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Abstract
We study a class of branching processes in which a population consists of immortal individuals equipped with a
fitness value. Individuals produce offspring with a rate given by their fitness, and offspring may either belong to
the same family, sharing the fitness of their parent, or be founders of new families, with a fitness sampled from
a fitness distribution µ. Examples that can be embedded in this class are stochastic house-of-cards models, urn
models with reinforcement, and the preferential attachment tree of Bianconi and Barabási. Our focus is on the
case when the fitness distribution µ has bounded support and regularly varying tail at the essential supremum.
In this case there exists a condensation phase, in which asymptotically a proportion of mass in the empirical
fitness distribution of the overall population condenses in the maximal fitness value. Our main results describe
the asymptotic behaviour of the size and fitness of the largest family at a given time. In particular, we show
that as time goes to infinity the size of the largest family is always negligible compared to the overall population
size. This implies that condensation, when it arises, is non-extensive and emerges as a collective effort of several
families none of which can create a condensate on its own. Our result disproves claims made in the physics
literature in the context of preferential attachment trees.
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1 Background and motivation

The principal aim of this paper is to study the emergence of a condensate in stochastic models. For this purpose we
consider a class of branching processes with reinforcement, which probably constitute the easiest class of models,
in which this question can be studied in a meaningful way. Still we shall see that, due to the reinforcement, these
models display rather complex behaviour and not all relevant questions on their behaviour will be answered.

Although our models can describe a variety of objects, see the examples below, we shall describe them as a structured
population. Parameters of our model are a fitness distribution µ on the positive reals, and positive numbers β, γ ≤ 1
with β+γ ≥ 1. At any time t the population consists of a finite number N(t) of individuals. Each individual in the
population has a fitness, and individuals are organised into families, such that all members of a family have the same
fitness. The process is started with one family of one individual, whose fitness is drawn from the distribution µ.
Suppose, at time t ≥ 0, the population consists of M(t) families, and there are Zn(t) individuals of fitness Fn
in the nth family, for 1 ≤ n ≤ M(t). Independently in every family birth events occur with a time-dependent
rate FnZn(t). When a birth event occurs in the nth family, independently of everything else, one or both of the
following happen,

• with probability β a new family is founded, initially consisting of one individual equipped with a fitness drawn,
independently of everything else, from the distribution µ;

• with probability γ a new individual with fitness Fn is added to the nth family. The ability of the system to
reproduce particles of the same type constitutes the reinforcement, see [21].

Note that both things happen simultaneously with probability β + γ − 1 ≥ 0. If µ has all exponential moments the
total number N(t) of individuals in the population remains finite at all times, see for example Corollary 3.3 in [19].
Our main object of interest is the empirical fitness distribution at time t, which is defined as

Ξt = 1
N(t)

M(t)∑
n=1

Zn(t) δFn . (1)

In this paper we focus on bounded fitness distributions µ, and specifically the case in which a condensation phe-
nomenon occurs, which we describe in some detail. Different phenomena occur in the case of unbounded fitness
distributions and these will be investigated in a companion paper [11]. From now on we assume that µ is a proba-
bility measure supported by a bounded subinterval of the positive reals. Without loss of generality we assume that
µ has essential supremum equal to one. To avoid degeneracies we also assume that µ has no atom at one.

We now describe our three main examples motivating our work.

Example 1: Branching process with selection and mutation.

This model is a stochastic house-of-cards model in a similar vein as Kingman’s model (which is deterministic and
much easier to analyse, see [18, 12]). We start with a single individual with a genetic fitness chosen according
to µ. Individuals never die and give birth to new individuals with a rate equal to their genetic fitness, the different
reproduction rates causing the selection effect. When a new individual is born it is a mutant with probability β,
in which case it gets a fitness drawn independently of everything else from µ. If the new individual is not a
mutant, it inherits the fitness of its parent. The model corresponds to the parameter choice γ = 1 − β in our
framework. Observe that a mutation causes the complete loss of genetic information in the affected individual’s
ancestry, pictorially speaking ‘the genetic house of cards collapses’. This is why the term house-of-cards model is
used for this process, see [15] for a discussion of the relevance of these models in the theory of evolution.

The number of families M(t) corresponds to the number of mutants in the population at time t. We can describe
the process (M(t))t>0 as a Crump-Mode-Jagers process, using the framework of [20]. A mutant x born at time τ
with fitness f produces new mutants at ages according to a random point process ξ. This process is a Cox process,
i.e. a Poisson process with a random intensity measure βfφx(s) ds. The function φx(s) is given by the size at time
τ + s of the family founded by the mutant and is therefore a Yule processes with intensity (1− β)f .
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The key assumption for the convergence theory of Crump-Mode-Jagers processes is the existence of a Malthusian
parameter, i.e. an α > 0 such that

1 =
∫ ∞

0
e−αs Eξ(ds).

In our case we have, for α ≥ 1− β, that∫ ∞
0

e−αs Eξ(ds) = E
∫ ∞

0
e−αsβfφx(s) ds = β

∫
f

∫ ∞
0

e−αs+(1−β)fs ds µ(df) = β

∫
f

α− (1− β)f µ(df).

Hence a Malthusian parameter exists if and only if β
1−β

∫
f

1−f µ(df) ≥ 1. If this condition fails, the classical con-
vergence theory of Crump-Mode-Jagers processes fails and very little is known about this case. In particular, in our
model the precise asymptotics ofM(t) is unknown. We show that in this case a phenomenon of condensation occurs,
which loosely speaking means that a positive proportion of individuals have fitnesses converging to the maximal
possible value. Key questions motivating this project are: How fast is this convergence, when did the mutations
arise that form the condensate, and how many mutations contribute to the condensate?

Example 2: Preferential attachment tree of Bianconi and Barabási.

This model is originally a discrete time network model. Putting it into our framework means embedding it into
continuous time, a technique heavily advocated by Janson [16], who attributes the method to Athreya and Karlin [1],
and by Bhamidi [6]. The network is constructed successively, starting with one vertex which is formally given degree
one. The vertex is given a fitness, randomly chosen according to µ. At every time step a new vertex is introduced,
equipped with a fitness, randomly chosen according to µ, and linked to one of the existing vertices. The probability
of an existing vertex being chosen is proportional to the product of its fitness and its degree at the time when the
new vertex is introduced. As new vertices prefer to attach to existing vertices of high degree and high fitness, this
is called a preferential attachment model.

In our representation we choose β = γ = 1 and observe the system at the birth times of individuals. We think of
every family as a vertex in the network, and of the size of a family as its degree. Note that when the nth birth event
takes place, it arises in each of the existing families with a probability proportional to the product of its fitness
and its degree. At the birth event a new family is founded, i.e. a new vertex is introduced, and simultaneously
the family that has given birth is increased in size by one, meaning that the degree of the corresponding vertex is
incremented by one. Our representation only keeps track of the vertices and their degrees, not of the actual edges.
But this does not matter as the main object of interest for us is the long-term behaviour of the degree-weighted
fitness distribution, which coincides with the empirical fitness distribution in our framework.

This model was analysed by Borgs et al. [7] who proved the existence of a innovation-pays-off phase in which a
proportion of the mass in the degree-weighted fitness distribution condenses in the maximal fitness. This behaviour
was already predicted in [4] who called this phase the winner-takes-all phase, a heavily misleading name as we
shall see below. The result is reproved in our Theorem 2.1. Borgs et al. [7] state as an open problem ‘to give an
exact quantitative description of the innovation-pays-off phase. [...] How are the links distributed among the highest
fitnesses present in the system at any given time? At what rate are new nodes with higher fitness taking over?’ Our
main aim here is to make progress on this problem.

Example 3: Generalised Pólya urns.

A class of generalised Pólya urns also falls into our framework, with general parameters β, γ > 0 and µ as above.
It can be described as an urn containing balls of different colours. Every colour has a given activity chosen
independently according to µ. At time zero, the urn contains one ball of colour 1. At every time step, a ball is
drawn at random from the urn with probability proportional to its activity. Then, the drawn ball is put back into
the urn together with one or two new balls, at most one ball of the same and one of a new colour. A ball with the
same colour is chosen with probability γ, and a ball of a new colour with probability β. New colours are chosen
independently according to µ. To embed the urn model into our framework we again look at the times of birth
events. Observe that Ξt is now the empirical distribution of activities in the urn at time t.
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Such generalised Pólya urns have apparently not been studied so far in full generality. Janson [16] is looking at
the case where µ is finitely supported, in which the condensation phenomenon, which is of interest to us, cannot
arise. A related model has been studied by Chung et al. [8] who draw balls depending in a non-linear way on the
distribution of colours in the urn, and by Collevecchio et al. [9] who allow for a time-dependent replacement rule.
Their main focus is on the question whether there can be an unbounded number of balls of more than one colour,
and if not which colour eventually dominates. In our setup all colours will have an unbounded number of balls and
we show that the asymptotic proportion of balls of any colour goes to zero uniformly as time goes to infinity.

2 Statement of the results

The reinforced branching process is described by the following family of random variables. We denote by

• N(t) the total size of the population at time t,

• M(t) the number of different families at time t,

• σn the time of the nth birth event,

• τn the time of the foundation of the nth family,

• Zn(t) the size of the nth family at time t (if n > M(t) we set Zn(t) = 0), and

• Fn the fitness of the nth family.

We are first interested in the empirical fitness distribution Ξt at time t, defined in (1). The asymptotic behaviour of
this empirical distribution shows a phase transition between a fluid phase and a condensation phase. The condition
for condensation is

β

β + γ

∫ 1

0

1
1− x dµ(x) < 1 or, equivalently, β

γ

∫ 1

0

x

1− x dµ(x) < 1, (Cond)

as stated in the following theorem.

Theorem 2.1 (Existence of a condensation phase)
If (Cond) fails, then there exists a unique λ? ∈ [γ, β + γ) such that

β

β + γ

∫ 1

0

λ?

λ? − γx
dµ(x) = 1,

otherwise let λ? := γ. In both cases
• the empirical mean fitness

∫ 1
0 xΞt(dx) converges almost surely to λ?/β+γ,

• and there exists a probability measure π such that, almost surely, the empirical fitness distribution Ξt
converges weakly to π.

The limit measure π of the empirical fitness distribution is given
(a) if (Cond) fails by

dπ(x) = β

β + γ

λ?

λ? − γx
dµ(x).

(b) if (Cond) is true by
dπ(x) = β

β + γ

1
1− xdµ(x) + ω(β, γ)δ1(dx),

where
ω(β, γ) := 1− β

β + γ

∫ 1

0

1
1− xdµ(x) > 0.
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Remark 1. It is easy to see from the law of large numbers that

M(t)
N(t) −→

β

β + γ
almost surely.

Hence it is equivalent to ask for the absolute growth of either of the processes (M(t) : t > 0) or (N(t) : t > 0). Given
the population at time σn of the nth birth event, the waiting time σn+1 − σn until the next individual is born is
exponentially distributed with rate N(σn)

∫
xΞσn(dx) ∼ nλ?, where we have used that N(σn) ∼ (β + γ)n by the

law of large numbers. Hence σn ∼ 1
λ? logn and, in particular, we obtain, almost surely,

lim
t↑∞

1
t

logN(t) = λ?.

If there is no condensation we can improve this to convergence of e−tλ?N(t) to a positive random variable, using the
arguments sketched in Section 3.2 below. But fine results about the growth of the population in the condensation
phase are hard to obtain, see also Section 8 .

Remark 2. We denote the part of the limit mass π which is absolutely continuous with respect to µ as bulk and
the part concentrated in the maximal fitness as condensate. The theorem shows that in the condensation phase,
i.e. if (Cond) holds, we are seeing a phenomenon of self-organised criticality, as the number of individuals in the
bulk and in the condensate are always kept on the same order of magnitude, without any tuning of parameters.
In Dereich [10] one can see that for a model without self-organisation it can be rather complicated to tune the
parameters in such a way that one has coexistence of bulk and condensate.

Our interest in this paper lies in the emergence of the condensate, i.e. how the condensate manifests itself at large
finite times. Following the discussion of Bose-Einstein condensation in van den Berg et al. [3] two alternative
scenarios are possible:

• For the largest family, the proportion of individuals belonging to this family in the overall population at time t
is asymptotically positive. This phenomenon of macroscopic occupancy arises in condensation of the free Bose
gas below a critical temperature, see [3].

• No individual family makes an asymptotically positive contribution. Instead, it is a collective effort of a
growing number of families to form the condensate. This phenomenon is called non-extensive condensation.
van den Berg et al. [3] have shown that this occurs in the free Bose gas for an intermediate temperature range.

We shall see in Theorem 2.4 that in our model under a natural assumption on µ the second scenario prevails. To
show this we need to investigate the behaviour of the largest family in our system. This requires some regularity
assumptions on µ. We henceforth assume that the fitness distribution µ has a regularly varying tail in one, meaning
that there exists α > 1 and a slowly varying function ` with

µ(1− ε, 1) = εα`(ε). (RV)

This corresponds to the most common type of behaviour of µ at its tip that allows a condensation phase.

We start with a heuristic consideration. Suppose t > 0 is given. At any time s ∈ (0, t) there are exp((λ∗ + o(1))s)
families in the system and by an extreme value calculation the largest fitness in this number of families is of order
1− exp(−(λ

∗

α + o(1))s). Until time t > s the family achieving this fitness has time t− s to grow and therefore has
size of order exp(γ(t− s)(1− e−λ

∗
α s)). We therefore expect the birth time s of the maximal family at time t to be

around the maximiser of this expression over 0 < s < t. This maximum occurs roughly at time s ∼ α/λ? log t.

For the rigorous results we replace this time s by the stopping time

T (t) := inf
{
s ≥ 0: M(s) ≥ n(t)

}
where n(t) :=

⌈ 1
µ(1−t−1,1)

⌉
,

which allows us precise control over the number of families in the system. Note that T (t) ∼ α/λ? log t, as can be
seen by putting M(s) = exp((λ∗+ o(1))s) and logn(t) = (α+ o(1)) log t. Our heuristics suggests that the dominant
families of the population at time t are born in a window around time T (t), have fitness Fn with 1−Fn of order 1/t,
and size of order exp(γ(t− T (t))).
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Figure 1 – A simulation of a reinforced branching process in the condensation case. Parameters are
µ(dx) = 3(1 − x)2 dx and β = γ = 1. Each family is represented by a circle with area proportional to
its size at time t = 12 and centred at its time of birth (horizontal axis) and its fitness (vertical axis).

Simulation courtesy of Anna Senkevich.

To confirm this intuition we zoom into this window by considering the point process

Γt =
M(t)∑
n=1

δ
(
τn − T (t), (t− τn)(1− Fn), e−γ(t−T (t))Zn(t)

)
,

where δ(x) is the Dirac mass in x.

Theorem 2.2 (Poisson limit)
Under assumption (RV) the point process (Γt)t≥0 converges vaguely on the space [−∞,∞]× [0,∞]× (0,∞] to
the Poisson point process with intensity measure

dζ(s, f, z) = αfα−1λ?eλ
?se−ze

γ(s+f)
eγ(s+f) ds df dz.

Remark 3. Note the compactifications at ±∞ in Theorem 2.2. As the limiting point process has a continuous
density, Theorem 2.2 implies that all mass of Γt that asymptotically accumulates at infinity in one of the first two
components, must escape at zero in the last component, meaning that the only way points can disappear in the
limit is because the corresponding family size is small relative to the normalisation.

Remark 4. As there is no scaling in the first component of Γt, the limit theorem focuses on a time window of
constant width around T (t). The theorem shows that this is wide enough to capture the largest family at time t.
However, it turns out that in the condensation phase this is not wide enough to capture all families that contribute
to the condensate. This is why important questions on the emergence of the condensate remain open in this paper,
see for example the first two problems in Section 8.

Our Poisson limit result, Theorem 2.2, readily implies the following distributional limits (denoted by =⇒) for the
size, fitness and birth time of the largest family.
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Corollary 2.3 (Limits of family characteristics).

(i) Asymptotically, as t→∞,
e−γ(t−T (t)) max

n∈N
Zn(t) =⇒W−

γ
λ? ,

where W is exponentially distributed with parameter Γ(α+ 1)Γ(1 + λ?

γ )(λ?)−α.

(ii) Under (Cond), denoting by V (t) the fitness of the family of maximal size at time t, as t→∞, we have

t(1− V (t)) =⇒ V,

where V is Gamma-distributed with scale parameter λ? and shape parameter α.

(iii) Denoting by S(t) the birth time of the family of maximal size at time t, as t→∞, we have

S(t)− T (t) =⇒ U,

where U is a real valued random variable.

Remark 5. The birth time of the family of maximal size at time t is of asymptotic order T (t) + O(1) and hence
(as seen above) of leading order α/λ? log t. This answers the question of Borgs et al. [7] about the rate at which new
nodes with higher fitness become the leading influence in the population, see Figure 1 for a simulation.

Theorem 2.4 (The winner does not take it all)
Under assumption (RV) the size of the largest family is negligible relative to the overall population size, i.e.

lim
t→∞

maxn∈{1,...,M(t)} Zn(t)
N(t) = 0, in probability.

Remark 6. Theorem 2.4 means that asymptotically no single family contributes a positive proportion of the total
mass, hence if there is condensation it is always non-extensive. This means in the context of Example 2 that no
vertex attracts a positive fraction of the edges in the network. This is at odds with the informal description of
condensation in the preferential attachment networks by Bianconi and Barabási [4], who are stating that ‘the fittest
node [is] acquiring a finite fraction of the links, independent of the size of the network.’ It is also at odds with more
recent work of Godrèche and Luck [14] who use a numerical study and further analysis based on it to conclude that
asymptotically there is an unbounded number of macroscopic families. Apparently the phenomenon we investigate
here is too subtle to be reliably captured by non-rigorous techniques. In the context of Example 3 our theorem
states that the proportion of balls of any colour goes to zero, uniformly over all colours.

The remainder of this paper is organised as follows. In Section 3 we prove Theorem 2.1 by applying the theory of
general branching processes. Section 4 contains an explicit construction of our model and uses this to give crude
bounds on the rate of growth of the branching process. These will be used in Section 5 to derive a local version
of Theorem 2.2, i.e. a version without the essential compactifications of the underlying space. Section 6 provides
the estimates need to compactify the space, and in Section 7 we complete the proof of Theorem 2.2 and derive
Corollary 2.3 and Theorem 2.4. The final section, Section 8, lists some interesting open problems.

3 Proof of the condensation phenomenon

In the last years a couple of techniques were developed to prove limit theorems for empirical distributions in networks
and related structures, see for example Borgs et al. [7], Bhamidi [6] and Dereich and Ortgiese [13]. We now indicate
how the theory of general branching processes can be used to prove Theorem 2.1. Our method is similar to the one
described in [6] but circumvents the use of multitype branching.
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3.1 The standard construction of the model

We start with a construction of our model on an explicit probability space. Let

• F be a µ-distributed random variable,

• given F let Y = (Y (t) : t ≥ 0) be an independent Yule process with rate γF ,

• given F, Y we define a simple point process Π = (Π(t) : t ≥ 0) as Π = Π(1) + Π(2) where Π(1) only jumps at the
jumps of Y , and does so independently for every jump with probability β+γ−1/γ, and Π(2) is an independent,
inhomogeneous Poisson process with intensity measure (1− γ)FY (t) dt.

We let (Ω,F ,P) be the countable product of the joint law of (F, Y,Π) and denote the coordinate process by
(Fn, Yn,Πn), for n ∈ N. We let τ1 = 0 and Z1(t) = Y1(t) and iteratively define, for n ∈ {2, 3, . . . },

τn = inf{t > τn−1 : ∃m ∈ {1, . . . , n− 1} with ∆Πm(t− τm) = 1} (2)

and

Zn(t) =
{
Yn(t− τn), if t ≥ τn
0, otherwise.

We let M(t) = max{n : τn ≤ t}, set N(t) =
∑M(t)
n=1 Zn(t), and denote by σ1, σ2, . . . the jump times of (N(t) : t ≥ 0).

It is obvious that this construction defines the reinforced branching process described in the introduction. Indeed
(Yn(t− τn) : t ≥ τn) gives the times of birth of new individuals in the nth family, and (Πn(t− τn) : t ≥ τn) the times
of creation of the new families which descend directly from the nth family.

For later reference we now recall some facts about Yule processes.
Lemma 3.1. Let Y be a Yule process with rate λ. Then,

(a) (e−λtY (t))t≥0 is a uniformly integrable martingale.

(b) The almost sure limit limt→∞ e−λtY (t) is standard exponentially distributed.

(c) For u ∈ [0, 1) one has

E
[
sup
t≥0

exp{ue−λtY (t)}
]
≤ 4

1− u. (3)

(d) Denote by Tn = inf{s ≥ 0: Y (s) ≥ n}. Then for every ε > 0 with high probability as κ→∞ for all n0, n ≥ κ
1
λ

log n

n0
− ε ≤ Tn − Tn0 ≤

1
λ

log n

n0
+ ε.

Proof. (a) and (b) are standard and proofs can be found in Athreya and Ney [2]. Denote the martingale limit
in (b) by A. For the proof of (c) note that (exp{ue−tY (t)/2} : t ≥ 0) is a sub-martingale by Jensen’s inequality.
Doob’s martingale inequality then gives

E
[
sup
t≥0

(
exp{ue−tY (t)/2}

)2] ≤ 4 E
[
exp{uA}

]
= 4

1− u.

To prove (d) we may assume, without loss of generality, that λ = 1. Consider the martingale given by ξt = e−tY (t),
and let R(κ) := sup{ ξsξu : s, u ≥ Tκ}. By (b), (ξt)t≥0 has an almost surely finite, strictly positive limit and one has
limκ→∞R(κ) = 1, in probability. Further

Y (t+ Tn0)
Y (Tn0) = et

ξt+Tn0

ξTn0

∈
[ 1
R(κ) e

t, R(κ) et
]
.

An application of the estimate for all n, n0 ≥ κ with t = Tn − Tn0 gives that
n

n0
∈
[ 1
R(κ) e

Tn−Tn0 , R(κ) eTn−Tn0

]
.

Taking logarithms and recalling that R(κ) tends to 1 yields the statement.
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3.2 General branching process theory

The processes (M(t) : t > 0) is a general branching process, or Crump-Mode-Jagers process, with the laws of
offspring times given by the point process (Π(t) : t > 0). Nerman [20] provides a strong law of large numbers for
this class of processes under the assumption that there exists λ∗ > γ, called the Malthusian parameter, such that∫ ∞

0
e−λ

∗s EΠ(ds) = 1.

An easy calculation (which we skip since it is already carried out in detail in the particular case of Example 1
above) shows that this is equivalent to

β

β + γ

∫ 1

0

λ?

λ? − γx
dµ(x) = 1.

Suppose that φ = φ[F, Y,Π]: [0,∞)→ N0 is a cadlag process taking values in the nonnegative integers, such that φ(t)
is interpreted as a score assigned to a family t time units after its foundation. We assume the function t 7→ E[φ(t)]
is almost everywhere continuous and there exists h : [0,∞) → (0,∞) integrable, bounded and non-increasing such
that

E
[

sup
t≥0

e−λ
?tφ(t)
h(t)

]
<∞.

Letting φn = φ[Fn, Yn,Πn] we define the score of the population at time t as

Zφ(t) =
∑

n : τn<t
φn(t− τn).

We define

mφ
∞ =

∫∞
0 e−λ

?tEφ(t) dt∫∞
0 te−λ?t EΠ(dt)

.

Nerman [20] shows that there exists a positive random variable W , not depending on φ, such that

lim
t↑∞

e−λ
?tZφ(t) = W mφ

∞ almost surely. (4)

Under the assumption that (Cond) fails and λ? > γ we can apply this result with φ(t) = Y (t), which satisfies the
assumptions by Lemma 3.1, to get

lim
t↑∞

e−λ
?tN(t) = W mφ

∞ almost surely.

Choosing φ(t) = Y (t)1l{F ≥ 1− x}, for 0 < x < 1, and combining with the above gives

lim
t↑∞

Ξt[1− x, 1] = β

β + γ

∫ 1

1−x

λ?

λ? − γx
dµ(x) almost surely,

as required.

3.3 A coupling technique

To extend results to the case when λ? = γ, or when no Malthusian parameter is available, we use a coupling
technique. We look at the reinforced branching process at the times (σn)n≥1 of the birth events and abbreviate
Ξ̂n := Ξσn .

Fix ε > 0. We define a discrete-time branching process whose empirical fitness distribution Ξ̂(ε)
n has the property

that, for all n ≥ 0, (Ξ̂n, Ξ̂(ε)
n ) ∈ S, where S is the subset of the set of pairs of probability measures on [0, 1] defined

by S := {(ν, µ) : ν([a, b]) ≥ µ([a, b]) for all a, b ∈ [0, 1 − ε)}. Let (Un)n≥1 be a sequence of i.i.d. random variables
uniformly distributed on [0, 1].

At time zero, the new process contains one family of fitness F11l{F1 < 1−ε}+1l{F1 ≥ 1−ε} and thus (Ξ̂0, Ξ̂(ε)
0 ) ∈ S.

Assume now that, (Ξ̂n, Ξ̂(ε)
n ) ∈ S. We construct the new process at time n+ 1 as follows:

9



• if a new family of fitness f is born at time n+ 1 (in the original process), then we add in the (new) process a
new family of fitness f1l{f < 1− ε}+ 1l{f ≥ 1− ε} born at time n+ 1;

• if an individual of fitness larger than 1 − ε is born at time n + 1 in the original process, then we add a new
individual of fitness 1 born at time n+ 1;

• if an individual of fitness f < 1− ε is born at time n+ 1 in the original process, then if

Un+1 ≤

(
Ξ̂(ε)
n ({f})∫ 1

0 x dΞ̂(ε)
n (x)

)(
Ξ̂n({f})∫ 1

0 xdΞ̂n(x)

)−1

,

we add an individual of fitness f born at time n+ 1, otherwise, we add an individual of fitness 1.

By construction, (Ξ̂n+1, Ξ̂(ε)
n+1) ∈ S. It is now easy to check that the new process is the discrete-time version of the

reinforced branching process with fitness distribution µε := 1l[0, 1− ε)µ+ µ[1− ε, 1]δ1. Since

β

β + γ

∫ 1

0

dµε(x)
1− x =∞,

the new process admits a Malthusian parameter λε and λε ↓ γ as ε ↓ 0. We deduce that, for all 0 ≤ a, b < 1 − ε,
we have

lim
n→∞

Ξ̂(ε)
n

(
[a, b]

)
= lim
t→∞

Ξ̂(ε)
t

(
[a, b]

)
= β

β + γ

∫ b

a

λε
λε − γx

dµ(x)

almost surely. For all 0 ≤ a, b < 1 and 0 < ε < 1− b, we thus have

lim inf
t→∞

Ξt
(
[a, b]

)
= lim inf

n→∞
Ξ̂n
(
[a, b]

)
≥ lim
n→∞

Ξ̂(ε)
n

(
[a, b]

)
= β

β + γ

∫ b

a

λε
λε − γx

dµ(x).

Letting ε ↓ 0 gives the lower bound. A similar argument gives a coupling with the reinforced branching process
with µ replaced by µ(ε) = 1l[0, 1− ε)µ+ µ[1− ε, 1]δ1−ε, and provides an upper bound, which is enough to conclude
the proof of Theorem 2.1.

4 Estimates for the number of families in the population

The main difficulty in our model is that the time of birth of the nth family is not known with good accuracy. We
now give a rough deterministic bound for the births occurring around the stopping times T (t).

Proposition 4.1. For all ε ∈ (0, λ?), we have with high probability as n0 →∞, for all n ≥ n0,

1
λ? + ε

log n

n0
− ε ≤ τn − τn0 ≤

1
λ? − ε

log n

n0
+ ε,

and, for all 1 ≤ n ≤ n0,
1

λ? − ε
log n

n0
− ε ≤ τn − τn0 ≤

1
λ? + ε

log n

n0
+ ε.

Proof. Recall that, when t goes to infinity, M(t) = e(λ?+o(1))t, implying that

τn0 = 1 + o(1)
λ?

logn0

which implies the estimate for arbitrarily fixed n as n0 goes to infinity. It thus suffices to prove the statement for
all n, n0 ≥ κ with high probability as κ goes to infinity. Fix ε ∈ (0, λ?) and κ ∈ N and set λ?± := λ? ± ε. The
stochastic process (M(s))s≥0 is a pure birth process with continuous compensator

γ(s) =
∫ s

0
βN(u)

∫ 1

0
xΞu(dx) du.

10



We consider the stopping time S given by

S = inf
{
s ≥ τκ : βN(s)

M(s)

∫ 1

0
xΞs(dx) 6∈ [λ?−, λ?+]

}
,

and note that, by Theorem 2.1, S is infinite with high probability as κ→∞.

Let wn := τn+1 − τn be the inter-arrival times of (M(s))s≥0. Observe that

γ(τn+1)− γ(τn) =
∫ τn+1

τn

βN(s)
∫ 1

0
xΞs(dx) ds ∈ [λ?−(τn+1 − τn)n, λ?+(τn+1 − τn)n]

provided that τn+1 ≤ S. Defining

w±n := γ(τn+1)− γ(τn)
λ?±n

,

we infer that w+
n ≤ wn ≤ w−n for all n such that τn+1 ≤ S, and the sequences (w±n )n∈N consist of independent

exponentials with respective parameter λ?±n which are the inter-arrival times of Yule processes (Y±(s)) of respective
rate λ?±. By Lemma 3.1, with high probability as κ→∞, for all n, n0 ≥ κ,

1
λ?±

log n

n0
− ε ≤ T±n − T±n0

≤ 1
λ?±

log n

n0
+ ε,

where (T±n )n∈N denotes the ordered sequence of jump times of (Y±(s))s≥0. Hence, for all n ≥ n0 ≥ κ,

τn − τn0 =
n−1∑
k=n0

wk ≤
n−1∑
k=n0

w−k = T−n − T−n0
≤ 1
λ?−

log n

n0
+ ε.

Similarly, it follows that with high probability, for κ ≤ n ≤ n0,

τn − τn0 ≤ T+
n − T+

n0
≤ 1
λ?+

log n

n0
+ ε.

The converse bound follows in complete analogy.

5 Local convergence

The aim of this section is to prove the following proposition.
Proposition 5.1. Under assumption (RV) one has convergence in distribution of the point processes

Γt =
M(t)∑
n=1

δ(τn−T (t),(t−τn)(1−Fn),e−γ(t−T (t))Zn(t))

to the Poisson point process with intensity

dζ(s, f, z) = αfα−1λ?eλ
?se−ze

γ(f+s)
eγ(f+s) ds df dz,

where we endow the set of locally finite measures on (−∞,∞)×[0,∞)×[0,∞] with the topology of vague convergence.

Proposition 5.1 is a straightforward consequence of the following result.
Proposition 5.2. Under assumption (RV) we have vague convergence of the point process

Ψt =
M(t)∑
n=1

δ(τn−T (t),(t−τn)(1−Fn),e−γFn(t−τn)Zn(t))

to the Poisson point process with intensity

dζ?(s, f, z) = αfα−1λ?eλ
?se−z ds df dz

on (−∞,∞)× [0,∞)× [0,∞].
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Proof of Proposition 5.1. This follows directly from the fact that the point process Γt is the image of Ψt by the
continuous function (s, f, z) 7→ (s, f, e−γ(s+f)z), and that ζ is the image of ζ? by the same continuous function.

The proof of Proposition 5.2 consists of the following two steps. We approximate Ψt by a point process

Ψ?
t =

∑
n∈N

δ(τ?n(t)−T (t),t(1−Fn),ξn),

where the birth times τn are replaced by approximate birth times

τ?n(t) = T (t) + log n/n(t)

λ?

and the rescaled family sizes e−γFn(t−τn)Zn(t) by their limits

ξn = lim
u→∞

e−γFn(u−τn)Zn(u).

In the approximating process Ψ?
t the components are decoupled, which makes it easier to study. We prove that

(1) this approximation process converges vaguely to the Poisson point process of intensity ζ?, and

(2) Ψ?
t is close enough to Ψt to imply Proposition 5.2.

The two steps correspond to the two lemmas below.

Lemma 5.3. (Ψ?
t )t≥0 converges vaguely on [−∞,∞)× [0,∞)× [0,∞] to the Poisson point process with intensity ζ?.

Proof. We apply Kallenberg’s theorem, see [22, Proposition 3.22]. Since ζ? is diffuse, to prove Lemma 5.3, it is
enough to show that, for every precompact relatively open box B ⊂ [−∞,∞)× [0,∞)× [0,∞],

(a) P(Ψ?
t (B) = 0)→ exp(−ζ?(B)), as t ↑ ∞, and

(b) EΨ?
t (B)→ ζ?(B), as t ↑ ∞.

It suffices to consider nonempty boxes B of the form (a0, a1) × (b0, b1) × (c0, c1) since, almost surely, neither the
point processes Γt nor the limiting Poisson process put points on the boundary ∂([−∞,∞)× [0,∞)× [0,∞]). Here
a0 = −∞ and c1 =∞ is an allowed choice. Note that

ζ?(B) = (eλ
?a1 − eλ

?a0)(bα1 − bα0 )(e−c0 − e−c1).

(a) By the construction of the probability space at the beginning of Section 4, (Fn, ξn)n≥1 is a sequence of i.i.d.
random variables with each Fn being independent of ξn. Hence,

P(Ψ?
t (B) = 0) =

∏
n(t)eλ?a0<n<n(t)eλ?a1

P
(
t(1− Fn) /∈ (b0, b1) or ξn /∈ (c0, c1)

)
=
(
1− P

(
t(1− F1) ∈ (b0, b1)

)
P
(
ξ1 ∈ (c0, c1)

))ra0,a1 (t)
,

where ra0,a1(t) denotes the number of elements n ∈ N with n(t)eλ?a0 < n < n(t)eλ?a1 .

We note that, as t→∞, we have ra0,a1(t) ∼ (eλ?a1 − eλ?a0)/µ(1− t−1, 1) and, in view of Assumption RV,

µ((1− b1/t, 1− b0/t))
µ(1− 1/t, 1) ∼ bα1 − bα0 as t ↑ ∞. (5)

Further P(ξ1 ∈ (c0, c1)) = e−c0 − e−c1 . Thus, as t→∞,

P(Ψ?
t (B) = 0) =

(
1− µ(1− b1/t, 1− b0/t)

(
e−c0 − ec1

))ra0,a1 (t)

∼ exp
(
−(eλ

?a1 − eλ
?a0) µ((1− b1/t, 1− b0/t))

µ(1− 1/t, 1)
(
e−c0 − ec1

))
→ exp(−ζ?(B)).
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(b) To compute the limit of E[Ψ?
t (B)] we apply the asymptotic estimates from above,

E[Ψ?
t (B)] =

∑
n(t)eλ?a0<n<n(t)eλ?a1

µ([1− b1/t, 1− b0/t]) P(ξn ∈ [c1, c2])

= ra0,a1(t)µ([1− b1/t, 1− b0/t]) P(ξ1 ∈ [c1, c2])→ ζ?(B).

Lemma 5.4. For all Lipschitz continuous, compactly supported functions f : (−∞,∞)× [0,∞)× [0,∞]→ R,∣∣∣∣∫ f dΨ?
t −

∫
f dΨt

∣∣∣∣→ 0 in probability, as t ↑ ∞.

Proof. Let f be a Lipschitz continuous function supported on K = [−a, a]× [0, b]× [0,∞] for a, b ≥ 1. We have∣∣∣∫ f dΨt −
∫
f dΨ?

t

∣∣∣
≤
M(t)∑
n=1

∣∣∣f (τn − T (t), (t− τn)(1− Fn), e−γFn(t−τn)Zn(t)
)
− f

(
τ?n(t)− T (t), t(1− Fn), ξn

)∣∣∣
≤ c

∑
n∈I(t)

(
|τn − τ?n(t)|+ τn(1− Fn) + |e−γFn(t−τn)Zn(t)− ξn|

)
,

(6)

where c is the Lipschitz constant of the function f and I(t) is the random set of indices n ∈ N such that

|τn − T (t)| ≤ a and (t− τn)(1− Fn) ≤ b (a)

or
|τ?n(t)− T (t)| ≤ a and t(1− Fn) ≤ b. (b)

For ε ∈ (0, 1/2) we denote by Tε(t) the event that the following properties hold,

• |τn − τ?n(t)| ≤ ε(1 + |τ?n(t)− T (t)|) for all n ∈ N and

• T (t) ≤ t/3.

We note that, in view of Proposition 4.1, Tε(t) holds with high probability as t→∞.

Let now Ī(t) := {n ∈ N : |τ?n(t)− T (t)| ≤ 2a, t(1− Fn) ≤ 2b}. We show that for t ≥ 6a one has I(t) ⊂ Ī(t) on Tε(t).
Suppose that n ∈ I(t) and that Tε(t) holds. It suffices to consider the case where condition (a) is satisfied. Then
b ≥ (t− τn)(1−Fn) ≥ (t−T (t)−a)(1−Fn) ≥ t(1−Fn)/2, which proves that the second inequality in the definition
of Ī(t) is satisfied. Let us further assume that n ≤ n(t). Then a ≥ |τn − T (t)| ≥ (1 − ε)|τ?n(t) − T (t)| − ε, which
implies that

|τn − τ?n(t)| ≤ ε(1 + |τ?n(t)− T (t)|) ≤ ε
(
1 + a+ε

1−ε
)
≤ 4aε.

The same inequality holds if n ≥ n(t) and thus we have proved that I(t) ⊂ Ī(t) on Tε(t) for all t ≥ 6a.

We now consider the sum on the right hand side of (6), but taken over all n ∈ Ī(t). First note that, for n ∈ Ī(t),
on Tε(t), we have τn ≤ T (t) + (1 + ε)(τ?n(t) − T (t)) + ε ≤ t/3 + 3a, if n ≥ n(t), and τn(1 − Fn) ≤ 2b/t(T (t) + 3a).
Second we let, for n ∈ N and s ≥ 0,

Rn(s) := sup
u≥s

∣∣e−uZn(τn + u/Fn)− ξn
∣∣

and using that for t ≥ 4b and n ∈ Ī(t) one has Fn ≥ 1/2 we conclude that for all t ≥ max(4b, 18a),

|e−γFn(t−τn)Zn(t)− ξn| ≤ Rn(γFn(t− τn)) ≤ Rn(γt/4).
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Hence we get that, for sufficiently large t, on Tε(t),∣∣∣∫ f dΨt −
∫
f dΨ?

t

∣∣∣
≤ c

∑
n∈Ī(t)

(
|τn − τ?n(t)|+ τn(1− Fn) + |e−γFn(t−τn)Zn(t)− ξn|

)
≤ c

∑
n∈Ī(t)

(
4aε+ 2b

t
(T (t) + 3a) +Rn(γt/4)

)
≤ c |Ī(t)|

(
4aε+ 2b

t
(T (t) + 3a)

)
+ c

∑
n∈Ī(t)

Rn(γt/4).

By construction, the random processes (Rn)n≥1 are independent of (Fn)n≥1 and thus also of the random set Ī(t).
We recall that, by Proposition 5.2, |Ī(t)| converges in distribution to a Poisson distribution and lims→∞Rn(s) = 0,
almost surely. Hence,

lim
t→∞

∑
n∈Ī(t)

Rn(γst/4) = 0, in probability.

Since further limt→∞ T (t)/t = 0, almost surely, we conclude that, with high probability,∣∣∣∫ f dΨt −
∫
f dΨ?

t

∣∣∣ ≤ 8εac(|Ī(t)|+ 1).

Recalling again that |Ī(t)| converges in distribution and that ε ∈ (0, 1/2) can be made arbitrarily small we obtain
convergence to zero in probability, as t ↑ ∞.

Proof of Proposition 5.2. Let f : R × [0,∞) × [0,∞) → R be Lipschitz continuous and compactly supported.
Combining Lemmas 5.3 and 5.4, together with Slutzky’s lemma we get the desired result,∫

f dΨt ⇒
∫
f dPPP(ζ?) as t ↑ ∞,

where PPP(ζ?) denotes the Poisson point process with intensity ζ?.

6 Negligibility of families outside the main window

To deduce Theorem 2.2 from Proposition 5.1, one has to control the contribution of the point process near the
closed boundaries of [−∞,+∞] × [0,+∞] × (0,+∞]. We prove that the families that are born too late, or that
are not fit enough, are too small to contribute in the limit. They get absorbed by the open lower bound of the third
coordinate. We first provide a simple calculation, which is at the heart of our proofs. Recall that

n(t) =
⌈

1
µ(1− 1/t, 1)

⌉
.

Lemma 6.1. Let F be a random variable with law µ. There exists t0 > 0 such that, for all C ≥ 0, D > 0, there
exists K = K(C,D) > 0 such that

E
[
1l{F ≤ 1− C

t }e
−D(1−F )t

]
≤ K

n(t) for all t ≥ t0.

Moreover, for all D, we have limC↑∞K(C,D) = 0.

To prove this lemma, we need Potter’s bound, see Theorem 1.5.6 (ii) in [5]. Since µ verifies Equation (RV), and is
bounded from zero and infinity on every compact set of (0, 1], for all δ > 0, there exists a constant Λ = Λ(δ) such
that, for all 0 < x, y ≤ 1,

µ(1− y, 1)
µ(1− x, 1) ≤ Λ

(y
x

)α+δ
. (7)
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Proof of Lemma 6.1. Fix δ > 0. We have

E
[
1l{F ≤ 1− C

t }e
−D(1−F )t

]
=
∫ ∞

0
P
(

1l
{
F ≤ 1− C

t

}
e−D(1−F )t ≥ x

)
dx =

∫ ∞
0

P

(
1− log 1/x

Dt
≤ F ≤ 1− C

t

)
dx

≤
∫ e−CD

0
µ
(

1− log 1/x
Dt , 1

)
dx ≤ Λ(δ)µ(1− 1/t, 1)

∫ e−CD

0

( 1
D log 1

x

)α+δ
dx,

where Λ(δ) is defined by the Potter’s bound (see Equation (7)). Changing variables y = 1
D log 1

x we get

E
[
1l{F ≤ 1− C

t }e
−D(1−F )t

]
≤ DΛ(δ)µ(1− 1/t, 1)

∫ ∞
C

yα+δe−Dydy.

Recall that n(t) = b1/µ(1−1/t,1)c, and let K(C,D) := DΛ(δ)
∫∞
C
yα+δe−Dydy to conclude the proof.

6.1 Contribution of the unfit families

Lemma 6.2. For every η > 0 and c > 0 there exists κ > 0 such that, for all sufficiently large t, we have

P
(

max
n≤M(t)

1l{Fn ≤ 1− κ/t}Zn(t) ≥ c eγ(t−T (t))
)
≤ η.

Proof. Let c > 0 and κ > 0. We analyse the event that there exists a family with fitness Fn ≤ 1 − κ/t and size
e−γ(t−T (t))Zn(t) ≥ c. To this end, we define the time-shifted version (Z?n(t) : t ∈ R) of the size of the nth family by

Z?n(t) := Zn(t+ τn − τ?n),

where

τ?n :=
{
T (t) + 1

λ?−ε log n
n(t) − ε if n ≤ n(t),

T (t) + 1
λ?+ε log n

n(t) − ε if n ≥ n(t).

In view of Proposition 4.1, we have, with high probability as t → ∞, that Z?n(t) ≥ Zn(t) for all n ≥ 0. Recalling
the construction of the probability space at the beginning of Section 4, we note that the family (An)n≥1 given by

An = max
s≥τ?n

Z?n(s)
eγFn(s−τ?n) = max

s≥τn

Zn(s)
eγFn(s−τn)

forms a sequence of i.i.d. random variables which is independent of (Fn)n≥1. Further,{
Zn(t) ≥ c eγ(t−T (t))} ⊂ {Z?n(t) ≥ c eγ(t−T (t))}

⊂
{
An ≥ c eγ[(t−T (t))−Fn(t−τ?n)]} =

{
An ≥ c eγ[(1−Fn)(t−T (t))−Fn(T (t)−τ?n)]}.

Therefore,
P
(

max
n≤M(t)

1l{Fn ≤ 1− κ/t}Zn(t) ≥ c eγ(t−T (t))
)

≤ P(T (t) ≥ t/2) +
∞∑
n=1

P
(
An1l{Fn ≤ 1− κ/t} ≥ c eγ[(1−Fn)t/2−Fn(T (t)−τ?n)]). (8)

In terms of ϕ(u) := P(A1 ≥ u) we have

P
(
An1l{Fn ≤ 1− κ/t} ≥ c eγ[(1−Fn)t/2−Fn(T (t)−τ?n)]

)
= E

[
1l{Fn ≤ 1− κ/t}ϕ

(
ceγ[(1−Fn)t/2−Fn(T (t)−τ?n)]

)]
.

By Lemma 3.1, we have ϕ(u) ≤ C0 e
−u/2 so that

E
[
1l{Fn ≤ 1− κ/t}ϕ

(
ceγ[(1−Fn)t/2−Fn(T (t)−τ?n)]

)]
≤ C0 E

[
1l{Fn ≤ 1− κ/t} exp

{
− c

2e
γ[(1−Fn)t/2−Fn(T (t)−τ?n)]

}]
.
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Noting that T (t)− τ?n is deterministic we get that the expectation on the right equals

E
[
1l{F ≤ 1− κ/t} exp

{
− c

2e
γ[(1−F )t/2−F (T (t)−τ?n)]

}]
,

where F is a random variable of law µ. We now fix small numbers δ, % > 0 and note that there exists a constant C%
such that e−y ≤ C%y−% for all y ≥ 0. Using this, and recalling the definition of τ?n, we get, for n ≥ n(t),

E
[
1l{δ ≤ F ≤ 1− κ/t} exp

{
− c

2e
γ[(1−F )t/2−F (T (t)−τ?n)]

}]
≤ E

[
1l{F ≤ 1− κ/t} exp

{
− c

2

(
n
n(t)

) δγ
λ?+ε

eγ[(1−F )t/2−ε]
}]

≤ C%
(
c
2
)−%

eγ%ε
(
n(t)
n

)% γδ
λ?+ε

E
[
1l{F ≤ 1− κ/t}e−%γ(1−F )t/2

]
.

We now apply Lemma 6.1 and get, for n ≥ n(t),

E
[
1l{δ ≤ F ≤ 1− κ/t} exp

{
− c

2e
γ[(1−F )t/2−F (T (t)−τ?n)]

}]
≤ C%

(
c
2
)−%

eγ%ε
(
n(t)
n

)% γδ
λ?+ε K(κ, %γ/2)

n(t) . (9)

Similarly we get, for n ≤ n(t),

E
[
1l{δ ≤ F ≤ 1− κ/t} exp

{
− c

2e
γ[(1−F )t/2−F (T (t)−τ?n)]

}]
≤ C%

(
c
2
)−%

eγ%ε
(
n(t)
n

)% γ
λ?−ε K(κ, %γ/2)

n(t) . (10)

Applying (9) with %+ > λ?+ε
γδ , if n > n(t), and (10) with %− < λ?−ε

γ , if n ≤ n(t), we get

∞∑
n=1

P(An1l{Fn ≤ 1− κ/t} ≥ c eγ[(1−Fn)t/2−Fn(T (t)−τ?n)])
≤ C0C%−

(
c
2
)−%−

eγ%−ε
K(κ, %−γ/2)

n(t)

n(t)∑
n=1

(
n(t)
n

)%−
γ

λ?−ε

+ C0C%+

(
c
2
)−%+

eγ%+ε
K(κ, %+γ/2)

n(t)

∞∑
n=n(t)+1

(
n(t)
n

)%+
γδ

λ?+ε + C0 P(F < δ)

≤ C
(
K(κ, %−γ/2) +K(κ, %+γ/2)

)
+ C0 P(F < δ),

where C is a constant not depending on κ or t, using that both sums are bounded by a constant multiple of n(t).
Recall that limκ→∞K(κ, %±γ/2) = 0 and P(F < δ) → 0 as δ ↓ 0. Recalling (8) and noting that P(T (t) ≥ t/2) → 0,
as t ↑ ∞, completes the proof.

6.2 Contribution of the families born late

Lemma 6.3. For every η > 0 and c > 0 there exists υ > 1 such that, for all sufficiently large t, we have

P
(

max
υn(t)≤n≤M(t)

Zn(t) ≥ c eγ(t−T (t))
)
≤ η.

Proof. The proof is similar to the proof of Lemma 6.2. Let c > 0 and define the processes (Z?n(t) : t ∈ R), the
sequence (An), and the numbers τ?n as above. We have

{Zn(t) ≥ c eγ(t−T (t))} ⊂ {Z?n(t) ≥ c eγ(t−T (t))} ⊂ {An ≥ c eγ[(1−Fn)(t−T (t))−Fn(T (t)−τ?n)]}.

Therefore, for any υ > 1 and n ≥ υn(t),

P
(

max
n≥υn(t)

Zn(t) ≥ c eγ(t−T (t))
)
≤ P(T (t) ≥ t/2) +

∞∑
n=υn(t)

P
(
An ≥ c eγ[(1−Fn)t/2−Fn(T (t)−τ?n)]). (11)
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An argument analogous to Lemma 6.2 yields, for any δ > 0,

P
(
An ≥ c eγ[(1−Fn)t/2−Fn(T (t)−τ?n)]

)
≤ C0 E

[
exp

{
− c

2e
γ[(1−F )t/2−δ(T (t)−τ?n)]

}]
+ C0 P(F < δ),

where F is a random variable of law µ. We now pick % > λ?+ε
γδ . As in Lemma 6.2 we use existence of a constant C%

such that e−y ≤ C%y−%, for all y ≥ 0, and Lemma 6.1 to get

E
[
exp

{
− c

2e
γ[(1−F )t/2−δ(T (t)−τ?n)]

}]
≤ C%

(
c
2
)−%

eγ%ε
(
n(t)
n

)% γδ
λ?+ε K(0, %γ/2)

n(t) .

Summing over n ≥ υn(t) yields

∑
n≥υn(t)

P(An ≥ c eγ[(1−Fn)t/2−Fn(T (t)−τ?n)]) ≤ C0C%
(
c
2
)−%

eγ%ε
K(0, %γ/2)
n(t)

∞∑
n=υn(t)

(
n(t)
n

)% γδ
λ?+ε + C0 P(F < δ)

≤ C υ1−% γδ
λ?+ε + C0 P(F < δ),

where C is a constant that does not depend on t or υ. Finally, using that 1−% γδ
λ?+ε < 0, recalling that P(F < δ)→ 0,

as δ ↓ 0, P(T (t) ≥ t/2)→ 0, as t ↑ ∞, and plugging this into (11) completes the proof.

6.3 Families born early are not fit enough

The following lemma is a standard extreme value result that is included for completeness.
Lemma 6.4. For all κ, η > 0, there exists w = w(κ, η) > 0 such that, for all t large enough,

P
(

Γt
(
[−∞,− logw]× [0, κ]× [0,∞]

)
= 0
)
≥ 1− η.

Proof. We have

P
(

Γt
(
[−∞,− logw]× [0, κ]× [0,∞]

)
= 0
)

= P
(
Fn < 1− κ/t, ∀n s.t. τn ≤ T (t)− logw

)
= P

(
Fn < 1− κ/t, ∀n ≤M(T (t)− logw)

)
,

where we recall that M(T (t)− logw) is the number of families that were founded before time T (t)− logw. Thus,
in view of Hypothesis (RV),

P
(

Γt
(
[−∞,− logw]× [0, κ]× [0,∞]

)
= 0
)

= E
[
µ(0, 1− κ/t)M(T (t)−logw)]

= (1 + o(1)) E
[

exp
(
−M(T (t)− logw)(κ/t)α`(κ/t)

)]
,

when t tends to infinity. Note that, by Lemma 4.1, with probability tending to one,

logw = T (t)−
(
T (t)− logw

)
≤ τn(t) − τM(T (t)−logw) ≤

1
λ? − ε

log n(t)
M(T (t)− 1) + ε,

implying that
M(T (t)− 1) ≤ n(t) exp

[
− (λ? − ε)(logw − ε)

]
.

Recall that, using (RV) again, n(t) ∼ tα/`(1/t). We thus get

P
(

Γt
(
[−∞,− logw]× [0, κ]× [0,∞]

)
= 0
)
≥ (1 + o(1)) exp

(
− e−(λ?−ε)(logw−ε)κα`(κ/t)/`(1/t)

)
.

Since ` is a slowly varying function, we have that `(κ/t)/`(1/t)→ 1 when t tends to infinity. In conclusion,

P
(

Γt
(
[−∞,− logw]× [0, κ]× [0,∞]

)
= 0
)
≥ (1 + o(1)) exp

(
− e−(λ?−ε)(logw−ε)κα

)
→ 1,

as w ↑ ∞, which concludes the proof.
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7 Proof of non-extensiveness of condensation

7.1 Proof of Theorem 2.2

Let η, c > 0. By Lemma 6.2 there exists κ = κ(c, η) such that

lim inf
t→∞

P
(
Γt([−∞,∞]× [κ,∞]× (c,∞]) = 0

)
≥ 1− η.

By Lemma 6.3 there exists υ = υ(c, η) > 1 such that

lim inf
t→∞

P
(
Γt([log υ,∞]× [0,∞]× (c,∞]) = 0

)
≥ 1− η.

By Lemma 6.4, there exists w = w(κ, η) > 0 such that

lim inf
t→∞

P
(
Γt([−∞,− logw]× [0, κ]× [0,∞]) = 0

)
≥ 1− η.

Finally, Proposition 5.1 gives that Γt converges on ( − ∞, log υ) × [0, κ) × (c,∞] to the Poisson process with
intensity measure ζ. Combining these four facts and using that η > 0 is arbitrarily small, we get convergence on
[−∞,∞]× [0,∞]× (c,∞]. As this holds for all c > 0 the proof is complete.

7.2 Proof of Corollary 2.3

(i) We fix x > 0 and apply the vague convergence proved in Theorem 2.2 to the compact set K := [−∞,+∞] ×
[0,∞]× [x,∞]. We get, as t→∞, that

M(t)∑
n=1

1K(τn − T (t), (t− τn)(1− Fn), e−γ(t−T (t))Zn(t))⇒ Poisson
(∫

K

dζ

)
.

Hence

P

(
e−γ(t−T (t)) max

n∈{1,...,M(t)}
Zn(t) ≥ x

)
→ P

(
Poisson

(∫
K

dζ

)
≥ 1
)

= 1− exp
(
−
∫
K

dζ

)
. (12)

Integrating out gives∫
K

dζ =
∫ +∞

−∞

∫ ∞
0

∫ ∞
x

αfα−1λ?eλ
?se−ze

γ(s+f)
eγ(s+f)dz df ds

=
∫ ∞

0
e−w

∫ ∞
0

αfα−1
∫ 1

γ log w
x−f

−∞
λ?eλ

?sds df dw

=
(∫ ∞

0
e−w

(w
x

)λ?
γ

dw

)(∫ ∞
0

αfα−1e−λ
?fdf

)
=

Γ(α+ 1)Γ(1 + λ?

γ )
(λ?)α x−

λ?

γ .

Thus, the right hand side in (12) is 1− exp(−Λx−η), for Λ = Γ(α+1)Γ(1+λ?

γ )
(λ?)α and η = λ?

γ . Summarising,

P
((
e−γ(t−T (t)) max

n∈{1,...,M(t)}
Zn(t)

)−η ≤ y)→ 1− exp(−Λy) = P(Exp(Λ) ≤ y),

which proves the statement.

(ii) The probability that t(1− V (t)) is in an interval [a, b], for some 0 ≤ a < b, converges to∫ +∞

−∞

∫ b

a

∫ ∞
0

e−ζ([−∞,+∞]×[0,∞]×[z,∞]) ζ(ds, df, dz),
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where the inner integration is with respect to z, the middle with respect to f , and the outer with respect to s. We
recall from above that

ζ([−∞,+∞]× [0,∞]× [z,∞]) =
Γ(α+ 1)Γ(1 + λ?

γ )
(λ?)α z−

λ?

γ .

Under (Cond), we have λ? = γ and the right hand side becomes αΓ(α,λ?)
z , where

Γ(α, λ?) :=
∫ ∞

0
fα−1e−λ

?f df = Γ(α)
(λ?)α .

We get, substituting v = eγ(s+f) and recalling that λ? = γ,∫ +∞

−∞

∫ ∞
0

e−ζ([−∞,+∞]×[0,∞]×[z,∞])dζ(s, f, z) = αfα−1e−λ
?fdf

∫ ∞
0

(∫ ∞
0

ve−zvdv

)
e−

αΓ(α,λ?)/zdz

= αfα−1e−λ
?fdf

∫ ∞
0

e−αΓ(α,λ?)/z

z2 dz = fα−1e−λ
?fdf

Γ(α, λ?) .

(iii) By Theorem 2.2 the random variable S(t)− T (t) converges to a random variable U with density∫ ∞
0

∫ ∞
0

e−ζ([−∞,+∞]×[0,+∞]×[z,+∞]) ζ(s, df, dz).

7.3 Proof of Theorem 2.4

We have in view of Theorem 2.2, for all ε > 0 as t ↑ ∞,

e−γ(t−T (t))
M(t)∑
n=1

Zn(t) =
∫
z dΓt(s, f, z) ≥

∫
z1l(ε,1)(z) dΓt(s, f, z)→

∫
z1l(ε,1)(z) dPPPζ(s, f, z),

where PPPζ is the counting measure of a Poisson process with intensity measure ζ. Observe that, for all m ∈ N,∫
z1l(ε,1)(z) dPPPζ(s, f, z) ≥

m(1−ε)−1∑
k=0

∫ ε+ k+1
m

ε+ k
m

z dPPPζ(s, f, z) ≥
m(1−ε)−1∑

k=0

(
ε+ k

m

)
Pk,

where (Pk)k≥0 is a sequence of independent Poisson random variables of parameters ζ(R×(0,∞)×(ε+ k
m , ε+ k+1

m )).
As before, we find

ζ (R× (0,∞)× (a, b)) = Γ(α+1)Γ(1+λ?

γ )
(λ?)α

(
a−

λ?

γ − b−
λ?

γ

)
.

We abbreviate Λ := Γ(α+1)Γ(1+λ?

γ )
(λ?)α and get

E

m(1−ε)−1∑
k=0

(
ε+ k

m

)
Pk

 = Λ
m(1−ε)−1∑

k=0

(
ε+ k

m

)((
ε+ k

m )−
λ?

γ −
(
ε+ k+1

m

)−λ?γ )

∼ Λ
m

m(1−ε)−1∑
k=0

(
ε+ k+1

m

)−λ?γ ∼ Λ
∫ 1−ε

0

(
ε+ x

)−λ?γ dx,

as m→∞, by Riemann integration. The right hand side is of order log(1/ε) if λ? = γ, and of order ε1−λ?γ if λ? > γ.
In any case, the expectation goes to infinity, as ε ↓ 0. With a similar reasoning we get

Var

m(1−ε)−1∑
k=0

(
ε+ k

m

)
Pk

 ≤ Λ
m

m(1−ε)−1∑
k=0

(ε+ k
m )2−λ?γ

ε+ k+1
m

∼ Λ
∫ 1−ε

0

(
ε+ x

)1−λ?γ dx.
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If λ? = γ the variance is therefore bounded, and otherwise it grows of a slower order than the square of the
expectation. Thus, by Chebyshev’s inequality, we get

lim
ε↓0

lim
m→∞

m(1−ε)−1∑
k=0

(
ε+ k

m

)
Pk =∞,

in probability, and this implies the claimed result.

8 Open problems

Precise growth of the system

A question that remains open is about the precise growth of N(t) in the condensation phase. Recall from Remark 1
that if condensation is absent we have logN(t) = λ∗t + O(1) but we do not have a similarly strong statement in
the condensation case. We get a lower bound on the growth by considering the size of the largest family. Under
(RV) this gives logN(t) − γt + γT (t) → ∞ with T (t) ∼ α/λ∗ log t. A plausible conjecture would be that in the
condensation case this bound is sharp to logarithmic order, i.e. logN(t) = λ∗t− α log t+ o(log t).

Shape of the condensate

Our results offer only a partial answer to the question raised in Borgs et al. [7] how the links in the network are
distributed among the highest fitnesses present in the system at any given time. The most important question
that remains open here is whether the families that together form the condensate have a characteristic collective
behaviour prior to condensation. The work on Kingman’s model in Dereich and Mörters [12], and on a growth
model without self-organisation in Dereich [10], suggests that this is indeed the case. In particular in the model
of [10] it is shown that for parameters chosen in the condensation regime, the random mass distribution in a suitably
shrinking neighbourhood of the maximal fitness value satisfies a law of large numbers with limiting shape given by a
Gamma distribution. We believe that this is a phenomenon of universal nature and conjecture the same behaviour
in our model.

Conjecture 8.1 (Condensation wave). Under assumption (RV) we have

lim
t→∞

Ξt(1− x
t , 1) = ω(β, γ)

Γ(α+ 1)

∫ x

0
yαe−y dy,

in probability, i.e. the condensation wave has the shape of a Gamma distribution with shape parameter 1 + α.

Other classes of bounded fitness distributions

In this paper we have investigated the class of fitness distributions in the maximal domain of attraction of the
Weibull distribution, i.e. those bounded distributions of regular variation at the maximal fitness value. It would
also be interesting to discuss fitness distributions with a faster decay at the maximal fitness value, for example in
the maximal domain of attraction of the Gumbel distribution. This includes the interesting example of distributions
with logµ(1 − ε, 1) ∼ −ε−γ , for some γ > 0. What is the shape of the condensation wave in this case? Will we
also see non-extensive condensation? More generally, can we find bounded fitness distributions where we experience
condensation by macroscopic occupancy? This circle of problems is currently under investigation.
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