
The parabolic Anderson model with heavy-tailed

potential

Peter Mörters

Abstract. The parabolic Anderson model is the Cauchy problem for the heat equation
with random potential. It offers a case study for the effects that a random, or irregular,
environment can have on a diffusion process. The main focus in the present survey is on
phenomena that are due to a highly irregular potential, which we model by a spatially
independent, identically distributed random field with heavy tails. Among the effects we
discuss are random fluctuations in the growth of the total mass, localisation in the weak
and almost sure sense, and ageing.
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1. The parabolic Anderson problem

We consider the heat equation with random potential on the integer lattice Z
d and

study the Cauchy problem with localised initial datum,

∂tu(t, z) = ∆u(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞) × Z
d,

lim
t↓0

u(t, z) = 10(z), for z ∈ Z
d,

(1)

where

(∆f)(z) =
∑

y∈Zd

|y−z|=1

[f(y) − f(z)], for z ∈ Z
d, f : Z

d → R

is the discrete Laplacian, and the potential (ξ(z) : z ∈ Z
d) is a collection of in-

dependent identically distributed random variables. This problem appears in the
context of chemical kinetics and population dynamics, and also provides a sim-
plified qualitative approach to problems in magnetism and turbulence. Its name
of parabolic Anderson problem goes back to the work of the nobel-prize winning
physicist P.W. Anderson on entrapment of electrons in crystals with impurities,
see [An58]. The references [GM90], [Mo94] and [CM94] provide applications, back-
ground and heuristics around the parabolic Anderson model and its relatives.
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Interesting recent mathematical progress not discussed here can be found, for
example, in [HKM06], [GKM07], [BMR07], [GHM07] and [D08], two survey articles
emphasising recent work on a range of potentials are [GK05] and [GHM08]. Note
that in some of these references the potential field is allowed to have a nontrivial
time-dependence, a feature which we shall exclude from the discussions of the
present paper.

The parabolic Anderson problem has a unique nonnegative solution if

E[(ξ(0) ∨ 0)d+ε] < ∞ for some ε > 0,

see [GM90]. Under this condition, the solution has a probabilistic representation
known as the Feynman-Kac formula. Indeed, suppose the potential (ξ(z) : z ∈ Z

d)
is fixed and let (Xs : s ≥ 0) be a continuous time random walk with generator
∆ started at the origin. Let a particle following this walk have a mass, which is
initially set to one. Suppose the particle mass grows when the particle sits at a
site z with positive potential with rate ξ(z), and shrinks when the particle sits at
a site z with nonpositive potential with rate −ξ(z). The solution u(t, z) of the
parabolic Anderson problem is then given as the expected mass of particles at
site z at time t. In other words,

u(t, z) = E0

[

1{Xt=z} exp
(

∫ t

0

ξ(Xs) ds
)]

, (2)

where the expectation refers only to the random walk, so that the solution is
random due to its dependence on the potential (ξ(z) : z ∈ Z

d).

The main reason for the great interest the parabolic Anderson model has re-
ceived over the past ten years is due to the intermittency effect which is believed
to be present in the model as soon as the potential random variables ξ(z) are
truly random. Loosely speaking, intermittency means that as time progresses, the
bulk of the mass of the solution is not spreading in a regular fashion, but becomes
concentrated in a small number of spatially separated connected sets of moderate
size, whose location is determined by the potential, which are called intermittent
islands. This means that there is a marked contrast between the behaviour of a
diffusion in a constant potential, which, by the central limit theorem, spreads the
bulk of its mass at time t over a ball of radius of order

√
t, and the behaviour of a

random potential with even the slightest randomness. For example, in the case of
a potential given by P{ξ(0) = 0} = ε, P{ξ(0) = −δ} = 1 − ε, for ε, δ > 0, Biskup
and König [BK01] provide evidence that the mass is almost surely concentrated in
a small number of islands with diameter of order (log t)1/d located in areas where
the potential has a high concentration of zeroes.

On a heuristical level, the reason for this intermittent behaviour is the compe-
tition between the benefits of the random walk path spending much time at sites
with large potential values, which is manifest from the exponential term in (2),
and the unlikeliness of such paths. Even in the case of an only mildly random
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potential, there is an exponential advantage in spending most of the time in an
area with maximal potential and thefore exponentially unlikely random walk paths
make the dominant contribution to the expectation in (2). The strength of this ef-
fect depends on the distribution of the potential values ξ(0), more precisely on the
tail of the distribution of ξ(0) at infinity. If the distribution has a bounded support,
the main contribution will come from walks confinded to islands consisting of sites
with near maximal potential values. There will be a careful balance between the
probability that a random walk reaches such an island in time o(t) and stays there
for the remaining time on the one hand, and the height of the potential on the
island on the other hand. We expect that as time progresses the walk can reach
larger and larger islands. Such behaviour also prevails if ξ(0) has a very light tail
at infinity. If the upper tail of ξ(0) is sufficiently heavy however, we expect that
only random walks that go to certain optimal sites in time o(t) and remain at such
a site for almost the entire time will contribute to the expectation. In this case
the solution is localised in islands which are single sites and, in particular, do not
grow in time.

It is a very hard problem to make the above heuristics rigorous, confirm the
geometric picture of intermittency and study the precise time-dependence of the
size of the islands as a function of the distribution of the potential values. Worse
even, hardly anything is known about the number of islands on which the solutions
are concentrated. Apart from the work described here, we note that progress on the
geometry of the solutions has been made on the one hand in the work of Sznitman
for the closely related continuous model of a Brownian motion with Poissonian
obstacles, the work of his group is surveyed in the monograph [Sz98], and on
the other hand in the seminal paper of Gärtner et al. [GKM07], which treats the
vicinity of the double-exponential distribution. The bulk of the literature however
offers an alternative, less explicit, approach to the problem, by giving a rigorous
expansion of the growth rate of the total mass of the solution in the time variable.
This can then be interpreted in terms of geometric quantities like the size of the
islands, and the height and profile of the solution on an island, see Section 2
for some more detail. In this context it was shown in [HKM06] that there are
four universality classes in the parabolic Anderson model, dividing potentials into
classes corresponding to qualitatively different types of intermittent behaviour.

Roughly speaking, we can learn from this analysis that we can expect islands
to be growing over time if the tails are light enough to satisfy

(A)
1

x
log

∣

∣ log P
{

ξ(0) > x}
∣

∣ −→ ∞ as x ↑ ∞,

whereas the islands consist of single sites if

(B)
1

x
log

∣

∣ log P
{

ξ(0) > x}
∣

∣ −→ 0 as x ↑ ∞.
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Class (A) covers all bounded potentials and some incredibly light-tailed unbounded
ones, most of the unbounded potentials (in particular the class of Gaussian poten-
tials) belong to class (B). Note that the rigorous results about this classification
require mild additional regularity assumptions, which we neglect for the purpose
of this introduction.

The present paper reports on the progress obtained in the attempt to study the
geometry of the solutions for potentials which lead to islands consisting of single
sites. Apart from the author of this survey, the researchers involved in various
stages of this project were Remco van der Hofstad (Eindhoven), Wolfgang König
(Berlin), Hubert Lacoin (Paris), Marcel Ortgiese (Berlin) and Nadia Sidorova (Lon-
don). For our analysis we chose the potentials with the heaviest possible tails. In
fact we assumed that the potentials follow the Pareto distribution

P{ξ(0) ≥ x} = x−α for all x ≥ 1.

We assumed that the parameter α is strictly bigger than the lattice dimension d,
which is necessary and sufficient for the existence of a nonnegative solution to the
parabolic Anderson problem. While the choice of a potential with only polynomial
decay at infinity was expected to make the possible qualitative effects of the random
environment very pronounced, we were facing the technical challenge that much
of the established techniques to study the parabolic Anderson problem were not
available to us, as they require finiteness of some moments of the solution. As a
result, new techniques had to be developed. I will give a flavour of these techniques
when presenting the results of this project in the following sections.

2. The growth rate of the total mass

For comparison, we start by looking at the situation in the case of potential with
milder irregularities, more precisely we assume that all exponential moments (with
positive rate) of the random variable ξ(0) are finite. Then the function

H(t) := log Eet ξ(0), for t > 0,

is well-defined and finite. Define

U(t) :=
∑

z∈Zd

u(t, z)

to be the total mass of the system at time t. A large deviation heuristic (detailed,
for example, in [HKM06]) suggests that the following almost sure expansion holds,
as t ↑ ∞,

1

t
log U(t) =

H(βtα(βt)
−d)

βtα(βt)−d
− α(βt)

2 (κ + o(1)),
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where α and β are positive scale-functions and α(βt) plays the rôle of the order of
the diameter of the intermittent islands at time t. The first order term describes the
height of the potential on an island at time t and therefore the growth rate of the
solution. The number κ in the second order term is the minimiser in a variational
problem whose optimiser describes the profile of the solution on an island scaled to
diamater of constant order. As indicated above, the papers [GM98, BK01, HKM06]
give rigorous asymptotic expansions of 1

t log U(t) up to the second order term,
which can then be interpreted in terms of these heuristics. Between them they
cover all potentials with finite exponential moments, subject to mild regularity
assumptions.

Note that the heuristics above predicts that the two leading terms in the ex-
pansion of the random variable 1

t log U(t) are deterministic. In [HMS08] we have
shown that this does not apply in the case of the Pareto potential, as already the
leading term is random.

Theorem 2.1 (Weak asymptotics of the growth rate, Theorem 1.2 in [HMS08]).
Suppose that the random variable ξ(0) is Pareto distributed with parameter α > d.
Then, as t ↑ ∞,

(log t)
d

α−d

t
α

α−d

log U(t) ⇒ Y, where P{Y ≤ y} = exp
(

−θyd−α
)

and

θ :=
(α − d)d2dB(α − d, d)

dd(d − 1)!
,

where B denotes the beta function.

Remark 2.2.

• The limit law Y is of extremal Fréchet type with shape parameter α − d.

• The fact that already the first term in the expansion of 1
t log U(t) is random

is due to the extreme irregularity of the Pareto potentials. The main result
of [HMS08] is an expansion for the case of the Weibull potentials, which
shows that in this case the leading term in the expansion is still determinis-
tic. Starting from the second term we have a discrepancy between the almost
sure liminf and limsup behaviour. A weak limit theorem with nondegenerate
limit distribution can only be observed for the fourth term, in which case we
see a limit variable of Gumbel type.

We can also describe the fluctuations in the growth rate in an almost sure sense.
To this end, we use the abbreviation

Lt := 1
t log U(t).
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Theorem 2.3 (Almost sure asymptotics of the growth rate, Theorem 1.1 in [HMS08]).
Suppose that the random variable ξ(0) is Pareto distributed with parameter α > d.
Then, almost surely,

lim sup
t→∞

log Lt − d
α−d log t

log log t
= − d − 1

α − d
, for d > 1,

lim sup
t→∞

log Lt − d
α−d log t

log log log t
=

1

α − d
, for d = 1,

and

lim inf
t→∞

log Lt − d
α−d log t

log log t
= − d

α − d
, for d ≥ 1.

Remark 2.4. Theorem 2.1 shows that the liminf above is indeed a limit in prob-
ability, which demonstrates that the differing limsup behaviour is due to a small
number of exceptional time scales where the growth rate is slightly bigger than
typical.

We postpone the discussion of proof techniques to Section 4 where we give a
considerable strengthening of Theorem 2.1.

3. Localisation: The one- and the two-cities theorem

Having looked at the total mass U(t), we now shift our interest to the profile of
the solution defined as

v(t, z) :=
u(t, z)

U(t)
for t > 0, z ∈ Z

d.

In other words, for any time t, we define v(t, z) as the proportion of mass allocated
to the site z. Suppose that our potential is of class (B) and islands are expected
to consist of single lattice sites. Apart from confirming this rigorously, the most
interesting question in this situation is how many islands are required to support
the bulk of the solution.

Question: Find n = n(t) as small as possible such that, for suitable (pairwise
distinct) random points Z(1)

t , . . . , Z(n)

t ∈ Z
d, we have

lim
t↑∞

n
∑

i=1

v(t, Z(i)

t ) = 1,

where the limit could be (a) in probability, or (b) almost surely.

This problem is essentially open for all nontrivial potentials in class (B) except
for the Pareto potential, where it is solved in [KLMS09], a result we now present.
We suppose from this point on in all our theorems that the random variable ξ(0)
is Pareto distributed with parameter α > d.
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Theorem 3.1 (One point localisation in probability, Theorem 1.2 in [KLMS09]).
There exists a càdlàg process (Zt : t > 0) with values in Z

d, depending only on the
potential field, such that

lim
t→∞

v(t, Zt) = 1 in probability.

Remark 3.2.

• The solution is concentrated in just one site with high probability, a phe-
nomenon often called complete localisation. To the best of our knowledge this
has not been observed in any lattice-based model of mathematical physics so
far, but it is not uncommon in mean-field models, see, for example, [FG92,
FM90].

• We conjecture that the one-point localisation phenomenon holds for a wider
class of heavy-tailed potentials, including the Weibull potentials, but does
not hold for all potentials in class (A). In particular, it would be interesting
to learn whether in the case of exponential distributions one needs n(t) → ∞
points to cover the bulk of the solution.

• An investigation of the proof of Theorem 2.1 given in [HMS08] shows that

(log t)
d

α−d

t
α

α−d

log v(t, Zt) =⇒ 0.

Note that this together with the asymptotics in Theorem 2.1 does not yield
the concentration property in Theorem 3.1 since the asymptotics are only
logarithmic. Much more precise techniques are required to prove the full
strength of Theorem 3.1.

We describe the philosophy behind the proof, sketching the argument detailed
in [KMS06]. To guess the right choice of (Zt : t ≥ 0) assume for the moment that
the competition between the paths contributing to the expectation

U(t) = E0

[

exp
(

∫ t

0

ξ(Xs) ds
)]

is only between paths that go to a site z in time o(t) and stay there. While the
exponential factor in this case yields exp(tξ(z) (1+o(1)), for z sufficiently far away
from the origin the probability of such a path is essentially given by the probability
that a random walk makes the minimum number of steps required to reach site z,
which is the `1-norm ‖z‖1. As the number of steps of the walk in t time units is a
Poisson random variable with mean 2dt the cost of reaching z is approximately

(2dt)‖z‖1

‖z‖1!
e−2dt = exp

(

− ‖z‖1 log ‖z‖1

2dte (1 + o(1))
)

.
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Therefore we choose Zt as the maximiser of the function

Ψt(z) = ξ(z) − ‖z‖1

t
log

‖z‖1

2dte
, for z ∈ Z

d.

Note that the subtracted ‘penalty term’ depends increasingly on the `1-norm of
the site z. Therefore, for the proof of Theorem 3.1, we can construct a centred
`1-ball of random, time-dependent radius ht so that Zt is the site of maximal
potential value in that box. Note that ‖Zt‖1 would be a possible choice of such a
radius, but in fact we can typically make it a bit larger. Given a site z and large
time t we split u(t, z) into three terms, which correspond to the contributions to
the Feynman-Kac formula coming from paths that

(1) by time t have left the ball {z : ‖z‖1 ≤ ht},

(2) stay inside this ball up to time t but do not visit Zt, and

(3) stay inside this ball and do visit Zt.

It turns out that the total mass of the first two terms is negligible. For the first
contribution this comes from an analysis, based on extreme value techniques, that
shows that the radius ht is very large at time t with high probability, so that it is
very unlikely for random walk paths to leave this ball before time t. The argument
for the second term is based on the fact, also obtained from extreme value analysis,
that with high probability there is a large gap between the largest and the second-
largest value of {Ψt(z) : z ∈ Z

d}. Hence the contribution of paths avoiding Zt is
small compared to paths that spend a significant amount of time there.

It finally remains to show that there is only a negligible contribution from paths
that stay in the box, visit Zt but do not end up in Zt at time t. The argument
for this is based on a spectral analytical device, which is used in a similar manner
as in [GKM07]: We show that the third term above can be controlled in terms
of the principal eigenfunction of the Anderson Hamiltonian, ∆ + ξ, in the ball
with zero boundary conditions. This eigenfunction turns out to be exponentially
concentrated in the maximal potential point in the ball, which by construction is
Zt. Hence the total mass U must be concentrated in Zt, completing the sketch of
the proof of Theorem 3.1.

Remark 3.3. The convergence in Theorem 3.1 cannot hold in the almost-sure
sense. Indeed, assume that v(t, Zt) > 2/3 for all t ≥ t0. As v( · , z) is continuous
for any z ∈ Z

d, at any jump time t ≥ t0 of the process (Zt : t ≥ 0) we have
v(t, Zt−) + v(t, Zt) > 4/3, a contradiction. From the growth of U(t) one can see
that (Zt : t ≥ 0) is not eventually constant, and thus has jumps at arbitrarily large
times.

By the previous remark, at least two sites are needed to carry the total mass
in an almost sure limit theorem. The main result of [KLMS09] shows that, in the
case of Pareto distributed potentials, we have indeed almost sure localisation of
the solution u(t, · ) in two distinct lattice points Z(1)

t and Z(2)

t , as t → ∞.
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Theorem 3.4 (Two cities theorem, Theorem 1.1 in [KLMS09]). There exist pro-
cesses (Z(1)

t : t > 0) and (Z(2)

t : t > 0) with values in Z
d, depending only on the

potential field, such that Z(1)

t 6= Z(2)

t for all t > 0, and

lim
t→∞

v(t, Z(1)

t ) + v(t, Z(2)

t ) = 1 almost surely.

Remark 3.5. The term two cities theorem was suggested by S.A. Molchanov. The
underlying intuition is that at a typical large time the mass, which is thought of as
a population, inhabits one site, interpreted as a city. At some rare times, however,
the entire population moves to the new city, so that at the transition times part of
the population still lives in the old city, while part has already moved to the new
one.

Again we sketch the philosophy behind the proof. The main reason why this
result is much harder than Theorem 3.1 is that the approximation of 1

t log U(t)
by the maximum of Ψt is not good enough at all large times t and a more com-
plex variational problem has to be built to describe the cost and benefit of paths
spending their time predominantly at a site z.

To this end, we look at the event that, for some ρ > 0, the random walk wanders
directly to a site z during the time interval [0, ρt] and stays there throughout [ρt, t].
Denoting η(z) := log #{ paths of length ‖z‖1 from origin to z}, this event has
probability

eη(z)

(2d)‖z‖1

(2dρt)‖z‖1

‖z‖1!
e−2dρt e−2d(1−ρ)t

= exp
(

− ‖z‖1 log ‖z‖1

ρte − 2dt + η(z) + o(t)
)

.

The reward for this behaviour is exp(t(1− ρ)ξ(z)(1 + o(1))) and therefore we look
at those (ρ, z) which maximise

sup
z∈Zd

sup
ρ∈(0,1)

{

(1 − ρ)ξ(z) − ‖z‖1

t log ‖z‖1

ρte + η(z)
t

}

Looking for the global maximimiser of the inner variational problem we get ρ =
‖z‖1/(tξ(z)), which for large t becomes smaller than 1. Hence Z(1)

t and Z(2)

t are
chosen as the two largest values of

Φt(z) := ξ(z) − ‖z‖1

t
log ξ(z) +

η(z)

t
.

We are then able to show that, almost surely,

1
t log U(t) ∼ max

z∈Zd
Φt(z).

The proof of Theorem 3.4 is, just as in the case of the one-point localisation, based
on a decomposition of paths, this time five rather than three cases need to be
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distinguished, and a similar, albeit slightly refined, arsenal of techniques. Without
going into detail, the big difference is that in the almost-sure sense we can only
expect a gap between the largest and the third-largest value of {Φt(z) : z ∈ Z

d},
because whenever t0 is such that the maximiser z1 for all large t < t0 is different
from the maximiser z2 for all small t > t0, we necessarily have Φt(z1) = Φt(z2)
by continuity of the mapping t 7→ Φt(z). This requires a different treatment of
cases where the gap is between the largest and second-largest value, or between
the second-largest and third-largest value, respectively.

4. Scaling limit theorems

Having seen that the solution of the parabolic Anderson problem with Pareto
distributed potential field is concentrated in a single point at most times, it is
natural to ask how the location of that point moves as time progresses. Theo-
rem 1.3 (a) of [MOS09] gives a functional scaling limit theorem for the localisation
point, together with the value of the potential in that point. For definiteness of
the formualtion define Xt by the property that v(t,Xt) is the maximum value of
the profile at time t. For the (countably many) times where this peak is not unique
we choose the one with the smallest `1-norm.

Theorem 4.1 (Functional scaling limit theorem, Theorem 1.3 of [MOS09]).
There exists a time-inhomogeneous Markov process ((Y (1)

t , Y (2)

t ) : t > 0) on R
d×R

such that, as T → ∞, we have
(

((

log T
T

)
α

α−d XtT ,
(

log T
T

)
d

α−d ξ(XtT )
)

: t > 0
)

=⇒
(

(

Y (1)

t , Y (2)

t + d
α−d‖Y

(1)

t ‖1

)

: t > 0
)

,

in distribution on the space of càdlàg functions f : (0,∞) → R
d × R with respect

to the Skorokhod topology on compact subintervals of (0,∞).

Before we give a detailed description of the limiting process and comment on
the proof of this result, we discuss some of its interesting consequences.

Remark 4.2.

• Projecting onto the first coordinate at time t = 1 we obtain, as T → ∞,
(

log T
T

)
α

α−d XT ⇒ Y

in distribution. This means that the contributing random walks move with
superlinear speed to the optimal point, a very remarkable fact. This result
was also obtained as Theorem 1.3 in [KLMS09] where the limiting random
variable was characterised by its density

p(x) = α

∫ ∞

0

exp(−θyd−α) dy

(y + d
α−d‖x‖1)

,

where θ is the same constant as in Theorem 2.1.
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• Using that 1
t log U(t) ∼ maxz∈Zd Ψt(z) in probability, we can derive from

Theorem 4.1 a functional version of Theorem 2.1: As T → ∞, we have

(

(

log T
T

)
d

α−d log U(tT )
tT : t > 0

)

=⇒
(

Y (2)

t + d
α−d

(

1 − 1
t

)

‖Y (1)

t ‖1 : t > 0
)

.

As all involved processes are continuous, this convergence holds in distribu-
tion on the space of continuous functions f : (0,∞) → R with respect to the
uniform topology on compact subintervals.

• To formulate a more classical (but weaker) scaling limit theorem we extend
the profile to (0,∞)×R

d by taking the integer parts of the second coordinate,
letting v(t, x) := v(t, bxc). Taking nonnegative measurable functions on R

d

as densities with respect to the Lebesgue measure, we can interpret adv(t, ax)
for any a, t > 0 as an element of the space M(Rd) of probability measures
on R

d. Denoting by δ(y) ∈ M(Rd) the Dirac point mass located in y ∈ R
d

we obtain, as T ↑ ∞,

(

(

T
log T

)
αd

α−d v
(

tT,
(

T
log T

)
α

α−d x
)

: t > 0
)

=⇒
(

δ(Y (1)

t ) : t > 0
)

,

in the sense of convergence of finite dimensional distributions on the space
M(Rd) equipped with the weak topology. In other words, the scaled solu-
tion profile converges to a wandering point mass whose path is given by the
process (Y (1)

t : t ≥ 0). This formulation of the result is intuitive, but has two
drawbacks: first it cannot be improved to convergence on a standard path
space, and second it only contains the information that the mass a time t is
concentrated in an island of size o((t/log t)

α
α−d ) and hides the fact that this

island is indeed a single site.

In order to describe the limit process we need to introduce some notation.
Denote by Π a Poisson point process on the cone

H0 :=
{

(x, y) ∈ R
d × R : y > − d

α−d‖x‖1

}

with intensity measure

ν( dx dy) = dx ⊗ α dy

(y + d
α−d‖x‖1)α+1

.

Given this point process, we can define an R
d-valued process Y (1)

t and an R-valued
process Y (2)

t in the following way. Fix t > 0 and define the open cone with tip
(0, z) as

Ct(z) =
{

(x, y) ∈ R
d × R : y + d

α−d (1 − 1
t )‖x‖1 > z

}

,

and let
Ct = cl

⋃

z>0

{

Ct(z) : Π(Ct(z)) = 0
}

.
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x

y

x

y

− d

α − d
|x|

x

y

(a) t < 1.

x

y

x

y

− d

α − d
|x|

x

y

(b) t > 1.

Figure 1. The definition of the process (Y (1)

t , Y
(2)

t ) in terms of the point process Π. Note
that t parametrises the opening angle of the cone, see (a) for t < 1 and (b) for t > 1.
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Informally, Ct is the closure of the first cone Ct(z) that ‘touches’ the point process
as we decrease z from infinity. Since Ct ∩ Π contains at most two points, we can
define (Y (1)

t , Y (2)

t ) as the point in this intersection whose projection on the first
component has the largest `1-norm, see Figures 1(a) and 1(b) for an illustration.
The resulting process ((Y (1)

t , Y (2)

t ) : t > 0) is an element of D(0,∞), the space of
càdlàg functions on (0,∞) taking values in R

d × R.

Remark 4.3. Time evolution of the process.

(i) (Y (1)

1 , Y (2)

1 ) is the ‘highest’ point of the Poisson point process Π.

(ii) Given (Y (1)

t , Y (2)

t ) and s ≥ t we consider the surface given by all (x, y) ∈
R

d × R such that

y = Y (2)

t − d
α−d

(

1 − 1
s

)

(‖x‖1 − ‖Y (1)

t ‖1) .

For s = t there are no points of Π above this surface, while (Y (1)

t , Y (2)

t ) (and
possibly one further point) is lying on it. We now increase the parameter s
until the surface hits a further point of Π. At this time s > t the pro-
cess jumps to this new point (Y (1)

s , Y (2)
s ). Geometrically, increasing s means

opening the cone further keeping the point (Y (1)

t , Y (2)

t ) on the boundary and
moving the tip upwards on the y-axis.

(iii) Similarly, given the point (Y (1)

t , Y (2)

t ) one can go backwards in time by de-
creasing s, or equivalently closing the cone and moving the tip downwards
on the y-axis. The independence properties of Poisson processes ensure that
this procedure yields a process ((Y (1)

t , Y (2)

t ) : t > 0) which is Markovian in
both the forward and backward direction. Note however that the projection
(Y (1)

1 : t > 0) is not Markovian (in either time direction).

(iv) An animation of the process ((Y (1)

t , Y (2)

t ) : t > 0) provided by Marcel Ortgiese
can be found at http://people.bath.ac.uk/maspm/animation ageing.pdf.

Remark 4.4. The process which describes the asymptotics of the scaled potential
value in the peak,

(

Y (2)

t + d
α−d‖Y

(1)

t ‖1 : t > 0
)

,

corresponds to the vertical distance of the point (Y (1)

t , Y (2)

t ) to the boundary of the
domain H0 given by y = − d

α−d‖x‖1, see Figure 2(a). The process which describes
the asymptotics of the scaled growth rate of the solution,

(

Y (2)

t + (1 − 1
t )‖Y

(1)

t ‖1 : t > 0
)

corresponds to the y-coordinate of the tip of the cone Ct, see Figure 2(b).
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y

y = − d
α−d

‖x‖1

t1

t2

t0 = 1

(a) The process describing the potential in the peak.

t1

t2

t0 = 1

y

y = − d
α−d

‖x‖1

(b) The process describing the growth rate of the solution.

Figure 2. The position of the cone Ct at three times 1 = t0 < t1 < t2 is indicated by the
three dashed contours. The maximal point of the Poisson process is marked by the bold
dot on the dashed horizontal line. The two times t1 and t2 are jump times for the process
(Y (1)

t : t ≥ 1) with the Poisson points triggering the jumps marked. The vertical positions
of the three dots represent the value of this process. (a) The length of the arrows indicate
the value of the process (Y (2)

t + d

α−d
‖Y (1)

t ‖1 : t > 0) at the three times corresponding to
the dots at the end of the arrows. (b) The length of the arrows indicate the value of the
process (Y (2)

t + (1 − 1

t
)‖Y (1)

t ‖1 : t > 0) at the three times, increasing from left to right.
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The proof of this result uses the point process technique developed in [HMS08].
We briefly describe the main idea here. Recall that at most times the peak Xt

equals the maximiser Zt of the variational problem given by Ψt. We have seen
that, in probability,

1

T
log U(T ) ∼ max

z∈Zd
ΨT (z).

For rT = (T/ log T )
α

α−d and aT = (T/ log T )
d

α−d the point process

ΠT =
∑

z∈Zd

δ
( z

rT
,
ΨT (z)

aT
)
,

where δx denotes the Dirac measure in x, converges to a Poisson point process Π
with intensity measure ν( dx dy), as defined in the description of the limiting
process. For fixed t and large T we obtain, when z/rT is of constant order,

ΨtT (z)

aT
≈ ΨT (z)

aT
+ d

α−d

(

1 − 1
t

) ‖z‖1

rT
.

Note further that
ξ(z)

aT
≈ ΨT (z)

aT
+ d

α−d

‖z‖1

rT
.

This allows us to approximate the events of interest with events involving only the
point proces ΠT . Informally, we obtain

P
{

ZtT

rT
∈ A, ξ(ZtT )

aT
∈ B

}

≈
∫∫

x∈A,y+ d
α−d

x∈B

P
{

ΠT ( dx dy) > 0,

ΠT

{

(x̄, ȳ) : ȳ − y > d
α−d

(

1 − 1
t

)

(‖x‖1 − ‖x̄‖1)
}

= 0
}

,

where the first line of conditions on the right means that there is a site z/rT ∈ A
with ΨT (z)/aT = y and ξ(z)/aT ∈ B, and the second line means that ΨtT (z) is not
surpassed by ΨtT (z̄) for any other site x̄ = z̄/rT . We can now use the convergence
of ΠT to Π inside the formula to give the limit theorem for the finite-dimensional
distributions of

(

(

XtT

rT
, ξ(XtT )

aT

)

: t > 0
)

.

Checking a tightness criterion in Skorokhod space completes the argument.

5. Ageing in the parabolic Anderson model

In a physical system which changes over time we are naturally interested in the
time scales in which we experience significant changes of the system. If the system
has randomness we may, for example, try to find a function s(t) such that the
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probability that the state at time t remains unchanged up to time t+ s(t) remains
bounded from zero and one, as t ↑ ∞. We may say that the system exhibits ageing
if s(t) goes to infinity as t ↑ ∞, while in typical cases of ageing we even observe
a linear dependence of s(t) on t. Hence, as time goes on, in an ageing system
changes become less likely and the typical time scales of the system are increasing.
Therefore, ageing can be associated to the existence of infinitely many time-scales
that are inherently relevant to the system. This is in marked contrast to metastable
systems, which are characterised by a finite number of well separated time-scales,
corresponding to the lifetimes of different metastable states.

Ageing has been the subject of extensive research. Some interesting papers ex-
hibiting the ageing phenomenon include the case of spherical spin glasses [BDG01],
the random energy model with Glauber dynamics [BBG03] and interacting diffu-
sions [DD07]. The bulk of the research however is on very simple trap models which
give a phenomenological description of a particle moving in an energy landscape
getting trapped in deeper and deeper energy wells. Interest for trap models in
the mathematical community was created through the pioneering work of [FIN02]
and [BCM06], and a survey is provided in the lecture notes of [BC06]. Recent work
of Ben Arous and Černý [BC08] shows that in the case of trap models ageing is
naturally linked with the arcsine law for stable subordinators, and this connection
is believed to be of a universal nature.

Coming back to the parabolic Anderson model with Pareto tails, we can conjec-
ture on the basis of the scaling limit theorem that the system exhibits some form of
ageing: doubling the length of the observation window asymptotically doubles the
length of periods of near constancy of the solution profile. However, the statement
of the scaling limit theorem is not strong enough to verify a full ageing result,
which can be obtained by other means.

Theorem 5.1 (Ageing in probability, Theorem 1.1 in [MOS09].). For any θ > 0
there exists 0 < I(θ) < 1 such that, for all 0 < ε < 1

2 ,

lim
t↑∞

P
{

sup
z∈Rd

sup
s∈[t,t+tθ)]

∣

∣v(t, z) − v(s, z)
∣

∣ < ε
}

= lim
t↑∞

P
{

sup
z∈Rd

∣

∣v(t, z) − v(t + tθ, z)
∣

∣ < ε
}

= I(θ) .

Remark 5.2. As discussed in [BC05] in trap models it is often the case that a
particle is in the same state at times t and t + s(t) but has left this state briefly
several times during the interval [t, t + s(t)]. This can lead to different relevant
scales for the two limits above. For the parabolic Anderson model this is is not
the case, the profile never returns to an earlier state.

Remark 5.3. The constant I(θ) ∈ (0, 1) can be given explicitly in terms of an
integral. The most interesting fact is that it does not come from a generalised
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arcsine law as in the paradigm cases described in [BC08]. We can also describe its
tails at infinity and zero as

I(θ) ∼ C θ−d as θ ↑ ∞, and 1 − I(θ) ∼ c θ as θ ↓ 0,

for explicit constants 0 < c,C < ∞.

Let us briefly discuss the proof of Theorem 5.1. We first show that

lim
t↑∞

P
{

sup
z∈Rd

sup
s∈[t,t+tθ]

∣

∣v(t, z) − v(s, z)
∣

∣ < ε
}

= lim
t↑∞

P
{

Zt = Zt+tθ

}

,

where Zt can be taken to be the maximiser in the variational problem given by Ψt.
To discuss the limit on the right hand side we again approximate the probability
on the right hand side in terms of the point process Πt. We are able to write

Ψt+θt(z)

at
=

Ψt(z)

at
+

θ

1 + θ

d

α − d

|z|
rt

+ error, (3)

where the error can be suitably controlled. Hence (in symbolic notation)

P
{

Zt = Zt+tθ

}

≈
∫∫

P
{

Πt(δx δy) > 0,Πt{(x̄, ȳ) : ȳ > y} = 0,

Πt{(x̄, ȳ) : |x̄| > |x| and ȳ > y − d
α−d

θ
1+θ (|x̄| − |x|)} = 0

}

,

where the first line of conditions on the right means that x is a maximizer of Ψt

with maximum y, and the second line means that x is also a maximizer of Ψt+θt.
As t ↑ ∞ the point process Πt is replaced by Π and we can evaluate the probability.
and complete the proof.

It is more difficult to come to a notion of ageing in an almost-sure sense, which
is observable from a typical trajectory of the solution. Roughly speaking, given
the state of the system at some time t, we may ask for the maximal time R(t) such
that the system is still in the same state at time t + R(t). This ‘residual lifetime
function’ — to borrow a terminology from renewal theory — hits zero whenever
there is a change of state. To find a meaningful notion of the time scale in which
we experience a change we would therefore ask for a characterisation of the upper
envelopes of the residual lifetime function.

To make this plan concrete recall that (Xt : t ≥ 0) is the process of peaks of
the solution. Define the residual lifetime function by

R(t) = sup
{

s ≥ 0: Xt = Xt+s

}

,
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for t ≥ 0. Roughly speaking, R(t) is the waiting time, at time t, until the next
change of peak, see the schematic picture in Figure 3. We have shown in The-
orem 5.1 that the law of R(t)/t converges to the law given by the distribution
function 1 − I. In the following theorem, we describe the smallest asymptotic
upper envelope for the process (R(t) : t ≥ 0).

t

R(t)

Figure 3. A schematic representation of the remaining lifetime function R.

Theorem 5.4 (Almost sure ageing, Theorem 1.2 in [MOS09]). For any nonde-
creasing function h : (0,∞) → (0,∞) we have, almost surely,

lim sup
t↑∞

R(t)

th(t)
=















0 if

∫ ∞

1

dt

th(t)d
< ∞,

∞ if

∫ ∞

1

dt

th(t)d
= ∞.

The proof of Theorem 5.4 is technically more involved, because we can no
longer benefit from the point process approach and have to do significant parts of
the argument from first principles. We consider events

P
{R(t)

t
≥ θt

}

≈ P
{

Zt = Zt+tθt

}

,

for θt ↑ ∞. We significantly refine the argument leading to Theorem 5.1 and
replace the convergence of P{Zt = Zt+tθ} by a moderate deviation statement: For
θt ↑ ∞ not too fast we show that

P
{

Zt = Zt+tθt

}

∼ C θ−d
t ,

for a suitable constant C > 0. Then, if ϕ(t) = th(t), this allows us to show that, for
any ε > 0, the series

∑

n P{R(en) ≥ εϕ(en)} converges if
∑

n h(en)−d converges,
which is essentially equivalent to

∫

h(t)−d dt/t < ∞. By Borel-Cantelli we get that

lim sup
n→∞

R(en)

ϕ(en)
= 0,

which implies the upper bound in Theorem 5.4. The lower bound follows using a
more delicate second moment estimate.
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6. Conclusion

The aim of this project was to study the possible effects of a highly irregular
potential on a diffusion on a d-dimensional lattice. By modeling the potential as
a spatially independent, identically distributed random field with polynomial tails
we have seen that the diffusion shows interesting extreme behaviour, in particular

• the growth rate of the total mass is asymptotically random,

• the solution is asymptotically concentrated in a single point at most times,

• this point goes to infinity at superlinear speed,

• the solution is asymptotically concentrated in two points at all times,

• the system exhibits ageing behaviour.

In the proofs we combine a very fine analysis of the random walk paths contribut-
ing in the Feynman-Kac formula with extreme value theory for the random field.
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[GHM07] J. Gärtner, F. den Hollander and G. Mailllard, Intermittency on
catalysts: symmetric exclusion. Electron. J. Probab. 12, 516–573 (2007).
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