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Abstract. We describe the onset of condensation in the simple model for the balance between

selection and mutation given by Kingman in terms of a scaling limit theorem. Loosely speaking,

this shows that the wave moving towards genes of maximal fitness has the shape of a gamma

distribution. We conjecture that this wave shape is a universal phenomenon that can also be

found in a variety of more complex models, well beyond the genetics context, and provide some

further evidence for this.
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1. Introduction and statement of the result

In [9] Kingman proposes and analyses a simple model for the distribution of fitness in a pop-
ulation undergoing selection and mutation. The characteristic feature of this model is that
the fitness of genes before and after mutation is modelled as independent, the mutation hav-
ing destroyed the biochemical ‘house of cards’ built up by evolution. Kingman shows that in
his model the distribution of the fitness in the population converges to a limiting distribution.
There are two phases: When mutation is favoured over selection, the limiting distribution is a
skewed version of the fitness distribution of a mutant. But if selection is favoured over mutation,
a condensation effect occurs, and we find that a positive proportion of the population in late
generations has fitness very near the optimal value, leading to the emergence of an atom at
the maximal fitness value in the limiting distribution. A similar effect has also been observed
in more complex models of selection and mutation, see for example Waxman and Peck [11].
Physicists have argued that this is akin to the effect of Bose-Einstein condensation, in which
for a dilute gas of weakly interacting bosons at very low temperatures a fraction of the bosons
occupy the lowest possible quantum state, see for example Bianconi et al. [2]. In the present
paper, we focus on the Kingman model and discuss the form of the fitness distribution for that
part of the population that eventually form the atom in the limiting distribution. After stating
our theorem and giving a proof we will draw comparisons to other models in a discussion section
at the end of this paper.
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Mathematically, Kingman’s model consists of a sequence of probability measures (pn) on the unit
interval [0, 1] describing the distribution of fitness values in the nth generation of a population.
The parameters of the model are a mutant fitness distribution q on [0, 1] and some 0 < β < 1
determining the relation between mutation and selection. If pn is the fitness distribution in the
nth generation we denote by

wn =

∫

x pn(dx)

the mean fitness and define

pn+1(dx) = (1− β)w−1
n x pn(dx) + β q(dx).

Loosely speaking, a proportion 1 − β of the genes in the new generation are resampled from
the existing population using their fitness as a selective criterion, and the rest have undergone
mutation and are therefore sampled from the fitness distribution q.

We assume throughout that the mutant fitness distribution near its tip is stochastically larger
than the fitness distribution in the initial population, in the sense that the moments

mn :=

∫

xn p0(dx) and µn :=

∫

xn q(dx)

satisfy

lim
n→∞

mn

µn
= 0.

Under this (or, indeed, a slightly weaker) assumption, Kingman showed that (pn) converges to
a limit distribution p(dx), which does not depend on p0. Moreover, p is absolutely continuous
with respect to q if and only if

β

∫ 1

0

q(dx)

1− x
≥ 1.

Otherwise,

γ(β) := 1− β

∫ 1

0

q(dx)

1− x
> 0, (1.1)

and this is the case of interest to us. In this case the limiting distribution p(dx) still exists, but
it has an atom at the optimal fitness 1, an effect called condensation. The limiting distribution
does not depend on p0 and equals

p(dx) = β
q(dx)

1− x
+ γ(β) δ1(dx).

Our main result describes the dynamics of condensation in terms of a scaling limit theorem
which zooms into the neighbourhood of the maximal fitness value and shows the shape of the
‘wave’ eventually forming the condensate, see Figure 1.

Theorem 1. Suppose that the fitness distribution q satisfies

lim
h↓0

q(1− h, 1)

hα
= 1, (1.2)

where α > 1, and that (1.1) holds. Then, for x > 0,

lim
n↑∞

pn(1−
x

n
, 1) =

γ(β)

Γ(α)

∫ x

0
yα−1e−y dy. (1.3)
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Figure 1. Schematic picture of pn. On the right the wave is a high peak with length of

order 1/n and height of order n. By contrast, the bulk has height and length of order one.

We remark that the total mass in the ‘wave’ moving towards the maximal fitness value agrees
with the mass of the atom in the limiting distribution p(dx). Its rescaled shape is that of a
gamma distribution with shape parameter α.

2. Proof of Theorem 1

Note that

µn =

∫

xn q(dx) ∼ Γ(α+ 1)n−α,

where the asymptotics is easily derived from (1.2), and note that

∞
∑

n=0

µn =

∫ 1

0

q(dx)

1− x
=

1

β
(1− γ(β)). (2.1)

Also define

Wn := w1 · · ·wn.

Given the family (Wn)n≥1 the fitness distributions can be obtained as

pn(dx) =
n−1
∑

r=0

Wn−r

Wn
(1− β)rβ xr q(dx) +

1

Wn
(1− β)n xn p0(dx), (2.2)

see [9, (2.1)]. The main tool in the proof is therefore the following lemma.

Lemma 2. We have, as n ↑ ∞,

Wn ∼ c n−α(1− β)n−1,

where

c =
β

γ(β)
Γ(α+ 1)

∞
∑

k=1

Wk (1− β)1−k.
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Proof. Integrating (2.2) we obtain [9, (2.3)]

Wn =
n−1
∑

r=1

Wn−r (1− β)r−1β µr + (1− β)n−1mn.

Abbreviate un := Wn (1− β)1−n. Then un satisfies the renewal equation

un = β
1−β

n−1
∑

r=1

un−rµr +mn, for n ≥ 1.

Using (2.1), we obtain β
1−β

∑∞
n=1 µn = 1 − γ(β)

1−β < 1. Hence, the renewal theorem, see e.g. [8,

XXXIII.10, Theorem 1], implies that
∞
∑

n=1

un =

∑∞
n=1mn

1− β
1−β

∑∞
n=1 µn

=
1− β

γ(β)

∞
∑

n=1

mn < ∞

where the finiteness follows since mn is bounded by a constant multiple of µn and
∞
∑

n=0

µn =

∫

q(dx)

1− x
< ∞.

Fix δ > 0 and 0 < ε < η < 1 and suppose n is large enough such that ηn ≤ n− 1 and

µr ≤ (Γ(α+ 1) + δ) r−α for all r ≥ (1− η)n.

For an inductive argument suppose that c1, . . . , cr are chosen such that ur ≤ cr r
−α for all

εn ≤ r ≤ n− 1. Then one has for r = 1, . . . , n− 1

urµn−r ≤











(1− ε)−α(Γ(α+ 1) + δ)n−αur if r ≤ εn,

cr (Γ(α+ 1) + δ)r−α(n− r)−α if εn ≤ r ≤ ηn,

cr η
−αn−αµn−r if ηn ≤ r,

so that

un ≤ (1− ε)−α β
1−β (Γ(α+ 1) + δ)

(

∞
∑

r=1

ur

)

n−α

+ β
1−β (Γ(α+ 1) + δ)

(

1
n

⌊ηn⌋
∑

r=⌊εn⌋+1

cr
(

r
n

)−α(
1− r

n

)−α
)

n1−2α (2.3)

+ β
1−β η−α

(

n−1
∑

r=⌊ηn⌋+1

cr µn−r

)

n−α +mn =: cnn
−α.

By induction this yields a sequence (cn) with un ≤ cn n
−α for all n ≥ 1.

Using that mnn
α → 0 by assumption, and the term (2.3) is bounded by a constant multiple of

n1−2α

∫ η

ε
dr r−α(1− r)−α ≪ n−α,

we see that (cn) converges to the unique solution c∗ = c∗(ε, δ, η) of

c∗ = (1− ε)−α β
1−β (Γ(α+ 1) + δ)

∞
∑

r=1

ur + c∗ η−α β
1−β

∞
∑

r=1

µr.
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Recalling that β
∑∞

r=1 µr = 1 − γ(β) − β, and letting ε, δ ↓ 0 and η ↑ 1 we see that c∗(ε, δ, η)
converges to

c =
β

γ(β)
Γ(α+ 1)

∞
∑

k=1

uk =
β

γ(β)
Γ(α+ 1)

∞
∑

k=1

Wk (1− β)1−k,

which yields the upper bound. The lower bound can be derived similarly. �

To complete the proof using the lemma, we look at (2.2) and get

pn
(

1−
x

n
, 1
)

=
n−1
∑

r=0

Wn−r

Wn
(1− β)rβ

∫ 1

1−x/n
yr q(dy) +

1

Wn
(1− β)n

∫ 1

1−x/n
yn p0(dy).

The second term vanishes asymptotically, as

1

Wn
(1− β)n

∫ 1

1−x/n
yn p0(dy) ∼ (1− β)

mn

cn−α

∫ 1
1−x/n y

n p0(dy)
∫ 1
0 yn p0(dy)

→ 0,

using our assumption that mn/µn → 0. The first term is asymptotically equivalent to

nα
n−1
∑

r=0

Wn−r c
−1 (1− β)1−n+rβ

∫ 1

1−x/n
yr q(dy).

By choosing a large M , the contribution coming from terms with r ≤ n−Mn1/α can be bounded
by a constant multiple of

(n−Mn1/α)
( n

Mn1/α

)α
q
(

1− x
n , 1

)

,

which is bounded by an arbitrarily small constant. For the remaining terms we can now use
that

∫ 1

1−x/n
ysn q(dy) ∼

∫ 0

x
e−as dq(1− a

n , 1) ∼ αn−α

∫ x

0
aα−1e−as da,

and a change of variables to obtain equivalence to

αβ c−1
(

∞
∑

m=1

Wm (1− β)1−m
)

∫ x

0
aα−1e−a da,

and the result follows as, by Lemma 2,

αβ c−1
(

∞
∑

m=1

Wm (1− β)1−m
)

=
γ(β)

Γ(α)
,

as required.

3. Discussion

Kingman’s model is on the one hand one of the simplest models in which a condensation effect
can be observed, on the other hand it is sufficiently rich to study the emergence of condensation
as a dynamical phenomenon. The simplicity of the model allows a rigorous treatment with
elementary means, but we believe that our calculation has far reaching consequences as a variety
of much more complex models in quite diverse areas of science have similar features. Among
the models we expect to share many features with Kingman’s model are models of the physical
phenomenon of Bose-Einstein condensation, of wealth condensation in macroeconomics, or the
emergence of traffic jams.
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Our main conjecture is that in a large universality class of models in which effects similar to
mutation and selection compete effectively on a bounded and continuous statespace, the ‘wave’
moving towards the maximal state forming the condensate is of a Gamma shape.

Random models which are suitable test cases for our universality claim arise, for example, in
the study of random permutations with cycle weights. Here the probability of a permutation σ
in the symmetric group on n elements is defined as

Pn(σ) =
1

n!hn

∏

j≥1

θ
Rj(σ)
j ,

where Rj(σ) is the number of cycles of length j in σ and hn is a normalisation constant. For
our investigation we focus on the case that θj ∼ jγ for γ ∈ R. We now discuss results of Betz,
Ueltschi and Velenik [3] and Ercolani and Ueltschi [7] in our context.

Our interest is in the empirical cycle length distribution which is the random measure on [0, 1]
given by

µn =
1

n

k
∑

i=1

λi δλi
n

,

where the integers λ1 ≥ λ2 ≥ · · · ≥ λk are the ordered cycle lengths of a permutation chosen
randomly according to Pn. The asymptotic behaviour of µn shows three phases depending on
the value of the parameter γ, see Table 1 in [7]:

• If γ < 0 large cycles are preferred and the empirical cycle length distribution concentrates
asymptotically in the point 1,

• if γ = 0 there is no condensation and we have convergence to a beta distribution,
• if γ > 0 we see a preference for short cycles and the empirical cycle length distribution
concentrates asymptotically in the point 0.

In the two phases in which see a condensation effect we have partial information on the shape
of the wave, which is consistent with our universality claim.

Let us first look at the case γ > 0 when the empirical cycle length distribution concentrates in
the left endpoint of our domain, i.e. the normalised cycle lengths vanish asymptotically. For a
particular case of this nature Theorem 5.1 of [7] shows that, for α = γ

γ+1 ,

lim
n→∞

E
[

µn[0,
x
nα )

]

=
1

Γ(γ + 1)

∫ x

0
yγe−y dy,

i.e. focusing on the left edge of the domain in the scale 1/nα we see a gamma distributed wave
shape with parameter γ, at least in the mean. It is a natural conjecture that this convergence
holds whenever the cycle weights are regularly varying with index γ > 0 and that the convergence
holds not only in expectation, but also in probability. Establishing these facts is subject of an
ongoing project.

In the case γ < 0 large cycles are preferred. Here the situation is slightly different because the
wave sweeping towards the maximal normalised cycle length is on the critical scale 1/n and this
means that we expect that the discrete nature of µn is retained in the limit.
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More precisely, Theorem 3.2 of [3] implies in such a case that

lim
n→∞

E
[

µn[1−
m
n , 1]

]

= 1
2

m
∑

n=0

e−c∗nhn,

where c∗ is a ‘Malthusian parameter’ chosen such that

∞
∑

n=1

e−c∗nhn = 1.

We further note that hn ∼ C nγ−1 by [7, (7.1)] and so we are still able to recognise a discrete
form of a gamma distribution with parameter γ in this case.

The most elaborate model in which we were able to test our hypothesis is a random network
model with fitness. We now give an informal preview of forthcoming results of Dereich [5], which
are motivated by a problem of Borgs et al. [4].

A preferential attachment network model is a sequence of random graphs (G(n))n∈N that is built
dynamically: one starts with a graph G(1) consisting of a single vertex 1 and, in general, the
graph G(n+ 1) is built by adding the vertex n+ 1 to the graph G(n) and by insertion of edges
connecting the new vertex to the graph G(n) according to an attachment rule. Typically, the
attachment rule rewards vertices that already have a high degree: in most cases the degree of a
vertex has an affine influence on its attractiveness in the collection of new edges. In a preferential
attachment model with fitness we additionally assign to each vertex an intrinsic fitness, a positive
number, which has a linear impact on its attractiveness in the network formation.

Let us be more precise about the variant of the network model to be considered in the rest of
this paper. We consider a sequence of random directed graphs (G(n))n∈N and denote by

impn(m) := indegreeG(n)(m) + 1

the impact of the vertex m ∈ {1, . . . , n} in G(n). Further, let F1, F2, . . . denote a sequence
of independent q-distributed random variables modeling the fitness of the individual vertices
1, 2, . . .. The attachment rule is as follows: given the graph G(n) and all fitnesses, link n+ 1 to
each individual vertex m ∈ {1, . . . , n} with an independent Poisson distributed number of edges
with parameter

1

nZn
Fm impn(m),

where Zn is a normalisation which depends only on G(n) and the fitnesses. Note that all links
point from new to old vertices so that orientations can be recovered from the undirected set of
edges. We consider two types of normalisations:

(1) adaptive normalisation: Zn = 1
λn

∑n
m=1 Fm impn(m) for a parameter λ > 0,

(2) deterministic normalisation: (Zn) is a deterministic sequence.

In the case of adaptive normalisation, the outdegree of n+1 is Poisson distributed with param-
eter λ, even when conditioning on the graph G(n). Hence, the total number of edges is almost
surely of order λn so that 1

n

∑n
m=1 impn(m) converges almost surely to λ+ 1.
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The analogue of pn is the impact measure given by

Ξn =
1

n

n
∑

m=1

impn(m) δFm
.

It measures the contribution of the vertices of a particular fitness to the total impact. As
observed in [1] and verified for a different variant of the model in [4], network models with
fitness show a phase transition similar to Bose-Einstein condensation. The verification of this
phase transition in the variant considered here is conducted in [6].

For adaptive normalisation two regimes can be observed

[FGR]
∫

x
1−x q(dx) ≥ λ: the fit-get-richer phase,

[BE]
∫

x
1−x q(dx) < λ: the Bose-Einstein phase or innovation-pays-off phase.

In the fit-get-richer phase, the random measures (Ξn)n∈N converge almost surely in the weak
topology to the measure Ξ on (0, 1] given by

Ξ(dx) =
λ∗

λ∗ − x
q(dx),

where λ∗ ∈ [1,∞) denotes the unique solution to
∫

λ∗

λ∗ − x
q(dx) = 1 + λ,

whereas, in the Bose-Einstein phase, one observes convergence to

Ξ(dx) =
1

1− x
q(dx) +

(

1 + λ−

∫

1

1− y
q(dy)

)

δ1(dx).

In order to analyse the emergence of the condensation phenomenon, we consider the preferential
attachment model with deterministic normalisation. We assume that q is regularly varying at 1
with representation

q(1− h, 1) = hα ℓ(h),

where ℓ : [0, 1] → (0,∞) is a slowly varying function. In order to replicate the Bose-Einstein phe-
nomenon in the model with deterministic normalisation, one needs to choose (Zn) appropriately.
For 1 ≤ m ≤ n, let

Υ[m,n] :=

⌊n⌋
∑

k=⌊m⌋

1− Zk

k
.

The Bose-Einstein phenomenon can be replicated by choosing (Zn) such that

1− Zn ∼ α(log n)−1

and such that the limit

γ := lim
n→∞

α

α− 1
Γ(α)

(log n)α · log(log n)α

ℓ((log n)−1)
exp{Υ[logn, n]} (3.1)

exists. We stress that an appropriate normalisation can be found for various fitness distribu-
tions q and we refer the reader to the forthcoming article [5] for the details.
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Theorem 3. Under the above assumptions, one has, for x > 0,

lim
n→∞

Ξn

(

1−
x

logn
, 1
)

=
γ

Γ(α)

∫ x

0
yα−1e−y dy, in probability.

For any measurable set A ⊂ R with Ξ(∂A) = 0, one has

lim
n→∞

Ξn(A) = Ξ(A), in probability,

for the measure Ξ on [0, 1] given by

Ξ(dx) =
1

1− x
q(dx) + γ δ1(dx).

Remark 1. In most cases one cannot give an explicit representation for a normalisation (Zn)
satisfying (3.1). On first sight this might be surprising, since the (Zn) play a rôle analogous to
(Wn) in the Kingman model where the analysis is feasible. The difference of both models comes
from the stochastic nature of the network model. In order to analyse the network model one
could start to work with expectations resulting in a mean field model similar to the Kingman
model. However, the expectations for Ξn are dominated by configurations that are not seen in
typical realisations: vertices of particular high fitness that are born very early contribute most
despite being not present typically. To compensate this the normalisations in the network model
have to be slightly smaller than a mean field model would suggest. Vertices of particularly high
fitness have an impact only with a delay. This causes the Υ[log n, n] term in (3.1) and makes
explicit representations for (Zn) in many cases unfeasible.

We conclude our discussion with the remark that the case of unbounded fitness distribution is
also of considerable interest. In this case Park and Krug [10] have studied the analogue of
Kingman’s model and (in a particular case) observed emergence of a traveling wave of Gaussian
shape. They also conjecture that this behaviour is of universal nature.
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