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We show that a wide class of random measures have very similar fractal geometry
and argue that this can be traced back to their similar local hitting, scaling and
conditioning behaviour. This is a contribution to, and significant extension of, an
exciting research programme initiated by Kallenberg in [4].

Typical random measures Ξ belonging to our class are
• occupation measures of stable subordinators with stability index 0 < α < 1,
• states of a Dawson-Watanabe superprocesses in Rd, d ≥ 2,
• intersection local times of two Brownian paths in Rd, d = 2, 3.

Very roughly, with some modification in the critical cases d = 2, the following
basic common properties of these examples can be identified:

• The local hitting properties are related to the local intensity, i.e. for some
scaling index α > 0 we have,

εα P{ΞBε(x) > 0} ∼ EΞ(Bε(x)).

• Given that Ξ charges a small ball B, its neighbourhood looks like a trans-
lation of the Palm distribution P0 associated with a stationary version of
the process.

• Given that Ξ charges two balls with distance of larger order than their
size, the behaviour of Ξ inside these balls is (up to constant factors) con-
ditionally independent.

• Local self-similarity holds with scaling index α,

Ξ(r ·) ≈ rαΞ( · ) under P0.

• There is a finite annular lacunarity index ξ such that

P0{Ξ(B1 \Br) = 0} ≈ rξ as r ↓ 0.

The indices associated with our examples are the stability index α and ξ = 2α in
the case of stable subordinators; α = 2, ξ = 4 for the superprocess example; and
in the intersection example α = 2, ξ = 35

12 if d = 2, α = 1, 1 < ξ < 2 unknown if
d = 3. The lacunarity index in the planar case of the intersection example goes
back to the seminal work of Lawler, Schramm and Werner.

Coming to the fractal geometry, in all our examples, the measure Ξ can be ap-
proximated by the Lebesgue measure on ε-neighbourhoods of the support. More
precisely, let

S(ε) =
{
x ∈ Rd : Ξ(Bε(x)) > 0

}
.

Then, at least in probability, as ε ↓ 0,

φ(ε) Leb
(
· ∩S(ε)

)
−→ Ξ

for a suitable function of the form φ(ε) = εα−d L(ε), where L is a slowly varying
correction required in the critical cases. See [6] for the subordinators, [8] for
intersections, and [5] for the superprocess case. In the subordinator case the result
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was probably known to the pioneers of local time, like Paul Lévy, as early as
the 1940s.

All our examples have an interesting multifractal spectrum that does not conform
to the classical multifractal spectrum of statistical physics. While

lim inf
r↓0

log Ξ(Br(x))
log r

= α for all x ∈ S,

we have variations of the limsup behaviour. For every α ≤ a ≤ ξα
ξ−α ,

dim
{
x ∈ S : lim sup

r↓0

log Ξ(Br(x))
log r

= a
}

= α− ξ +
ξα

a
.

This is shown in [3] for subordinators, [13] for superprocesses and [7] for intersec-
tions. Note that the latter paper includes intersections of Brownian paths in the
critical dimension d = 2, but the critical case for superprocesses is still open.

An average density, as introduced by Bedford and Fisher [1], can be defined in the
non-critical cases as

lim
ε↓0

1
log(1/ε)

∫ 1

ε

Ξ(Br(x))
rα

dr

r
= D2 for Ξ-almost every x.

In the critical cases this order-two average diverges, but an order-three average

lim
ε↓0

1
log log(1/ε)

∫ 1/e

ε

Ξ(Br(x))
rαL(r)

dr

r log(1/r)
= D3 exists for Ξ-almost every x.

See [2] for subordinators, [10] for intersections and [12] for superprocesses.

Finally, and only in the non-critical cases, we have an integral test for the packing
measures of the support S,

Pψ(S) =
{

0
∞ iff

∫
0+

r−1−ξψ(r)
ξ
α dr

{
<∞,
= ∞.

See [14] for subordinators, [9] for superprocesses, and [11] for intersections.

At this moment, proofs rely on specific features of the examples, in particular on
the Markov property. It is an interesting challenge for the future to provide proofs
that follow directly from the hitting, scaling and conditioning properties of the
random measures, and to add further examples of different flavour.
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