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Preferential attachment

Popularised by Barabási and Albert (1999) preferential attachment is a
building principle of networks which aims to explain some of the
emerging features of large real networks like

power law degree distribution,

robustness of the network under attack,

the small world effect, . . .

Preferential attachment means that

Networks are built dynamically by adding nodes successively.

When a new node is introduced, it is linked to existing nodes with a
probability depending on their degree. The higher the degree of a
node, the more likely it is to establish a link.

Bollobás and Riordan defined a growing family of random graphs based
on the preferential attachment paradigm and rigorously verified several of
the conjectured emerging features.

Peter Mörters Robustness of spatial networks



Preferential attachment

Popularised by Barabási and Albert (1999) preferential attachment is a
building principle of networks which aims to explain some of the
emerging features of large real networks like

power law degree distribution,

robustness of the network under attack,

the small world effect, . . .

Preferential attachment means that

Networks are built dynamically by adding nodes successively.

When a new node is introduced, it is linked to existing nodes with a
probability depending on their degree. The higher the degree of a
node, the more likely it is to establish a link.

Bollobás and Riordan defined a growing family of random graphs based
on the preferential attachment paradigm and rigorously verified several of
the conjectured emerging features.

Peter Mörters Robustness of spatial networks



Preferential attachment

Popularised by Barabási and Albert (1999) preferential attachment is a
building principle of networks which aims to explain some of the
emerging features of large real networks like

power law degree distribution,

robustness of the network under attack,

the small world effect, . . .

Preferential attachment means that

Networks are built dynamically by adding nodes successively.

When a new node is introduced, it is linked to existing nodes with a
probability depending on their degree. The higher the degree of a
node, the more likely it is to establish a link.

Bollobás and Riordan defined a growing family of random graphs based
on the preferential attachment paradigm and rigorously verified several of
the conjectured emerging features.

Peter Mörters Robustness of spatial networks



Preferential attachment

Popularised by Barabási and Albert (1999) preferential attachment is a
building principle of networks which aims to explain some of the
emerging features of large real networks like

power law degree distribution,

robustness of the network under attack,

the small world effect, . . .

Preferential attachment means that

Networks are built dynamically by adding nodes successively.

When a new node is introduced, it is linked to existing nodes with a
probability depending on their degree. The higher the degree of a
node, the more likely it is to establish a link.

Bollobás and Riordan defined a growing family of random graphs based
on the preferential attachment paradigm and rigorously verified several of
the conjectured emerging features.

Peter Mörters Robustness of spatial networks



Preferential attachment

The preferential attachment models of Bollobás and Riordan and of
Dereich and M. are locally tree-like and have very few short cycles.
Indeed, the key tool in the study of preferential attachment models is
local approximation by branching processes. Real networks by contrast
exhibit clustering and contain many short cycles.

Random networks built using the preferential attachment paradigm
match many of the macroscopic but not the mesoscopic features of real
world networks.

A plausible reason for the clustering in networks is the presence of
individual features of the nodes such that similarity of features is an
additional incentive to form links. We therefore propose a model in which
preferential attachment is combined with spatial structure to address
this. Similar models have been set up by Flaxman, Frieze and Vera
(2006) and Aiello, Bonato, Cooper, Janssen and Pralat (2009).
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Definition of the model

The model is a growing sequence of graphs (Gt)t>0 in continuous time.

Vertices are born after standard exponential waiting times and
placed uniformly at random on the unit circle.

A node born at time t is connected by an edge to each existing node
independently with probability

ϕ
( t%

f (k)

)
,

where

k is the indegree of the older node at time t,
% is the distance of the nodes,
ϕ : [0,∞)→ [0, 1] is a decreasing profile function,
f : N0 → (0,∞) is an increasing attachment rule.

Conventions:

We normalise ϕ so that
∫
ϕ(|x |) dx = 1.

We assume γ := limk→∞
f (k)
k exists and 0 < γ < 1.
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Definition of the model

Suppose the graph Gt− is given, and a vertex is born at time t. Then, for
each vertex in Gt− with indegree k , the probability that it is linked to the
newborn vertex is equal to∫

ϕ

(
td(0, y)

f (k)

)
dy =

f (k)

t
2

∫ t
2f (k)

0
ϕ(x) dx ∼ f (k)

t
.

The indegree process of a vertex is a time-inhomogeneous pure birth
process, starting from 0 and jumping at time t from state k to state
k + 1 with intensity f (k)/t.

Indegree processes of different vertices are dependent.
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Empirical degree distribution

Let µt be the empirical indegree distribution given by

µt(k) =
1

|Gt |
∑
v∈Gt

1{indegree(v) = k}.

Theorem 1 Jacob and M (2013)

The empirical indegree distributions µt converge in probability to a
deterministic probability measure µ given by

µ(k) =
1

1 + f (k)

k−1∏
`=0

f (`)

1 + f (`)
= k−(1+

1
γ
)+o(1)

,

i.e. the asymptotic indegree distribution is a power law with exponent

τ = 1 + 1
γ .

The empirical outdegree distribution converges to a light-tailed
distribution, which does not influence the power law exponent.
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Clustering coefficients

For a finite graph G we define the local clustering coefficient

c loc(v) :=
#triangles containing v

#adjacent edge pairs meeting at v

and the average clustering coefficient as

cav(G ) :=
1

|G |
∑
v∈G

c loc(v).

Theorem 2 Jacob and M (2013)

The network (Gt)t>0 is clustering in the sense that

cav(Gt)→ cav∞ > 0 in probability.
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Clustering coefficients

Suppose ϕ is regularly varying at infinity with index −δ, for δ > 1. The
parameter δ controls the probability of long edges and quantifies the
clustering; the bigger δ the stronger the clustering.

Simulations with parameters (clockwise from top left) (a) γ = 0.5, δ = 2.5,
(b) γ = 0.75, δ = 2.5, (c) γ = 0.5, δ = 5, (d) γ = 0.75, δ = 5.

Peter Mörters Robustness of spatial networks



Clustering coefficients

Suppose ϕ is regularly varying at infinity with index −δ, for δ > 1. The
parameter δ controls the probability of long edges and quantifies the
clustering; the bigger δ the stronger the clustering.

Simulations with parameters (clockwise from top left) (a) γ = 0.5, δ = 2.5,
(b) γ = 0.75, δ = 2.5, (c) γ = 0.5, δ = 5, (d) γ = 0.75, δ = 5.

Peter Mörters Robustness of spatial networks



Existence of a robust phase

We now address the problem of robustness of the network (Gt)t>0 under
percolation. Let Ct ⊂ Gt be the largest connected component in Gt and
denote by |Ct | its size. We say that the network has a giant component
if Ct is of linear size or, more precisely, if

lim
ε↓0

lim sup
t→∞

P
( |Ct |

t
≤ ε
)

= 0.

We write Gp t for the random subgraph of Gt obtained by Bernoulli
percolation with retention parameter p > 0 on the vertices of Gt .
The network (Gt)t>0 is said to be robust if, for any p > 0, the network
( Gp t)t>0 has a giant component.
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Existence of a robust phase

Theorem 3 (Jacob and M. 2015)

The network (Gt)t>0 is robust if γ > δ
1+δ or equivalently τ < 2 + 1

δ .

This is the first instance of a scale-free network model that
combines robustness with clustering.

We believe that our criterion for robustness is sharp.

Robustness requires strong preferential attachment and weak
clustering and can fail for any power-law exponent if the clustering is
too strong. For example, the spatial preferential attachment model
of Aiello et al.(2009) has too strong clustering and is never robust.

Robustness has also been shown by Deijfen, van der Hofstad and
Hooghiemstra (2013) for a scale-free long range percolation model.
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Existence of a non-robust phase

Let Ct ⊂ Gt be the largest connected component in Gt . We say that the
network has no giant component if Ct has sublinear size, i.e.

lim inf
t→∞

P
( |Ct |

t
≤ ε
)

= 1 for any ε > 0.

The network is said to be non-robust if there exists p > 0 so that the
percolated network ( Gp t)t>0 has no giant component.

Theorem 4 (Jacob and M. 2015)

The network (Gt)t>0 is non-robust

(a) if γ < 1
2 or equivalently τ > 3;

(b) if γ < δ−1
δ or equivalently τ > 2 + 1

δ−1 .
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Existence of a non-robust phase

Theorem 4 (Jacob and M. 2015)
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Clustering cannot improve robustness.

Clustering can destroy robustness. The phase transition between the
robust and the non-robust phase does not occur at τ = 3 as in
non-spatial models, but at a smaller value depending on the
clustering strength δ.

Robustness does not occur if the profile function ϕ is not
heavy-tailed, i.e. as δ →∞.

We conjecture non-robustness for γ < δ
δ+1 or equivalently τ > 2 + 1

δ .
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Proof strategy for non-robustness

Our network, i.e. the graph sequence (Gt), can be constructed from
a Poisson process on [−1

2 ,
1
2 ]× [0, t].

A graph G t can be constructed

by scaling space and time in Gt by a factor t, resp 1/t, or
from a Poisson process on [− t

2 ,
t
2 ]× [0, 1] using our connection rule.

The sequence (G t) converges to a limit model G∞.

The network is non-robust if, for some p > 0 the percolated limit
model Gp ∞ has no infinite component.

The main problem is that, if n is large, there is no easy upper bound
for the probability that n distinct vertices x1, . . . , xn in G∞ form a
path {x1↔x2↔· · ·↔xn}.
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for the probability that n distinct vertices x1, . . . , xn in G∞ form a
path {x1↔x2↔· · ·↔xn}.
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Proof strategy for non-robustness

As a solution to this problem we develop the concept of quick paths.

Starting from a path in Gp ∞ we construct a quick path with the
same endpoints such that

at least half of the points are in Gp ∞, and the remaining ones in G∞;
the path can be split into short subpaths, which occur disjointly.

With this trick the path can be split into pieces which up to
symmetry are one of the following six types.

(i) (ii) (iii)

(iv) (v) (vi)
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Proof strategy for non-robustness

To give a flavour I show how to deal with a path

x0↔x1↔x2,

with x1 being the youngest of the three vertices.

To move to the quick path we let z0 = x0, z2 = x2 and replace x1 by the
oldest vertex z1 ∈ G∞ younger than x0 and x2 such that z0↔z1↔z2.

Now any vertex z ′1 ∈ G∞ younger than x0 and x2 but older than z1 can
only influence the indegree of either z0 or z2 at the birth time of z1, but
never both. Hence z0↔z1↔z2 being a quick path implies the disjoint
occurrence of the events {z0↔z1} and {z1↔z2}.
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Proof strategy for non-robustness

The construction of quick paths is not using spatial information and gives
non-robustness only in the case τ > 3. To show non-robustness in the
case τ > 2 + 1

δ−1 a refinement is needed.

A vertex z born at time u has typically of order u−γ younger neighbours,
which may be a lot. As most of these neighbours are close to z , namely
within distance u−1, including all these points is not optimal.

For a point z define a region around z and show that the typical number
of vertices outside this region that are connected to z , or any other
vertex in Cz , is small. Including only edges that straddle the boundary of
the region in a reduced quick path improves the bound if δ > 2.

C ′
z

Cz

z
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Summary

We define a spatial preferential attachment model in which every
vertex has individual features represented by its position on the unit
circle. New vertices attach to existing vertices with a probability
favouring connections to vertices with similar features and high
degrees. The resulting networks are scale free and exhibit clustering.

For sufficiently strong preferential attachment and sufficiently weak
clustering the networks are robust.

The phase transition between the robust and non-robust phase does
not occur at τ = 3, but at a smaller value depending on the
clustering strength. This is a new phenomenon.

The proof of non-robustness is based on an upper bound for the
probability of a special class of paths in the network, called the quick
paths. We use disjoint occurence of events and the BK inequality to
break up paths into short bits whose probabilities can be estimated.
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