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Setup of the talk

(1) A branching model with selection and mutation
(2) A condensation result and some open problems
(3) A related mean field model

(4)
(5)
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Shape of the condensation wave

Universality of wave shapes?
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A branching model with selection and mutation

Our model has two parameters
@ a mutation probability 5 € [0, 1],
@ a mutant fitness distribution g, which is a probability measure on [0, 1].
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A branching model with selection and mutation

Our model has two parameters

@ a mutation probability 5 € [0, 1],

@ a mutant fitness distribution g, which is a probability measure on [0, 1].
The model is a branching process in continuous time.

@ The initial particle has a random fitness chosen according to q.

@ Particles with fitness f live forever and produce single offspring with rate 7.

o Every particle born either

> inherits the fitness of the parent with probability 1 — 3, or
» mutates with probability S in which case its fitness is drawn from gq.

This is a stochastic house-of-cards model for a population with a balance of
genetic selection and mutation.
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A branching model with selection and mutation

This is a multitype Galton-Watson process with uncountable type space [0, 1].
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A branching model with selection and mutation

This is a multitype Galton-Watson process with uncountable type space [0, 1].
Why is it hard to analyse?

Key to the martingale analysis is the eigenfunction corresponding to the principal
eigenvalue of the operator A: C[0,1] — C[0, 1] given by

AF() = x((1 = D) + 5 [ Fv)alay).

We have Af:)\f@f(x):—ﬂx /qu
:>3A*>1—5W|th1—ﬂ/mqwx)
@5/7qu (1)

Only under assumption (1) can we perform a martingale analysis.
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A branching model with selection and mutation

Let
X: = #{particles alive at time t}

and =; be the empirical fitness distribution at time t given by

_ #{particles with fitness in A at time t}

=:i(A . - -
«(4) #particles alive at time ¢t
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A branching model with selection and mutation

Let
X: = #{particles alive at time t}

and =; be the empirical fitness distribution at time t given by

=,(A) = #{particles with fitness in A at time t}
R #particles alive at time t ’

Problems:

(1) How fast does X; grow?

» If (1) holds, then X; grows exponentially with rate \*.
» If (1) fails, the exponential rate of growth is 1 — /3, but the growth is not

strictly exponential and finding the actual speed of growth is a rather difficult

open problem.

(2) Does the empirical fitness distribution =; converge and what is the limit?

This problem is solved in our first theorem.
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A condensation result

Theorem 1

If (1) holds there exists a unique A* € [1 — 3, 1] such that

P | = =
and if (1) fails let A* :=1— 3. Then

o o a 1 =
o the empirical mean fitness [ x =¢(dx) converges almost surely to A*,

@ and there exists a probability measure p such that, almost surely, the
empirical fitness distribution =; converges weakly to p.
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Theorem 1
If (1) holds there exists a unique A* € [1 — 3,1] such that

8 a0 =t
and if (1) fails let A* :=1— 3. Then

oo 0 1 —
@ the empirical mean fitness fo x =¢(dx) converges almost surely to \*,

@ and there exists a probability measure p such that, almost surely, the
empirical fitness distribution =; converges weakly to p.

The limit measure p of the empirical fitness distribution is given

(a) if (1) holds by p(dx) = /\*—[(gl)iﬂ)x q(dx).
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A condensation result

Theorem 1

If (1) holds there exists a unique A* € [1 — 3, 1] such that

P | = =
and if (1) fails let A* :=1— 3. Then

o o a 1 =
o the empirical mean fitness [ x =¢(dx) converges almost surely to A*,

@ and there exists a probability measure p such that, almost surely, the
empirical fitness distribution =; converges weakly to p.

The limit measure p of the empirical fitness distribution is given

(b) if (1) fails by p(dx) = % q(dx) + ()01 (dx), where

@)=1-5 [ L2 0
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The proof can be adapted from methods for preferential attachment networks.

@ Dereich and Ortgiese (2013) use the idea of stochastic approximation as in

the classical work of Robbins and Monro (1951). We adapt their approach.

Let 1
Xn = ;#{individuals with fitness ~ x}

when the nth particle is born. Then
1
Xny1 — Xy = mF(Xn) + Rot1 — Ra,

where X
F(Xn) = 6q(% X) + (1 - /8))-<_Xn — X

and X, is the mean fitness in the system, and R,y1 — Ry = Xot1 — E[Xpy 1| Fnl-
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|dea of proof
The proof can be adapted from methods for preferential attachment networks.
@ Dereich and Ortgiese (2013) use the idea of stochastic approximation as in
the classical work of Robbins and Monro (1951). We adapt their approach.
Let
Xn = %#{individuals with fitness ~ x}

when the nth particle is born. Then

1
Xng1 — Xp = mF(Xn) + Rot1 — Rn,

where X
FXn) = Ba(= ) + (1= B3 X0 — X,

and X, is the mean fitness in the system, and R,y1 — Ry = Xot1 — E[Xpy 1| Fnl-
Convergence

Bq(= x)
- (=A%
can be established simultaneously by a bootstrapping argument based on careful
estimates of the stochastic error R,,.

X, — X\ and X, —
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The condensation wave

If (1) fails and selection beats mutation the branching population experiences a

condensation effect and the fitness of a positive proportion of individuals is driven
to maximal value.
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The condensation wave

If (1) fails and selection beats mutation the branching population experiences a

condensation effect and the fitness of a positive proportion of individuals is driven
to maximal value.

Problem:

@ What is the shape of the wave moving towards the maximal fitness?

We cannot currently answer this question for our model and instead treat the
problem for a much simpler mean-field model in Theorem 2.
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Kingman's model of selection and mutation

Kingman (1974) introduced a model for the balance of selection and mutation,
which is a mean-field version of our process. It consists of a sequence of
probability measures (p,) on the unit interval [0, 1] describing the distribution of
fitness values in the nth generation of a population.

o We put pp = g.
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o If p, is the fitness distribution in the nth generation we denote by

W, = /Xpn(dx)

the mean fitness and define

) X pn(dx)

n

Pnr1(dx) = (1 -5 + B q(dx).

Loosely speaking, a proportion 1 — 3 of the genes in the new generation are
resampled from the existing population using their fitness as a selective criterion,
and the rest have undergone mutation and are therefore sampled from the fitness
distribution q.
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Kingman's model of selection and mutation

Kingman (1974) introduced a model for the balance of selection and mutation,
which is a mean-field version of our process. It consists of a sequence of
probability measures (p,) on the unit interval [0, 1] describing the distribution of
fitness values in the nth generation of a population.

o We put pp = g.
o If p, is the fitness distribution in the nth generation we denote by

W, = /Xpn(dx)

the mean fitness and define

) X pn(dx)

n

poi1(dx) = (1 -5 + 5 q(dx).

Kingman showed that in this model p, — p for the same limit distribution p as
before, and condensation occurs if and only if (1) fails.
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Shape of the condensation wave

Theorem 2 Dereich and M (2013)

Suppose that the fitness distribution g(dx) = g(1 — x) dx fails (1), so that

condensation occurs. Then there are three possibilities for the shape of the
condensation wave.
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Shape of the condensation wave
Theorem 2 Dereich and M (2013)

Suppose that the fitness distribution g(dx) = g(1 — x) dx fails (1), so that

condensation occurs. Then there are three possibilities for the shape of the
condensation wave.

(a) If g is slowly varying at zero, then for x > 0,

im pa(1 — %,1) = 7(8) / e dy,
nfoo 0

i.e. the condensation wave has the shape of an exponential distribution.
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Shape of the condensation wave

Theorem 2 Dereich and M (2013)

Suppose that the fitness distribution g(dx) = g(1 — x) dx fails (1), so that
condensation occurs. Then there are three possibilities for the shape of the
condensation wave.

(b) If g is regularly varying at zero with index a > 0, then for x > 0,
. 7(8) /X -
lim p,(1—%,1) = “e Y dy,
ntoo p ( n ) r(a + 1) 0 y 4

i.e. the condensation wave has the shape of a gamma distribution
with shape parameter 1 + a.

T T T T T T
00 02 04 06 08 10
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Shape of the condensation wave

Theorem 2 Dereich and M (2013)

Suppose that the fitness distribution g(dx) = g(1 — x) dx fails (1), so that

condensation occurs. Then there are three possibilities for the shape of the
condensation wave.

(c) If log g satisfies a mild technical condition and

=1l
(ogqy'(p *© X +0

then, for sufficiently Iarge n, define Ynd 0and o, | 0 by
(log q)'(vs) = n and o2 W Then, for a < b,

lim p,(1 —y,+ ac 1—y+ba):7(ﬁ) be‘%dy
HTOO n n ns n n _\/E 5

i.e. the condensation wave has the shape of a normal distribution.
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Shape of the condensation wave

Remarks:

@ While the shape of the bulk is a modification of g, the shape of the wave is
universal, i.e. not depending on the finer details of g.
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Shape of the condensation wave

Remarks:

@ While the shape of the bulk is a modification of g, the shape of the wave is
universal, i.e. not depending on the finer details of g.

@ The range of fitness distributions where the wave has the shape of a gamma
distribution is the ‘largest’, comprising all g with g(x) ~ ¢ x®, for a > 0.

@ The normal distribution however seems to be the standard shape for
unbounded fitness distributions, as conjectured by Park and Krug (2007).

Problem:

@ To what extent does the picture extend to other stochastic systems with
condensation?

This is the topic of a recently started research project.
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Outline of proof

Define Wy = % and, for n > 1, W, := wy - - - w,,. Given the family (W,),>0 the
solution can be obtained as

n

o) = S0 O (1 5 5" g(dk).

r=0 n
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Define Wy = % and, for n > 1, W, := wy - - - w,,. Given the family (W,),>0 the
solution can be obtained as

n

o) = S0 O (1 5 5" g(dk).

r=0 n

Hence u, := W, (1 — B)}~" satisfies the renewal equation
n
up = % Z Un—rfhr, for n > 1,
r=1

where

[tn = /X"q(dX)~

In the condensation case we obtain that u, — 0 and hence contributions to

pn(dx) come from small values of r (bulk) and small values of n — r (wave). The

asymptotic behaviour of p,(dx) near x ~ 1 can be obtained from that of pu,.
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Outline of proof

For example in case (c) we have, with y :==1 — x,

fin = /(1 —y)"aly) dy ~ /eXP (— ny +logq(y)) dy.
Hence the main contribution arises when y = y,, solving

(log q)'(yn) = n.

Peter Morters (Bath) 13/1



Outline of proof
For example in case (c) we have, with y :==1 — x,

fin = /(1 —¥)"q(y) dy = /eXP (— ny +log q(y)) dy.
Hence the main contribution arises when y = y,, solving

(log q)'(ya) = n.
By Taylor approximation

/eXP (— ny +logq(y)) dy

~ exp ( — ny, + log q(yn)) /exp (3(log )" (yn)Z®) dz,
which shows that the contribution comes from an interval of width

-1

7=\ (log )" ()

and the shape of the wave is normal.
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Final remarks

What else do we know about the shape of condensation waves?

@ Dereich (2013) has shown that in a model of a random network with
preferential attachment with a regularly varying fitness distribution the
degree-weighted fitness distribution has a gamma-shaped condensation wave.
The classical Babrabasi-Albert model is not covered by this work.
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What else do we know about the shape of condensation waves?

@ Dereich (2013) has shown that in a model of a random network with
preferential attachment with a regularly varying fitness distribution the
degree-weighted fitness distribution has a gamma-shaped condensation wave.
The classical Babrabasi-Albert model is not covered by this work.

@ Dereich and M (2012) following earlier work of Ercolani and Ueltschi (2011)
have shown that in a model of random permutations with diverging cycle
weights the empirical distribution of relative cycle lengths has an
asymptotically gamma-shaped form.

o It would be interesting to know the shape of the condensation wave in the
spatial random permutations of Betz and Ueltschi (2009) and other toy
models of Bose-Einstein condensation.

@ Nothing is known at this point for

» models with self-organised condensation like the Tonks gas, zero-range model

or inclusion models,
> spatial models, for example when migration effects replace mutation.
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