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Abstract: We define a class of growing networks in which new nodes are
given a spatial position and are connected to existing nodes with a probability
mechanism favouring short distances and high degrees. The competition of
preferential attachment and spatial clustering gives this model a range of
interesting properties. Empirical degree distributions converge to a limit
law, which can be a power law with any exponent τ > 2. The average
clustering coefficient of the networks converges to a positive limit. Finally,
a phase transition occurs in the global clustering coefficients and empirical
distribution of edge lengths when the power-law exponent crosses the critical
value τ = 3. Our main tool in the proof of these results is a general weak law
of large numbers in the spirit of Penrose and Yukich.

MSc Classification: Primary 05C80 Secondary 60C05, 90B15.

Keywords: Scale-free network, Barabási-Albert model, preferential attachment, dynamical random graph,

geometric random graph, power law, degree distribution, edge length distribution, clustering coefficient.

1. Introduction

Many of the phenomena in the complex world in which we live have a rough description
as a large network of interacting components. It is therefore a fundamental problem to
derive the global structure of such networks from basic local principles. A well established
principle is the preferential attachment paradigm which suggests that networks are built by
adding nodes and links successively, in such a way that new nodes prefer to be connected to
existing nodes if they have a high degree [3]. The preferential attachment paradigm offers,
for example, a credible explanation of the observation that many real networks have degree
distributions following a power law behaviour. On the global scale preferential attachment
networks are robust under random attack if the power law exponent is sufficiently small, and
have logarithmic or doubly logarithmic diameters depending on the power law exponent.
These features, together with a reasonable degree of mathematical tractability, have all
contributed to the enormous popularity of these models.

Among the many criticisms directed at preferential attachment models is a significant
deviation of their local structure from that observed in real networks. In preferential attach-
ment models the neighbourhoods of typical nodes have a tree-like topology [10, 4] , which
is a crucial feature for their global analysis, but is not in line with the behaviour of many
real world networks. The most popular quantity to measure the local clustering of networks
are the clustering coefficients, which are measured to be positive in most real networks, but
which invariably vanish in preferential attachment models that do not incorporate further
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effects [2, 6]. A possible reason for the clustering of real networks is the presence of a hidden
variable assigned to the nodes, such that similarity of values is a further incentive to form
links. Several authors have therefore proposed models combining preferential attachment
with spatial features in order to address the weaknesses of pure preferential attachment.
Among the mathematically sound attempts in this direction are the papers of Flaxman et
al. [11, 12], Jordan [14], Jordan and Wade [16], Aiello et al. [1] and Cooper et al. [7]. These
papers show that combining preferential attachment and spatial dependence can retain the
global power law behaviour while changing the local topology of the network, for example by
showing that the resulting graphs have small separators [11, 12]. But none of them discusses
clustering systematically by analysing the clustering coefficients.

In this paper we propose a natural model of a network in which the preferential attachment
paradigm is modulated by spatial proximity. Our model is a generalisation and variant of
the one introduced in Aiello et al. [1]. The model is best described as a growing network in
continuous time. New nodes are born according to a Poisson process of rate one and placed
uniformly on the one-dimensional torus of length one. A node born at time t is connected by
an ordered edge to each existing node independently with a probability ϕ(tρ/f(d)) where d
is the indegree of the older node at time t, and ρ is the distance of the nodes. The decreasing
profile function ϕ : [0,∞) → [0, 1] and increasing attachment rule f : N ∪ {0} → (0,∞) are
the parameters of the model. Loosely speaking, the fact that the time t and the spatial
distance ρ appear as a product in the connection probability ensures that the probability
that new nodes connect to their spatially nearest neighbours, which typically are distance
1/t away and have bounded indegree, does not go to zero or one. This is necessary to balance
the spatial and preferential attachment effects in our model. We show that this modification
of the original idea of preferential attachment preserves the power law behaviour of existing
preferential attachment models while significantly changing the local topology leading to a
positive average clustering coefficient. We also observe interesting phase transitions in the
behaviour of the global clustering coefficient and the empirical edge length distribution.

Our analysis of this model is using methods developed originally for the study of random
geometric graphs, see Penrose and Yukich [18] for a seminal paper in this area and [17] for an
exhibition. This approach is new in the context of preferential attachment and quite different
from the established route to study dynamical random graph models, which is based on the
use of differential equations to study the evolution of expected quantities and concentration
inequalities to relate them to the empirical quantities. By contrast, our analysis is based on
a rescaling which transforms the growth in time into a growth in space. This transformation
stabilizes the neighbourhoods of a typical vertex and allows us to observe convergence of
the local neighbourhoods of typical vertices in the graph to an infinite graph. This infinite
graph, which is not a tree, is locally finite and can be described by means of a Poisson point
process. We establish a weak law of large numbers, similar to the one given in [18], which
allows us to deduce convergence results for a large class of functionals of the graph. Some
further work is required to show that certain rare effects, like vertices having a very high
degree or being linked to distant vertices, do not affect our functionals.

The paper is organized as follows. In Section 2 we present the model. The main results
concerning the degree distribution, the clustering coefficients and the edge length distribu-
tion, are stated in Section 3. In Section 4 we describe the general method and main tools
developed for the study of the network. Section 5 completes the proofs of our main results
and, finally, Section 6 briefly discusses some variants and further developments.
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2. The model

Write T1 for the one-dimensional torus of length 1 represented as R/Z endowed with the
usual distance. Let X denote a Poisson point process of unit intensity on T1 × (0,∞). A
point x = (x, s) in X is a vertex x, born at time s and placed at position x. Observe that,
almost surely, two points of X neither have the same birth time nor the same position. We
say that (x, s) is older than (y, t) if s < t. An edge is always oriented from the younger to
the older vertex. For t > 0, write Xt for X ∩ (T1 × [0, t]), the set of vertices already born at
time t. We construct a growing sequence of graphs (Gt)t>0, starting from the empty graph,
and adding successively the vertices in X when they are born (so that the vertex set of Gt
is Xt), and connecting them to some of the older vertices. The rule is as follows:

Construction rule: Given the graph Gt− and y = (y, t) ∈ X , we add the
vertex y and, independently for each vertex x in Gt−, we insert the edge (y,x),
independently of X , with probability

ϕ

(
td(x,y)

f(Zx(t−))

)
. (2.1)

The resulting graph is denoted by Gt.

Here the following definitions and conventions apply:

(1) d(x,y) denotes the length of the edge (y,x), which is the usual distance in T1 (for
which, by a minor abuse of notation we also use the notation d) between the spatial
positions of the vertices x and y.

(2) ϕ : [0,∞)→ [0, 1] is the profile function. It is supposed to be non-increasing, and of
total integral 1/2. Informally, it describes the spatial dependence of the probability
that the newborn vertex y is linked to the existing vertex x.

(3) Zx(t−) (resp. Zx(t)) denotes the indegree of vertex x at time t− (resp. t), that is,
the total number of incoming edges for the vertex x in Gt− (resp. Gt). Similarly, we
denote by Yy the outdegree of vertex y, which remains the same at all times u ≥ t.

(4) f : N ∪ {0} → (0,∞) is the attachment rule. It is supposed to be non-decreasing.
Informally, f(k) quantifies the preferential ‘strength’ of a vertex of current indegree k,
or likelihood of attracting new links. We assume that the attachment rule f has an
asymptotic slope

γ := lim
k→∞

f(k)

k
∈ (0, 1).

Note that, for any r > 0, the profile function ϕ and attachment rule f together define the
same model as the profile function x 7→ ϕ(rx) and the attachment rule k 7→ rf(k). The
normalisation convention

∫
ϕ = 1

2 , which will always be assumed for convenience, represents
therefore no loss of generality.

Whereas in classical preferential attachment the linking probability itself is multiplied by
the preferential attachment factor f(Zx(t−)), in our spatial setup this factor enters as the
spatial expansion of the influence profile around the vertex x = (x, s) at time t, which is
described by the function

y 7→ x+ ϕ
( td(x,y)
f(Zx(t−))

)
.

The probability of connecting a new vertex (y, t) to an old one is given by the value of the
influence profile around the old vertex at the position y of the new one. In the important
special case of the profile function ϕ(r) = 1l{r < 1

2}, which only takes the values zero or one,
this decision is not random. In this case a vertex x is linked to a new vertex born at time t if
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and only if their positions are within distance f(Zx(t−))/(2t). In other words, every vertex x
is surrounded by an influence region, a ball of time-dependent radius f(Zx(t−))/(2t), and a
new vertex is linked to all older vertices in whose influence regions it falls at the time of its
birth. This special case already reveals the complexity and interest of the model, and the
reader is encouraged to first figure out its behaviour.

The model introduced by Aiello et al. [1] and further studied by Cooper, Frieze and
Pralat [7], and by Janssen, Pralat and Wilson [13] is essentially the same model for the
special case that the attachment rule is of the form f(k) = A1k+A2 and the profile function
is of the form ϕ(x) = p1l{x < 1/(2p)}. Small differences are that they work in discrete rather
than continuous time, and allow for spaces more general than T1, but these differences are
inessential for the purposes of this paper, see also our comments in Section 6.

Recall the definition of the asymptotic slope γ of the attachment function from (4). As
γ > 0 this means that f is asymptotically linear, and this is known, in non-spatial preferential
attachment models, to lead to scale-free networks with power law exponent τ = 1 + 1

γ .

We now illustrate the connection between non-spatial preferential and spatial attachment
models. Suppose the graph Gt− is given, and a vertex is born at time t, but we do not know
its position, which is therefore uniform on T1. Then, for each vertex x = (x, s) ∈ Gt−, the
probability that it is linked to the newborn vertex is equal to∫

T1

ϕ

(
td(x, y)

f(Zx(t−))

)
dy =

f(Zx(t−))

t
2

∫ t
f(Zx(t−))

0
ϕ(y) dy.

As a consequence, the process (Zx(t))t≥s is a time-inhomogeneous pure birth process, starting
from 0 and jumping at time t from state k to state k + 1 with intensity

f(k)

t
2

∫ t
f(k)

0
ϕ(x) dx.

This quantity is bounded by f(k)/t. As the pure birth process (Zx(t))t≥s grows roughly
like tγ (see Lemma 8 for a precise statement), the normalisation of ϕ makes this bound
asymptotically sharp. Hence the jumping intensity of our process is the same as in the
classical Barabási-Albert model of preferential attachment [3, 19], or its variant studied by
Dereich and Mörters [8, 9, 10]. Not surprisingly, our spatial model exhibits the same limiting
indegree distribution.

However, as soon as one deepens the study of the graph further than the first moment
calculations, the essential difference with the non-spatial models appears. The presence of
edges is now strongly correlated through the spatial positions of the vertices. These strong
correlations both make the model much harder to study, and allow the network to enjoy
interesting clustering properties. These are the main concern of this paper and will be
described in the next section. We will henceforth use the common notation g = o(h) to
indicate that g/h converges to zero, g � h if g/h is bounded from zero and infinity, and
g ∼ h to indicate that g/h converges to one.

3. Main results

3.1. Indegree distribution. While the indegree of a given vertex grows indefinitely with
the size of the network, the mean indegree in the graph Gt converges to a limiting distribution
with polynomial decay. More precisely, for t > 0 such that Xt is nonempty, denote by µt
the law of the indegree of a randomly (and uniformly) chosen vertex in the graph Gt, or
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empirical indegree distribution. More formally, the empirical indegree distribution is the
random measure on N ∪ {0}, which gives to each k ∈ N ∪ {0} the weight

µt(k) =
1

|Xt|
∑
x∈Xt

1{Zx(t) = k},

if Xt 6= ∅ and µt(k) = 1{k = 0} otherwise. We introduce the probability measure µ,
determined by its weights

µ(k) =
1

1 + f(k)

k−1∏
l=0

f(l)

1 + f(l)
. (3.1)

For any measure λ on N ∪ {0} and any function g : N ∪ {0} → [0,∞), we write 〈λ, g〉 for
the expectation of g under the law λ, or

∑
k≥0 λ(k)g(k). The following theorem states a

convergence result for the empirical indegree distribution µt to the probability measure µ,
which we call limiting indegree distribution. This result implies, in particular, convergence
in probability, in the total variation norm.

Theorem 1. For any nondecreasing function g : N ∪ {0} → [0,∞) satisfying 〈µ, gp〉 < ∞
for some p > 1, the following limit holds

〈µt, g〉 −→ 〈µ, g〉,

in probability, when t→∞.

Remark 1.

• The convergence in the theorem still holds for any function g, not necessarily positive
or monotonous, but with g(k) = o(kδ) for some δ < 1/γ.
• It is easy to check that, the limiting distribution µ satisfies

µ(k) = k
−(1+ 1

γ
)+o(1)

as k ↑ ∞,

which highlights the scale-free property of the network with exponent τ = 1 + 1/γ.
In the particular case of a linear attachment rule f(k) = γk + β, with γ ∈ (0, 1) and
β > 0, we have

µ(k) =
1

γ

Γ(k + β
γ )Γ(β+1

γ )

Γ(k + β+γ+1
γ )Γ(βγ )

∼
Γ(β+1

γ )

γΓ(βγ )
k−τ as k ↑ ∞,

a result that has already been obtained for their variant of the model in Theorem 1.1
of Aiello et al. [1] by a completely different technique of proof.

Our result shows that under our normalisation convention, the profile function has no
influence on the degree distribution. Note however that in the presence of spatial depen-
dence the normalisation of the profile function typically enforces a significant change to the
attachment rule. As an example, we look at the case when the vertex y born at time t
connects to vertex x with probability(

f(Zx(t−))

tαd(x,y)α

)
∧ 1,

for α > 1, where a ∧ b denotes the minimum of a and b. In our setup, this must correspond
to the normalised profile function ϕ(r) := ( 2α

α−1 r)
−α ∧ 1 and the attachment rule f ′(k) :=

2α
α−1f

1/α(k). Thus, if f1/α is approximately linear with slope γ the resulting power law

exponent is τ = 1 + α−1
2γα .
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3.2. Outdegree distribution. In the original preferential attachment model of Barabási
and Albert, the outdegree is constant. In the model variant of Dereich and Mörters, it is
asymptotically Poisson, therefore it is light-tailed, which implies that it is not relevant in the
study of the tail of the degree distribution. In our model, the limiting outdegree distribution
is not Poisson, and we could not find a closed formula defining it. Still, we prove that it is
light-tailed.

Denote by νt the empirical outdegree distribution in the graph Gt, defined by its weights

νt(k) =
1

|Xt|
∑
x∈Xt

1{Yx = k},

if Xt 6= ∅ and νt(k) = 1{k = 0} otherwise. The following theorem holds:

Theorem 2. There exists a probability measure ν on N ∪ {0} such that:

(1) For any function g : N ∪ {0} → R satisfying g(k) = o(ek
δ
) for some 0 < δ < 1 − γ,

we have

〈νt, g〉 −→ 〈ν, g〉,
in probability, when t→∞.

(2) The measure ν is light-tailed in the following sense: For any 0 < δ < 1− γ, we have

ν([k,+∞)) = o(e−k
δ
).

The limiting outdegree distribution ν is implicitly defined (see formula (5.2) below), but
it is not easy to compute explicitly. Moreover, it is not hard to see from our proofs that the
indegree and the outdegree of a randomly chosen vertex are asymptotically independent and
hence the limiting total degree distribution is the convolution µ ∗ ν.

3.3. Clustering. We now define the clustering coefficients for a finite simple graph G =
(V,E) with unoriented edges, forgetting the orientation of edges in the case of an oriented
graph. A subgraph of G containing exactly three distinct vertices and the three edges linking
them is called a triangle. A subgraph of the form ({x,y, z}, {{x,y}, {x, z}}) is called an open
triangle with tip x. In other words, an open triangle with tip x consists of the vertex x and
two of its neighbours y and z, which themselves could either be connected and hence form
a triangle in G, or not. Note that every triangle in G contributes three open triangles.

The global clustering coefficient of G is defined as

cglob(G) := 3
Number of triangles included in G

Number of open triangles included in G
,

if there is at least one open triangle in the graph, and cglob(G) = 0 otherwise. Note that
always cglob(G) ∈ [0, 1]. The local clustering coefficient of G at a vertex x with degree at
least two is defined by

cloc
x (G) :=

Number of triangles included in G containing vertex x

Number of open triangles with tip x included in G
,

which is also an element of [0, 1]. Finally, the average clustering coefficient is defined as

cav(G) :=
1

|V2|
∑
x∈V2

cloc
x (G),

if the set V2 ⊂ V of vertices with degree at least two in G is not empty, and as cav(G) := 0
otherwise.
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Theorem 3.

(1) Average clustering coefficient:
There exists a strictly positive number cav

∞ such that

cav(Gt) −→ cav
∞

in probability, as t→∞.

(2) Global clustering coefficient:

(a) There exists a nonnegative number cglob
∞ such that

cglob(Gt) −→ cglob
∞

in probability, as t→∞.

(b) The global clustering coefficient cglob
∞ is positive if and only if

∑
k2µ(k) <∞.

Remark 2. Our proofs allow us to write cglob
∞ and cav

∞ explicitly as multiple integrals over
the network parameters.

Remark 3. The precise criterion given in Theorem 3(2b) implies that cglob
∞ > 0 if γ < 1

2 ,
and cglob

∞ = 0 if γ > 1
2 . Hence the phase transition in the global clustering coefficient occurs

when the power law exponent crosses the critical value τ = 3.

Remark 4. The global and average clustering coefficients have the following probabilistic
interpretation:

• Pick a vertex uniformly at random and condition on the event that this vertex has
degree at least two. Pick two of its neighbours, uniformly at random. Then the
probability that these two vertices are linked is equal to cav(G).
• Pick two edges sharing a vertex, uniformly from all such pairs of edges in the graph.

Then the probability that the two other vertices bounding the edges are connected
is equal to cglob(G).

Here is an informal discussion of the clustering phenomenon. For a randomly chosen ver-
tex, both the number of open triangles with tip in that vertex as well as the number of
triangles containing it converge to a finite random variable. The ratio of these variables de-
termines the average clustering coefficient, which therefore is always positive. To understand
the phase transition in the behaviour of the global clustering coefficient, first note that, as
the outdegree distribution is always light-tailed, new vertices typically generate a bounded
number of triangles and hence the number of triangles in the network grows linearly in time.
If
∑
k2µ(k) <∞ the average number of open triangles per vertex is finite, and so the number

of open triangles also grows linearly in time, and the global clustering coefficient is positive.
However, if this sum is infinite, the total number of open triangles has superlinear growth,
which is enough to guarantee that the global clustering coefficient vanishes. In this case,
the tip of a randomly chosen open triangle is typically a very old vertex with a high degree.
This is best seen in the case γ > 1

2 , in which the degree of the first born vertex at time t is

of order tγ , so that this vertex alone gives rise to a superlinear number t2γ of open triangles.
Observe that these effects match the structure of real networks. For example, if you pick a
webpage at random, and click on two hyperlinks, it is likely that the two pages you get have
actually a direct hyperlink. Now, if you pick two webpages which both have a hyperlink to
the Google homepage, it is not likely that these two pages have a direct link.
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3.4. Edge length distribution. In the graph Gt, we could hope that a typical edge con-
nects two vertices with birth times of order t and degrees of order one. We would then expect
from the construction rule (2.1) that its length is of order 1/t. This description is actually
always valid within our range of parameters (it would be false for γ ≥ 1), and explains the
rescaling below.

Write E(Gt) for the set of the edges of the graph Gt. Define λ, the (rescaled) empirical
edge length distribution, by

λt =
1

|E(Gt)|
∑

(x,y)∈E(Gt)

δtd(x,y),

if E(Gt) 6= ∅, and λt = δ0 otherwise, where δu is the Dirac measure giving mass one to {u}.

Theorem 4. There exists a probability distribution λ on the real line such that:

(1) For every continuous and bounded g : [0,∞)→ R we have

〈λt, g〉 −→ 〈λ, g〉,

in probability, when t→∞.
(2) Suppose that there exists δ > 1 such that the profile function satisfies ϕ(x) � 1∧x−δ.

Then

λ([K,+∞)) � 1 ∧K−η,

where η ∈ (0, 1] is the smallest of the three constants 1, 1
γ − 1 and δ − 1.

δγ = 1

21 δ

0

1

γ = 1
2

η = 1

η = 1
4

η = 1
2

η = 3
4

3
2

η = 0

η
=

0

η
=

1 4

η
=

1 2

η
=

3 4

Figure 1. Level sets for the length exponent η in the (δ, γ) plane consist of
a rectangular block corresponding to the value η = 1 and a family of lines
starting vertically at the δ-axis and turning horizontally upon hitting the
graph given by δγ = 1.
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The heavy tails of the empirical edge length distribution highlight the nature of our net-
works as small worlds. Observe that the distribution λ never has a first moment, implying
that the mean edge length is of larger order than 1/t. As the profile function ϕ is integrable,
if it decays polynomially, it must be of order x−δ for some δ > 1. If δ ≥ 2, then the profile
function does not influence the decay rate of the tail of the limiting edge length distribution.
This stays true if ϕ is any function satisfying

∫
vϕ(v) dv <∞. Conversely, a choice of ϕ can

lead to any exponent within (0, 1] if γ ≤ 1/2, or within (0, 1/γ− 1] if γ > 1/2, see Figure 1.

In Janssen et al. [13] the empirical edge length distribution is studied for the model defined
in [1]. This is essentially the case of an affine function f(k) = γk + β and a profile function
ϕ(x) = p1{x < 1/(2p)}, corresponding roughly to the case δ =∞. They show that if γ > 1

2

and 3γ+2
4γ+2 < α < 1, then∣∣{edges of length longer than t−α

}∣∣ ∼ C t
(2−α)+ 1

γ
(α−1)

for an explicit constant C > 0. Our result uses a different order of limits, but leads to the
same order of growth for the comparable quantity tλ[t1−α,∞). If γ < 1

2 they show that the
expected number of edges of length longer than t−α, for 0 ≤ α < 1, grows of order tα, which
is also of the same order as tλ[t1−α,∞). Note that the general form of the profile functions
allows for a genuinely richer phenomenology in our case.

4. Methods of proof

4.1. The rescaled picture. First, it is convenient to describe more explicitly the random-
ness involved in the ‘construction rule’, which determines the presence or absence of each
edge in the network. To this end, denote by T1 × (0,∞) the set of potential vertices, and by

E(T1 × (0,∞)) := {(y,x),y,x ∈ T1 × (0,∞),y younger than x}

the set of potential edges. Introduce a family V of independent random variables, independent
of X , indexed by the set of potential edges, and all uniformly distributed on [0, 1]. We will
denote these variables by Vx,y or V(x,y). A realisation of Xt and V defines a network
G1(Xt,V), with vertex set Xt, obtained with the same construction as before, but with the
construction rule replaced by the rule that you connect x to y if and only if

V(x,y) ≤ ϕ
(

sd(x,y)

f(Zx(s−))

)
, (4.1)

where s is the birth time of the younger vertex y. The growing networks (G1(Xt,V))t>0 and
(Gt)t>0 have the same law and will be identified. Moreover, the deterministic functional G1

associates a graph structure to any set of points in T1 × (0,∞) and family of points in [0, 1]
indexed by E(T1 × (0,∞)) .

Second, we want to generalize the construction, replacing T1 by Tt = R/(tZ), the one-
dimensional torus of length t. We permit the case t = ∞, with the convention T∞ = R.
The definition of the set of potential vertices Tt × (0,∞) and the set of potential edges
E(Tt × (0,∞)) is straightforward. We define the functional Gt, for t ∈ (0,∞], in analogy
to the case t = 1, by associating a graph structure to any set of points in Tt × (0,∞), and
any family of values in [0, 1] indexed by E(Tt × (0,∞)). In the construction, the rule (4.1)
is unchanged, but with the new understanding that the distances are now those in Tt.
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For finite t, we introduce the rescaling mapping

ht : T1 × (0, t] → Tt × (0, 1],
(x, s) 7→ (tx, s/t)

which expands the space by a factor t, the time by a factor 1/t. The mapping ht operates
on the set X , but also on V, with

ht(V)ht(x),ht(y) := Vx,y.
The operation of ht preserves the rule (4.1), and it is therefore simple to verify that we have

Gt(ht(Xt), ht(V)) = ht(G
1(Xt,V)) = ht(Gt),

that is, it is the same to construct the graph and then rescale the picture, or to first rescale
the picture, then construct the graph on this rescaled picture. Observe also that ht(Xt) is a
Poisson point process of intensity 1 on Tt × (0, 1], while ht(V) is still an independent family
of i.i.d. uniform random variables on [0, 1], indexed by E(Tt × (0, 1]).

From now on, we denote by X a Poisson point process with intensity 1 on R×(0, 1], and V
an independent family of i.i.d. uniform on [0, 1] random variables, indexed by E(R× (0, 1]).
For finite t > 0, identify (−t/2, t/2] and Tt, and write X t for the restriction of X to Tt×(0, 1],
and Vt for the restriction of V to the indices in E(Tt × (0, 1]). We write Gt(X ,V) for
Gt(X t,Vt), and observe that this graph has the same law as ht(Gt). However, the process
t 7→ Gt(X ,V) behaves very differently from the original process t 7→ Gt. Indeed, in the

original process, the degree of any fixed vertex grows like tγ+o(1) (see Lemma 8) and thus goes
to +∞. By contrast, for the graphs Gt(X ,V), the following result establishes convergence
to the graph G∞(X ,V) as defined in the preceding paragraph.

Proposition 5.

(i) The graph G∞(X ,V) defined above is almost surely locally finite, in the sense that
its vertices all have finite degrees.

(ii) The graph Gt(X ,V), almost surely, converges locally to G∞(X ,V), in the sense that
for each x ∈ X , for large t, the neighbours of x in Gt(X ,V) and in G∞(X ,V)
coincide.

As a direct consequence we obtain the following corollary.

Corollary 6. Almost surely, for any x ∈ X and each n ≥ 1, the neighbourhood of vertex x
in the graphs Gt(X ,V) and G∞(X ,V) up to graph distance n will coincide for large t.

The key to the understanding of the drastically different behaviour of the graph-valued
process t 7→ Gt(X ,V) lies in the fact that a fixed vertex in this sequence of graphs has a
birth time which is comparable to the age of the network. This age would be highly variable
in time if mapped onto the original graph, but is kept constant in the process t 7→ Gt(X ,V).

Regardless of the strength of Proposition 5, it only states a local convergence result and
is therefore insufficient for our purpose. Global results require the introduction of a specific
law of large numbers, which we state and prove now.

4.2. A general weak law of large numbers. For x0 ∈ R, we introduce the translation

θx0 : R× (0, 1] → R× (0, 1].
(x, s) 7→ (x+ x0, s)

The translation θx0 operates on R×(0, 1], and in a canonical manner also on the point sets in
R×(0, 1], and on families indexed by E(R×(0, 1]). Consider a functional ξ∞, which associates
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a nonnegative real number ξ∞((x, s),Z,W) to a point set Z ⊂ R×(0, 1] with a distinguished
point x = (x, s) ∈ Z, and a family W of numbers in [0, 1] indexed by E(R × (0, 1]). The
functional is supposed to be translation invariant, in the sense that

ξ∞(x,Z,W) = ξ∞(θx0(x), θx0(Z), θx0(W)).

Similarly, for each t > 0, and x0 ∈ Tt, we introduce the translation

θtx0 : Tt × (0, 1] → Tt × (0, 1],
(x, s) 7→ (x+ x0, s)

and we consider functionals ξt, which associate a nonnegative real number ξt((x, s),Z,W) to
a point set Z ⊂ Tt × (0, 1] with a distinguished point (x, s) ∈ Z and a family W of numbers
in [0, 1] indexed by E(Tt× (0, 1]). The functionals ξt are supposed to be invariant under the
translations θtx0 .

Finally, for the sake of simplifying the notation, we will also write ξ∞(x,Z,W) for
ξ∞(x,Z∪{x},W) when the set Z does not contain x, and similarly ξt(x,Z,W) for ξt(x,Z∪
{x},W). We also write

ξ∞(Z,W) :=

∫ 1

0
ξ∞((0, s),Z,W) ds, ξt(Z,W) :=

∫ 1

0
ξt((0, s),Z,W) ds.

Recall the notation of the Poisson point process X and of the family of random variables V, as
well as their restrictions X t and Vt. In the following theorem, U denotes a random variable,
uniform on (0, 1], and independent of the point process X and of V.

Theorem 7 (Weak law of large numbers). Suppose that the following two conditions hold:

(A) As t → ∞, the random variable ξt((0, U),X t,Vt) converges in probability to the
random variable ξ∞((0, U),X ,V);

(B) For some p > 1 we have the uniform moment condition

sup
t>0

E[ξt((0, U),X t,Vt)p] <∞.

Then, as t→∞, we have the following convergence in the L1-sense,

1

t

∑
x∈X t

ξt(x,X t,Vt) −→ E[ξ∞((0, U),X ,V)] = E[ξ∞(X ,V)]. (4.2)

Remark 5.

(i) Theorem 7 is an adaptation of Theorem 2.1 of Penrose and Yukich [18] to our pur-
pose. Their result also includes a de-Poissonisation, but this is incompatible with
our set-up because of the explicit time dependence of the attachment probabilities.

(ii) Suppose now that only condition (A) is satisfied. On the one hand, the proof still
works if the family (ξt((0, U),X t,Vt))t>0 is uniformly integrable. On the other hand,
if E[ξ∞(X ,V)] = ∞, then, by applying the theorem to the bounded functional
ξkt (x,Z,W) := ξt(x,Z,W) ∧ k and letting k go to ∞, we get the convergence in
probability of

1

t

∑
x∈X t

ξt(x,X t,Vt)

to +∞. The only case when the theorem does not yield any convergence result is
when E[ξ∞(X ,V)] is finite but the family (ξt((0, U),X t,Vt))t>0 fails to be uniformly
integrable.
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Proof. As in Theorem 2.1 in [18] the proof relies on a first moment calculation, then a
second moment calculation which is performed under a stronger uniform moment condition,
and finally a step to allow the removal of this extra condition.

First moment: We compute, by Campbell’s formula,

E
[1

t

∑
x∈X t

ξt(x,X t,Vt)
]

=

∫
Tt×(0,1]

dx ds

t
E
[
ξt((x, s),X t,Vt)

]
=

∫ 1

0
dsE

[
ξt((0, s),X t,Vt)

]
= E

[
ξt((0, U),X t,Vt)

]
.

Note that in all these expressions but the first one, a point is added to X t. The second equal-
ity follows from the spatial invariance by the translation θt−x, both of the functional ξt and
of the law of (X t,Vt). Now condition (A) states that the variables ξt((0, U),X t,Vt) converge
in probability to ξ∞((0, U),X ,V). Condition (B) ensures that they are uniformly integrable.
Therefore we have convergence of the expectations E[ξt((0, U),X t,Vt)] to E[ξ∞((0, U),X ,V)],
and this expectation is finite.

Second moment: We work here under the stronger assumption that the uniform moment
condition holds for some p > 2. Similarly as in the case of the first moment, we get

E
[(1

t

∑
x∈X t

ξt
(
x,X t,Vt

))2]
= E

[ 1

t2

∑
x∈X t

ξt
(
x,X t,Vt

)2]
+ E

[ 1

t2

∑
x,x′∈X t
x 6=x′

ξt
(
x,X t,Vt

)
ξt
(
x′,X t,Vt

)]
= 1

t E
[
ξt
(
(X1, U1),X t,Vt

)2]
+ E

[
ξt
(
(tX1, U1),X t ∪ {(tX2, U2)},Vt

)
ξt
(
(tX2, U2),X t ∪ {(tX1, U1)},Vt

)]
,

with X1 and X2 uniform in T1, U1 and U2 uniform in (0, 1), and X , X1, U1, X2, U2 inde-
pendent. The first term goes to zero, thanks to the uniform moment condition with p > 2
(p = 2 would be enough).

Now, the second term is the expectation of the following product of random variables,

ξt((0, U1), θt−tX1
(X t) ∪ {(t(X2 −X1), U2)}, θt−tX1

(Vt))
× ξt((0, U2), θt−tX2

(X t) ∪ {(t(X1 −X2), U1)}, θt−tX2
(Vt)),

(4.3)

whose behaviour we have to understand. We first concentrate on the first term. Write

X̃ t := θt−tX1
(X t) ∪ {(t(X2 −X1), U2)}, Ṽt := θt−tX1

(Vt).

We introduce three events, Et := {td(X1, X2) >
√
t}, Ft := {td(X1, 1/2) >

√
t/2}, and Gt

the event that the Poisson point process X t has at least one point in {(x, s) : d(x, 0) >
√
t}.

These are all asymptotically almost sure (a.a.s.), in the sense that their probability goes to
one when t→∞. We make two important observations:

• On the event Et ∩ Ft, the restrictions to T√t × (0, 1] of the sets X̃ t and θ−tX1(X )

coincide. Similarly, the restrictions to T√t × (0, 1] of the families Ṽt and θ−tX1(V)
also coincide.
• The law of (X̃ t, Ṽt) knowing Et equals the law of (X t,Vt) knowing Gt.
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These observations allow the following calculation, with η some positive real number. Note
that we will apply now (and until the end of this proof) the functional ξ√t to point sets on

R× (0, 1] or Tt× (0, 1] (and families indexed by E(R× (0, 1]) or E(Tt× (0, 1]) ). This is only
to lighten the notation a bit. It should always be understood that the functional is applied
to the restrictions on T√t × (0, 1].

lim sup
t→∞

P
{
|ξt((0, U1), X̃ t, Ṽt)− ξ√t((0, U1), θ−tX1(X ), θ−tX1(V))| > η

}
= lim sup

t→∞
E
[
1l{|ξt((0, U1), X̃ t, Ṽt)− ξ√t((0, U1), θ−tX1(X ), θ−tX1(V))| > η}1lFt

∣∣Et]
= lim sup

t→∞
E
[
1l{|ξt((0, U1), X̃ t, Ṽt)− ξ√t((0, U1), X̃ t, Ṽt)| > η}1lFt

∣∣Et]
= lim sup

t→∞
E
[
1l{|ξt((0, U1),X t,Vt)− ξ√t((0, U1),X t,Vt)| > η}1lFt

∣∣Gt]
= lim sup

t→∞
P
{
|ξt((0, U1),X t,Vt)− ξ√t((0, U1),X t,Vt)| > η

}
= 0.

The last equality uses condition (A). Hence, the variable

ξt((0, U1), X̃ t, Ṽt)− ξ√t((0, U1), θ−tX1(X ), θ−tX1(V))

converges in probability to zero. Similarly, one can see that the variable

ξt
(
(0, U2), θt−tX2

(X t) ∪ {(t(X1 −X2), U1)}, θt−tX2
(Vt)

)
− ξ√t

(
(0, U2), θ−tX2(X ), θt−tX2

(V)
)

converges in probability to zero. Next, observe that the two variables

ξ√t((0, U1), θ−tX1(X ), θ−tX1(V))

and

ξ√t((0, U2), θ−tX2(X ), θ−tX2(V))

are independent conditionally on the event Et. Moreover, observe that the law of each one
converges to that of ξ∞((0, U1),X ,V), thanks to condition (A) again. Gathering the results,
we get that the product in (4.3) converges in law to the product of two independent copies
of ξ∞((0, U1),X ,V).

Finally, use Cauchy-Schwarz to get a uniform moment condition for this product for p
2 > 1.

Hence the expectation of the product goes to E[ξ∞((0, U1),X ,V)]2. Therefore we get (4.2),
with convergence even in L2.

Relaxing the moment condition: We finally work under the assumptions of the theorem,
that is, the uniform moment condition is satisfied only for some p > 1. Introduce the bounded
functional

ξkt (x,Z,W) := ξt(x,Z,W) ∧ k.
This functional clearly satisfies condition (A) and the uniform moment condition for any p,
in particular for some p > 2. Therefore, we get the convergence of

1

t

∑
x∈X t

ξkt (x,X t,Vt)

to E[ξ∞((0, U1),X ,V) ∧ k], in L2, and thus in L1. Now note that

E
[1

t

∑
(x,s)∈X t

(ξt((x, s),X t,Vt)− ξkt ((x, s),X t,Vt))
]

= E
[
ξt((0, U),X t,Vt)− ξkt ((0, U),X t,Vt)

]
,
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which is nonnegative and goes uniformly to zero for k →∞, as the variables ξt((0, U),X t,Vt)
are uniformly integrable, by the uniform moment condition. It follows that

1

t

∑
x∈X t

ξt(x,X t,Vt)

converges in L1 to the limit of E[ξ∞((0, U),X ,V) ∧ k], that is E[ξ∞((0, U),X ,V)]. �

4.3. A bound on the indegree and on the linking probability. As we consider various
graphs on various spaces, we need to introduce more flexible notation for the degrees. If G
is a graph with vertices in Tt × (0,∞) we write x ↔ y to indicate that there is an edge
between the vertices x and y. If x0 = (x0, s0) is in G, then, for any s ≥ s0, we define

Zx0(s,G) =
∣∣{(x, r) ∈ G : (x, r)↔ (x0, s0), s0 < r ≤ s

}∣∣,
the indegree of x0 in G ‘at time s’, and

Yx0(G) =
∣∣{(x, r) ∈ G : (x, r)↔ (x0, s0), r < s0

}∣∣,
its outdegree. For t ∈ (0,∞] and for 0 < s0 ≤ s ≤ 1, we write

Ztx0
(s) = Zx0(s,Gt(X ∪ {x0},V)) and Y t

x0
= Yx0(Gt(X ∪ {x0},V)).

For fixed t and x0, call (Ztx0
(s))s0≤s≤1 the indegree process. In this part only, we extend

the Poisson point process X on the whole R × (0,∞), and allow any 0 < s0 ≤ s in the
definition of Ztx0

(s). For x0 ∈ T1 × (0,∞), the process (Z1
x0

(s))s≥s0 has the same law as the
process (Zx0(s))s≥s0 introduced earlier in Section 2, so that the results of this part apply
simultaneously for the rescaled graphs and for the unrescaled ones. Now, observe that the
law of the indegree process does not depend on the spatial position x0 ∈ Tt. Therefore, we
simply write Zts0(s) for Zt(0,s0)(s) and Y t

s0 for Y t
(0,s0). If x and y are two vertices in X , we

write x↔
t
y for the event that x and y are linked in Gt(X ,V).

Lemma 8. For all t > 0 and x0 ∈ Tt, we have almost surely

lnZtx0
(s) ∼ γ ln s as s→∞.

This lemma confirms that the degree of a fixed vertex in the unrescaled graphs grows
polynomially of order γ > 0, and in particular that it explodes. Before proving it we give
a bound on the probability that a vertex reaches an exceptionally high degree, allowing it
to be connected to an exceptionally distant vertex. Exponential bounds, uniform in t, are
provided in the following lemma and its corollary. For the sake of simplicity, they are only
stated in the case of a linear function f . We refer to Remark 6 for the general case.

Lemma 9. Suppose f(k) = γk + β, with γ ∈ (0, 1) and β > 0. Let p = dβγ − 1e, so that

f(k) ≤ γ(k + p + 1). For any t ∈ (0,∞], any s0 < s ≤ 1 and any k ≥ 0, the following
inequality holds:

P
{
Zts0(s) ≥ k

}
≤ e

p
4 exp

(
−k

8

(
s0
s

)γ)
. (4.4)

Corollary 10. Under the assumptions of Lemma 9, define the inverse of the profile func-
tion ϕ by

ϕ−1(u) := inf{x > 0: ϕ(x) < u}.
Then there is a constant c depending only on f , such that for any t ∈ (0,∞] and any
(x, s) ∈ R× (0, 1], we have

P
{

(0, 1)↔
t

(x, s)
∣∣∣ (0, 1) ∈ X , (x, s) ∈ X ,V(0,1),(x,s) = u

}
≤ c exp

(
− |x|sγ

8γϕ−1(u)

)
. (4.5)
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Remark 6. In the nonlinear case, we can first bound f from above by a linear function,
then, by an easy stochastic domination argument, get the inequalities of the lemma and its
corollary with the linear bound instead of f . We get almost equally good bounds. More
precisely, for any γ′ > γ, we can find β′ > 0 such that f(k) ≤ γ′k+β′ for any natural number
k, and we thus get bounds for any exponent γ′ > γ.

A first corollary of Lemma 9 is that the indegree Ztx0
(s) is always almost surely finite,

even when t =∞. The same holds for the outdegree, see Proposition 13 below.

At this stage, let us discuss the important monotonicity property. If we fix s0 and s and
let t grow to +∞, then Zts0(s) will grow and converge to Z∞s0 (s). Moreover, if we change the
position of the vertex to be non-zero, we do not change the law of its indegree and therefore
its indegree will still be stochastically increasing in t and stochastically dominated by Z∞s0 (s).
By contrast, no such property holds for the outdegree. Indeed, increasing t may increase
the distance of two vertices near opposite ends of the boundary of [− t

2 ,
t
2 ], thus decreasing

the indegree of the younger vertex which, in turn, might destroy further links, eventually
reducing the outdegree of the vertex at the origin.

Proof of Lemma 8. We fix s0 > 0 and start with the case t = ∞. The indegree process
(Z∞s0 (s))s>s0 is an time-inhomogeneous pure birth process, starting from Z∞s0 (s0) = 0, and
for which, at time s, the transition density from state k to state k + 1 is f(k)/s. Indeed,
given Zs0(s) = k, we have Z∞s0 (s+ ds) ≥ k + 1 if and only if the set{

(y, u) ∈ X : u ∈ (s, s+ ds],V((0, 1), (y, u)) ≤ ϕ
(
ud(y,0)
f(k)

)}
is nonempty, which due to the normalisation of ϕ happens with probability f(k)

s ds+ o(ds).
We introduce a logarithmic change of time and write

Z̃(u) := Z∞s0 (s0e
u).

Then the process Z̃ is a time-homogeneous pure birth process, with jumping intensity from

state k to state k + 1 equal to f(k). Write Tk := inf{u : Z̃(u) ≥ k} for the first time when
this process hits state k, which is finite as f is nondecreasing. Then (Ti+1 − Ti)i≥0 are
independent and Ti+1 − Ti is exponential with parameter f(i). The process

Mk := Tk −
k−1∑
i=0

1

f(i)

is a martingale, which is bounded in L2 and thus convergent. Hence, we have Tk ∼ 1
γ ln k,

and further

ln Z̃(u) ∼ γu and lnZ∞s0 (s) ∼ γ ln s.

For the case of a finite t, we first get, from the monotonicity property, the upper bound

lim sup
s→∞

lnZts0(s)

ln s
≤ γ.

In particular, a.s., we have Zts0(s) ≤ s(1+γ)/2 for s large enough. But the process (Zts0(s))s>s0
is a time-inhomogeneous pure birth process with transition density from state k to state k+1

2f(k)

∫ st
f(k)

0
ϕ(y) dy,

which is equivalent to f(k) when t ↑ ∞, uniformly for all s and k ≤ s(1+γ)/2. The same
arguments as in the case t = ∞ then yield the lower bound, showing that we still have
lnZts0(s) ∼ γ ln s. �
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Proof of Lemma 9. By the monotonicity argument we can suppose t = ∞ and, as before,

we study the chain Z̃ and its hitting times Tk. The parameter of the exponential variable
Ti+1−Ti is f(i), which is less than or equal to (p+ i+ 1)γ. It follows that Tk (!!CHANGE!!)
dominates stochastically a sum of independent exponential random variables with parameters
(p+ 1)γ, (p+ 2)γ, . . . , (p+ k)γ, respectively.

Let (τ̃i)1≤i≤k+p be a family of i.i.d random variables, each following an exponential law
with the same parameter γ. Let (τ̃i1 , τ̃i2 , ..., τ̃ik+p) denote their decreasing rearrangement,
and τ̃ik+p+1

= 0. For 1 ≤ j ≤ k + p, let τj = τ̃ij − τ̃ij+1 . Then the family (τj)1≤j≤k+p is
independent and τj is an exponential variable with parameter jγ. Observe also that

τp+1 + ...+ τp+k = τ̃ip+1 .

Hence,

P
{
Z∞s0 (s0e

u) ≥ k
}
≤ P

{
τ̃ip+1 ≤ u

}
.

Now write {
τ̃ip+1 ≤ u

}
=
{ k+p∑
j=1

1l{τ̃j > u} ≤ p
}
.

The sum of indicators follows a binomial law of parameters k + p and exp(−γu). Recall the
concentration inequality for binomial random variables X,

P
{
X ≤ E[X]− λ

}
≤ exp

(
− λ2

2E[X]

)
.

We apply this with λ = 1
2(k + p) exp(−γu) and get

P
{ k+p∑
j=1

1l{τ̃j > u} ≤ p
}
≤ exp

(
− k

8e
−γu)1l{2p ≤ ke−γu}+ 1l{2p > ke−γu}

≤ exp(p/4) exp
(
− k

8e
−γu).

Finally, gathering the results, and taking u = ln s− ln s0 gives, for any k ≥ 0,

P
{
Z∞s0 (s) ≥ k

}
≤ exp(p/4) exp

(
−k

8

(
s0
s

)γ)
,

as required. �

Proof of Corollary 10. The event (0, 1) ↔
t

x coincides with the event that the indegree of
vertex x at time one is large enough to ensure that the linking condition is satisfied. This
indegree has the same law as Zts(1) and is independent of V((0, 1),x). We thus get

P
{

(0, 1)↔
t
x
∣∣∣ (0, 1) ∈ X ,x ∈ X ,V((0, 1),x) = u

}
≤ P

{
ϕ
( |x|
f(Zts(1))

)
≥ u

}
≤ P

{
Zts(1) ≥ f−1

( |x|
ϕ−1(u)

)}
≤ e

p
4 exp

(
− sγ

8

(
|x|

γϕ−1(u)
− β

γ

))
≤ e

p
4

+ β
8γ exp

(
− |x|sγ

8γϕ−1(u)

)
,

yielding (4.5) with the explicit constant c = e
p
4

+ β
8γ . �

5. Specific proofs of the main results

All the proofs of this section rely on the application of Theorem 7 to appropriate func-
tionals. The functionals we use are only defined and used within each subsection. That is,
the same notation in different subsections indicates different functionals.
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5.1. Empirical indegree distribution. The following lemma provides the expected inde-
gree of a vertex in the infinite graph with age uniform on (0, 1].

Lemma 11. Let U be uniformly distributed in (0, 1] and independent of the point process X .
Then, for any k ≥ 0, we have

P{Z∞U (1) = k} = µ(k),

where µ is the probability measure defined by

µ(k) =
1

1 + f(k)

k−1∏
l=0

f(l)

1 + f(l)
. (5.1)

Proof. Recall that the process (Z∞s0 (s0e
u))0≤u≤ln(1/s0) is a time-homogeneous pure birth pro-

cess with transition intensity from state k to state k + 1 equal to f(k). Consider also the

Markov chain (Ẑu)0≤u≤ln(1/s0) with values in [s0, 1] × N ∪ {0} started in Ẑ0 = (s0, 0), such
that at time u the jumping intensity from state (s, k) to state (s, k + 1) equals f(k), and
from state (s, k) to state (s0e

u, 0) equals one.

The following facts are easy to check:

(1) The first coordinate Ẑ1
ln(1/s0) of the chain (Ẑu)0≤u≤ln(1/s0) at time ln(1/s0) is equal

to s0 with probability s0 and otherwise uniformly distributed on the interval [s0, 1].

(2) Conditionally on Ẑ1
ln(1/s0) = s1, the second coordinate Ẑ2

ln(1/s0) has the same law as

the random variable Z∞s1 (1).

(3) The second coordinate (Ẑ2
u)0≤u≤ln(1/s0) is a time-homogeneous Markov chain, jump-

ing from k to k + 1 with intensity f(k), and from k to zero with intensity one.

The Markov chain stated in the third point was already encountered in [8]. It is recurrent
and its law converges to its invariant measure, which is precisely µ. From the first two
points, we deduce that the law of Ẑ2

ln 1/s0
conditional on Ẑ1

ln 1/s0
6= s0 is the same as the law

of Z∞U (t), where U is uniform on [s0, 1]. Now, letting s0 go to zero gives the result. �

Proof of Theorem 1. Let g be a nondecreasing functional satisfying 〈µ, gp〉 <∞ for some p >
1. We will apply Theorem 7 with the functionals ξt(x,Z,W) := g

(
Zx(1, Gt(Z ∪ {x},W))

)
,

t ∈ (0,∞], so that for x ∈ X t, we have ξt(x,X ,V) = g(Ztx(1)).

First, observe that the expectation of ξ∞(X ,V) is 〈µ, g〉. Second, observe the following two
simple consequences of the monotonicity property. The process (ZtU (1))t>0 is nondecreasing
and converges almost surely to Z∞U (1), which is finite almost surely. Moreover, the following
uniform moment condition is satisfied,

sup
t>0

E[ξt((0, U),X ,V)p] ≤ E[ξ∞((0, U),X ,V)p] = 〈µ, gp〉 <∞.

Hence, Theorem 7 ensures the convergence

1

t

∑
x∈X t

g
(
Ztx(1)

)
−→ 〈µ, g〉,

in L1 and thus in probability. Combining this with the well-known convergence |X t|/t → 1
gives the convergence in probability

1

|X t|
∑
x∈X t

g
(
Ztx(1)

)
−→ 〈µ, g〉,

and thus proves Theorem 1. �

We close this subsection with a lemma which implies Proposition 5(i).
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Lemma 12. Almost surely, for any x = (x, s) ∈ X , the incoming edges of x in Gt(X ,V)
and in G∞(X ,V) are finite in number and coincide for large t.

Remark 7. The monotonicity property implies that the indegree of a vertex x in Gt(X ,V)
converges almost surely to that in G∞(X ,V) if the position of the vertex is zero, or in
probability if its position is nonzero. The lemma guarantees that there is actually always
almost sure convergence.

Proof. We work conditionally on x = (x, s) ∈ X , and start by showing that there exists an
almost surely finite random variable M such that, for all t ∈ (0,∞] and y ∈ X younger than
x and at distance at least M of x, the vertices x and y are not linked in Gt(X ,V).

The strategy is to find a coupling with a model independent of t, based on the observation
that the distance between x and y in Tt can be shortened by at most 2|x| compared to that
in R. Let K be the number of vertices in X located at distance at most 2|x| of x, which is
an almost surely finite random variable. Consider the model where:

• the vertices within distance 2|x| of x are deleted,
• the other vertices all come closer to x by distance 2|x|,
• the attachment rule f is replaced by the rule fK : i 7→ f(i+K).

It should be clear that the vertices y ∈ X younger than x, at distance at least 2|x| of x,
which are linked to x in some finite graph Gt(X ,V), are also linked to x in this model.
Furthermore, the indegree of x is still finite almost surely. Hence it suffices to choose M as
the distance of x to the furthest younger vertex it is linked to in this model, plus 2|x|.

Finally, all that is left to show is that the incoming edges of x linking it to a younger
vertex y within distance M coincide in Gt(X ,V) and in G∞(X ,V), for large t. This follows
from the following two simple observations. First, the vertex x is linked to no other younger
vertex beyond distance M – in G∞(X ,V) or in any Gt(X ,V) – which could influence its
indegree. Second, for t ≥ |x| + M , the vertices in X and in X t within distance M of x
coincide. Hence, for t ≥ |x|+M , the vertex x has the same incoming edges in Gt(X ,V) and
in G∞(X ,V). �

5.2. Empirical outdegree distribution. The following proposition describes what we
know about the expected outdegree distribution in the infinite picture.

Proposition 13. For any u ∈ (0, 1], the expected outdegree distribution, defined by the
weights

ν(k) := P{Y∞u = k}, k ∈ N ∪ {0,∞}, (5.2)

is independent of u. Moreover, the measure ν is a probability measure on N ∪ {0} (i.e.
ν(∞) = 0) and it is light tailed in the sense that for any δ ∈ (0, 1− γ), we have

ν([k,∞)) = o(e−k
δ
).

Proof. The fact that ν(k) does not depend on u is a simple consequence of the rescaling
invariance property. Therefore we only consider u = 1, and we watch for the law of Y∞1 , the
outdegree of the point (0, 1) in the infinite picture.

Attach to each vertex x ∈ X the value Vx := V((0, 1),x). Then each vertex can be
identified with a point of R× (0, 1]× (0, 1), and the set of vertices becomes a Poisson point
process of intensity one on R × (0, 1] × (0, 1). The idea is to define a domain Ek such that

the probability that there is any vertex in Ek linked to (0, 1) is O(e−k
δ
), and the probability

that there are in total at least k vertices in the complement of Ek (not necessarily linked to

0) is also O(e−k
δ
). This goes as follows:
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• Fix δ ∈ (0, 1−γ). Choose first γ′ ∈ [γ, 1−δ) such that Inequality (4.5) is satisfied for
some constant c ∈ (0,∞) (this is always possible, in the linear case even with γ′ = γ,
see Corollary 10 and Remark 6). Then, choose δ1, δ2 such that δ < δ2 < δ1 < 1− γ′.
• Introduce

Ek =
{

(x, s, u) ∈ R× (0, 1]× (0, 1) : x
ϕ−1(u)

≥ k
δ
δ2 , s ≥

(
x

ϕ−1(u)

)− 1−δ1
γ′
}
.

Then, from Corollary 10, for any x = (x, s) and u such that (x, s, u) ∈ Ek, we have

P
{

(0, 1)↔
t
x
∣∣ x ∈ X ,Vx = u

}
≤ c exp

(
− |x|sγ′

8γ′ϕ−1(u)

)
≤ c exp

(
− 1

8γ′

(
|x|

ϕ−1(u)

)δ1)
.

Therefore, we get

E
[∣∣{(x, s, u) ∈ Ek : (x, s) ∈ X ,Vx = u, (0, 1)↔

∞
(x, s)

}∣∣]
≤
∫∫∫

Ek

dx dsdu c exp

(
− 1

8γ′

(
|x|

ϕ−1(u)

)δ1)
≤
∫∫{

|x|
ϕ−1(u)

≥k
δ
δ2

} dx du c exp
(
− 1

8γ′

(
|x|

ϕ−1(u)

)δ1 )
≤ 2

∫ 1

0
ϕ−1(u) du

∫
[k

δ
δ2 ,∞)

c exp
(
− 1

8γ′ y
δ1
)

dy,

with the change of variable y = |x|/ϕ−1(u). The first integral is equal to the integral of ϕ on
[0,∞), that is 1/2. For the second integral, introduce an appropriate constant C1 and get∫

[k
δ
δ2 ,∞)

c exp
(
− 1

8γ′ y
δ1
)
dy ≤

∫
[k

δ
δ2 ,∞)

C1
δ2
8γ′ y

δ2−1 exp(− 1
8γ′ y

δ2)dy ≤ C1 exp(−kδ).

The right hand side is a bound to the expected number of vertices in Ek linked to (0, 1), and
thus it is also a bound to the probability that there is any vertex in Ek linked to (0, 1).

Now, with an easier calculation we get that the total Lebesgue measure of the complement
of Ek is bounded by∫∫∫

R×(0,1]×(0,1)
dx duds

(
1l{y ≤ k

δ
δ2 }+ 1l{s ≤ y−

1−δ1
γ′ }

)
≤ 2

∫ 1

0
ϕ−1(u) du

∫
(0,∞)

(
1l{y ≤ k

δ
δ2 }+ (1 ∧ y)

− 1−δ1
γ′
)

dy

and is therefore less than k
δ
δ2 plus a constant C2. As the total number of points of X in this

domain is a Poisson variable of parameter less than k
δ
δ2 + C2, we have

P
{∣∣∣{(x, s, u) /∈ Ek : (x, s) ∈ X ,Vx = u, (0, 1)↔

∞
(x, s)

}∣∣∣ ≥ k}
≤ (k

δ
δ2 + C2)k

k!
≤ 1√

2πk

( e
k

(k
δ
δ2 + C2)

)k
,

by Stirling’s formula. As δ < δ2 the right hand side is decaying superexponentially fast and
therefore, summing up the estimates, the overall probability that the outdegree of (0, 1) is
greater than or equal to k is bounded by a constant multiple of exp(−kδ). Hence ν([k,∞)) =
O(exp(−kδ)), as claimed. �
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The same proof, with the sets Ek and their complements replaced by their restrictions to
x ∈ (−t/2, t/2] also yields

P{Y t
u ≥ k} ≤ (C1 + C3) exp(−kδ) (5.3)

with the same constants C1 and C3 for any u and t. Hence, the variables Y t
u are stochastically

dominated by a light-tailed random variable (this variable may not be Y∞1 , recall that Y t
u is

not monotone in t).

Take g a function satisfying g(k) = O(exp(kδ)) for some δ < 1− γ, and define,

ξt(x,Z,W) := g
(
Yx(Gt(Z ∪ {x},W))

)
,

for t ∈ (0,∞], so that ξt(x,X ,V) = g(Y t
x). The domination (5.3) provides the uniform mo-

ment condition (for any given p > 1). Theorem 2 follows, provided we prove the convergence
in probability of ξt((0, u),X ,V) to ξ∞((0, u),X ,V), for any u ∈ (0, 1]. The following lemma
proves more, and also completes the proof of Proposition 5.

Lemma 14. Almost surely, for any x = (x, s) ∈ X , the outgoing edges of x in Gt(X ,V) and
in G∞(X ,V) are finite in number and coincide for large t.

Proof. Again, we suppose without loss of generality s = 1 and work conditionally on x =
(x, 1) ∈ X . Observe that if M is any finite number then, almost surely, all the indegrees of
vertices in the graph Gt(X ,V) with spatial position in [x−M,x+M ] go to the corresponding
indegrees in G∞(X ,V). Therefore, almost surely, the outgoing edges linking x to a vertex
within distance M of x coincide in Gt(X ,V) and in G∞(X ,V), for large t. The latter remains
true if M is random, but finite almost surely. The lemma then follows if we show that there
exists an almost surely finite random variable M such that for all t ∈ (0,∞], for each x′ ∈ X
at distance at least M of x, the vertices x and x′ are not linked in Gt(X ,V).

To prove this, we use again the coupled model introduced in the proof of Lemma 12.
Again, the vertices linked to x in some finite graph Gt(X ,V) are also linked to x in the
coupled model. Furthermore, in the coupled model, it is clear that the outdegree of x is still
finite almost surely, and we can simply choose M to be the distance of x to the furthest
vertex it is linked to in this model, plus 2|x|. �

5.3. Clustering.

5.3.1. Average clustering coefficient. In this part, consider, for t ∈ (0,∞], the functionals ξt
and ξ′t defined by

ξt(x,Z,W) = cloc
x (Gt(Z ∪ {x},W)),

ξ′t(x,Z,W) = 1l
{
x ∈ V2

(
Gt(Z ∪ {x},W)

)}
,

with the convention ξt(x,Z,W) = 0 if x /∈ V2

(
Gt(Z ∪ {x},W)

)
, that is if x has degree

less than two. Thanks to Proposition 5 and its corollary, we know that for any x, there is
almost sure convergence of ξt(x,X ,V) to ξ∞(x,X ,V), and of ξ′t(x,X ,V) to ξ′∞(x,X ,V). In
particular, condition (A) of Theorem 7 is satisfied for both functionals. Moreover, as they
take values in [0, 1], the uniform moment condition (B) is also satisfied. We immediately
deduce the convergence in L1 and in probability of

1

t

∑
x∈X t

cloc
x (Gt(X ,V)) and

|V2|
t
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to the constants E[ξ∞((0, U),X ,V)] and P{(0, U) ∈ V2

(
Gt(X ∪ {(0, U)},V)

)
}, respectively.

Hence the average clustering coefficient converges in probability to

cav∞ := E
[
ξ∞((0, U),X ,V)

∣∣ (0, U) ∈ V2

(
Gt(X ∪ {(0, U)},V)

)]
.

This constant is the expected local clustering coefficient of the infinite graph at vertex (0, U),
conditionally on the event that its degree is at least two. It is hard to compute analytically,
but it clearly belongs to (0, 1). The first part of Theorem 3 is proved.

5.3.2. Global clustering coefficient. The estimation of the global clustering coefficient relies
on separate estimations of the number of triangles and of the number of open triangles in
the network. We choose to count the triangles from their youngest vertex, and define the
functional ξt(x,Z,W) to be the number of triangles in Gt(Z ∪{x},W) having x as youngest
vertex. Again, Proposition 5 ensures that condition (A) is satisfied. The simple observation
that ξt(x,X ,V) is bounded from above by Y t

x(Y t
x − 1)/2, together with Inequality (5.3),

ensures that the uniform moment condition (B) is satisfied for any p > 1, and we can apply
Theorem 7. The number of triangles in the network Gt(X ,V), divided by t, converges to
a positive and finite constant. In other words, the number of triangles is asymptotically
proportional to the number of vertices.

Similarly, we introduce the functionals

ξ′t(x,X ,V) =
Ztx(1)(Ztx(1)− 1)

2
and ξ′′t (x,X ,V) = Y t

xZ
t
x(1) +

Y t
x(Y t

x − 1)

2
,

where ξ′t corresponds to the open triangles whose tip x is the oldest vertex, and ξ′′t are the
remaining open triangles with tip in x. For both functionals, Condition (A) follows again
from Proposition 5. Condition (B) for functional ξ′′t is also automatically satisfied, for any
1 < p < 1

γ . More precisely, to bound the expectation of the product (Y t
UZ

t
U (1))p, first use

their independence conditionally on U = u, then use the domination (5.3) to bound uniformly
E[(Y t

u)p], before integrating with respect to u. Therefore the number of open triangles whose
tip is not the oldest vertex, divided by t, converges in probability to a positive and finite
constant.

It is only for the functional ξ′t that we must discuss different cases. Suppose first
∑
k2µ(k) =

∞, which implies E
[
ξ′∞(X ,V)

]
= ∞. In that case, Theorem 7 and Remark 5 imply that

the number of open triangles with tip the oldest vertex, divided by t, goes to +∞ in prob-
ability. Hence, the global clustering coefficient converges in probability to zero. Finally,
suppose

∑
k2µ(k) < ∞ and hence E

[
ξ′∞(X ,V)

]
< ∞. The monotonicity property implies

that the variables ξ′t((0, U),X t,Vt) are always uniformly integrable, even when Condition (B)
is not satisfied1, and allows to conclude that the global clustering coefficient converges in
probability to a positive constant.

5.4. Empirical edge length distribution. The law of the distribution λt, the rescaled
empirical edge length distribution in the original graph Gt, is the same as the law of the
unrescaled empirical edge length distribution in the graph Gt(X ,V), which we will denote

by λ̃t. We have, abbreviating Et := E(Gt(X t,Vt)) and assuming it is not empty,

λ̃t =
1

|Et|
∑

(x′,x)∈Et
δd(x′,x) =

( ∑
x∈X t

Y t
x

)−1 ∑
x∈X t

∑
x′∈X t,x′↔

t
x

x′ older than x

δd(x′,x),

1If γ < 1
2
, then (B) holds for any 1 < p < 1

2γ
, but if γ = 1

2
and

∑
k2µ(k) <∞, then (B) does not hold.
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where we have chosen to count each edge from its younger vertex. Define the probability
measure λ on [0,+∞) by

λ(A) =
1

E[Y∞(0,U)]
E
[∣∣{(x, s) ∈ X : (x, s)↔

∞
(0, U), s < U, |x| ∈ A

}∣∣],
for any Borel set A ⊂ [0,∞), where U denotes a random variable uniformly distributed on
(0, 1) and independent of X and V. By application of Theorem 7 we get, for any x ∈ [0,∞),

λ̃t([x,∞)) −→ λ([x,∞)),

in probability. A technical but simple argument shows convergence in probability of λ̃t to λ
in the space of probability measures on [0,+∞), equipped with the Lévy-Prokhorov metric,
which defines narrow convergence. This proves the first part of Theorem 4.

Next we estimate the order of λ([K,∞)) when K is large. Fix K > 0. We have

λ([K,∞)) = 2

∫
Ω

dx⊗ dt⊗ du⊗ dsP
{

(x, s)↔
∞

(0, t)
∣∣ V((x, s), (0, t)) = u

}
,

where Ω is the domain
{

(x, t, u, s) ∈ [K,∞)× (0, 1)3 : s < t
}

. The factor two comes from
the fact that we have chosen x > 0. The linking probability contains an implicit conditioning
on the event that (x, s) and (0, t) are in X . As in the proof of Corollary 10 we can rewrite

P
{

(x, s)↔
∞

(0, t)
∣∣ V((x, s), (0, t)) = u

}
= P

{
Z∞s (t) ≥ f−1

(
tx/ϕ−1(u)

)}
= P

{
Z∞s/t(1) ≥ f−1

(
tx/ϕ−1(u)

)}
,

where f−1 is the right-continuous inverse of f . Changing the variable

(x, t, u, s) 7→ (y, z, u, r) with y = tx
ϕ−1(u)

, z = Kϕ−1(u)
x , r = s

t ,

sending Ω to Ω′ = {(y, z, u, r) ∈ (0,∞)3 × (0, 1), z ≤ K
y , u ≤ ϕ(z)} we get

λ([K,∞)) = 2K−1

∫
(0,∞)

dy y
(∫

(0,K
y

)
dz

∫
(0,ϕ(z))

du ϕ−1(u)
)(∫

(0,1)
dr P

{
Z∞r (1) ≥ f−1(y)

})
= 2K−1

∫ ∞
0

dy y I
(
K
y

)
J(y),

with I and J defined to be the two integrals in brackets in the first line. For an estimate
of J , we simply note that J(y) = µ(df−1(y)e,∞)) � 1∧ y−1/γ . For an estimate of I we start
with the equality ∫

(0,ϕ(z))
du ϕ−1(u) =

∫
(0,∞)

ϕ(z ∨ v) dv,

based on the observation that they both represent the area of{
(u, v) ∈ (0,∞)2 : u ≤ ϕ(z), v ≤ ϕ(z)

}
,

to get

I(a) =

∫
(0,a)×(0,∞)

dz ⊗ dv ϕ(z ∨ v) = 2

∫
(0,a)

vϕ(v)dv + a

∫
(a,∞)

ϕ(v) dv.
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Now, elementary calculations yield

I(a) �

 a ∧ 1 if

∫ ∞
0

vϕ(v) dv <∞,

a ∧ a2−δ if ϕ(v) � 1 ∧ v−δ for δ ∈ (1, 2].

Finally, another elementary calculation shows that we have

λ([K,∞)) � 1 ∧ (K−1 +K
1− 1

γ +K1−δ),

and Theorem 4 follows.

6. Variants of the model

6.1. Discrete versus continuous time. We have decided to define our model in continuous
time, as this is naturally aligned with our techniques of proof. We expect that all our results
hold without change for the analogous discrete model, but we have not attempted to derive
this from our results as we do not expect to get interesting insights from this. We point
out that the weak law of large numbers in [18] includes a de-Poissonisation, but this cannot
be applied directly in our case as it does not deal with the explicit time dependence of the
attachment probabilities.

6.2. The case γ ≥ 1. This assumption leads to a very different behaviour, which we briefly
discuss. Lemma 8 does not hold anymore. Instead, the indegree of a fixed vertex (the oldest
one, for example), grows roughly linearly, and it will be eventually connected to a positive
proportion of the younger vertices. The length of its incoming edges is thus of order one. The
law of large numbers, Theorem 7, holds unchanged, as well as Theorem 1. That said, we have∑
kµ(k) = ∞, which implies that the total number of edges is superlinear. The empirical

outdegree distribution converges vaguely to the null distribution, as all the mass escapes to
infinity. In the infinite picture, the outdegree of each vertex is almost surely infinite. Finally,
the same phenomenon happens to the empirical edge length distribution, if we still rescale it
by the same factor of t. Note that [1] also contains results for the case γ = 1, corresponding
to pA1 = 1 in their notation, which are consistent with our observations.

6.3. Higher dimensional space. We have chosen to present our results for spatial distri-
butions given as uniform distributions on the one-dimensional torus to keep technicalities to
a minimum. Nothing would change if we replace the torus by the unit interval, as boundary
effects will be negligible. There is also no problem generalising results to higher-dimensional
tori Td, or unit cubes. In fact, if we connect the vertex y = (y, t) to an older vertex x with
probability

ϕ

(
t1/dd(x,y)

f(Zx(t−))1/d

)
,

and normalise the profile function so that∫
Rd
ϕ
(
d(0, y)

)
dy = 1,

we can recover Theorem 1,2 and 3 verbatim by the same arguments. In the empirical edge

length distribution we need to rescale by a factor of t
1
d instead of t, and we obtain a limiting

edge length distribution λ, which depends on the dimension. If the profile function scales
like ϕ(x) � 1 ∧ x−δ we need to have δ > d to meet the integrability condition. Then we
recover Theorem 4 with η ∈ (0, d] the smallest of the three constants d, δ − d and d( 1

γ − 1).
If η > 1 then λ has a first moment, and the mean edge length is of order t−

1
d .



24 EMMANUEL JACOB AND PETER MÖRTERS

6.4. More general underlying spaces. It is no problem to define our model in a general
metric space. However this can lead to a significant change in the behaviour, as inhomo-
geneities in the underlying space introduce an element of fitness of individual vertices. In a
similar spirit one can change the spatial distribution of incoming vertices. Again one would
expect that small changes do not change the qualitative behaviour, whereas highly fluctu-
ating densities can have a major effect. These problems have recently been discussed by
Jordan [15] for a closely related model.

6.5. Further remarks and problems. Our technique allows the analysis of a wide range
of functionals of spatial preferential attachment networks, and we have only picked those
that appeared most interesting to us at this point. Other network ‘metrics’ that could be
studied are the total edge length, the number of occurrences of a particular finite subgraph
(or motif), or the number of (suitably defined) high density spots.

More generally, the local limit results established here offer a handle to the study of global
connectivity problems, for example the existence and diameter of a giant component. This
would be of particular interest as nontrivial rigorous results on the existence of the giant
component have never been established for dynamic network models that are not locally
tree-like. Existence of a giant component for an interesting static example, which is not
locally tree-like, is studied in [5]. A first discussion including a simulation-based conjecture
for the location of a phase transition related to the existence of a giant component in the
model of [1] can be found in [7].
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