupling the evolution to the right for particles of type τ 6= `. We fix
v 6 0 and N ∈ N, and suppose that m := πN (v) > 2. Also fix a type
τ < −v with l := πN (v+τ) > m. The cumulative sum of πN -projected right
descendants of a vertex v of type τ (including its predecessor) is distributed
according to (Z−tN+tn−v : m 6 n 6 N) conditioned on ∆Zτ = 1. The cumu-
lative sum of right descendants in T[v] of a vertex in m of type l (including
the predecessor) is distributed according to the law of (Z[m,n] : m 6 n 6 N)
conditioned on ∆Z[m, l − 1] = 1. Both processes are Markov processes and
we provide a coupling of their transition probabilities.
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Lemma 6.5. There exists a constant C6.5 > 0 such that the following
holds: Let k > 0, m,n > 1 be integers with k + 1 < m < n, and let τ ∈
(tn− tm, tn+1− tm]. Then the random variables Z∆tm under Pk( · |∆Zτ = 1)
and Z[m,m + 1] under Pk( · |∆Z[m,n] = 1) can be coupled such that the
resulting random variables Υ(1) and Υ(2) satisfy

P(Υ(1) 6= Υ(2)) 6 C6.5

(f(k)

m

)2
.

Proof. We couple Υ(1) and Υ(2) by plugging a uniform random variable
on (0, 1) in the generalised inverses of the respective distribution functions
and conclude that

P(Υ(1) 6= Υ(2)) = |P(Υ(1) = k)− P(Υ(2) = k)|+ P(Υ(1) > k + 2).

The second error term is of the required order since, by Lemma 2.5,

P(Υ(1) > k + 2) 6 Pk+1(Z1/m > k + 3) 6
(f(k + 2)

m

)2
.

It remains to analyse the first error term. We have

P(Υ(2) = k) = 1− f(k)∆tm
Pm+1,nf(k + 1)

Pm,nf(k)
,

and, representing (Z [τ ]

t : t > 0) by its compensator,

P(Υ(1) = k) = exp
{
−f(k)

∫ ∆tm

0

Pτ−uf(k + 1)

Pτ−uf(k)
du
}
.

We need to compare

Pm+1,nf(k + 1)

Pm,nf(k)
and

Puf(k + 1)

Puf(k)
for u ∈ [tn − tm+1, tn+1 − tm].

By Lemma 2.1 and Proposition 2.14, one has, for a ∈ {k, k + 1} and suffi-
ciently large m,

Puf(a) 6 Ptn+1−tmf(a) 6 eγ
+( 1

m
+ 1
n

)Ptn−tm+1f(a)

6 eγ
+( 1

m
+ 1
n

)
(
1 + C2.14

f(a)
m

)
Pm+1,nf(a)

6 eγ
+( 1

m
+ 1
n

)+C2.14
f(a)
m Pm+1,nf(a).

Conversely,

Puf(a) > Ptn−tm+1f(a) > e−γ
+ 1
mPtn−tmf(a)

> e−γ
+ 1
m
(
1− C2.14

f(a)
m

)
Pm,nf(a).
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We only need to consider large m and we may assume that C2.14
f(k+1)
m 6 1

2 ,
as otherwise we may choose C6.5 large to ensure that the right hand side in
the display of the lemma exceeds one. Then

Puf(a) > e−γ
+ 1
m
−2C2.14

f(a)
m Pm,nf(a),

since e−2y 6 1− y for y ∈ [0, 1/2]. Consequently,

e−γ
+(2 1

m
+ 1
n

)−3C2.14
f(k+1)
m

Pm+1,nf(k + 1)

Pm,nf(k)
6
Puf(k + 1)

Puf(k)

6 eγ
+(2 1

m
+ 1
n

)+3C2.14
f(k+1)
m

Pm+1,nf(k + 1)

Pm,nf(k)
.

Recall that, by Lemma 2.2,
Pm+1,nf(k+1)
Pm,nf(k) is uniformly bounded over all k so

that we arrive at

Pm+1,nf(k + 1)

Pm,nf(k)
− C f(k)

m
6
Puf(k + 1)

Puf(k)
6
Pm+1,nf(k + 1)

Pm,nf(k)
+ C

f(k)

m
,

for an appropriate constant C > 0. Therefore,

P(Υ(1) = k)− P(Υ(2) = k)

6 1 ∧ exp
{
−f(k)∆tm

(Pm+1,nf(k+1)
Pm,nf(k) − C f(k)

m

)}
−
(
1− f(k)∆tm

Pm+1,nf(k+1)
Pm,nf(k)

)
6 C

(f(k)
m

)2
+

1

2

(
f(k)∆tm

(Pm+1,nf(k+1)
Pm,nf(k) − C f(k)

m

))2
6 C6.5

(f(k)
m

)2
.

Similarly, one finds that

P(Υ(2) = k)− P(Υ(1) = k) 6 C6.5

(f(k)
m

)2
,

and putting everything together yields the assertion.

From Lemma 6.5 we get the following analogue of Lemma 6.2.

Lemma 6.6. Fix a level T ∈ N. For any v 6 0 and τ ≤ −v with πN (v) =
m ∈ {2, 3, . . . , N} and m < l := πN (v + τ) we can couple the processes
(Ztn−tN−v : n > m) conditioned on ∆Zτ = 1 and (Z[m,n] : n > m) condi-
tioned on ∆Z[m, l− 1] = 1 such that the coupled processes (Y (1)[n] : n > m)
and (Y (2)[n] : n > m) satisfy

P(Y (1)[n] 6= Y (2)[n] for some n 6 σ) 6 C6.6 (f(T )2 + 1)
1

m
,

where σ is the first time when one of the processes reaches or exceeds level T .
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Proof. We define the process Y = ((Y (1)[n],Y (2)[n]) : n > m) to be the
Markov process with starting distribution L(Ztm−tN−v|∆Zτ = 1) ⊗ δ0 and
transition kernels p(n) such that the first and second marginal are the condi-
tioned transition probabilities of (Ztn−tN−v : n > m) and (Z[m,n] : n > m)
as stated in the lemma. In the case where n < l−1, we demand that, for any
integer a ≥ 0, the law p(n)((a, a), · ) is the coupling of the laws of Z∆tn un-
der Pa( · |∆Zτ−(tn−tN−v) = 1) and Z[n, n+ 1] under Pa( · |∆Z[n, l− 1] = 1)
provided in Lemma 6.5. Conversely, we apply the unconditioned coupling of
Lemma 6.2 for n ≥ l. Letting % denote the first time when both evolutions
disagree, we get

P(% 6 σ) =
∞∑
n=m

P(σ > n, % = n)

6 P(% = m) +
∞∑
n=m

P
(
% = n+ 1

∣∣σ > n, % > n
)

and, by Lemma 6.2 and Lemma 6.5,

P
(
% = n+1|σ > n, % > n

)
6 C6.5

(f(T )

n

)2
for n ∈ {m,m+ 1, . . . }\{l − 1}.

Moreover, P(% = m) 6 P1(Ztm−tN−v > 0) = 1 − e−(tm−v)f(1) 6 f(1)
m−1 and

P(% = l|% ≥ l, σ ≥ l) ≤ PT (Z∆tl−1
> T ) ≤ f(T ) 1

m . Consequently,

P(% 6 σ) 6
f(1)

m− 1
+
f(T )

m
+ C6.5 f(T )2

∞∑
n=m

1

n2
6 C6.6 (f(T )2 + 1)

1

m
.

Proof of Proposition 6.1. We couple the labelled tree T(V ) and the
πN -projected INT, starting with a coupling of the position of the initial ver-
tex V and πN (−X), which fails with probability going to zero, by Lemma A.2.

Again we apply the concept of an exploration process. As before we cate-
gorise vertices as veiled, if they have not yet been discovered, active, if they
have been discovered, but if their descendants have not yet been explored,
and dead, if they have been discovered and all their descendants have been
explored. In one exploration step the leftmost active vertex is picked and
its descendants are explored in increasing order with respect to the location
parameter. We stop immediately once one of the events (A), (B) or (C)
happens. Note that in that case the exploration of the last vertex might not
be completed. Moreover, when coupling two explorations, we also stop in
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the adverse event (E) that the explored graphs disagree. In event (B), the
parameters (nN )N∈N are chosen such that

lim
N→∞

(
logN log logN

)α
nN

= 0 and lim
N→∞

log nN
logN

= 0,

for α := (1 − γ+)−1 ∨ 3. Noting that we never need to explore more than
cN vertices, we see from Lemma 6.2, Remark 6.4 and Lemma 6.6 that the
probability of a failure of this coupling is bounded by a constant multiple of

cN (1 + f(cN )2)
1

nN
+ cN

1

nN 1−γ+ 6
c3
N

nN
+

cN

nN 1−γ+ −→ 0.

Consequently, the coupling succeeds with high probability. As in Lemma 4.2
it is easy to see that, with high probability, event (B) implies that

#T(V ) > cN and #T > cN .

Hence we have

#T(V ) ∧ cN = #T ∧ cN with high probability,

and the statement follows by combining this with Proposition 5.1.

7. The variance of the number of vertices in large clusters. In
this section we provide the second moment estimate needed to show that
our key empirical quantity, the number of vertices in connected components
of a given size, concentrate asymptotically near their mean.

Proposition 7.1. Suppose that (cN )N∈N and (nN )N∈N are sequences

of integers satisfying 1 6 cN , nN 6 N such that c2
Nn

γ+−1
N is bounded from

above. Then, for a constant C7.1 > 0 depending on these sequences and on
f , we have

var
( 1

N

N∑
v=1

1l{#CN (v) > cN}
)

6 2P
(
#CN (V ) < cN and CN (V ) ∩ {1, . . . , nN} 6= ∅

)
+
cN
N

+ C7.1
c2
N

n1−γ+
N

,

where V is independent of GN and uniformly distributed on {1, . . . , N}.
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Proof. Let v, w be two distinct vertices of GN . We start by exploring
the neighbourhood of v similarly as in Section 5. As before we classify the
vertices as veiled, active and dead, and in the beginning only v is active
and the remaining vertices are veiled. In one exploration step we pick the
leftmost active vertex and consecutively (from the left to the right) explore
its immediate neighbours in the set of veiled vertices only. Newly found
vertices are activated and the vertex to be explored is set to dead after the
exploration. We immediately stop the exploration once one of the events

(A) the number of unveiled vertices in the cluster reaches cN ,
(B) one vertex in {1, . . . , nN} is activated, or
(C) there are no more active vertices left,

happens. Note that when we stop due to (A) or (B) the exploration of the
last vertex might not be finished. In that case we call this vertex semi-active.

We proceed with a second exploration process, namely the exploration
of the cluster of w. This exploration follows the same rules as the first
exploration process, treating vertices that remained active or semi-active
at the end of the first exploration as veiled. In addition to the stopping in
the cases (A), (B), (C) we also stop the exploration once a vertex is unveiled
which was also unveiled in the first exploration, calling this event (D). We
consider the following events:

Ev : the first exploration started with vertex v ends in (A) or (B);
Ev,w1 : w is unveiled during the first exploration (that of v);
Ev,w2 : w remains veiled in the first exploration and the second exploration

ends in (A) or (B) but not in (D);
Ev,w3 : w remains veiled in the first exploration and the second exploration

ends in (D).

We have

N∑
v=1

N∑
w=1

P(#CN (v) > cN ,#CN (w) > cN ) 6
N∑
v=1

N∑
w=1

3∑
k=1

P(Ev ∩ Ev,wk )

=
N∑
v=1

P(Ev)
3∑

k=1

N∑
w=1

P(Ev,wk | Ev).

(33)

As the first exploration immediately stops once one has unveiled cN vertices,
we conclude that, for fixed v,

N∑
w=1

P(Ev,w1 | Ev) = E
[ N∑
w=1

1lEv,w1

∣∣∣Ev] 6 cN .(34)
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To analyse the remaining terms, we fix distinct vertices v and w and note
that the configuration after the first exploration can be formally described
by an element k of

{open, closed, unexplored}EN ,

where EN := {(a, b) ∈ {1, . . . , N}2 : i < j} denotes the set of possible
edges. We pick a feasible configuration k and denote by Ek the event that
the first exploration ended in this configuration. On the event Ek the status
of each vertex (veiled, active, semi-active or dead) at the end of the first
exploration is determined. Suppose k is such that w remained veiled in the
first exploration, which means that Ek and Ev,w1 are disjoint events. Next,
we note that

P(Ev,w2 | Ek) 6 P(Ew).(35)

Indeed, if in the exploration of w we encounter an edge which is open in the
configuration k, we have unveiled a vertex which was also unveiled in the
exploration of v, the second exploration ends in (D) and hence Ev,w2 does
not happen. Otherwise, the event Ek influences the exploration of w only
in the sense that in the degree evolution of some vertices some edges may
be conditioned to be closed. By Lemma 2.9 this conditional probability is
bounded by the unconditional probability and hence we obtain (35).

Finally, we analyse the probability P(Ev,w3 | Ek). If the second exploration
process ends in state (D) we have discovered an edge connecting the ex-
ploration started in w to an active or semi-active vertex a from the first
exploration. Recall that in each exploration we explore the immediate neigh-
bourhoods of at most cN vertices. Let K ∈ EN be a feasible configuration at
the beginning of the neighbourhood exploration of a vertex n > nN and note
that this implies every edge which is open (resp. closed) in k is also open
(resp. closed) in K. Recall that EK denotes the event that this configuration
is seen in the combined exploration processes. We denote by a and s the set
of active and semi-active vertices of the first exploration induced by k (or,
equivalently, by K). Moreover, we denote by d the set of dead vertices of
the combined exploration excluding the father of n, and, for a ∈ a ∪ s, we
let da denote the set of dead vertices of the ongoing exploration excluding
the father of n, plus the vertices that were marked as dead in the first ex-
ploration at the time the vertex a was discovered. We need to distinguish
several cases.

First, consider the case a ∈ a with a < n. By definition of the combined
exploration process, we know that a has no jumps in its indegree evolution
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at times associated to the vertices da. If a was explored from the right, say
with father in b, we thus get

(36)
P
(
∃ edge between a and n

∣∣ EK) = P
(
∆Z[a, n− 1] = 1∣∣∆Z[a, b− 1] = 1 and ∆Z[a, d− 1] = 0∀d ∈ da

)
.

If a was explored from the left, then

P
(
∃ edge between a and n| EK

)
= P

(
∆Z[a, n− 1] = 1

∣∣∆Z[a, d− 1] = 0 ∀d ∈ da
)
.

(37)

Second, consider the case a ∈ a with n < a. By definition of the combined
exploration process, the indegree evolution of n has no jumps that can be
associated to edges connecting to d. Hence, if n was explored from the right,
say with father in b, then

(38)
P
(
∃ edge between a and n

∣∣ EK) = P
(
∆Z[n, a− 1] = 1∣∣∆Z[n, b− 1] = 1 and ∆Z[n, d− 1] = 0∀d ∈ d

)
,

and, if n was explored from the left, then

P
(
∃ edge between a and n

∣∣ EK)
= P

(
∆Z[n, a− 1] = 1

∣∣∆Z[n, d− 1] = 0 ∀d ∈ d
)
.

(39)

Third, consider a ∈ s and denote by a′ the last vertex which was unveiled
in the first exploration. If a′ > n then the existence of an edge between a
and n was already explored in the first exploration and no edge was found.
If a′ < n < a, we find estimates (38), (39) again. If a < n and the father b
of a satisfies b > a′ ∨ a,

(40)
P
(
∃ edge between a and n

∣∣ EK) 6 sup
0≤k≤cN−1

Pk
(
∆Z[a ∨ a′, n− 1] = 1 |

∆Z[a ∨ a′, b− 1] = 1 and ∆Z[a ∨ a′, d− 1] = 0∀d ∈ da
)
,

and if a = v or the father b of a ∨ a′ satisfies b < a ∨ a′,

(41)
P
(
∃ edge between a and n

∣∣ EK)
6 sup

0≤k≤cN
Pk
(
∆Z[a ∨ a′, n− 1] = 1

∣∣∆Z[a ∨ a′, d− 1] = 0∀d ∈ da
)
.

Using first Lemma 2.12, then Lemma 2.10 and Lemma 2.11 we see that
the terms (36)–(39) are bounded by

C2.12 P1
(
∆Z[a, n− 1] = 1

)
6 C2.12

P1,nN f(1)

nN
,
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and similarly, the terms (40)–(41) are bounded by

C2.12 PcN
(
∆Z[a, n− 1] = 1

)
6 C2.12

P1,nN f(cN )

nN
.

Note that there are at most cN vertices a ∈ a∪s and at most one of those
is semi-active. For each of these a we have to test the existence of edges no
more than cN times. Hence, using also Lemma 2.7 and the boundedness of
f(n)/n, we find C7.1 > 0 such that

P
(
Ev,w3

∣∣Ev) 6 C2.12 c
2
N

P1,nN f(1)

nN
+ C2.12 cN

P1,nN f(cN )

nN
6 C7.1

c2
N

n1−γ+
N

.

Summarising our steps, we have

var
( 1

N

N∑
v=1

1l{#CN (v) > cN}
)

6 E
[ 1

N2

N∑
v=1

N∑
w=1

1l{#CN (v) > cN ,#CN (w) > cN}
]

− 1

N2

N∑
v=1

N∑
w=1

P(Ev)P(Ew)

+ 2
1

N

N∑
v=1

P
(
#CN (v) < cN and CN (v) ∩ {1, . . . , nN} 6= ∅

)
6 2P

(
#CN (V ) < cN and CN (V ) ∩ {1, . . . , nN} 6= ∅

)
+
cN
N

+ C7.1
c2
N

n1−γ+
N

,

as required to complete the proof.

8. Proof of Theorem 1.8. We start by proving the lower bound for
C(1)N . Suppose therefore that p(f) > 0, fix δ > 0 arbitrarily small and use
Lemma 3.4 to choose ε > 0 such that the survival probability of f̄ = f −ε is
larger than p(f)−δ. We denote by (ḠN )N∈N a sequence of random networks
with attachment rule f̄ and let C̄N (v) the connected component of v in ḠN .
Suppose a vertex V is chosen uniformly at random from {1, . . . , N}. We
choose cN :=

⌊
logN

√
log logN

⌋
and observe that by Proposition 6.1

E
[ 1

N

N∑
v=1

1l{#C̄N (v) > cN}
]

= P{#C̄N (V ) > cN}

−→ P{#T =∞} > p(f)− δ,

(42)
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as N tends to infinity. By Proposition 7.1 with nN :=
⌊
(logN)

4
1−γ+

⌋
, we

have

var
( 1

N

N∑
v=1

1l{#C̄N (v) > cN}
)

6 2P
(
#C̄N (V ) < cN and C̄N (V ) ∩ {1, . . . , nN} 6= ∅

)
+
cN
N

+ C7.1
c2
N

n1−γ+
N

.

The first summand goes to zero by Lemma 4.2 and so do the remaining
terms by the choice of our parameters. Hence

lim inf
N→∞

1

N

N∑
v=1

1l{#C̄N (v) > cN} > p(f)− δ in probability,

and Proposition 4.1 implies that, with high probability, there exists a con-
nected component comprising at least a proportion p(f) of all vertices, prov-
ing the lower bound.

To see the upper bound we work with the original attachment function f .
In analogy to (42) we obtain

lim
N→∞

E
[ 1

N

N∑
v=1

1l{#CN (v) > cN}
]

= p(f).

As in the lower bound, the variance goes to zero, and hence we have

lim
N→∞

1

N

N∑
v=1

1l{#CN (v) > cN} = p(f), in probability.

From this we infer that, in probability,

lim sup
N→∞

#C(1)N
N

6 lim sup
N→∞

cN
N
∨
( 1

N

N∑
v=1

1l{#CN (v) > cN}
)
6 p(f),

proving the upper bound.
Finally, to prove the result on the size of the second largest connected

component, note that we have seen in particular that

lim
N→∞

1

N

N∑
v=1

1l{#CN (v) > cN} = p(f), in probability,

so that, with high probability, the proportion of vertices in clusters of size
greater or equal cN is asymptotically equal to the proportion of vertices in
the giant component. This implies that the proportion of vertices, which are
not in the giant component but in components of size at least cN goes to
zero in probability, which is a stronger result than the stated claim.
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9. Proof of Theorem 1.9. We fix k ∈ N and choose cN := k + 1. By
Proposition 6.1, we have

lim
N→∞

1

N
E
[ N∑
v=1

1l{#CN (v) 6 k}
]

= lim
N→∞

P(#CN (V ) 6 k) = P(#T 6 k)

and Proposition 7.1 yields

var
( 1

N
1l{#CN (v) 6 k}

)
= var

( 1

N
1l{#CN (v) > cN}

)
→ 0.

This implies the statement, as k is arbitrary.

10. Proof of Theorem 1.6. The equivalence of the divergence of the
sequence in Theorem 1.6 and the criterion I = ∅ stated in (i) of Remark 1.7
follows from the bounds on the spectral radius of the operators Aα given in
the proof of Proposition 1.10. Moreover, it is easy to see from the arguments
of Section 3 that the survival of the INT under percolation with retention
parameter p is equivalent to the existence of 0 < α < 1 such that

ρ(pAα) = pρ(Aα) 6 1.

Hence, to complete the proof of Theorem 1.6 and Remark 1.7, it suffices
to show that, for a fixed retention parameter 0 < p < 1, the existence of
a giant component for the percolated network is equivalent to the survival
of the INT under percolation with retention parameter p. We now give a
sketch of this by showing how the corresponding arguments in the proof of
Theorem 1.8 have to be modified.

As in the proof of Theorem 1.8 the main part of the argument consists
of couplings of the exploration process of the neighbourhood of a vertex
in the network to increasingly simple objects. To begin with we have to
couple the exploration of vertices in the percolated network and the per-
colated labelled tree, using arguments as in Section 5. We only modify the
exploration processes a little: Whenever we find a new vertex, instead of
automatically declaring it active, we declare it active with probability p and
passive otherwise. We do this independently for each newly found vertex. We
still explore at every step the leftmost active vertex, but we change the stop-
ping criterion (E1): we now stop the process when we rediscover an active or
passive vertex. We also stop the process when we have discovered more than
21−p

p cN passive vertices, calling this event (E3). All other stopping criteria
are retained literally.

By a simple application of the strong law of large numbers we see that
the probability of stopping in the event (E3) converges to zero. The proof of
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Lemma 5.2 carries over to our case, as it only uses that the number of dead,
active and passive vertices is bounded by a constant multiple of cN . Hence
the coupling of explorations is successful with high probability.

Similarly, the coupling of the exploration processes for the random la-
belled tree and the idealised neighbourhood tree constructed in Section 6
can be performed so that under the assumption on the parameters given in
Proposition 6.1, we have

#C∗N (V ) ∧ cN = #T∗ ∧ cN with high probability,

where C∗N (v) denotes the connected component in the percolated network,
which contains the vertex v, and T∗ is the percolated INT.

In order to analyse the variance of the number of vertices in large clusters
of the percolated network we modify the exploration processes described
in the proof of Proposition 7.1 a little: In the first exploration we activate
newly unveiled vertices with probability p and declare them passive other-
wise. We always explore the neighbourhood of the leftmost active vertex
and investigate its links to the set of veiled or passive vertices from left to
right, possibly activating a passive vertex when it is revisited. We stop the
exploration in the events (A), (B), and (C) as before, and additionally if
the number of passive vertices exceeds 21−p

p cN , calling this event (A’). As
before, the probability of stopping in (A’) goes to zero by the strong law of
large numbers.

The exploration of the second cluster follows the same rules as that of the
first, treating vertices that were left active, semi-active or passive in the first
exploration as veiled. In addition to the stopping events (A), (A’), (B) and
(C) we also stop in the event (D) when a vertex is unveiled which was also
unveiled in the first exploration. This vertex may have been active, semi-
active or passive at the end of the first exploration. We then introduce the
event Ev that the first exploration ends in events (A), (A’) or (B), events
Ev,w1 and Ev,w3 as before, and event Ev,w2 that w remained veiled in the first
exploration and the second exploration ends in (A), (A’) or (B). We can
write

N∑
v=1

N∑
w=1

P(#C′N (v) > cN ,#C′N (w) > cN ) 6
N∑
v=1

P(Ev)

3∑
k=1

N∑
w=1

P(Ev,wk | Ev),

where C′N (v) denotes the connected component of v in the percolated net-
work. The summand corresponding to k = 1 can be estimated as before. For
the other summands we describe the configuration after the first exploration
as an element k of

{open, closed, removed, unexplored}EN ,
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where edges corresponding to the creation of passive vertices are considered
as ‘removed’. We again obtain that P(Ev,w2 | Ek) 6 P(Ew) using the fact
that if in the second exploration we ever encounter an edge which is open
or removed in the configuration k the second exploration ends in (D) and
Ev,w2 does not occur. Finally, the estimate of P(Ev,w3 | Ek) carries over to our
situation as it relies only on the fact that the number of unveiled vertices
in the first exploration is bounded by a constant multiple of cN . We thus
obtain a result analogous to Proposition 7.1.

Using straightforward analogues of the results in Section 4 we can now
show that the existence of a giant component for the percolated network
is equivalent to the survival of the INT under percolation with retention
parameter p using the argument of Section 8. This completes the proof of
Theorem 1.6.

APPENDIX

In this appendix we provide two auxiliary coupling lemmas.

Lemma A.1. Let λ > 0 and p ∈ [0, 1], X(1) Poisson distributed with
parameter λ, and X(2) Bernoulli distributed with parameter p. Then there
exists a coupling of these two random variables such that

P(X(1) 6= X(2)) 6 λ2 + |λ− p|.

Proof. We only need to consider the case where λ ∈ [0, 1]. Then X(1)

can be coupled to a Bernoulli distributed random variable X with parameter
λ, such that P(X(1) 6= X) = λ − λe−λ 6 λ2. Moreover, X and X(2) can be
coupled such that P(X 6= X(2)) = |p− λ|. The two facts together imply the
statement.

Lemma A.2. Let Y be standard exponentially distributed and X uni-
formly distributed on {1, . . . , N}. Then X and Y can be coupled in such a
way that

P
(
X 6= πN (−Y )

)
6 CA.2

logN

N
,

for the function πN defined at the beginning of Section 6.

Proof. For 2 6 k 6 N we have

P(πN (−Y ) = k) = P
(N−1∑

j=k

1

j
6 Y <

N−1∑
j=k−1

1

j

)

= exp
{
−
N−1∑
j=k

1

j

}
− exp

{
−

N−1∑
j=k−1

1

j

}
.
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Since
∑N−1

j=k−1
1
j > log N

k−1 and ex 6 1 + x+ x2 for x ∈ [1, 2], we get

P(πN (−Y ) = k) = exp
{
−

N−1∑
j=k−1

1

j

}(
e

1
k−1 − 1

)
6
k − 1

N

( 1

k − 1
+

1

(k − 1)2

)
6

1

N
+

2

Nk
.

Similarly, one obtains that P(πN (−Y ) = k) > 1
N −

2
Nk . Hence we can couple

the random variables so that, for a suitable constant CA.2 > 0,

P
(
X 6= πN (−Y )

)
6

N∑
k=2

∣∣P(πN (−Y ) = k)− 1
N

∣∣ 6 CA.2
logN

N
.

Acknowledgements: We would like to thank Christian Mönch and two
referees for heplful comments on the first version of this paper.

References.

[BA99] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[BBCS09] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. A weak local limit for
preferential attachment graphs. Preprint, 2009.

[BJR05] B. Bollobás, S. Janson, and O. Riordan. The phase transition in the uniformly
grown random graph has infinite order. Random Structures Algorithms, 26:1–
36, 2005.

[BJR07] B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomogeneous
random graphs. Random Structures Algorithms, 31:3–122, 2007.

[BR03] B. Bollobás and O. Riordan. Robustness and vulnerability of scale-free random
graphs. Internet Math., 1:1–35, 2003.

[BRST01] B. Bollobás, O. Riordan, J. Spencer and G. Tusnády. The degree sequence of a
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