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Abstract: We show that an infinite Galton-Watson tree, conditioned on its mar-
tingale limit being smaller than ε, converges as ε ↓ 0 in law to the regular µ-ary
tree, where µ is the essential minimum of the offspring distribution. This gives an
example of entropic repulsion where the limit has no entropy.

1. Introduction and statement of the result

The problem of conditioning principles can be formulated in the following way: Given that
some quantity averaged over a large number of individual random variables shows highly
unlikely behaviour, describe the conditional law of an individual sample. This situation
arises frequently in statistical mechanics, where the random variables describe individual
features of particles (for example their velocity) and the ensemble of particles is subject to
some constraint (for example a fixed energy per particle). The distribution of the individual
feature given the constraint is then referred to as the micro-canonical distribution of the
system. The most famous result in this respect is the Gibbs conditioning principle, which
loosely speaking says that under the condition that the empirical measure

Ln =
1
n

n∑
i=1

δXi

of a family of independent random variables X1, , . . . , Xn with law P belongs to some set A,
the law of X1 converges to the probability measure Q that minimizes the relative entropy
H(Q |P ) subject to the constraint Q ∈ A. There exist several refinements of this result
describing rigorously the precise asymptotic strategy by which the random variables realize
the large deviation event {Ln ∈ A}. See the book of Dembo and Zeitouni [10] for more on
the classical Gibbs conditioning principle, [9, 11, 17] for refinements, and [12, 14, 15] for
further examples of conditioning principles.

The conditioning principle of the present paper deals with Galton–Watson trees with a
nondegenerate offspring variable N satisfying P (N = 0) = 0 and EN logN < ∞. Let
a := EN be the mean offspring number. We denote by (Zn : n = 0, 1, . . .) the sequence
of generation sizes of the Galton Watson tree and note that by definition Z0 = 1. By the
Kesten-Stigum theorem the martingale limit

W := lim
n→∞

Zn
an

is well-defined and strictly positive almost surely. Note that W can be seen as a random
constant factor in front of a deterministic exponential growth term an, which together de-
termine the asymptotics of the generation size Zn. We are interested in the limit behaviour
of Z1, or more generally of the entire tree, when we condition on the large deviation event
that the martingale limit W is smaller than some ε ↓ 0.
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For the formulation of the result we denote by T the space of all rooted trees with the
property that every vertex has finite degree. A metric d on this space is uniquely determined
by the requirement that d(T1, T2) = e−n, when n is maximal with the property that the
trees T1 and T2 coincide up to the nth generation. This makes (T , d) a complete, separable
metric space.

Theorem 1. Suppose N is a random variable on the positive integers satisfying the condition
EN logN <∞, and denote

µ := min
{
n ∈ N : P(N = n) > 0

}
≥ 1.

Suppose that T is a Galton–Watson tree with offspring variable N and that W is the as-
sociated martingale limit. Then, as ε ↓ 0, conditionally on the event {W < ε} the tree T
converges in law on (T , d) to the regular µ-ary tree. Equivalently, for all k ∈ N,

lim
ε↓0

P
(
Zk = µk

∣∣W < ε
)

= 1,

where Zk denotes the size of the kth generation.

From the point of view of large deviations theory this result is quite surprising, at least at a
first glance. One would expect that the limiting behaviour represents the optimal strategy
by which the event W = 0 is realized and that this strategy depends on the details of the
law of N . Moreover, there seems to be no good reason why in the limit the growth rate of
the tree should drop dramatically, or in fact why it should drop at all, as we only require
the constant to be small. Above all, the probability of seeing a µ-ary tree up to the nth
generation may be arbitrarily small and can certainly be much smaller than those of other
trees with Zn ≤ εan.

This becomes even more intriguing if the result is put in the context of entropic repulsion.
This is an expression used by physicists to convey the idea that entropy maximisation may
force certain systems to obey properties that are not obviously imposed on them a priori.
This phenomenon has been studied mathematically in the context of the two-dimensional
harmonic crystal with hard wall repulsion by Bolthausen et al [7], where the following result
was proved. Consider the discrete Gaussian free field (ϕx)x∈Dn on a planar domain with
mesh size 1/n. If the field is conditioned to be nonnegative everywhere, then the typical
value of the field ϕx at any point x in the interior of the domain will be highly concentrated
near the value (4/π) log n with overwhelming probability as n→∞, and in particular under
this conditioning the value of ϕx diverges to infinity. An analogous phenomenon is studied by
Benjamini and Berestycki [2] and [3], where it is shown that conditioning a one-dimensional
Brownian motion on some self-repelling behaviour may force the process to satisfy a strongly
amplified version of the constraint. Usually, the reason entropic repulsion may arise is in
order to increase the entropy of the system, i.e., make room for fluctuations. Thus the
eventual state of the system is a compromise between the energy cost of adopting an unusual
behaviour and the entropic benefits. Theorem 1 may also be cast in this framework, as
it shows that the effect of requiring the constant W to be small is to change the overall
exponential growth rate from a to µ. However, if the limiting state of the system is the
regular µ-ary tree, which is non-random, what could the entropic benefits possibly be?
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The resolution of this apparent paradox comes from understanding the inhomogeneity of the
optimal strategy, and can be explained by a closer look at the formula

Zn ∼W an.

While the growth rate log a is purely asymptotic, i.e. depends only on the offspring numbers
after any given generation, the growth constant W depends heavily on the initial generations
of the tree. It turns out that, roughly speaking, the collection of trees which form the
optimal strategy to achieve W < ε have minimal offspring for a few generations, the exact
number depending on ε, and causes high entropic and energetic cost but only for a small
number of generations, and then switch to growth with the natural rate log a. The initial
behaviour ensures that W is small at a mimimal probabilistic cost, because for all but a finite
number of generations the trees can have their natural growth. The topology on T compares
trees starting from their root so that in the limit we only see the behaviour in the initial
generations. This leads to a limiting object with minimal growth rate at all generations and
creates the illusion of a drop in the growth rate for the optimal strategy. A somewhat similar
phenomenon is observed by Bansaye and Berestycki [1] in the context of branching processes
in random environment, although they consider situations where the growth rate is directly
conditioned to be atypical.
Our interest in this ‘paradox’ does not come from the study of trees alone. Indeed, Mörters
and Ortgiese [16] describe a range of problems, mostly related to local times of Brownian
motion, which have a similar intrinsic structure and could therefore also satisfy loosely
analogous conditioning principles. However, we shall defer the discussion of such problems
to a different place as, unlike in these problems, the main mathematical difficulty here is
related to the discrete nature of the distribution N .

2. Proof of Theorem 1

Denote pk := P (N = k) and recall that by our definitions p0 = · · · = pµ−1 = 0, pµ > 0. The
basic idea of the proof is is to combine tail asymptotics at zero for the random variable W
with the self-similarity property of Galton–Watson trees, which states that, for every n ∈ N,

W =
1
an

Zn∑
i=1

Wi, (1)

where Wi, i = 1, 2, . . . are independent variables with the same law as W , independent of Zn.
This follows easily from the decomposition of the tree according to the ancestry in the nth
generation.
We first give the proof in the case µ = 1, which is very simple as in this case the µ-ary tree
is degenerated and has no exponential growth. In this case the tail at zero of the random
variable W is fat, more precisely there exist constants 0 < c < C such that

c ετ ≤ P
(
W < ε

)
≤ C ετ for all 0 < ε < 1,

where τ := − log p1/ log a, see [16, Theorem 1(a)] for a simple proof. Using (1) we infer

P
(
Zn > 1,W < ε

)
≤ P

(
W1 +W2 < anε

)
≤ P

(
W < anε

)2
≤ C2 (anε)2τ ≤ P

(
W < ε

) (
C2

c a
2nτ
)
ετ ,

and hence
P
(
Zn > 1 |W < ε

)
≤
(
C2

c a
2nτ
)
ετ

ε↓0−→ 0,

as required to complete the proof in the case µ = 1.
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Now we consider the case µ > 1 and assume that pµ 6= 1 to avoid trivialities. We define the
Böttcher constant β ∈ (0, 1) by

aβ = µ.

A function V : (0,∞)→ (0,∞) is called multiplicatively periodic with period λ 6= 1 if V (λx) =
V (x) for all x > 0. Biggins and Bingham [4, Theorem 3] show that there exists a real-analytic
multiplicatively periodic function M : (0,∞)→ (0,∞) with period a1−β = a/µ > 1 such that

− log P
(
W < x

)
= M(x)x−

β
1−β + o

(
x
− β

1−β
)

as x ↓ 0, (2)

see also Fleischmann and Wachtel [13] for refinements of this statement. A key argument in
the proof of (2) is to relate the left tail of a positive random variable to the behaviour of its
Laplace transform at infinity in a way reminiscent of the Tauberian theorem of de Bruijn,
see [6, Theorem 4.12.9]. In the next lemma we generalise this result to the case of several
independent copies of W using the same basic method of proof as in [4].

Lemma 2. Let X be a positive random variable such that, for some a > 1 and β ∈ (0, 1),
for all s > 0,

lim
n→∞

log E exp{−sanX}
anβ

=: k(s)

with some real-analytic function k on (0,∞). Then there exists a real-analytic multiplica-
tively periodic function V : (0,∞) → (0,∞) with period a1−β such that, for any m ∈ N and
X1, . . . , Xm independent with the same distribution as X, we have

− log P
(
X1 + · · ·+Xm < x

)
= mV (x/m)(x/m)−

β
1−β + o

(
x
− β

1−β
)

as x ↓ 0.

Proof. Let Yn be real-valued random variables and denote, for s > 0,

kn(s) := log E exp{sYn} ∈ (−∞,∞].

Assume that for some sequence of positive numbers bn ↑ ∞, we have

lim
n→∞

kn(s)
bn

=: k̂(s) ∈ (−∞,∞].

The Fenchel dual of k̂ is given by k̂∗(x) := sups>0{xs − k̂(s)} ∈ (−∞,∞]. By a variant of
the Gärtner–Ellis theorem, see [4, Corollary 1], we have

lim
n→∞

− log P(Yn ≥ bny)
bn

= k̂∗(y) for all y ∈ (lim
s↓0

k̂′(s), lim
s↑∞

k̂′(s)).

We apply this first to the sequence Yn := −anX and observe that k̂ = k in this case. Note
that k satisfies, by definition, k(s) = v(s)sβ for a multiplicatively periodic function v with
period a. Using that k is strictly convex and decreasing we get lims↓0 k

′(s) =: −δ < 0, and

0 ≥ lim
s↑∞

k′(s) = lim
n→∞

k′(an+1) ≥ lim
n→∞

k(an+1)− k(an)
an+1 − an

= lim
n→∞

an(β−1) v(1)
aβ − 1
a− 1

= 0.

Therefore,

lim
n→∞

− log P(−anX ≥ anβy)
anβ

= k∗(y) for all y ∈ (−δ, 0),

Setting x = −y and rearranging,

lim
n→∞

− log P(X ≤ a−n(1−β)x)
anβx−β/(1−β)

= k∗(−x)x
β

1−β =: V (x), for x ∈ (0, δ),

where V is real-analytic and multiplicatively periodic with period a1−β.
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Now, consider Ỹn = −an(X1 + · · ·+Xm). We have

lim
n→∞

log E exp{−san(X1 + · · ·+Xm)}
anβ

= m lim
n→∞

log E exp{−sanX}
anβ

= mk(s),

and hence

lim
n→∞

− log P(−an(X1 + · · ·+Xm) ≥ anβy)
anβ

= sup
s>0

{
ys−mk(s)

}
= mk∗(y/m)

for all y ∈ (−mδ, 0). Setting x = −y and rearranging we obtain, for all x ∈ (0,mδ),

lim
n→∞

− log P(X1 + · · ·+Xm ≤ a−n(1−β)x)
anβx−β/(1−β)

= mk∗(−x/m)x
β

1−β = V (x/m)m
1

1−β .

Denote by Hn(x) the fraction on the left hand side, and by H(x) the right hand side of the
display above. Further, denote

Ĥn(x) := Hn(x)x−
β

1−β and Ĥ(x) := H(x)x−
β

1−β .

Let I = [a−2(1−β)mδ, a−(1−β)mδ]. Then Ĥn converges to Ĥ pointwise on I, Ĥ is continuous
on I, and each Ĥn is decreasing. Hence Ĥn converges to Ĥ uniformly on I, see e.g. [8], and
therefore Hn converges uniformly to H on I. By the periodicity of V we have

sup
x∈a−n(1−β)I

∣∣x β
1−β log P

(
X1 + · · ·+Xm < x

)
+ V (x/m)m

1
1−β
∣∣ = sup

x∈I

∣∣Hn(x)−H(x)
∣∣,

and hence

sup
x≤a−N(1−β)mδ

∣∣x β
1−β logP

(
X1 + · · ·+Xm < x

)
+ V (x/m)m

1
1−β
∣∣

= sup
n>N

sup
x∈I

∣∣Hn(x)−H(x)
∣∣,

which converges, as N →∞, to zero as required. �

The next lemma states a basic property of real analytic, multiplicatively periodic functions.

Lemma 3. Let V : (0,∞)→ (0,∞) be a real-analytic, multiplicatively periodic function and
let γ > 0. Suppose that B be a dense subset of [1,∞) such that

lim inf
ε→0

(
V (ε/b) bγ − V (ε)

)
≥ 0 for all b ∈ B.

Then, for any b0 > 1,

inf
ε>0
b≥b0

(
V (ε/b) bγ − V (ε)

)
> 0.

Proof. Define a real-analytic function f : R→ R by f(y) = log V (e−y). Then

V (ε/b)bγ − V (ε) = exp{f(− log ε+ log b)}bγ − exp{f(− log ε)},

and, substituting x = − log ε and δ = log b, we obtain that it suffices to show that

lim inf
x→∞

(
ef(x+δ)+γδ − ef(x)

)
≥ 0 for all δ ∈ D := {log b : b ∈ B} (3)

=⇒ inf
x∈R
δ≥δ0

(
ef(x+δ)+γδ − ef(x)

)
> 0 for any δ0 > 0. (4)

By periodicity of f , the statement of (3) is equivalent to f(x+ δ) + γδ ≥ f(x) for all x ∈ R
and δ ∈ D. As B is dense in [1,∞), D is dense in [0,∞) and, using the continuity of f ,

f(x+ δ) + γδ ≥ f(x) for all x ∈ R and δ ≥ 0. (5)
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Suppose that (4) is not true and the infimum is equal to zero. Since f is periodic and

lim
δ↑∞

inf
x∈R

{
ef(x+δ)+γδ − ef(x)

}
=∞,

the infimum in (4) is attained at some point (x̂, δ̂). As this infimum is zero, we infer that

f(x̂+ δ̂) + γδ̂ = f(x̂). (6)

Let η ∈ [0, δ̂]. Using (5) for the points x̂, η and x̂+ η, δ̂ − η, we obtain f(x̂+ η) + γη ≥ f(x̂)
and f(x̂ + δ̂) + γ(δ̂ − η) ≥ f(x̂ + η). The second inequality together with (6) implies
f(x̂) ≥ f(x̂ + η) + γη, which together with the first inequality gives f(x̂ + η) = f(x̂) − γη
for all η ∈ [0, δ̂]. Hence f is linear and non-zero on [x̂, x̂ + δ̂]. As it is real-analytic it must
be linear on R, contradicting the periodicity of f . �

We now return to the study of the martingale limit W . A result from [5] states that

lim
n→∞

log E exp{−sanW}
anβ

= k(s)

for some real-analytic function k on (0,∞). Using Lemma 2 we infer from this that, for some
real-analytic and multiplicatively periodic M : (0,∞) → (0,∞) with period a1−β we have,
for any m ∈ N,

− log P
(
W1 + · · ·+Wm < ε

)
= mM(ε/m)(ε/m)−

β
1−β + o

(
ε
− β

1−β
)

as ε ↓ 0. (7)

Using first (1), then (7), and finally aβ = µ and periodicity of M , we get

log P(W < ε |Zn = m) = log P
( m∑
i=1

Wi < εan
)

= −M
(
εan/m

)
m

1
1−β a

− βn
1−β ε

− β
1−β + o

(
ε
− β

1−β
)

= −M
(
εµn/m

)
(m/µn)

1
1−β ε

− β
1−β + o

(
ε
− β

1−β
)
.

Combining with (7) again we obtain

log P(W < ε)− log P(W < ε |Zn = m)

=
(
M(εµn/m)(m/µn)

1
1−β −M(ε)

)
ε
− β

1−β + o(ε−
β

1−β ).
(8)

Lemma 3 enables us to analyse the bracketed term.

Lemma 4. For any b0 > 1, we have

inf
ε>0
b≥b0

(
M(ε/b)b

1
1−β −M(ε)

)
> 0.

Proof. Since M is real-analytic and multiplicatively periodic, it suffices to check that it
satisfies the assumptions of Lemma 3 with γ = 1/(1− β). For fixed n ∈ N we define

Bn :=
{
m/µn : P(Zn = m) 6= 0

}
and B = ∪n∈NBn. We now show that B is dense in [1,∞). Indeed, as pµ 6= 1 there exists
ν > µ with pν 6= 0. Denote d = ν − µ. We can prove by induction that

An :=
{
m/µn : µn ≤ m ≤ νn,m ≡ µn(mod d)

}
⊂ Bn.

This is obvious for n = 1. Assuming that P(Zn−1 = r) 6= 0 for all r such that µn−1 ≤
r ≤ νn−1, r ≡ µn−1(mod d) we obtain that P(Zn = m) 6= 0 for all m such that there is r
satisfying the conditions above and such that µr ≤ m ≤ νr, m ≡ µn(mod d). It is easy to
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see that this is equivalent to the condition µn ≤ m ≤ νn,m ≡ µn(mod d). Hence An ⊂ Bn
and since ∪n∈NAn is dense in [1,∞) we obtain that ∪n∈NBn is dense in [1,∞).

Let b ∈ B, that is, b = m/µn for some m and n. We have

P(Zn = m |W < ε) P(W < ε) = P(W < ε,Zn = m) = P(W < ε |Zn = m) P(Zn = m)

and so

lim inf
ε↓0

P(W < ε)
P(W < ε |Zn = m)

= lim inf
ε↓0

P(Zn = m)
P(Zn = m |W < ε)

≥ P(Zn = m) > 0.

Hence

lim inf
ε↓0

{
log P(W < ε)− log P(W < ε |Zn = m)

}
> −∞. (9)

Combining (8) with (9) we obtain

lim inf
ε↓0

(
M(ε/b)b

1
1−β −M(ε)

)
= lim inf

ε↓0

(
M(εµn/m)(m/µn)

1
1−β −M(ε)

)
≥ 0,

as required. �

We now complete the proof of Theorem 1. Fix n ∈ N and use Lemma 4 to find c > 0
(depending on n) such that M(ε/b)b

1
1−β −M(ε) ≥ 2c for all ε > 0 and b ≥ 1 + µ−n. For all

m ≥ µn + 1 we have m/µn ≥ 1 + µ−n and hence (8) implies

log P(W < ε)− log P(W < ε |Zn = m) ≥ cε−
β

1−β .

Therefore

P (Zn > µn |W < ε) =
∞∑

m=µn+1

P(W < ε |Zn = m)
P(W < ε)

P(Zn = m)

≤
∞∑

m=µn+1

exp
{
−cε−

β
1−β
}

P(Zn = m) ≤ exp
{
−cε−

β
1−β
}
→ 0

as ε ↓ 0, completing the proof of Theorem 1 in the case µ > 1.

Remark 1. Lemma 4 can be seen as an illustration of the near-constancy phenomenon
(see [4] and references therein), which consists in the fact that the function M does not vary
too much. Some numerical studies show that the variation of M can be very small, and close
theoretical bounds for M are obtained for the case of an infinitely divisible distribution. No
theoretical framework yet exists to describe the near-constancy of M in the general case.
Lemma 4 implies that

M(x)(y/x)
1

1−β −M(y) ≥ 0 for all 0 < x ≤ y,

and so, with g(x) = x
− 1

1−β , the function x 7→M(x)g(x) is decreasing. As the fluctuations of
M do not destroy the monotonicity of the decreasing function g they cannot be too large.
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