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Setup of the talk

(1) A branching model with selection and mutation

(2) A condensation result and some open problems

(3) A related mean field model

(4) Shape of the condensation wave

(5) Universality of wave shapes?
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A branching model with selection and mutation

Our model has two parameters

a mutation probability β ∈ [0, 1],

a mutant fitness distribution q, which is a probability measure on [0, 1].

The model is a branching process in continuous time.

The initial particle has a random fitness chosen according to q.

Particles with fitness f live forever and produce single offspring with rate f .

Every particle born either
I inherits the fitness of the parent with probability 1 − β, or
I mutates with probability β in which case its fitness is drawn from q.

This is a stochastic house-of-cards model for a population with a balance of
genetic selection and mutation.
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A branching model with selection and mutation

This is a multitype Galton-Watson process with uncountable type space [0, 1].

Why is it hard to analyse?

Key to the martingale analysis is the eigenfunction corresponding to the principal
eigenvalue of the operator A : C [0, 1]→ C [0, 1] given by

Af (x) = x
(
(1− β)f (x) + β

∫
f (y)q(dy)

)
.

We have
Af = λf ⇔ f (x) =

βx

λ− (1− β)x

∫
f dq

⇒ ∃λ∗ ≥ 1− β with 1 = β

∫
x

λ∗ − (1− β)x
q(dx)

⇔ β

∫
1

1− x
q(dx) ≥ 1 (1)

Only under assumption (1) can we perform a martingale analysis.
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A branching model with selection and mutation

Let
Xt = #{particles alive at time t}

and Ξt be the empirical fitness distribution at time t given by

Ξt(A) =
#{particles with fitness in A at time t}

#particles alive at time t
.

Problems:

(1) How fast does Xt grow?

I If (1) holds, then Xt grows exponentially with rate λ∗.
I If (1) fails, the exponential rate of growth is 1 − β, but the growth is not

strictly exponential and finding the actual speed of growth is a rather difficult
open problem.

(2) Does the empirical fitness distribution Ξt converge and what is the limit?

This problem is solved in our first theorem.
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A condensation result

Theorem 1

If (1) holds there exists a unique λ∗ ∈ [1− β, 1] such that

β

∫
x

λ∗ − (1− β)x
q(dx) = 1,

and if (1) fails let λ∗ := 1− β. Then

the empirical mean fitness
∫ 1

0
x Ξt(dx) converges almost surely to λ∗,

and there exists a probability measure p such that, almost surely, the
empirical fitness distribution Ξt converges weakly to p.

The limit measure p of the empirical fitness distribution is given

(b) if (1) fails by p(dx) =
β

1− x
q(dx) + γ(β)δ1(dx), where

γ(β) := 1− β
∫

q(dx)

1− x
> 0.
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Idea of proof
The proof can be adapted from methods for preferential attachment networks.

Dereich and Ortgiese (2013) use the idea of stochastic approximation as in
the classical work of Robbins and Monro (1951). We adapt their approach.

Let

Xn =
1

n
#{individuals with fitness ≈ x}

when the nth particle is born. Then

Xn+1 − Xn =
1

n + 1
F (Xn) + Rn+1 − Rn,

where
F (Xn) = βq(≈ x) + (1− β)

x

X̄n

Xn − Xn

and X̄n is the mean fitness in the system, and Rn+1 − Rn = Xn+1 − E[Xn+1|Fn].
Convergence

X̄n → λ∗ and Xn →
βq(≈ x)

1− (1− β) x
λ∗

can be established simultaneously by a bootstrapping argument based on careful
estimates of the stochastic error Rn.
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The condensation wave

If (1) fails and selection beats mutation the branching population experiences a
condensation effect and the fitness of a positive proportion of individuals is driven
to maximal value.

0 1

Problem:

What is the shape of the wave moving towards the maximal fitness?

We cannot currently answer this question for our model and instead treat the
problem for a much simpler mean-field model in Theorem 2.
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Kingman’s model of selection and mutation

Kingman (1974) introduced a model for the balance of selection and mutation,
which is a mean-field version of our process. It consists of a sequence of
probability measures (pn) on the unit interval [0, 1] describing the distribution of
fitness values in the nth generation of a population.

We put p0 = q.

If pn is the fitness distribution in the nth generation we denote by

wn =

∫
x pn(dx)

the mean fitness and define

pn+1(dx) = (1− β)
x pn(dx)

wn
+ β q(dx).
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If pn is the fitness distribution in the nth generation we denote by

wn =

∫
x pn(dx)

the mean fitness and define

pn+1(dx) = (1− β)
x pn(dx)

wn
+ β q(dx).

Loosely speaking, a proportion 1− β of the genes in the new generation are
resampled from the existing population using their fitness as a selective criterion,
and the rest have undergone mutation and are therefore sampled from the fitness
distribution q.
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If pn is the fitness distribution in the nth generation we denote by

wn =

∫
x pn(dx)

the mean fitness and define

pn+1(dx) = (1− β)
x pn(dx)

wn
+ β q(dx).

Kingman showed that in this model pn → p for the same limit distribution p as
before, and condensation occurs if and only if (1) fails.
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Shape of the condensation wave

Theorem 2 Dereich and M (2013)

Suppose that the fitness distribution q(dx) = q(1− x) dx fails (1), so that
condensation occurs. Then there are three possibilities for the shape of the
condensation wave.

(c) If log q satisfies a mild technical condition and

−1

(log q)′′(x)x2
↓ 0 as x ↓ 0,

then, for sufficiently large n, define yn ↓ 0 and σn ↓ 0 by
(log q)′(yn) = n and σ2

n = −1
(log q)′′(yn)

. Then, for a < b,

lim
n↑∞

pn(1− yn + aσn, 1− yn + bσn) =
γ(β)√

2π

∫ b

a

e−
y2

2 dy ,

i.e. the condensation wave has the shape of a normal distribution.

Peter Mörters (Bath) 10 / 1



Shape of the condensation wave

Theorem 2 Dereich and M (2013)

Suppose that the fitness distribution q(dx) = q(1− x) dx fails (1), so that
condensation occurs. Then there are three possibilities for the shape of the
condensation wave.

(a) If q is slowly varying at zero, then for x > 0,

lim
n↑∞

pn(1− x
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i.e. the condensation wave has the shape of an exponential distribution.
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Shape of the condensation wave

Remarks:

While the shape of the bulk is a modification of q, the shape of the wave is
universal, i.e. not depending on the finer details of q.

The range of fitness distributions where the wave has the shape of a gamma
distribution is the ‘largest’, comprising all q with q(x) ∼ c xα, for α > 0.

The normal distribution however seems to be the standard shape for
unbounded fitness distributions, as conjectured by Park and Krug (2007).

Problem:

To what extent does the picture extend to other stochastic systems with
condensation?

This is the topic of a recently started research project.

Peter Mörters (Bath) 11 / 1



Shape of the condensation wave

Remarks:

While the shape of the bulk is a modification of q, the shape of the wave is
universal, i.e. not depending on the finer details of q.

The range of fitness distributions where the wave has the shape of a gamma
distribution is the ‘largest’, comprising all q with q(x) ∼ c xα, for α > 0.

The normal distribution however seems to be the standard shape for
unbounded fitness distributions, as conjectured by Park and Krug (2007).

Problem:

To what extent does the picture extend to other stochastic systems with
condensation?

This is the topic of a recently started research project.

Peter Mörters (Bath) 11 / 1



Shape of the condensation wave

Remarks:

While the shape of the bulk is a modification of q, the shape of the wave is
universal, i.e. not depending on the finer details of q.

The range of fitness distributions where the wave has the shape of a gamma
distribution is the ‘largest’, comprising all q with q(x) ∼ c xα, for α > 0.

The normal distribution however seems to be the standard shape for
unbounded fitness distributions, as conjectured by Park and Krug (2007).

Problem:

To what extent does the picture extend to other stochastic systems with
condensation?

This is the topic of a recently started research project.

Peter Mörters (Bath) 11 / 1



Shape of the condensation wave

Remarks:

While the shape of the bulk is a modification of q, the shape of the wave is
universal, i.e. not depending on the finer details of q.

The range of fitness distributions where the wave has the shape of a gamma
distribution is the ‘largest’, comprising all q with q(x) ∼ c xα, for α > 0.

The normal distribution however seems to be the standard shape for
unbounded fitness distributions, as conjectured by Park and Krug (2007).

Problem:

To what extent does the picture extend to other stochastic systems with
condensation?

This is the topic of a recently started research project.

Peter Mörters (Bath) 11 / 1



Outline of proof

Define W0 := 1
β and, for n ≥ 1, Wn := w1 · · ·wn. Given the family (Wn)n≥0 the

solution can be obtained as

pn(dx) =
n∑

r=0

Wn−r

Wn
(1− β)rβ x r q(dx).

Hence un := Wn (1− β)1−n satisfies the renewal equation

un = β
1−β

n∑
r=1

un−rµr , for n ≥ 1,

where

µn =

∫
xnq(dx).

In the condensation case we obtain that un → 0 and hence contributions to
pn(dx) come from small values of r (bulk) and small values of n − r (wave). The
asymptotic behaviour of pn(dx) near x ≈ 1 can be obtained from that of µn.
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Outline of proof
For example in case (c) we have, with y := 1− x ,

µn =

∫
(1− y)nq(y) dy ≈

∫
exp

(
− ny + log q(y)

)
dy .

Hence the main contribution arises when y ≈ yn solving

(log q)′(yn) = n.

By Taylor approximation∫
exp

(
− ny + log q(y)

)
dy

≈ exp
(
− nyn + log q(yn)

) ∫
exp

(
1
2 (log q)′′(yn)z2

)
dz ,

which shows that the contribution comes from an interval of width

σn =

√
−1

(log q)′′(yn)

and the shape of the wave is normal.
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Final remarks

What else do we know about the shape of condensation waves?

Dereich (2013) has shown that in a model of a random network with
preferential attachment with a regularly varying fitness distribution the
degree-weighted fitness distribution has a gamma-shaped condensation wave.
The classical Babrabasi-Albert model is not covered by this work.

Dereich and M (2012) following earlier work of Ercolani and Ueltschi (2011)
have shown that in a model of random permutations with diverging cycle
weights the empirical distribution of relative cycle lengths has an
asymptotically gamma-shaped form.

It would be interesting to know the shape of the condensation wave in the
spatial random permutations of Betz and Ueltschi (2009) and other toy
models of Bose-Einstein condensation.

Nothing is known at this point for
I models with self-organised condensation like the Tonks gas, zero-range model

or inclusion models,
I spatial models, for example when migration effects replace mutation.
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