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Abstract. For any finite coloured graph we define the empirical neighbourhood mea-
sure, which counts the number of vertices of a given colour connected to a given
number of vertices of each colour, and the empirical pair measure, which counts the
number of edges connecting each pair of colours. For a class of models of sparse
coloured random graphs, we prove large deviation principles for these empirical mea-
sures in the weak topology. The rate functions governing our large deviation principles
can be expressed explicitly in terms of relative entropies. We derive a large deviation
principle for the degree distribution of Erdős-Rényi graphs near criticality.

1. Introduction

In this paper we study a random graph model where each vertex of the graph carries a random symbol,
spin or colour. The easiest model of this kind is that of an Erdős-Rényi graph where additionally each
vertex is equipped with an independently chosen colour. The more general models of coloured random
graphs we consider here allow for a dependence between colour and connectivity of the vertices.

With each coloured graph we associate its empirical neighbourhood measure, which records the number
of vertices of a given colour with a given number of adjacent vertices of each colour. From this quantity
one can derive a host of important characteristics of the coloured graph, like its degree distribution,
the number of edges linking two given colours, or the number of isolated vertices of any colour. The
aim of this paper is to derive a large deviation principle for the empirical neighbourhood measure.

To be more specific about our model, we consider coloured random graphs constructed as follows: In
the first step each of n fixed vertices independently gets a colour, chosen according to some law µ on
the finite set X of colours. In the second step we connect any pair of vertices independently with a
probability p(a, b) depending on the colours a, b ∈ X of the two vertices. This model, which comprises
the simple Erdős-Rényi graph with independent colours as a special case, was introduced by Penman
in his thesis [15], see [6] for an exposition, and rediscovered later by Söderberg [16]. It is also a special
case of the inhomogeneous random graphs studied in [3, 13].

Our main concern in this paper are asymptotic results when the number n of vertices goes to infinity,
while the connection probabilities are of order 1/n. This leads to an average number of edges of order
n, the near critical or sparse case. Our methods also allow the study of the sub- and supercritical
regimes. Some results on these cases are discussed in [10].
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Recall that a rate function is a non-constant, lower semicontinuous function I from a polish spaceM
into [0,∞], it is called good if the level sets {I(m) ≤ x} are compact for every x ∈ [0,∞). A functional
M from the set of finite coloured graphs to M is said to satisfy a large deviation principle with rate
function I if, for all Borel sets B ⊂M,

− inf
m∈intB

I(m) ≤ lim inf
n→∞

1
n log Pn

{
M(X) ∈ B

}
≤ lim sup

n→∞
1
n log Pn

{
M(X) ∈ B

}
≤ − inf

m∈clB
I(m) ,

where X under Pn is a coloured random graph with n vertices and int B and cl B refer to the interior,
resp. closure, of the set B.

Apart from the empirical neighbourhood measure defined above, we also consider the empirical pair
measure, which counts the number of edges connecting any given pair of colours, and the empirical
colour measure, which simply counts the number of vertices of any given colour. The main result of this
paper is a joint large deviation principle for the empirical neighbourhood measure and the empirical
pair measure of a coloured random graph in the weak topology, see Theorem 2.1. In the course of
the proof of this principle, two further interesting large deviation principles are established: A large
deviation principle for the empirical neighbourhood measure conditioned to have a given empirical pair
and colour measure, see Theorem 2.5, and a joint large deviation principle for the empirical colour
measure and the empirical pair measure, see Theorem 2.3 (b). For all these principles we obtain a
completely explicit rate function given in terms of relative entropies.

Our motivation for this project is twofold. On the one hand one may consider the coloured random
graphs as a very simple random model of networked data. The data is described as a text of fixed length,
consisting of words chosen from a finite dictionary, together with a random number of unoriented edges
or links connecting the words. Large deviation results for the empirical neighbourhood measure permit
the calculation of the asymptotic number of bits needed to transmit a large amount of such data with
arbitrarily small error probability, see [10] where this idea is followed up.

On the other hand we are working towards understanding simple models of statistical mechanics
defined on random graphs. Here, typically, the colours of the vertices are interpreted as spins, taken
from a finite set of possibilities, and the Hamiltonian of the system is an integral of some function with
respect to the empirical neighbourhood measure. As a very simple example we provide the annealed
asymptotics of the random partition function for the Ising model on an Erdős-Rényi graph, as the
graph size goes to infinity.

As a more substantial example, we consider the Erdős-Rényi graph model on n vertices, where edges
are inserted with probability pn ∈ [0, 1] independently for any pair of vertices. We assume that npn →
c ∈ (0,∞). From our main result we derive a large deviation principle for the degree distribution, see
Corollary 2.2. This example seems to be new in this explicit form.

2. Statement of the results

Let V be a fixed set of n vertices, say V = {1, . . . , n} and denote by Gn the set of all (simple) graphs
with vertex set V = {1, . . . , n} and edge set E ⊂ E :=

{
(u, v) ∈ V × V : u < v

}
, where the formal

ordering of edges is introduced as a means to describe simply unordered edges. Note that for all n,
we have 0 ≤ |E| ≤ 1

2 n(n− 1) . Let X be a finite alphabet or colour set X and denote by Gn(X ) be the
set of all coloured graphs with colour set X and n vertices.

Given a symmetric function pn : X × X → [0, 1] and a probability measure µ on X we may define
the randomly coloured random graph or simply coloured random graph X with n vertices as follows:
Assign to each vertex v ∈ V colour X(v) independently according to the colour law µ. Given the
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colours, we connect any two vertices u, v ∈ V , independently of everything else, with connection
probability pn(X(u), X(v)). We always consider X = ((X(v) : v ∈ V ), E) under the joint law of graph
and colour and interpret X as coloured random graph.

We are interested in the properties of the randomly coloured graphs for large n in the sparse or
near critical case, i.e. we assume that the connection probabilities satisfy npn(a, b) → C(a, b) for all
a, b ∈ X , where C : X × X → [0,∞) is a symmetric function, which is not identically equal to zero.

To fix some notation, for any finite or countable set Y we denote by M(Y) the space of probability
measures, and by M̃(Y) the space of finite measures on Y, both endowed with the weak topology.
When applying ν ∈ M̃(Y) to some function g : Y → R we use the scalar-product notation

〈ν, g〉 :=
∑
y∈Y

ν(y) g(y),

and denote by ‖ν‖ its total mass. Further, if µ ∈ M̃(Y) and ν � µ we denote by

H(ν ‖µ) =
∑
y∈Y

ν(y) log
( ν(y)
µ(y)

)
the relative entropy of ν with respect to µ. We set H(ν ‖µ) = ∞ if ν 6� µ. By N (Y) we denote
the space of counting measures on Y, i.e. those measures taking values in N ∪ {0}, endowed with the
discrete topology. Finally, we denote by M̃∗(Y×Y) the subspace of symmetric measures in M̃(Y×Y).

With any coloured graph X = ((X(v) : v ∈ V ), E) with n vertices we associate a probability measure,
the empirical colour measure L1 ∈M(X ), by

L1(a) :=
1
n

∑
v∈V

δX(v)(a), for a ∈ X ,

and a symmetric finite measure, the empirical pair measure L2 ∈ M̃∗(X × X ), by

L2(a, b) :=
1
n

∑
(u,v)∈E

[δ(X(v), X(u)) + δ(X(u), X(v))](a, b), for a, b ∈ X .

The total mass ‖L2‖ of the empirical pair measure is 2|E|/n. Finally we define a further probability
measure, the empirical neighbourhood measure M ∈M(X ×N (X )), by

M(a, `) :=
1
n

∑
v∈V

δ(X(v),L(v))(a, `), for (a, `) ∈ X ×N (X ),

where L(v) = (lv(b), b ∈ X ) and lv(b) is the number of vertices of colour b connected to vertex v. For
every ν ∈M(X ×N (X )) let ν1 and ν2 be the X -marginal and the N (X )−marginal of the measure ν,
respectively. Moreover, we define a measure 〈ν(·, `), `(·)〉 ∈ M̃(X × X ) by

〈ν(·, `), `(·)〉(a, b) :=
∑

`∈N (X )

ν(a, `)`(b), for a, b ∈ X .

Define the function Φ: M(X × N (X )) → M(X ) × M̃(X × X ) by Φ(ν) = (ν1, 〈ν(·, `), `(·)〉), and
observe that Φ(M) = (L1, L2), if these quantities are defined as empirical neighbourhood, colour, and
pair measures of a coloured graph. Note that while the first component of Φ is a continuous function,
the second component is discontinuous in the weak topology.
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To formulate the large deviation principle, we call a pair of measures ($, ν) ∈ M̃(X × X )×M(X ×
N (X )) sub-consistent if

〈ν(·, `), `(·)〉(a, b) ≤ $(a, b), for all a, b ∈ X , (2.1)

and consistent if equality holds in (2.1). Observe that, if ν is the empirical neighbourhood measure
and $ the empirical pair measure of a coloured graph, ($, ν) is consistent and both sides in (2.1)
represent

1
n (1 + 1l{a=b}) ]

{
edges between vertices of colours a and b

}
.

For a measure $ ∈ M̃∗(X × X ) and a measure ω ∈M(X ), define

HC($ ‖ω) := H
(
$ ‖Cω ⊗ ω

)
+ ‖Cω ⊗ ω‖ − ‖$‖ ,

where the measure Cω⊗ω ∈ M̃(X ×X ) is defined by Cω⊗ω(a, b) = C(a, b)ω(a)ω(b) for a, b ∈ X . It is
not hard to see that HC($ ‖ω) ≥ 0 and equality holds if and only if $ = Cω⊗ω ( see Lemma 3.2). For
every ($, ν) ∈ M̃∗(X ×X )×M(X ×N (X )) define a probability measure Q = Q[$, ν] on X ×N (X )
by

Q(a , `) := ν1(a)
∏
b∈X

e
−$(a,b)
ν1(a)

1
`(b)!

($(a, b)
ν1(a)

)`(b)
, for a ∈ X , ` ∈ N (X ). (2.2)

We have now set the stage to state our principal theorem, the large deviation principle for the empirical
pair measure and the empirical neighbourhood measure.

Theorem 2.1. Suppose that X is a coloured random graph with colour law µ and connection probabili-
ties pn : X ×X → [0, 1] satisfying npn(a, b)→ C(a, b) for some symmetric function C : X ×X → [0,∞)
not identical to zero. Then, as n → ∞, the pair (L2, M) satisfies a large deviation principle in
M̃∗(X × X )×M(X ×N (X )) with good rate function

J($, ν) =
{
H(ν ‖Q) +H(ν1 ‖µ) + 1

2 HC($ ‖ ν1) if ($, ν) sub-consistent,
∞ otherwise.

Remark 1 The rate function can be interpreted as follows: J($ , ν) represents the cost of obtaining
an empirical pair measure $ and an empirical neighbourhood measure ν. This cost is divided into
three sub-costs:

(i) H(ν1 ‖µ) represents the cost of obtaining the empirical colour measure ν1, this cost is
nonnegative and vanishes iff ν1 = µ,

(ii) 1
2HC($ ‖ ν1) represent the cost of obtaining an empirical pair measure $ if the empirical
colour measure is ν1, again this cost is nonnegative and vanishes iff $ = C ν1 ⊗ ν1,

(iii) H(ν ‖Q) represents the cost of obtaining an empirical neighbourhood measure ν if the em-
pirical colour measure is ν1 and the empirical pair measure is $, this cost is nonnegative and
vanishes iff ν = Q.

Consequently, J($ , ν) is nonnegative and vanishes if and only if $ = C µ⊗ µ and

ν(a, `) = µ(a)
∏
b∈X

e−C(a,b)µ(b) (C(a, b)µ(b))`(b)

`(b)!
, for all (a, `) ∈ X ×N (X ).

This is the law of a pair (a, `) where a is distributed according to µ and, given the value of a, the
random variables `(b) are independently Poisson distributed with parameter C(a, b)µ(b). Hence, as
n→∞, the random measure M(X) converges in probability to this law.
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Remark 2 Our large deviation principle implies individual large deviation principles for the measures
L2 and M by contraction, see [9, Theorem 4.2.1]. Note that, by the discontinuity of Φ, the functional
relationship L2 = Φ2(M) may break down in the limit, and hence the rate function may be finite
on pairs which are not consistent. We have not been able to extend the large deviation principle
to a stronger topology in which Φ is continuous, as this leads to considerable compactness problems,
see [11, 8] for discussions of some of the problems and opportunities arising when extending large
deviation principles to stronger topologies.

As usual, the degree distribution D ∈ M(N ∪ {0}) of a graph with empirical neighbourhood measure
M is defined by

D(k) =
∑
a∈X

∑
`∈N (X )

δk
(∑

b∈X `(b)
)
M(a, `), for k ∈ N ∪ {0},

i.e. D(k) is the proportion of vertices in the graph with degree k. As the degree distribution D is a
continuous function of M , Theorem 2.1 and the contraction principle imply a large deviation principle
for D. For a classical Erdős-Rényi graph the rate function takes on a particularly simple form (see
Section 6 for details).

Corollary 2.2. Suppose D is the degree distribution of an Erdős-Rényi graph with connection proba-
bility pn ∈ [0, 1] satisfying npn → c ∈ (0,∞). Then D satisfies a large deviation principle, as n→∞,
in the space M(N ∪ {0}) with good rate function

δ(d) =


1
2 x log

(
x
c

)
− 1

2x+ c
2 +H(d ‖ qx), if 〈d〉 ≤ c,

1
2 〈d〉 log

( 〈d〉
c

)
− 1

2 〈d〉+ c
2 +H(d ‖ q〈d〉), if c < 〈d〉 <∞,

∞ if 〈d〉 =∞,

(2.3)

where, in the case 〈d〉 ≤ c, the value x = x(d) is the unique solution of

x = ce−2
(

1− 〈d〉
x

)
,

and where qλ is a Poisson distribution with parameter λ and 〈d〉 :=
∑∞

m=0md(m).

Remark 3 On probability measures d with mean c the rate simplifies to the relative entropy of d with
respect to the Poisson distribution of the same mean. In [5, Theorem 7.1] a large deviation principle
for the degree distribution is formulated for this situation, albeit with a rather implicitly defined rate
function. Moreover, the proof given there contains a serious gap: The exponential equivalence stated
in [5, Lemma 7.2] is not proved there and we conjecture that it does not hold.

Remark 4 O’Connell [7] provides further large deviation principles for sparse Erdős-Rényi graphs. His
focus is on the size of the biggest component, and he also studies the number of isolated vertices. A
large deviation principle for the latter is also a consequence of our corollary.

We now state the two large deviation results, Theorems 2.3 (b) and 2.5, which are the main ingredients
for our proof of Theorem 2.1, but are also of independent interest. The first of these is a joint large
deviation principle for the empirical colour measure L1 and the empirical pair measure L2, the second
a large deviation principle for the empirical neighbourhood measure M given L1 and L2.

For any n ∈ N we define

Mn(X ) :=
{
ω ∈M(X ) : nω(a) ∈ N for all a ∈ X

}
,

M̃∗,n(X × X ) :=
{
$ ∈ M̃∗(X × X ) : n

1+1l{a=b} $(a, b) ∈ N for all a, b ∈ X
}
,
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Theorem 2.3. Suppose that X is a coloured random graph with colour law µ and connection proba-
bilities satisfying npn(a, b) → C(a, b) for some symmetric function C : X × X → [0,∞) not identical
to zero.

(a) Suppose the sequence ωn ∈ Mn(X ) converges to a limit ω ∈ M(X ). Then, as n → ∞,
conditional on the event {L1 = ωn} the empirical pair measure L2 of X satisfies a large
deviation principle on the space M̃∗(X × X ) with good rate function

Iω($) = 1
2HC($ ‖ω) . (2.4)

(b) As n→∞, the pair (L1, L2) satisfies a large deviation principle in M(X )×M̃∗(X ×X ) with
good rate function

I(ω,$) = H(ω ‖µ) + 1
2HC($ ‖ω) . (2.5)

Example 1 We look at the Erdős-Rényi graph with connection probabilities pn satisfying npn → c ∈
(0,∞) and study the random partition function for the Ising model on the graph, which is defined as

Z(β) :=
∑

η∈{−1,+1}V
exp

(
β
∑

(u,v)∈E

η(u)η(v)
)

for the inverse temperature β > 0.

Denoting by E expectation with respect to the graph, we note that

EZ(β) = 2nE exp
(
n β

2

∫
xy L2(dx dy)

)
,

where E is expectation with respect to the graph randomly coloured using independent colours chosen
uniformly from X = {−1, 1}. Then Varadhan’s lemma, see e.g. [14, III.3], Theorem 2.3 (b), gives

lim
n→∞

1
n log EZ(β)

= log 2 + sup
{
β
2

∫
xy$(dx dy)− I(ω,$) : ω ∈M(X ), $ ∈M∗({−1, 1} × {−1, 1})

}
= sup

{
β
2

(
$(∆)−$(∆c)

)
− x log(x)− (1− x) log(1− x)− 1

2

(
H($ ‖ωx) + c− ‖$‖

)}
,

(2.6)

where ∆ is the diagonal in {−1, 1} × {−1, 1}, and the supremum is over all x ∈ [0, 1] and $ ∈
M∗({−1, 1} × {−1, 1}), and the measure ωx ∈ M̃∗({−1, 1} × {−1, 1}) is defined by

ωx(i, j) = cx(2+i+j)/2(1− x)(2−i−j)/2 for i, j ∈ {−1, 1} .
Note that the last expression in (2.6) is an optimisation problem in only four real variables.

We obtain from Theorem 2.3 (b) the following corollary (see Section 6 for details).

Corollary 2.4. Suppose that X is a coloured random graph with colour law µ and connection proba-
bilities satisfying npn(a, b) → C(a, b) for some symmetric function C : X × X → [0,∞) not identical
to zero. Then, as n→∞, the number of edges per vertex |E|/n satisfies a large deviation principle in
[0,∞) with good rate function

ζ(x) = x log x− x+ inf
y>0

{
ψ(y)− x log(1

2y) + 1
2y
}
,

where ψ(y) = inf H(ω ‖µ) over all probability vectors ω with ωTCω = y.

Remark 5 In the Erdős-Rényi case C(a, b) = c one obtains ψ(y) = 0 for y = c, and ψ(y) = ∞
otherwise. Hence ζ(x) = x log x− x− x log( c2) + c

2 , which is the Cramér rate function for the Poisson
distribution with parameter c

2 . In [2] a large deviation principle for |E|/n2 is proved for coloured
random graphs with fixed connection probabilities.
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For a given $ ∈ M̃∗(X × X ) and ν ∈ M(X × N (X )) we recall the definition of the measure Q ∈
M(X ×N (X )) from (2.2).

Theorem 2.5. Suppose (ωn, $n) ∈ Mn(X ) × M̃∗,n(X × X ) converges to a limit (ω,$) ∈ M(X ) ×
M̃∗(X × X ). Let X be a coloured random graph with n vertices conditioned on the event {Φ(M) =
(ωn, $n)}. Then, as n→∞, the empirical neighbourhood measure M of X satisfies a large deviation
principle in the space M(X ×N (X )) with good rate function

J̃(ω,$)(ν) =
{
H(ν ‖Q) if ($, ν) is sub-consistent and ν1 = ω,
∞ otherwise. (2.7)

In the remainder of the paper we give the proofs of the results set out so far. Section 3 is devoted to the
proof of Theorem 2.3 (a), which uses the Gärtner-Ellis theorem. By contrast, the proof of Theorem 2.5,
carried out in Section 4, is based on nontrivial combinatorial arguments combined with a partially
randomised approximation procedure. This approximation is the most demanding argument of the
paper and requires a fairly sophisticated technique. In Section 5 we first combine Sanov’s Theorem
[9, Theorem 2.1.10] and Theorem 2.3 (a) to obtain Theorem 2.3 (b), and then Theorem 2.3 (b) and
Theorem 2.5 to get Theorem 2.1, using the setup and result of Biggins [1] to ‘mix’ the large deviation
principles. The paper concludes with the proofs of Corollaries 2.2 and 2.4, which are given in Section 6.

3. Proof of Theorem 2.3 (a) by the Gärtner-Ellis theorem

Throughout this section we assume that the sequence ωn ∈ Mn(X ) converges to ω ∈ M(X ). Let
P{ · |L1 = ωn} be the law of coloured random graph X with connection probabilities satisfying
npn(a, b)→ C(a, b) conditioned on the event {L1 = ωn}. In the next lemma we verify the assumption
of the Gärtner-Ellis theorem [9, Theorem 2.3.6]. We denote by C2 the space of symmetric functions
on X × X .

Lemma 3.1. For each g ∈ C2, we have

lim
n→∞

1
n log E

[
en〈g, L

2〉|L1 = ωn
]

= −1
2 〈Cω ⊗ ω, (1− eg)〉.

Proof. Let g ∈ C2. Observe that given the colours a, b ∈ X the random variables nL2(a, b) are
binomial with parameters n2ωn(a)ωn(b)− nωn(a)1l{a=b} and pn(a, b), and the variables nL2(a, b), for
{a, b} ⊂ X are independent. Hence, we have that

E
[
en〈g, L

2〉∣∣L1 = ωn
]

=
∏
{a,b}

(
1− pn(a, b) + pn(a, b)eg(a,b)

)n2ωn(a)ωn(b)−nωn(a)1l{a=b}
.

Now, for any ε > 0 and for large n we have(
1− C(a,b)(1−eg(a,b))+ε

n

)n
≤
(

1− pn(a, b) + pn(a, b)eg(a,b)
)n
≤
(

1− C(a,b)(1−eg(a,b))−ε
n

)n
.

Using Euler’s formula and taking the product over all {a, b} ⊂ X we obtain

−1
2 〈Cω ⊗ ω, (1− eg)〉 − ε ≤ lim

n→∞
1
n log E

[
en〈g, L

2〉|L1 = ωn
]
≤ −1

2 〈Cω ⊗ ω, (1− eg)〉+ ε,

and the result follows as ε > 0 was arbitrary.
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Now, by the Gärtner-Ellis theorem, under P{· |L1 = ωn} the measure L2 obeys a large deviation
principle on M̃∗(X × X ) with rate function Îω($) = 1

2 supg∈C2{〈$, g〉+ 〈Cω ⊗ ω, (1− eg)〉}.

Next, we express the rate function in term of relative entropies and consequently show that it is a
good rate function. Recall the definition of the function Iω from Theorem 2.3 (a).

Lemma 3.2.
(i) Îω($) = Iω($), for any $ ∈ M̃∗(X × X ),
(ii) Iω($) is a good rate function and
(iii) HC($ ‖ω) ≥ 0 with equality if and only if $ = Cω ⊗ ω.

Proof. (i) Suppose that $ 6� Cω ⊗ ω. Then, there exists a0, b0 ∈ X with Cω ⊗ ω(a0, b0) = 0 and
$(a0, b0) > 0. Define ĝ : X × X → R by

ĝ(a, b) = log
[
K(1l(a0,b0)(a, b) + 1l(b0,a0)(a, b)) + 1

]
, for a, b ∈ X and K > 0.

For this choice of ĝ we have
1
2〈$, ĝ〉+ 1

2〈C ω ⊗ ω, 1− e
−ĝ〉 ≥ 1

2 log(K + 1)$(a0, b0)→∞, for K ↑ ∞.
Now suppose that $ � Cω ⊗ ω. We have

Îω($) = 1
2‖C ω ⊗ ω‖+ 1

2 sup
g∈C2

{
〈$, g〉 − 〈C ω ⊗ ω, eg〉

}
.

By the substitution h = eg Cω⊗ω$ the supremum equals

sup
h∈C2
h≥0

〈
$, log

(
h

$

Cω ⊗ ω
)
− h
〉

= sup
h∈C2
h≥0

〈$, log h− h〉+
〈
$, log

$

Cω ⊗ ω
)〉

= −‖$‖+H($ ‖Cω ⊗ ω),

where we have used supx>0 log x− x = −1 in the last step. This yields that Îω($) = Iω($).

(ii) Recall that Iω = Îω is a rate function. Moreover, for all α < ∞, the level sets {$ ∈ M̃∗(X ×
X ) : 1

2 HC($ ‖ω) ≤ α} are bounded and therefore compact, so Iω is a good rate function.

(iii) Consider the nonnegative function ξ(x) = x log x− x+ 1, for x > 0, ξ(0) = 1, which has its only
root at x = 1. Note that

HC($ ‖ω) =
{ ∫

ξ ◦ g dCω ⊗ ω if g := d$
dCω⊗ω ≥ 0 exists,

∞ otherwise.
(3.1)

Hence HC($ ‖ω) ≥ 0, and, if $ = Cω ⊗ ω, then ξ( d$
dCω⊗ω ) = ξ(1) = 0 and so HC(Cω ⊗ ω ‖ω) = 0.

Conversely, if HC($ ‖ω) = 0, then $(a, b) > 0 implies Cω ⊗ ω(a, b) > 0, which then implies
ξ ◦ g(a, b) = 0 and further g(a, b) = 1. Hence $ = Cω ⊗ ω, which completes the proof of (iii).

4. Proof of Theorem 2.5 by the method of types

Throughout the proof we may assume that ω(a) > 0 for all a ∈ X . It is easy to see that the law
of the randomly coloured graph conditioned to have empirical colour measure ωn and empirical pair
measure $n,

P(ωn,$n) := P{ · |Φ(M) = (ωn, $n)},

can be described in the following manner:
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• Assign colours to the vertices by sampling without replacement from the collection of n colours,
which contains any colour a ∈ X exactly nωn(a) times;
• for every unordered pair {a, b} of colours create exactly n(a, b) edges by sampling without

replacement from the pool of possible edges connecting vertices of colour a and b, where

n(a, b) :=
{
n$n(a, b) if a 6= b,
n
2 $n(a, b) if a = b .

(4.1)

We would like to reduce the calculation of probabilities to the counting of suitable configurations. To
this end we introduce a numbering system, which specifies, for each {a, b}, the order in which edges are
drawn in the second step. More precisely, the edge-number k is attached to both vertices connecting
the kth edge. Note that the total number of edge-numbers attached to every vertex corresponds to
the degree of the vertex in the graph. All permitted numberings are equally probable.

Denote by Y
{a,b}
j be the jth edge drawn in the process of connecting vertices of colours {a, b}. Let

An(ωn, $n) be the set of all possible configurations((
X(v) : v ∈ V

)
;
(
Y
{a,b}
k : k = 1, . . . , n(a, b); {a, b} ⊂ X

) )
,

and let Bn(ωn, $n) be the set of all coloured graphs x with L1(x) = ωn and L2(x) = $n. Define
Ψ: An(ωn, $n) → Bn(ωn, $n) as the canonical mapping which associates the coloured graph to any
configuration, i.e. ‘forgets’ the numbering of the edges. Finally, define

K(n)(ωn, $n) :=
{
M(x) for some x ∈ Bn(ωn, $n)

}
to be the set of all empirical neighbourhood measures M(x) arising from coloured graphs x with n
vertices with Φ(M(x)) = (ωn, $n). For any νn ∈ K(n)(ωn, $n) we have

P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}

=
]
{
x̃ ∈ An(ωn, $n) : M ◦Ψ(x̃) = νn

}
]
{
x̃ ∈ An(ωn, $n)

} . (4.2)

In our proofs we use the following form of Stirling’s formula, see [12, page 54]: For all n ∈ N,

nn e−n ≤ n! ≤ (2πn)
1
2 nn e−n+1/(12n) .

4.1 A bound on the number of empirical neighbourhood measures
In this section we provide an upper bound on the number of measures in K(n)(ωn, $n). We write m
for the number of elements in X .
Lemma 4.1. There exists ϑ > 0, depending on m such that, if ωn ∈Mn(X ) and $n ∈ M̃∗,n(X ×X ),
then

]K(n)(ωn, $n) ≤ exp
[
ϑ (log n) (n‖$n‖)

2m−1
2m

]
.

The proof is based on counting integer partitions of vectors. To fix some notation, let Im =
(
N ∪ {0}

)m
be the collection of (nonnegative) integer vectors of length m. For any ` ∈ Im we denote by ‖`‖ its
magnitude, i.e. the sum of its entries.
We introduce an ordering 3 on Im such that, for any vectors

`1 = (`(1)1 , . . . , `(m)

1 ) and `2 = (`(1)2 , . . . , `(m)

2 ),

we write `1 3 `2 if either

(i) ‖`1‖ > ‖`2‖, or
(ii) ‖`1‖ = ‖`2‖ and there is j ∈ {1, . . . ,m} with `(k)1 = `(k)2 , for all k < j, and `(j)1 > `(j)2 , or
(iii) `1 = `2.
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A collection (`1, . . . , `k) of elements in Im is an integer partition of the vector ` ∈ Im, if

`1 3 . . . 3 `k 6= 0 and `1 + . . .+ `k = `.

Any integer partition of a vector ` ∈ Im induces an integer partition ‖`1‖, . . . , ‖`k‖ of its magnitude
‖`‖, which we call its sum-partition. We denote by Pm(`) the set of integer partitions of `.

Lemma 4.2. There exists ϑ > 0, which depends on m such that, for any ` ∈ Im of magnitude n,

]Pm(`) ≤ exp
[
ϑ (log n)n

2m−1
2m

]
.

Proof. Let ` ∈ Im be a vector of magnitude n and (`1, . . . , `k) be an integer partition of `. We
relabel the partition as (m1,1, . . . ,m1,k1 ; m2,1, . . . ,m2,k2 ; . . . ; mr,1, . . . ,mr,kr) such that all vectors in the
same block (indicated by the first subscript) have the same magnitude, which we denote y1, . . . , yr,
and such that y1 > · · · > yr > 0. Note that for the block sizes we have k1 + · · · + kr = k and that
k1y1 + · · ·+ kryr = n.

For a moment, look at a fixed block mj,1, . . . ,mj,kj . It is easy to see that the number of integer vectors
of length m and magnitude yj is given by

b(yj ,m) :=
(
yj +m− 1
m− 1

)
≤ c(m) ym−1

j .

Writing mj,0 for the largest and mj,kj+1 for the smallest of these vectors in the ordering 3, we note
that

p : {0, . . . , kj + 1} →
{
m ∈ Im : ‖m‖ = yj

}
, p(i) = mj,i,

is a non-increasing path of length kj+2 into an ordered set of size b(yj ,m), which connects the smallest
to the largest element. The number of such paths is easily seen to be(

b(yj ,m) + kj
kj

)
.

Therefore, the number of integer partitions of ` with given sum-partition (y1, k1. . ., y1, . . . , yr, kr. . ., yr) is
r∏
j=1

(
b(yj ,m) + kj

kj

)
≤ max

a1,...,ar>0∑
aj=n

r∏
j=1

{
max
y,k∈N
yk=aj

(
c(m)ym−1 + k

k

)}
.

To maximize the binomial coefficient over the set yk = aj , we distinguish between the cases when
(i) aj ≤ c(m)ym, (ii) aj > c(m)ym and observe that

(
c(m)ym−1 + aj

y
aj
y

)
≤


(

2c(m)ym−1

aj
y

)
if aj ≤ c(m)ym,(

2
aj
y

c(m)ym−1

)
if aj > c(m)ym.

Case (i): Using the upper bound ( ir ) ≤
(
ie
r

)r
, for r, i ∈ N with r ≤ i and the inequality ( aj

c(m))1/m ≤
y ≤ aj ≤ n we obtain, for some constants C0 = C0(m), C1 = C1(m),(

2c(m)ym−1

aj/y

)
≤
(

2c(m)ym−1e

aj/y

)aj/y
≤ exp

(
C0 (aj/y) log n

)
≤ exp

(
(log n)C1 a

m−1
m

j

)
.
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Case (ii): The same upper bound for binomial coefficients and 1 ≤ y ≤ (ajc )1/m ≤ aj ≤ n yield for
some constant C2 = C2(m),(

2aj/y
c(m)ym−1

)
≤
(

2(aj/y)e
c(m)ym−1

)c(m)ym−1

≤ exp
(

(log n)C2 a
m−1
m

j

)
.

From these cases, we have for some C = C(m) > 0, the upper bound
r∏
j=1

(
b(yj ,m) + kj

kj

)
≤ max

a1,...,ar>0∑
aj=n

r∏
j=1

exp((log n)C a
m−1
m

j ) ,

which is estimated further (using Hölder’s inequality) by

exp
(

(log n)C
r∑
j=1

a
m−1
m

j

)
≤ exp

(
(log n)C r

1
m

( r∑
j=1

aj

)m−1
m
)
.

We observe that all yj are different, positive and that their sum is not greater than n, so we have that

r2/2 ≤ 1 + . . .+ r ≤ y1 + . . .+ yr ≤ n.

Recalling that a1 + · · ·+ ar = n, our upper bound becomes

exp
(

(log n)C (2n)
1

2m n
m−1
m

)
= exp

(
ϑ
2 (log n)n

2m−1
2m

)
,

for some ϑ = ϑ(m) > 0. Note that from our argument so far one can easily recover the well-known
fact that the number of integer partitions of n is bounded by e(ϑ/2)

√
n, the full asymptotics being

discovered by Hardy and Ramanujan in 1918. Combining this with the upper bound for the number
of integer partitions with a given sum-partition, we obtain the claim.

Proof of Lemma 4.1 Suppose ωn ∈ Mn(X ) and $n ∈ M̃∗,n(X × X ). For a ∈ X , we look at the
mappings

Φa : K(n)(ωn, $n) 3 1
n

∑
v∈V

δ(X(v),L(v)) 7→
(
La1, . . . , L

a
nω(a)

)
,

where (La1, . . . , L
a
nω(a)) is the ordering of the vectors L(v), for all v ∈ V with X(v) = a, and thus

constitutes an integer partition of the vector (n$n(a, b) : b ∈ X ), which has magnitude n
∑

b$n(a, b).
The combined mapping Φ = (Φa : a ∈ X ) is injective, and therefore, by Lemma 4.2,

]K(n)(ωn, $n) ≤ exp
[
ϑ
∑
a∈X

log
(
n
∑
b∈X

$n(a, b)
) (
n
∑
b∈X

$n(a, b)
) 2m−1

2m

]
≤ exp

[
ϑm log

(
n‖$n‖

) (
n‖$n‖

) 2m−1
2m

]
,

where we have used the fact that
∑

b$n(a, b) ≤ ‖$n‖ in the last step.

4.2 Proof of the upper bound in Theorem 2.5.

We are now ready to prove an upper bound for the large deviation probability in Theorem 2.5.

Lemma 4.3. For any sequence (νn) with νn ∈ K(n)(ωn, $n) we have

P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}
≤ exp

(
− nH(νn ‖Qn) + ε(n)

1 (νn)
)
,
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where

Qn(a , `) = ωn(a)
∏
b∈X

e−$n(a,b)/ωn(a)[$n(a, b)/ωn(a)]`(b)

`(b)!
, for ` ∈ N (X ),

and

lim
n↑∞

1
n

sup
νn∈K(n)(ωn,$n)

ε(n)

1 (νn) = 0 .

Proof. The proof of this lemma is based on the method of types, see [9, Chapter 2]. Recall
from (4.2) that, for any νn ∈ K(n)(ωn, $n), we have

P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}

=
]
{
x̃ ∈ An(ωn, $n) : M ◦Ψ(x̃) = νn

}
]
{
x̃ ∈ An(ωn, $n)

} .

Now, by elementary counting, the denominator on the right side of (4.2) is(
n

nωn(a), a ∈ X

) ∏
{a,b}

n(a,b)∏
k=1

(n2ωn(a)ωn(b)− nωn(a)1l{a=b}

1 + 1l{a=b}
− (k − 1)

)
. (4.3)

For a given empirical neighbourhood measure νn ∈ K(n)(ωn, $n) the numerator is probably too tricky
to find explicitly. However, an easy upper bound is(

n

nνn(a, `), a ∈ X , ` ∈ N (X )

)
2−

n
2
$n(∆)

∏
(a,b)

(
n$n(a, b)

`(j)a (b), j = 1, . . . , nωn(a)

)
, (4.4)

where `(j)a (b), j = 1, . . . , nωn(a) are any enumeration of the family containing each `(b) with multi-
plicity nνn(a, `). This can be seen from the following construction: First allocate to each vertex some
(a, `) ∈ X ×N (X ) in such a way that every vector (a, `) is allocated nνn(a, `) times. The first binomial
coefficient in (4.4) represents the number of possible ways to do this. For any (a, b) ∈ X ×X distribute
the numbers in {1, . . . , n$n(a, b)} among the vertices with colour a so that a vertex carrying vector
(a, `) gets exactly `(b) numbers. Once this is done for both (a, b) and (b, a), each vertex of colour a
or b carries a set of numbers; if a 6= b each number in {1, . . . n$n(a, b)} occurs exactly twice in total,
if a = b it occurs exactly once. Next, for k = 1, . . . n(a, b), if a 6= b draw the kth edge between the
two vertices of colour a and b carrying number k, if a = b draw the kth edge between the vertices
with number k and 2k. The remaining factor in (4.4) represents the number of possible ways to
do this, with the power of two discounting the fact that for edges connecting vertices of the same
colour two numbering schemes lead to the same configuration. By this construction, every element
x̃ ∈ An(ωn, $n) with M ◦ Ψ(x̃) = νn has been constructed exactly once, but also some graphs with
loops or multiple edges can occur, so that (4.4) is an upper bound for the numerator in (4.2).

Combining (4.2), (4.3), and (4.4) we get

P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}

≤
∏
a∈X

(
nωn(a)

nνn(a, `), ` ∈ N (X )

) ∏
(a,b)

(
n$n(a, b)

`(j)a (b), j = 1, . . . , nωn(a)

)

× 2−
n
2
$n(∆)

∏
{a,b}

n(a,b)∏
k=1

(n2ωn(a)ωn(b)−nωn(a)1l{a=b}
1+1l{a=b}

− (k − 1)
)−1

.

(4.5)
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It remains to analyse the asymptotics of this upper bound. Using Stirling’s formula, we obtain∏
a∈X

(
nωn(a)

nνn(a, `), ` ∈ N (X )

)
≤ exp

(
n
∑
a

ωn(a) logωn(a)− n
∑
(a,`)

νn(a, `) log νn(a, `)
)

× exp
(
m
2 log(2πn) + 1

n

∑
a

1
12ωn(a)

)
.

We observe that
nωn(a)∏
j=1

(
`(j)a (b)

)
! = exp

(
n
∑
`

log
(
`(b)!

)
νn(a, `)

)
,

and hence(
n$n(a, b)

`(j)a (b), j ≤ nωn(a)

)
≤ exp

(
− n

∑
`

log
(
`(b)!

)
νn(a, `) + n$n(a, b) log

(
n$n(a, b)

)
− n$n(a, b)

)
× exp

(
1

12n$n(a,b) + 1
2 log(2πn)

)
.

Next, we obtain,
n(a,b)∏
k=1

(n2ωn(a)ωn(b)−nωn(a)1l{a=b}
1+1l{a=b}

− (k − 1)
)
≥ exp

(
n(a, b) log

(n2ωn(a)ωn(b)
1+1l{a=b}

))
× exp

(
n(a, b) log

(
1− 1l{a=b}

2nωn(a) −
2n(a,b)

n2ωn(a)ωn(b)

))
.

Putting everything together and denoting by H(ω) = −
∑

y∈Y ω(y) logω(y) the entropy of a mea-
sure ω ∈M(Y), we get

P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}

≤ exp
(
− nH(ωn) + nH(νn)− n

∑
(a,b)

∑
`

(log `(b)!) νn(a, `) + n
∑
(a,b)

$n(a, b) log$n(a, b)

− n
∑
(a,b)

$n(a, b)− n
2

∑
(a,b)

$n(a, b) log
(ωn(a)ωn(b)

1+1l{a=b}

)
− n

2 $n(∆) log 2 + ε(n)

1

)
,

for a sequence ε(n)

1 which does not depend on νn and satisfies limn↑∞
1
n ε

(n)

1 = 0 . To give the right hand
side the form as stated in the theorem, we observe that

H(ωn)−H(νn) +
∑
(a,b)

∑
`

(log `(b)!) νn(a, `)−
∑
(a,b)

$n(a, b) log$n(a, b) +
∑
(a,b)

$n(a, b)

+ 1
2

∑
(a,b)

$n(a, b) log
(
ωn(a)ωn(b)

)
=
∑
(a,`)

νn(a, `)
[

log νn(a, `)− logωn(a)−
∑
b

(
log
($n(a,b)
ωn(a) )`(b) − $n(a,b)

ωn(a) − (log `(b)!)
)]

=
∑
(a,`)

νn(a, `)
[

log νn(a, `)− log
(
ωn(a)

∏
b

($n(a,b)/ωn(a))`(b) exp(−$n(a,b)/ωn(a))
`(b)!

)]
= H(νn ‖Qn),

which completes the proof of Lemma 4.3.
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We can now complete the proof of the upper bound in Theorem 2.5 by combining Lemma 4.1 and
Lemma 4.3. Suppose that Γ ⊂M(X ×N (X )) is a closed set. Then,

P
{
M ∈ Γ

∣∣Φ(M) = (ωn, $n)
}

=
∑

νn∈Γ∩K(n)(ωn,$n)

P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}

≤ ]K(n)(ωn, $n) exp
(
− n inf

νn∈Γ∩K(n)(ωn,$n)
H(νn ‖Qn) + sup

νn∈K(n)(ωn,$n)

ε(n)

1 (νn)
)
.

We have already seen that 1
n supνn ε

(n)

1 (νn) and 1
n log ]K(n)(ωn, $n) converge to zero. It remains to

check that
lim
n→∞

sup
νn∈K(n)(ωn,$n)

∣∣H(νn ‖Qn)−H(νn ‖Q)
∣∣ = 0 . (4.6)

To do this, we observe that

H(νn ‖Qn)−H(νn ‖Q) =
∑

(a,`)∈X×N (X )

νn(a, `) log Q(a,`)
Qn(a,`)

= −H(ωn ‖ω)−H($n ‖$)−
∑
a,b∈X

$(a, b)ωn(a)
ω(a) +

∑
a,b∈X

$(a, b) log ωn(a)
ω(a) + ‖$n‖. (4.7)

Note that this expression does not depend on νn. As the first, second and fourth term of (4.7) converge
to 0, and the third and fifth term converge to ‖$‖, the expression (4.7) vanishes in the limit, and this
completes the proof of the upper bound in Theorem 2.5.

4.3 An upper bound on the support of empirical neighbourhood measures

The cardinality of the support, denoted ]S(ν), of an empirical neighbourhood measure ν of a graph
with n vertices is naturally bounded by n. For the proof of the lower bound in Theorem 2.5 we need
a better upper bound. We still use m to denote the cardinality of X , and let

C := 2m
Γ(m+ 2)

m
m+1

Γ(m)
and D := 2m

(m+ 1)m

Γ(m)
,

where Γ(·) is the Gamma function.

Lemma 4.4. For every (ωn, $n) ∈Mn(X )× M̃∗,n(X × X ) and νn ∈Mn(X ×N (X )) with Φ(νn) =
(ωn, $n), we have

]S(νn) ≤ C
[
n‖$n‖

] m
m+1 +D. (4.8)

The following lemma provides a step in the proof of Lemma 4.4.

Lemma 4.5. Suppose j ∈ N ∪ {0} and n ∈ N. Then,
1

Γ(n) j
n−1 ≤ ]

{
(l1, . . . , ln) ∈

(
N ∪ {0}

)n : l1 + . . .+ ln = j
}
≤ 1

Γ(n) (j + n)n−1. (4.9)

Proof. The proof is by induction on n. Equation (4.9) holds trivially for all j ∈ N ∪ {0} and
n = 1, 2, so we assume it holds for all j and n ≥ 2. By the induction hypothesis, for any j,

1
Γ(n)

j∑
l=0

(j − l)n−1 ≤
j∑
l=0

]
{

(l1, . . . , ln−1) ∈
(
N ∪ {0}

)n−1 : l1 + . . .+ ln−1 = j − l
}

= ]
{

(l1, . . . , ln) ∈
(
N ∪ {0}

)n : l1 + . . .+ ln = j
}
≤ 1

Γ(n)

j∑
l=0

(j − l + n)n−1.
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For the first and last term, we obtain the lower and upper bounds

j∑
l=0

(j − l)n−1 ≥
∫ j

0
yn−1 dy =

1
n
jn =

Γ(n)
Γ(n+ 1)

jn

and
j∑
l=0

(j − l + n)n−1 ≤
∫ j+n

n
yn−1dy ≤

∫ j+n+1

0
yn−1dy =

1
n

(j + n+ 1)n =
Γ(n)

Γ(n+ 1)
(j + n+ 1)n,

which yields inequality (4.9) for n+ 1 instead of n, and completes the induction.

Proof of Lemma 4.4. Suppose (ωn, $n) ∈Mn(X )×Mn(X × X ). Let

am(j) := ]
{

(a, `) ∈ X ×N (X ) :
∑
b∈X

`(b) = j
}

= m× ]
{

(l1, . . . , lm) ∈
(
N ∪ {0}

)m : l1 + . . .+ lm = j
}
.

For any positive integer k we write

θk = min
{
θ ∈ N :

θ∑
j=0

am(j) ≥ k
}
.

We observe from Lemma 4.5 that,

k ≤
θk∑
j=0

am(j) ≤ m
θk∑
j=0

1
Γ(m)(j +m)m−1 ≤ m

Γ(m)

∫ θk+m

0
ym−1dy = 1

Γ(m)

(
θk +m

)m
.

Thus, we have θk ≥
(
kΓ(m)

) 1
m −m =: αk. This yields

θk∑
j=0

jam(j) ≥ 1
Γ(m)

dαke∑
j=0

jm ≥ 1
Γ(m)

∫ αk−1

0
ymdy ≥ 1

Γ(m+2)

(
αk − 1

)m+1
, (4.10)

where dye is the smallest integer greater or equal to y.

Observe that the size of the support of the measure νn ∈ K(n)(ωn, $n) satisfies

]S(νn) ≤ max
{
k :

θk∑
j=0

jam(j) ≤ n‖$n‖
}
,

and hence, using (4.10) and the inequality (a+ b)m ≤ 2m(am + bm) for a, b ≥ 0,

]S(νn) ≤ max
{
k : 1

Γ(m+2)

(
αk − 1

)m+1 ≤ n‖$n‖
}

≤ Γ(m)−1
(

(n‖$n‖)
1

m+1 Γ(m+ 2)
1

m+1 +m+ 1
)m
≤ C (n‖$n‖)

m
m+1 +D ,

where the constants C, D were defined before the formulation of the lemma.
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4.4 Approximation by empirical neighbourhood measures

Throughout this section we assume that ωn ∈Mn(X ) with ωn → ω, $n ∈ M̃∗,n(X×X ) with $n → $,
and that ($, ν) is sub-consistent and ν1 = ω. Our aim is to show that ν can be approximated in the
weak topology by some νn ∈Mn(X ×N (X )) with Φ(νn) = (ωn, $n) and the additional feature that∑

b∈X
`(b) ≤ n1/3 for νn-almost every (a, `). (4.11)

The approximation will be done in three steps, given as Lemma 4.6, 4.7 and 4.9. We denote by d the
metric of total variation, i.e.

d(ν, ν̃) = 1
2

∑
(a,`)∈X×N (X )

|ν(a, `)− ν̃(a, `)|, for ν, ν̃ ∈M(X ×N (X )).

This metric generates the weak topology.

Lemma 4.6 (Approximation Step 1). For every ε > 0, there exist ν̂ ∈ M(X × N (X )) and $̂ ∈
M̃(X × X ) such that |$(a, b)− $̂(a, b)| ≤ ε for all a, b ∈ X , d(ν, ν̂) ≤ ε and ($̂, ν̂) is consistent.

Proof. By our assumption ($, ν) is sub-consistent. For any b ∈ X define e(b) ∈ N (X ) by e(b)(a) = 0 if
a 6= b, and e(b)(b) = 1. For large n define measures ν̂n ∈M(X ×N (X )) by

ν̂n(a, `) = ν(a, `)
(

1− ‖$‖−‖〈ν(·,`),`(·)〉‖
n

)
+
∑
b∈X

1l{` = ne(b)} $(a,b)−〈ν(·,`),`(·)〉(a,b)
n .

Note that ν̂n → ν and that, for all a, b ∈ X ,∑
`∈N (X )

ν̂n(a, `)`(b) =
(

1− ‖$‖−‖〈ν(·,`),`(·)〉‖
n

) ∑
`∈N (X )

ν(a, `)`(b) +$(a, b)− 〈ν(·, `), `(·)〉(a, b)

= $(a, b)− ‖$‖−‖〈ν(·,`),`(·)〉‖
n 〈ν(·, `), `(·)〉(a, b) n↑∞−→ $(a, b) .

Hence, defining $̂n by $̂n(a, b) =
∑
ν̂n(a, `)`(b), we have a sequence of consistent pairs ($̂n, ν̂n)

converging to ($, ν), as required. �

Lemma 4.7 (Approximation Step 2). For every ε > 0, there exists n(ε) such that, for all n ≥ n(ε)
there exists νn ∈Mn(X ×N (X )) with Φ(νn) = (ωn, $n) such that d(νn, ν) ≤ ε .

The key to the construction of the measure νn is the following ‘law of large numbers’.

Lemma 4.8. For every δ > 0, there exists ν̂ ∈ M(X × N (X )) with d(ν, ν̂) < δ such that, for
i.i.d. N (X )-valued random variables `aj , j = 1, . . . , nωn(a) with law ν̂( · | a) := ν̂({a} × · )/ν̂1(a),
almost surely,

lim sup
n→∞

( 1
n

nωn(a)∑
j=1

`aj (b)−$n(a, b)
)
≤ δ, for all a, b ∈ X . (4.12)

Proof. By Lemma 4.6 we can choose a consistent pair ($̂, ν̂) such that d(ν, ν̂) < δ and, for all
a, b ∈ X ,

ν1(a)
ν̂1(a) ≤ 1 + δ

‖$‖+1 and $̂(a, b)
(
1 + δ

‖$‖+1

)
≤ $(a, b)

(
1 + δ

$(a,b)

)
.

The random variables `aj (b), j = 1, . . . , nωn(a) are i.i.d. with expectation

E`a1(b) =
∑
`

ν̂(` | a)`(b) =
$̂(a, b)
ν̂1(a)

.
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Hence, by the strong law of large numbers, almost surely,

lim sup
n→∞

( 1
n

nωn(a)∑
j=1

`aj (b)−$n(a, b)
)
≤ ν1(a)

ν̂1(a)$̂(a, b)−$(a, b) ≤ δ,

where we also used that ωn(a)→ ω(a) = ν1(a) and $n(a, b)→ $(a, b).

Proof of Lemma 4.7. We use a randomised construction. Given ($, ν) sub-consistent with
ν1 = ω and ε > 0, choose ν̂ as in Lemma 4.8 with δ = ε/(3m), where m is the cardinality of X .
For every a ∈ X , we draw tuples `aj , j = 1, . . . , nωn(a) independently according to ν̂( · | a) and define
en(a, b) by

en(a, b) :=
1
n

nωn(a)∑
j=1

`aj (b)−$n(a, b), for all a, b ∈ X .

We modify the tuples (`aj : j = 1, . . . , nωn(a)) as follows:

• If en(a, b) < 0, we add an amount to the last element `anωn(a)(b) such that the modified tuple
satisfies en(a, b) = 0;
• if en(a, b) > 0, by Lemma 4.8, the ‘overshoot’ nen(a, b) cannot exceed nδ. We successively

deduct one from the nonzero elements in `aj (b), j = 1, . . . , nωn(a) until the modified tuples
satisfy en(a, b) = 0;
• if en(a, b) = 0 we do not modify `aj (b).

We denote by (˜̀a
j : j = 1, . . . , nωn(a)) the tuples after all modifications.

For each a ∈ X define probability measures ∆̃n( · | a) and ∆n( · | a) by

∆̃n(` | a) =
1

nωn(a)

nωn(a)∑
j=1

1l{˜̀aj=`}, for ` ∈ N (X ),

respectively,

∆n(` | a) =
1

nωn(a)

nωn(a)∑
j=1

1l{`aj=`}, for ` ∈ N (X ).

We define probability measures ν̃n ∈ Mn(X × N (X )) and νn ∈ Mn(X × N (X )) by ν̃n(a, `) =
ωn(a)∆n(` | a), respectively νn(a, `) = ωn(a)∆̃n(` | a), for (a, `) ∈ X ×N (X ). Recall from our modifi-
cation procedure that, in the worst case, we have changed nmδ of the tuples. Thus,

d(ν̃n, νn) ≤ mδ ≤ 1
3 ε .

As a result of our modifications we have Φ(νn) = (ωn, $n). We observe that, for all (a, `) ∈ X ×N (X ),
the random variables

1l{`a1 = `}, . . . , 1l{`anωn(a) = `}
are independent Bernoulli random variables with success probability ν̂(` | a) and hence, almost surely,

lim
n→∞

∆n(` | a) = ν̂(` | a) .

Therefore, for all (a, `) ∈ X ×N (X ), we obtain limn→∞ ν̃n(a, `) = ν̂(a, `), almost surely. Thus, almost
surely, for all large n, we have d(νn, ν) ≤ d(νn, ν̃n) + d(ν̃n, ν̂) + d(ν̂, ν) ≤ ε, as claimed.
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Lemma 4.9 (Approximation Step 3). Let νn ∈ Mn(X × N (X )) with Φ(νn) = (ωn, $n). For ev-
ery ε > 0 there exists n(ε) such that, for all n ≥ n(ε), we can find ν̃n ∈ Mn(X × N (X )) satisfy-
ing (4.11) and Φ(ν̃n) = (ωn, $n).

Proof. As νn ∈Mn(X ×N (X )), there is a representation

νn =
1
n

n∑
k=1

δ(ak,`k), for ak ∈ X , `k ∈ N (X ).

Fix δ > 0 and a ∈ X . Look at the sets

• V + = {1 ≤ k ≤ n : ak = a,
∑

b `k(b) > n1/3} with cardinality ]V + ≤ (n
∑

b$n(a, b))2/3,
• V − = {1 ≤ k ≤ n : ak = a,

∑
b `k(b) ≤ n1/4} with cardinality ]V − ≥ n− (n

∑
b$n(a, b))3/4.

For each k ∈ V + we replace `k by a smaller vector ˜̀
k such that

∑
b

˜̀
k(b) = n1/3. As∑

k∈V1

∑
b

`k(b) ≤ n
∑
b∈X

$n(a, b)

we may replace (for large n) no more than δn of the vectors `k, k ∈ V −, by larger vectors ˜̀
k such that∑

b

˜̀
k(b) ≤ n1/3 and

n∑
k=1

∑
b∈X

1l{ak = a} ˜̀
k(b) =

n∑
k=1

∑
b∈X

1l{ak = a} `k(b) ,

where we use the convention ˜̀
k = `k if this vector was not changed in the procedure. Performing such

an operation for every a ∈ X we may define

ν̃n =
1
n

n∑
k=1

δ(ak,˜̀k),

and observe that (4.11) holds and Φ(ν̃n) = (ωn, $n). Moreover,

d(νn, ν̃n) ≤ m
2n

(
(n
∑
b

$n(a, b))2/3 + δn
)
,

which is less than ε > 0 for a suitable choice of δ > 0, and all sufficiently large n.

4.5 Proof of the lower bound in Theorem 2.5.

There is a partial analogue to Lemma 4.3 for the lower bounds.

Lemma 4.10. For any νn ∈ Mn(X × N (X )) which satisfies (4.11) with Φ(νn) = (ωn, $n) and any
ε > 0, we have

P
{
d(M,νn) < ε

∣∣Φ(M) = (ωn, $n)
}
≥ exp

(
− nH(νn ‖Qn)− ε(n)

2 (νn)
)
,

where Qn is as Lemma 4.3 and

lim
n↑∞

1
n
ε(n)

2 (νn) = 0 .

Proof of Lemma 4.10. We use the notation and some results from the proof of the upper bound,
Lemma 4.3. In particular, recall the definition of n(a, b) from (4.1) and, from (4.2), that

P
{
d(M,νn) < ε

∣∣Φ(M) = (ωn, $n)
}

=
]
{
x̃ ∈ An(ωn, $n) : d(M ◦Ψ(x̃), νn) < ε

}
]
{
x̃ ∈ An(ωn, $n))

} , (4.13)
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and that the denominator was evaluated in (4.3) as(
n

nωn(a), a ∈ X

) ∏
{a,b}

n(a,b)∏
k=1

(n2ωn(a)ωn(b)− nωn(a)1l{a=b}

1 + 1l{a=b}
− (k − 1)

)
.

We now describe a procedure which yields (for sufficiently large n) a lower bound of(
n

nνn(a, `), a ∈ X , ` ∈ N (X )

) ∏
(a,b)

(n$n(a, b)− 2dn2/3e − 2)!∏nωn(a)
j=1 (`(j)a (b))!

2−
n
2
$n(∆) . (4.14)

for the numerator, where `(j)a (b), j = 1, . . . , nωn(a) are any enumeration of the family containing each
`(b) with multiplicity nνn(a, `).
First, we allocate to each vertex some (a, `) ∈ X × N (X ) in such a way that every vector (a, `) is
allocated nνn(a, `) times. There are(

n

nνn(a, `), a ∈ X , ` ∈ N (X )

)
ways to do this. Next we add edges between the vertices of two different colours, a, b ∈ X . To this
end, we distribute the numbers in {1, . . . , n(a, b) − dn2/3e − 1} among the vertices with colour a so
that a vertex carrying vector (a, `) gets at most `(b) numbers. A crude lower bound for the number
of ways to do this is

(n(a, b)− dn2/3e − 1)!∏nωn(a)
j=1 (`(j)a (b))!

.

Now the numbers in {1, . . . , n(a, b) − dn2/3e − 1} are distributed successively, this time among the
vertices of colour b. Again we do this in such a way that a vertex carrying vector (b, `) has a capacity
to carry no more than `(a) numbers. However, we are more cautious now: When distributing k we
look at the vertex of colour a, which already carries k. If this carries numbers from {1, . . . , k − 1},
we do not allow k to be associated with any vertex of colour b which carries one of these numbers.
By (4.11) this rules out no more than n1/3 vertices, each of which has a capacity no more than n1/3,
so that the number of ways to do this is at least

(n(a, b)− dn2/3e − 1)!∏nωn(b)
j=1 (`(j)b (a))!

.

Next, for k = 1, . . . n(a, b)− dn2/3e − 1 draw the kth edge between the two vertices of colour a and b
carrying number k and observe that when allocating the numbers we have been cautious not to cause
any multiple edges. Obviously, there is at least one way to establish a further dn2/3e+1 edges between
vertices of colour a and b without creating multiple edges.
We now add the edges connecting vertices of the same colour a ∈ X . For this purpose, we successively
distribute the numbers in {1, . . . , n(a, a) − dn2/3e − 1} and {n(a, a) + 1, . . . , 2n(a, a) − dn2/3e − 1}
among the vertices with colour a so that a vertex carrying vector (a, `) gets at most `(b) numbers.
When distributing k > n(a, a) we look at the vertex of colour a, which already carries k − n(a, a). If
this vertex carries numbers j ∈ {1, . . . , k − n(a, a) − 1}, we do not allow k to be associated with the
vertices carrying numbers j + n(a, a). We also do not allow k to be associated with the vertex itself.
By (4.11) these restrictions rule out no more than n1/3 vertices, each of which has a capacity no more
than n1/3, so that the number of ways to do this is at least

(2n(a, a)− 2dn2/3e − 2)!∏nωn(a)
j=1 (`(j)a (a))!

.
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Obviously, there is at least one way of allocating the remaining numbers {n(a, a)−dn2/3e, . . . , n(a, a)}
and {2n(a, a)− dn2/3e, . . . , 2n(a, a)} to vertices so that no single vertex carries a matching pair j, j +
n(a, a), and no pair of vertices carry two or more matching pairs between them. Next, for k =
1, . . . , n(a, b) draw the kth edge between the two vertices carrying numbers k and k + n(a, a) and
observe that when allocating the numbers we have been cautious not to cause any loops or multiple
edges. As, for every k ∈ {1, . . . , n(a, a)} the numbers k and k+n(a, a) could be interchanged without
changing the configuration, the total number of different configurations constructable in this procedure
is bounded from below by(

n

nνn(a, `), a ∈ X , ` ∈ N (X )

)
×
∏
(a,b)
a 6=b

(n(a, b)− dn2/3e − 1)!∏nωn(a)
j=1 (`(j)a (b))!

×
∏
a∈X

(2n(a, a)− 2dn2/3e − 2)!∏nωn(a)
j=1 (`(j)a (a))!

2−n(a,a) ,

and this is bounded from below by the quantity in (4.14). Every resulting graph satisfies the constraint
Φ(M) = (ωn, $n). To measure the distance between its empirical neighbourhood measure M and
νn, we say that a vertex v ∈ V is successful if the associated (X(v), L(v)) is identical to the (a, `)
they were carrying after the initial step. Note that after allocation of the edges with numbers in
{1, . . . , n(a, b)−dn2/3e− 1} among the vertices of all colours, all but at most 2m2(dn2/3e+ 1) vertices
v ∈ V were successful. Adding in the further edges in the last step can lead to up to 2m2(dn2/3e+ 1)
further unsuccessful vertices. Hence

d(νn,M) ≤ 1
2n

∑
v∈V

1l{v unsuccessful } ≤ 4m2 n−1/3 n→∞−→ 0 as n ↑ ∞.

To complete the proof, we again use Stirling’s formula to analyse the combinatorial terms obtained as
an estimate for the numerator and denominator in (4.13). For the denominator we get the same main
terms as in Lemma 4.3 with slightly different error terms, which however do not depend on νn. More
interestingly, we have∏

a∈X

(
nωn(a)

nνn(a, `), ` ∈ N (X )

)
≥ exp

(
n
∑
a

ωn(a) logωn(a)− n
∑
(a,`)

νn(a, `) log νn(a, `)
)

× exp
(
− |S(νn)|

2 log(2πn)−
∑
(a,`)

nνn(a,`)≥1

1
12nνn(a,`)

)
,

where the exponent in the error term is of order o(n), by the bound on the size of the support of νn
given in Lemma 4.4. Further,

(n$n(a, b)− 2dn2/3e − 2)!∏nωn(a)
j=1 (`(j)a (b))!

≥ exp
(
− n

∑
`

log
(
`(b)!

)
νn(a, `) + n$n(a, b) log

(
n$n(a, b)

)
− n$n(a, b)

)
× exp

(
− (2n2/3 + 2) log

(
n$n(a, b)

)
+ n$n(a, b) log

(
1− 2n2/3+2

n$n(a,b)

))
,

and the result follows by combining this with facts discussed in the context of the upper bound.

To complete the proof of the lower bound in Theorem 2.5, take an open set Γ ⊂ M(X × N (X )).
Then, for any ν ∈ Γ with ($, ν) sub-consistent and ν1 = ω we may find ε > 0 with the ball around
ν of radius 2ε > 0 contained in Γ. By our approximation, see Lemma 4.7 and 4.9, we may find
νn ∈ Γ ∩Mn(X × N (X )) with Φ(νn) = (ωn, $n) such that (4.11) holds and d(νn, ν) ↓ 0. Hence, for
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all large n ≥ n(ε),

P
{
M ∈ Γ

∣∣Φ(M) = (ωn, $n)
}
≥ P

{
d(νn,M) < ε

∣∣Φ(M) = (ωn, $n)
}

≥ exp
(
− nH(νn ‖Qn)− ε(n)

2 (νn)
)
.

We observe that

lim
n→∞

H(νn ‖Qn)−H(ν ‖Q) = lim
n→∞

H(νn ‖Qn)−H(νn ‖Q) + lim
n→∞

H(νn ‖Q)−H(ν ‖Q) = 0,

where the last term vanishes by continuity of relative entropy, and the first term was shown to vanish
in the proof of Lemma 4.10. This completes the proof of Theorem 2.5.

5. Proof of Theorems 2.1 and 2.3 (b) by mixing

We denote by Θn :=Mn(X )× M̃∗,n(X × X ) and Θ :=M(X )× M̃∗(X × X ). Define

P (n)

(ωn,$n)(νn) := P
{
M = νn

∣∣Φ(M) = (ωn, $n)
}
,

P (n)(ωn, $n) := P
{

(L1, L2) = (ωn, $n)
}
,

P (n)
ωn ($n) := P{L2 = $n |L1 = ωn} ,
P (n)(ωn) := P{L1 = ωn} .

The joint distribution of L1, L2 and M is the mixture of P (n)

(ωn,$n) with P (n)(ωn, $n) defined as

dP̃n(ωn, $n, νn) := dP (n)

(ωn,$n)(νn) dP (n)(ωn, $n) , (5.1)

whilst the joint distribution of L1 and L2 is the mixture of P (n)
ωn with P (n) given by

dP (n)(ωn, $n) = dP (n)
ωn ($n) dP (n)(ωn). (5.2)

Biggins [1, Theorem 5(b)] gives criteria for the validity of large deviation principles for the mixtures
and for the goodness of the rate function if individual large deviation principles are known. The
following two lemmas ensure validity of these conditions.

Lemma 5.1 (Exponential tightness). The following families of distributions are exponentially tight.

(a) (P (n) : n ∈ N) on M(X )× M̃∗(X × X ),
(b) (P̃ (n) : n ∈ N) on M(X )× M̃∗(X × X )×M(X ×N (X )).

Proof. (a) It suffices to show that, for every θ > 0, there exists N ∈ N such that

lim sup
n→∞

1
n log P

{
|E| > nN

}
≤ −θ.

To see this, let c > maxa,b∈X C(a, b) > 0. By a simple coupling argument we can define, for all
sufficiently large n, a new coloured random graph X̃ with colour law µ and connection probability c

n ,
such that any edge present in X is also present in X̃. Let |Ẽ| be the number of edges of X̃. Using
Chebyshev’s inequality, the binomial formula, and Euler’s formula, we have that

P
{
|Ẽ| ≥ nl

}
≤ e−nlE

[
e|Ẽ|
]

= e−nl

n(n−1)
2∑

k=0

ek
(
n(n− 1)/2

k

)( c
n

)k(
1− c

n

)n(n−1)/2−k

= e−nl
(

1− c

n
+ e

c

n

)n(n−1)/2
≤ e−nlenc(e−1+o(1)).
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Now given θ > 0 choose N ∈ N such that N > θ + c(e− 1) and observe that, for sufficiently large n,

P
{
|E| ≥ nN

}
≤ P

{
|Ẽ| ≥ nN

}
≤ e−nθ,

which implies the statement.

(b) Given θ > 0, we observe from (a) that there exists N(θ) ∈ N such that, for all sufficiently large n,

P
{
M({‖`‖ ≥ 2θN(θ)}) ≥ θ−1 or ‖L2‖ ≥ 2N(θ)

}
≤ P

{
|E| ≥ nN(θ)

}
≤ e−θn.

We define the set Ξθ by

Ξθ :=
{

($, ν) ∈ M̃∗(X × X )×M(X ×N (X )) : ν{‖`‖ > 2lN(l)} < l−1 ∀l ≥ θ and ‖$‖ < 2N(θ)
}
.

As {‖`‖ ≤ 2lN(l)} ⊂ N (X ) is finite, hence compact, the set Ξθ is relatively compact in the weak
topology, by Prohorov’s criterion. Moreover, we have that

P̃n
(
(Ξθ)c

)
≤ P{‖L2‖ ≥ 2N(θ)}+

∞∑
l=θ

P
{
M({‖`‖ > 2lN(l)}) ≥ l−1

}
≤ C(θ) e−nθ.

Therefore, lim sup
n→∞

1
n log P̃n((cl Ξθ)c) ≤ −θ, which completes the proof, as θ > 0 was arbitrary.

Now, we observe that the function I(ω,$) = H(ω ‖µ) + HC($‖ω) is a good rate function, by a
similar argument as in the proof of Lemma 3.2 (ii). Therefore, applying [1, Theorem 5(b)] to Sanov’s
theorem [9, Theorem 2.1.10] and Theorem 2.3 (a) we obtain the large deviation principle for P (n) on
M(X )× M̃∗(X × X ) with good rate function I(ω,$), which is Theorem 2.3 (b).

To prove Theorem 2.5 define the function

J̃ : Θ×M(X ×N (X ))→ [0,∞], J̃((ω,$), ν) = J̃(ω,$)(ν).

Lemma 5.2. J̃ is lower semicontinuous.

Proof. Suppose θn := ((ωn, $n), νn) converges to θ := ((ω,$), ν) in Θ×M(X ×N (X )). There is
nothing to show if lim infθn→θ J̃(θn) =∞. Otherwise, if ($n, νn) is sub-consistent for infinitely many
n, then

$(a, b) = lim
n↑∞

$n(a, b) ≥ lim inf
n↑∞

〈νn(·, `), `(·)〉(a, b) ≥ 〈ν(·, `), `(·)〉(a, b) ,

hence ($, ν) is sub-consistent. Similarly, if the first marginal of νn is ωn, we see that the first marginal
of ν is ω. We may therefore argue as in (4.6) to obtain

lim inf
θn→θ

J(θn) = lim inf
θn→θ

H(νn ‖Qn) ≥ lim
θn→θ

H(νn ‖Qn)−H(νn ‖Q) + lim inf
νn→ν

H(νn ‖Q) = H(ν ‖Q),

where the last step uses continuity of relative entropy. This proves the lemma.

Lemma 5.2 and Lemma 5.1 (b) ensure that we can apply [1, Theorem 5(b)] to the large deviation
principles established in Theorem 2.3 (b) and 2.5. This yields a large deviation principle for (P̃n : n ∈
N) on M(X )× M̃∗(X × X )×M(X ×N (X )) with good rate function

Ĵ(ω,$, ν) =
{
H(ω ‖µ) + 1

2 HC($ ‖ω) +H(ν ‖Q) , if ($, ν) sub-consistent and ν1 = ω,
∞ , otherwise.

By projection onto the last two components we obtain the large deviation principle as stated in
Theorem 2.1 from the contraction principle, see e.g. [9, Theorem 4.2.1].
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6. Proof of Corollaries 2.2 and 2.4

We derive the corollaries from Theorem 2.1 by applying the contraction principle, see e.g. [9, Theo-
rem 4.2.1]. It just remains to simplify the rate functions.

6.1 Proof of Corollary 2.2 In the case of an uncoloured Erdős-Renyi graph, the function C
degenerates to a constant c, L2 = |E|/n ∈ [0,∞) and M = D ∈ M(N ∪ {0}). Theorem 2.1 and the
contraction principle imply a large deviation principle for D with good rate function

δ(d) = inf
{
J(x, d) : x ≥ 0

}
= inf

{
H(d ‖ qx) + 1

2x log x− 1
2x log c+ 1

2 c−
1
2x : 〈d〉 ≤ x

}
,

which is to be understood as infinity if 〈d〉 is infinite. We denote by δx(d) the expression inside the
infimum and consider the cases (i) 〈d〉 ≤ c and (ii) ∞ > 〈d〉 ≥ c separately.

Case (i): Under our condition the equation x = ce−2(1−〈d〉/x) has a unique solution, which satisfies
x ≥ 〈d〉. Elementary calculus shows that the global minimum of y 7→ δy(d) on (0,∞) is attained at
the value y = x, where x is the solution of our equation.

Case (ii): For any ε > 0, we have

δ〈d〉+ε(d)− δ〈d〉(d) = ε
2 + 〈d〉−ε

2 log 〈d〉
〈d〉+ε + ε

2 log 〈d〉c ≥
ε
2 + 〈d〉−ε

2

(−ε
〈d〉
)

+ ε
2 log 〈d〉c > 0,

so that the minimum is attained at x = 〈d〉.

6.2 Proof of Corollary 2.4 We begin the proof by defining the continuous linear map W : M(X )×
M̃∗(X ×X )→ [0,∞) by W (ω,$) = 1

2‖$‖. We infer from Theorem 2.3 and the contraction principle
that W (L1, L2) = |E|/n satisfies a large deviation principle in [0,∞) with the good rate function

ζ(x) = inf
{
I(ω,$) : W (ω,$) = x

}
.

To obtain the form of the rate in the corollary, the infimum is reformulated as unconstrained optimi-
sation problem (by normalising $)

inf
$∈M∗(X×X )
ω∈M(X )

{
H(ω ‖µ) + xH($ ‖Cω ⊗ ω) + x log 2x+ 1

2 ‖Cω ⊗ ω‖ − x
}
. (6.1)

By Jensen’s inequality H($ ‖Cω⊗ω) ≥ − log ‖Cω⊗ω‖, with equality if $ = Cω⊗ω
‖Cω⊗ω‖ , and hence, by

symmetry of C we have

min
$∈M∗(X×X )

{
H(ω ‖µ) + xH($ ‖Cω ⊗ ω) + x log 2x+ 1

2 ‖Cω ⊗ ω‖ − x
}

= H(ω ‖µ)− x log ‖Cω ⊗ ω‖+ x log 2x+ 1
2 ‖Cω ⊗ ω‖ − x.

The form given in Corollary 2.4 follows by defining y =
∑

a,b∈X C(a, b)ω(a)ω(b).
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