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Abstract: Let D ⊂ R3 be the set of double points of a 3-dimensional Brownian motion.
We show that, if ξ = ξ3(2, 2) is the intersection exponent of two packets of two independent
Brownian motions, then almost surely, the φ-packing measure of D is zero if∫

0+
r−1−ξφ(r)ξ dr < ∞,

and infinity otherwise. As an important step in the proof we show up-to-constants estimates
for the tail at zero of Brownian intersection local times in dimensions two and three.
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1. Introduction and statement of the results

1.1 A short history of the problem

By an interesting twist of mathematical history, it was C. Loewner who communicated the problem
of finding the Hausdorff dimension of the range of a Brownian motion to A.S. Besicovitch, who in
1951 suggested this problem to his research student S.J. Taylor. Taylor not only solved this problem,
but went on to investigate dimension problems for a wide range of fractal sets arising from stochastic
processes in an impressive body of work spanning half a century. In an influential survey paper [Ta86]
Taylor reviews this work and states a large number of open problems in this field, most of which have
been solved in the decade following the publication of the paper.

Some problems however withstood his and other people’s efforts, for a longer time. Among them
is, for example, the ‘Mandelbrot problem’ of finding the Hausdorff dimension of the Brownian fron-
tier, the boundary of the unbounded component of the complement of a planar Brownian path.
G.F. Lawler in [La96b] solved this problem in terms of the (non-)intersection exponents, which de-
scribe the asymptotic rate of decay of non-intersection probabilities of independent Brownian paths.
Finally, the discovery of the Schramm-Loewner evolution, a class of stochastic processes built using
Loewner’s equation of 1923, enabled G.F. Lawler, O. Schramm and W. Werner to calculate these
exponents explicitly and fully settle Mandelbrot’s conjecture.
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At the time when Taylor’s article was written, J.-F. Le Gall was studying the exact Hausdorff -measure
of Brownian double points. Recall that Brownian motion has double points in dimensions d ≤ 3, but
not in dimensions d ≥ 4. Le Gall showed in [LG86] that Hφ(D) is σ-finite for the critical gauge
function φ(r) = r2[log(1/r) log log log(1/r)]2 in d = 2 and φ(r) = r[log log(1/r)]2 in d = 3. Soon after
that he also identified the exact packing measure Pφ(D) for the double points of a planar Brownian
motion, see [LG87, Théorème 5.1]. In this case the measure is always either zero or not σ-finite, and
Le Gall showed that it is zero exactly if∫

0+

φ(r)
[r log(1/r)]3

dr < ∞ .

But key arguments in his proof are limited to the planar case and in the case of 3-dimensional Brownian
motion he could only give estimates for the exact dimension, see [LG87, Théorème 5.3]. The reason
for this is, as we shall show below, that this case (and only this case) involves intersection exponents,
a concept that was not yet established at the time.

It is our aim in this paper to settle what appears to be the last open problem about Brownian motion
raised in Taylor’s survey paper, see [Ta86, Conjecture C], the packing measure of the set of Brownian
double points in R3. We shall show that, if ξ = ξ3(2, 2) is the intersection exponent of two packets of
two independent Brownian motions, then almost surely, the φ-packing measure of D is zero if∫

0+

r−1−ξφ(r)ξ dr < ∞,

and infinity otherwise. In dimension three the intersection exponents have not been calculated ex-
plicitly, and there is no evidence of a natural formula for them. Estimates currently available show
that 1 < ξ3(2, 2) < 2, which in particular shows that our result is not in line with Taylor’s original
conjecture.

1.2 Intersection exponents of Brownian motion

To formulate our result we recall here the concept of (non-)intersection exponents.

Suppose M,N ∈ N and let W (1), . . . ,W (M+N) be a family of independent Brownian motions in Rd,
d = 2, 3, started uniformly on ∂B(0, 1). We divide the motions into two packets and, for any vector
~t = (t(1), . . . , t(M+N)) of nonnegative times, we look at the union of the paths in each packet,

B(1)(t(1), . . . , t(M)) :=
M⋃
i=1

W (i)([0, t(i)]) and B(2)(t(M+1), . . . , t(M+N)) :=
M+N⋃

i=M+1

W (i)([0, t(i)]).

Let R > 1 and t(i) = τ (i)

R be the first hitting time of the sphere ∂B(0, R) by the motion W (i). Then the
event that the two packets of Brownian paths fail to intersect has a decreasing probability as R ↑ ∞.
Indeed, it is easy, using subadditivity, to show that there exists a constant ξd(M,N) such that

P
{
B(1)(τ (1)

R , . . . , τ (M)

R ) ∩B(2)(τ (M+1)

R , . . . , τ (M+N)

R ) = ∅
}

= R−ξd(M,N)+o(1), as R ↑ ∞.

The numbers ξd(M,N) are called the intersection exponents.

Lawler showed in [La96a] that these exponents describe the probability of non-intersection up to
constants: There exist constants 0 < c < C < ∞ such that for all R ≥ 1,

cR−ξd(M,N) ≤ P
{
B(1)(τ (1)

R , . . . , τ (M)

R ) ∩B(2)(τ (M+1)

R , . . . , τ (M+N)

R ) = ∅
}
≤ C R−ξd(M,N). (1.1)
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In a seminal series of papers [LS01b, LS01c, LS02], Lawler, Schramm and Werner show that

ξ2(M,N) =

(√
24M + 1 +

√
24N + 1− 2

)2 − 4
48

. (1.2)

As the proof of (1.2) is based on conformal invariance, there is no analogue in d = 3 and indeed there
is no reason to believe that a similarly easy formula holds in this case. The only value of intersection
exponents explicitly known in this dimension is

ξ3(1, 2) = ξ3(2, 1) = 1 .

Strict concavity of a suitable extension λ 7→ ξ3(N,λ) to nonnegative reals established in [La98], is
instrumental in the estimates

1
2 < ξ3(1, 1) < 1, 1 < ξ3(2, 2) < 2, (1.3)

which we shall use in our arguments.

1.3 The packing measure of Brownian double points

We start by introducing the notion of packing measure, which is a concept dual to that of Hausdorff
measure. It was first introduced by Taylor and Tricot in [TT85]. A gauge function is any increasing
function φ : [0, ε) → [0,∞) with φ(0) = 0.

Suppose E ⊂ Rd. For every δ > 0, a δ-packing of E is a countable collection of disjoint open balls

B(x1, r1), B(x2, r2), B(x3, r3), . . .

with centres xi ∈ E and radii 0 ≤ ri ≤ δ. For every gauge function φ : [0, ε) → [0,∞) we introduce
the φ-value of the packing as

∑∞
i=1 φ(ri) . The φ-packing number of E is defined as

P φ(E) := lim
δ↓0

P φ
δ (E) for P φ

δ (E) := sup
{ ∞∑

i=1

φ(ri) : (B(xi, ri)) a δ-packing of E
}

.

Note that the packing number is defined in essentially the same way as the Hausdorff measure with
efficient (small) coverings replaced by efficient (large) packings. A difference is that the packing
numbers do not define a measure on the Borel sets of Rd. However a small modification gives the
packing measure, defined by

Pφ(E) := inf
{ ∞∑

i=1

P φ(Ei) : E =
∞⋃
i=1

Ei

}
.

We are now able to formulate the first main result of this paper.

Theorem 1.1. Let D be the set of double points of a Brownian motion in R3 and φ any gauge function.

(i) Pφ(D) = 0 almost surely if and only if
∫
0+ r−1−ξ φ(r)ξ dr < ∞,

(ii) Pφ(D) = ∞ almost surely if and only if
∫
0+ r−1−ξ φ(r)ξ dr = ∞,

where ξ = ξ3(2, 2) is the intersection exponent.

Remark 1 Our proof also shows that the same integral test applies if D is the intersection of two
independent Brownian paths in R3 with the same starting point.
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1.4 Lower tails for intersection local times

Like in many proofs of almost-sure properties of the set of double points of a Brownian motion, the
main step is to prove a suitable probability estimate for intersections of independent Brownian paths.
As our main step is of independent interest, we present it in a more general form than actually needed.

Again, we let M,N ∈ N and let W (1), . . . ,W (M+N) be independent Brownian motions in Rd, d = 2, 3
started in the origin. We divide them in two packets of M , resp. N , motions and, for any ~t =
(t(1), . . . , t(M+N)), we denote by B(1)(t(1), . . . , t(M)) and B(2)(t(M+1), . . . , t(M+N)) the union of the paths
in each packet, taken up to the times given by the components of ~t.

On the intersection of the two packets,

S := B(1)
(
t(1), . . . , t(M)

)
∩B(2)

(
t(M+1), . . . , t(M+N)

)
,

one can define a natural locally finite measure `~t, the (projected) intersection local time, which can be
described symbolically by the formula

`~t(A) =
M∑
i=1

M+N∑
j=M+1

∫
A

dy

∫ t(i)

0
ds1

∫ t(j)

0
ds2 δy(W (i)(s1)) δy(W (j)(s2)), for A ⊂ Rd Borel. (1.4)

If d = 3 we can permit infinite times, thanks to the transience of Brownian motion in this case.
Rigorous constructions of the random measure `~t are reviewed in [KM02, Section 2.1].

Let U ⊂ Rd be a bounded and open set containing the origin. Let R > 0 be large enough such that U
is contained in the centred ball of radius R and let ~t = (τ (1)

R , . . . , τ (M+N)

R ) be the vector of first hitting
times of the sphere ∂B(0, R) by the Brownian motions.

In [KM02, Theorem 1.1] the authors determine the upper tails of the random variable `~t(U). It turns
out that the upper tails decay stretched exponentially, more precisely,

lim
a↑∞

log P{`~t(U) > a}√
a

= −χ,

where 0 < χ < ∞ is explicitly given by a variational problem involving R,U, d. For the lower tail
probabilities however, it is shown in [KM05, Theorem 1.1] that the decay is polynomial, more precisely

lim
a↓0

log P
{
`~t(U) < a

}
− log a

= −ξd(M,N)
4− d

.

In the present paper we refine this result by showing that the intersection exponents provide estimates
for the lower tails of the intersection local times which are precise up to constants. The following
theorem is the second main result of this paper.

Theorem 1.2. Let d ∈ {2, 3} and U ⊂ Rd be a bounded and open set containing the origin. Suppose
that ~t is the vector of first exit times of the Brownian motions from a ball B(0, R), which is large
enough to contain U , allowing R to be infinite if d = 3. Let ξ = ξd(M,N). Then there exist constants
0 < c < c < ∞, depending on the choice of U , the dimension d and the radius R, such that

c a
ξ

4−d ≤ P{`~t(U) < a} ≤ c a
ξ

4−d for all a ∈ (0, 1). (1.5)

Remark 2 Equation (1.5) holds in the same form, if ~t is a fixed vector of positive times. This can be
shown easily using an argument of Lawler, see [La96a, Prop 3.15] or [MO07, Section 3.5].
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Remark 3 Theorem 1.1 depends on the case M = N = 2 and, crucially, R = ∞, which is permitted in
the transient case d = 3 only. In the case d = 2, letting R → ∞ invalidates the lower bound in (1.5)
because, for each Brownian motion, the number of returns to B(0, 1) between visits of ∂B(0, 2) is
typically of order log R.

Remark 4 The proof of Theorem 1.2 will be given in Section 2. It uses the idea of the ‘branching tree
heuristic’, which is explained for some easier examples in [MO07]. The heuristic describes the strategy
by which the Brownian paths achieve the event {`~t(U) < a}. Loosely speaking, all M + N Brownian
paths are running freely until they hit the boundary of the ball B(0, a1/(4−d)) for the first time. By
this time they have accumulated an intersection local time of the order a. From then on they do not
intersect anymore inside U .

2. Proof of the lower tail asymptotics for intersection local times

2.1 Some auxiliary lemmas

We start with an auxiliary lemma about the probability that two Brownian motions in d = 2, 3 hit
a small ball without their paths intersecting each other beforehand. Throughout the proofs we shall
make ample use of the Brownian scaling property, i.e. the fact that for a Brownian motion W with
start in x ∈ Rd and r > 0, the process given by W ′(t) = rW (r−2t) is a Brownian motion started in rx.
From (1.4) one easily derives that this scaling of the Brownian motions induces the following identity
in law

`
(τ

(i)
r )

(rA) d= r4−d `
(τ

(i)
1 )

(A), (2.1)

where τ (i)
r denotes the first hitting time of the sphere ∂B(0, r) by the Brownian motion W (i). We

suppose that under P
(x(i))

the processes W (1), . . . ,W (M+N) are Brownian motions with

W (1)(0) = x(1), . . . ,W (M+N)(0) = x(M+N) .

Lemma 2.1. There exists a constant C2.1 > 0 such that, for all radii r, s > 0 with r/s > 4, indices
k, l ∈ {1, . . . ,M + N} and starting points x(1), . . . , x(M+N) ∈ ∂B(0, r),

P
(x(i))

{
τ (k)
s , τ (l)

s < ∞, W (k)[0, τ (k)
s ] ∩W (l)[0, τ (l)

s ] = ∅
}
≤ C2.1 (r/s)4−2d−ξd(1,1)

(
log(r/s)

)2(3−d)
.

Proof. The proof is similar to that of [KM05, Lemma 2.9]. As P
x(i){τ (i)

s < ∞} = (r/s)2−d, it suffices
to prove that

P
(x(i))

{
W (k)[0, τ (k)

s ] ∩W (l)[0, τ (l)
s ] = ∅

∣∣∣ τ (k)
s , τ (l)

s < ∞
}
≤ C2.1 (r/s)−ξd(1,1)

(
log(r/s)

)2(3−d)
. (2.2)

At the expense of replacing the assumption r/s > 4 by r/s > 2, we may additionally assume that the
starting points (x(i)) are independent and uniformly distributed on ∂B(0, r). Indeed, from the explicit
form of the Poisson kernel we infer that the density of(

W (1)(τ (1)

r/2), . . . ,W
(M+N)(τ (M+N)

r/2 )
)

with respect to the product of M + N uniform distributions on ∂B(0, r/2) is bounded from infinity
and hence the result for arbitrary starting points on ∂B(0, r) follows from the result with starting
points independent and uniformly distributed on ∂B(0, r/2).
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To prove (2.2) with uniform starting points, we define random times

τ (i)
∗ := sup

{
0 < t < τ (i)

s : |W (i)(t)| = r
}
, for i ∈ {k, l} .

The paths e(i) : [0, τ (i)
s − τ (i)

∗ ] → Rd, e(i)(t) = W (i)(t + τ (i)
∗ ), are Brownian excursions from ∂B(0, r) to

∂B(0, s), and hence the time-reversed paths

e(i)
∗ : [0, τ (i)

s − τ (i)
∗ ] → Rd, e(i)

∗ (t) = ei(τ (i)
s − τ (i)

∗ − t),

are Brownian excursions from ∂B(0, s) to ∂B(0, r), see our appendix for a proof of this and background
on excursions. Now fix ρ = 3s/2, so that s < ρ < r, and define σ(i) = inf{t > 0 : |e(i)

∗ (t)| = ρ}. The
processes defined by

W
(i) : [0, τ (i)

s − τ (i)
∗ − σ(i)] → Rd, W

(i)(t) = e(i)
∗ (σ(i) + t),

have the law of independent Brownian motions W̃ (i) started in a uniformly chosen point on ∂B(0, ρ)
killed upon leaving B(0, r)\B(0, s) and conditioned to hit ∂B(0, r) before ∂B(0, s). Denoting the first
hitting times of ∂B(0, s), resp. ∂B(0, r), by the motion W̃ (i) by τ̃ (i)

s , resp. τ̃ (i)
r , we get

P
{
W (k)[0, τ (k)

s ] ∩W (l)[0, τ (l)
s ] = ∅

∣∣ τ (k)
s < ∞, τ (l)

s < ∞
}

≤ P
{
W (k)[τ (k)

∗ , τ (k)
s ] ∩W (l)[τ (l)

∗ , τ (l)
s ] = ∅

∣∣ τ (k)
s < ∞, τ (l)

s < ∞
}

≤ P
{

W̃ (k)[0, τ̃ (k)
r ] ∩ W̃ (l)[0, τ̃ (l)

r ] = ∅
∣∣∣ τ̃ (k)

r < τ̃ (k)
s , τ̃ (l)

r < τ̃ (l)
s

}
≤ P

{
W̃ (k)[0, τ̃ (k)

r ] ∩ W̃ (l)[0, τ̃ (l)
r ] = ∅

}
P{τ̃ (1)

r < τ̃ (1)
s }−2,

(2.3)

where we have used the trivial fact that P(A |B) ≤ P(A)/P(B) and independence in the last step.
By (1.1) and Brownian scaling,

P
{
W̃ (k)[0, τ̃ (k)

r ] ∩ W̃ (l)[0, τ̃ (l)
r ] = ∅

}
≤ C (r/s)−ξd(1,1). (2.4)

Moreover, recalling the exit probabilities from concentric spheres,

P
{
τ̃ (i)
r < τ̃ (i)

s

}
=


log(ρ/s)
log(r/s) if d = 2,
(r/s)−(r/ρ)

(r/s)−1 if d = 3,

and that ρ = 3s/2, we get, for a suitable constant c(2.5) > 0, the lower bound

P
{
τ̃ (i)
r < τ̃ (i)

s

}
≥ c(2.5) log(r/s)d−3 . (2.5)

The result (2.2) follows by plugging (2.4) and (2.5) into (2.3). �

The next lemma is an upper bound for the lower tail probability of the intersection local time, which
serves as an a-priori estimate in our proof.

Lemma 2.2. For any ε > 0 there exists a constant C2.2(ε) > 0 such that, for any r > s > 0,
k, l ∈ {1, . . . ,M + N} and x(1), . . . , x(M+N) ∈ ∂B(0, s),

P
(x(i))

{`(k,l)
r ≤ s4−d} ≤ C2.2(ε) (r/s)−ξd(1,1)+ε .

where `(k,l)
r denotes the total intersection local time of the paths W (k)[0, τ (k)

r ] and W (l)[0, τ (l)
r ].
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Proof. This is shown in [KM05, Section 2.2]. The relevant estimate is derived in the large display on
the top of page 1271. In our notation it states that, for fixed ε > 0, there are (ε-dependent) constants
0 < δ < 1 (called r there) and η > 1 (called 4r1−m there) such that for any n ∈ N with δn < 1/η and
starting points x(i) ∈ ∂B(0, ηδn),

P(x(i))

{
`(k,l)

1 (B(0, 1)) < δ(4−d)n
}
≤ C(2.6) δn(ξd(1,1)−ε) . (2.6)

where the constant C(2.6) depends on ε > 0, but not on n or the starting points.

For 0 < s/r < 1 we find n such that δn+1 < s/r ≤ δn. We may assume that s/r is small enough so
that n satisfies δn < 1/η. Hence, whenever x(i) ∈ ∂B(0, s/r),

P(x(i))

{
`(k,l)

1 (B(0, 1)) < (s/r)4−d
}
≤ E(x(i))

[
P(

W (i)(τ
(i)
ηδn )

){
`(k,l)

1 (B(0, 1)) < δ(4−d)n
}]

≤ C(2.6) δn(ξd(1,1)−ε) ≤ C2.2(ε) (r/s)−ξd(1,1)+ε ,

and the claim follows by scaling the Brownian motions by a spatial factor of r as in (2.1). �

For the formulation of the next lemma define, for 0 < s < r, the packets

B(1) :=
M⋃
i=1

W (i)[0, τ (i)
r ], B(2) :=

M+N⋃
i=M+1

W (i)[0, τ (i)
r ],

and, for small ε > 0, define neighbourhoods of the starting points of the packets,

E(1) :=
M⋃
i=1

B(x(i), εs), E(2) :=
M+N⋃

i=M+1

B(x(i), εs) .

The lemma, which is due to Lawler, estimates the probability that packets started on ∂B(0, s) do not
intersect before hitting ∂B(0, r) and also do not enter B(0, s) except in a small neighbourhood of their
respective starting points.

Lemma 2.3. For all ε > 0 there is a constant C2.3(ε) > 0 such that, for all 0 < s < r and
x(1), . . . , x(M+N) ∈ ∂B(0, s) with |x(i) − x(j)| > sε for i 6= j,

P
(x(i))

{
B(1) ∩B(2) = ∅, B(1) ∩B(0, s) ⊂ E(1), B(2) ∩B(0, s) ⊂ E(2)

}
≥ C2.3(ε)

(
r/s

)−ξ
.

Proof. This is shown in [La96a, Lemma 3.7]. �

2.2 The upper bound of the lower tail asymptotics

In this section we prove the upper bound in Theorem 1.2. By scaling we may assume that U contains
the unit ball B(0, 1) ⊂ Rd, d = 2, 3, and by monotonicity we may even assume that U = B(0, 1) and
R = 1. We abbreviate ξ = ξd(M,N) and write

P
{
`~t(B(0, 1)) ≤ 2−(4−d)n

}
= a(n) 2−n ξ .

This defines a(n), n = 0, 1, 2, . . . and our aim is to show that a(n) is bounded, which would immediately
imply the upper bound in Theorem 1.2 in the considered cases for the choice of c = 2ξ max a(n).
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For all integers 0 ≤ j < k we look at the packets

B(1)(j, k) :=
M⋃
i=1

W (i)([τ (i)

2−k , τ (i)

2−j ]) and B(2)(j, k) :=
M+N⋃

i=M+1

W (i)([τ (i)

2−k , τ (i)

2−j ]),

and for k = ∞,

B(1)(j,∞) :=
M⋃
i=1

W (i)([0, τ (i)

2−j ]) and B(2)(j,∞) :=
M+N⋃

i=M+1

W (i)([0, τ (i)

2−j ]) .

We denote by `j,k( · ) the intersection local time of the two packets B(1)(j, k) and B(2)(j, k). We shall
also use `j,k without argument to denote the total intersection local time of the packets. We let

σ := min
{
j ∈ N : B(1)(0, j) ∩B(2)(0, j) 6= ∅

}
.

Then, using (1.1) in the second step,

P
{
`~t(B(0, 1)) ≤ 2−(4−d)n

}
≤ P

{
σ > n

}
+

n∑
j=1

P
{
`~t(B(0, 1)) ≤ 2−(4−d)n, σ = j

}
≤ C 2−nξ +

n∑
j=1

P
{
`~t(B(0, 1)) ≤ 2−(4−d)n, σ = j

}
.

(2.7)

To study the right hand side of (2.7) we now formulate a lemma, which will be crucial in the proof.

Lemma 2.4. There exists a sequence β(k), k ∈ N, of positive numbers such that
∑

β(k) < ∞ and a
constant C2.4 > 0 such that, for any j ≤ n and x(1), . . . , x(M+N) ∈ ∂B(0, 2−j),

P
(x(i))

{
`0,j ≤ 2−(4−d)n, σ = j

}
≤ C2.4 2−jξ β(n− j) .

Before proving the lemma, let us see how to complete the proof of the upper bound with its help. We
first use the strong Markov property at the stopping times τ (i)

2−j , then Lemma 2.4 to estimate the inner
probability, and finally Brownian scaling to estimate the remaining term,

P
{
`~t(B(0, 1)) ≤ 2−(4−d)n, σ = j

}
≤ E

{
1{`j,∞ ≤ 2−(4−d)n}P

(W (i)(τ
(i)

2−j
))

{
`0,j ≤ 2−(4−d)n, σ = j

}}
≤ C2.4 2−jξ β(n− j) P

{
`j,∞ ≤ 2−(4−d)n

}
≤ C2.4 2−nξ β(n− j) a(n− j) .

Plugging this into (2.7) we obtain a recursion formula for a(n), precisely for some positive finite
constant κ > 0,

a(n) ≤ κ
n+1∑
j=1

β(n− j) a(n− j) for n ≥ 0, a(−1) = β(−1) = 1 .

To see that such an a(n) must be bounded we study ã(n) defined by ã(−1) := 1 and

ã(n) := κ
n+1∑
j=1

β(n− j) ã(n− j) for n ≥ 0 .
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Note that a(n) ≤ ã(n), so that it suffices to show that ã(n) is bounded. By induction we see that
ã(n) = ã(n− 1)

[
1 + κ β(n− 1)

]
, and therefore, for n ≥ 0,

ã(n) = κ
κ+1

n∏
j=0

[1 + κ β(j − 1)] ,

which is bounded in n as the series
∑

β(j) converges. This completes the proof of the upper bound
subject to the proof of Lemma 2.4, which we give now.

Proof of Lemma 2.4. Denote by D the collection of dyadic cubes of sidelength 2−n which intersect
B(0, 2−j+1). Denote by m(D) the minimal distance of any of the starting points of the motions to
the centre of the cube D, and let D′ = {D ∈ D : m(D) > 2−n+2} be those cubes well away from
the starting points of the motions. For a given D ∈ D we denote by τ (i)

r (D) the first hitting time of
∂B(x, r) by the motion W (i), where x is the centre of the cube D.

On the event {σ = j} there exist k ∈ {1, . . . ,M} and l ∈ {M + 1, . . . ,M + N} such that the kth and
lth motion intersect in B(0, 2−j+1), i.e.,

W (k)[0, τ (k)

1 ] ∩W (l)[0, τ (l)

1 ] ∩B(0, 2−j+1) 6= ∅ .

To identify a specific location of the intersection we temporarily write

τ := inf
{
t > 0 : W (k)(t) ∈ W (l)[0, τ (l)

1 ]
}

.

Then W (k)(τ) ∈ B(0, 2−j+1) is an intersection point and hence there exists D ∈ D such that
W k(τ) ∈ D. If D ∈ D′, neither of the motions start in D and hence we have

W (k)[0, τ (k)

2−n(D)] ∩W (l)[0, τ (l)

2−n(D)] = ∅ .

We define σ(i)
r = τ (i)

r if i 6= k, l and otherwise

σ(i)
r = inf

{
t > τ (i)

2−n(D) : |W (i)(t)| = r
}

.

Let `D be the total intersection local time of the paths W (k)[τ (k)

2−n(D), σ(k)

2−j+2 ] and W (l)[τ (l)

2−n(D), σ(l)

2−j+2 ].
The pathwise argument outlined so far implies that

P
(x(i))

{
`0,j ≤ 2−(4−d)n, σ = j

}
≤

N∑
k=1

M+N∑
l=N+1

∑
D∈D

E
(x(i))

[
1
{
τ (k)

2−n(D) < τ (k)

1 , τ (l)

2−n(D) < τ (l)

1

}
× 1

{
D 6∈ D′ or W (k)[0, τ (k)

2−n(D)] ∩W (l)[0, τ (l)

2−n(D)] = ∅
}

× 1{`D ≤ 2−(4−d)n}P
(W (i)(σ

(i)

2−j+2
))

{
B(1)(0, j − 2) ∩B(2)(0, j − 2) = ∅

}]
.

The innermost probability can be bounded (uniformly in the starting points) by C2−(j−2)ξ, so that
the remaining expectation depends only on the Brownian motions W (k) and W (l). Using the strong
Markov property at times τ (k)

2−n(D), τ (l)

2−n(D) we obtain the upper bound of

C2−(j−2)ξ
N∑

k=1

M+N∑
l=N+1

∑
D∈D

E(xi)

[
1
{
τ k
2−n(D) < τ k

1, τ l
2−n(D) < τ l

1

}
× 1

{
D 6∈ D′ or W (k)[0, τ (k)

2−n(D)] ∩W (l)[0, τ (l)

2−n(D)] = ∅}

× P
W (k)(τ

(k)

2−n (D)),W (l)(τ
(l)

2−n (D))
{`D ≤ 2−(4−d)n}

]
.
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Again we find a uniform upper bound for the inner probability: Note that the distance from the centre
of the cube D to the sphere ∂B(0, 2−j+2) is at least 2−j . Hence, using Lemma 2.2, for fixed ε > 0,

P
W (k)(τ

(k)

2−n (D)),W (l)(τ
(l)

2−n (D))
{`D ≤ 2−(4−d)n} ≤ C2.2(ε) [2n−j ]−ξd(1,1)+ε .

Once this estimate is carried out, we note that, if D ∈ D′ and hence 2nm(D) > 4, by Lemma 2.1,

P
(x(i))

{
τ (k)

2−n(D) < τ (k)

1 , τ (l)

2−n(D) < τ (l)

1 , W (k)[0, τ (k)

2−n(D)] ∩W (l)[0, τ (l)

2−n(D)] = ∅
}

≤ C2.1 [2nm(D)]4−2d−ξd(1,1)[log(2nm(D))]2(3−d) .

Summarising, we have shown that, for some constant C(2.8)(ε) > 0,

P
(x(i))

{
`0,j ≤ 2−(4−d)n, σ = j

}
≤ C(2.8)(ε) 2−jξ [2n−j ]−ξd(1,1)+ε

×
( N∑

k=1

M+N∑
l=N+1

∑
D∈D′

[2nm(D)]4−2d−ξd(1,1) [log(2nm(D))]2(3−d) +
N∑

k=1

M+N∑
l=N+1

#
(
D \D′)) .

(2.8)

Observe that the double sum in (2.8) is bounded from above, while for k ≥ 4 the number of cubes
D with (k − 1

2)2−n ≤ m(D) < (k + 1
2)2−n is bounded by a constant multiple of kd−1. Therefore the

triple sum in (2.8) can be bounded by a constant multiple of

2n−j+4∑
k=4

kd−1 k4−2d−ξd(1,1) [log k]2(3−d) ≤ 2(n−j)[4−d−ξd(1,1)]

∫ 16

0
x3−d−ξd(1,1) (1 ∨ log x)2(3−d)dx .

If d = 2 we note that ξ2(1, 1) = 5/4 so that 3−d−ξd(1, 1) = −1/4 > −1 and the integral converges. We
thus obtain the required upper bound with β(n− j) := 2(n−j)[− 1

2
+ε] so that ε < 1

2 gives
∑

β(k) < ∞.

If d = 3 recall that 1
2 < ξ3(1, 1) < 1 by (1.3). Hence the integral is bounded and we obtain the

upper bound with β(n−j) := 2(n−j)[1−2ξ3(1,1)+ε]. For sufficiently small ε > 0, we get
∑

β(k) < ∞. �

2.3 The lower bound of the lower tail asymptotics

To give the proof of the lower bound in Theorem 1.2, the argument in [KM05] could be strengthened
to give up-to-constants estimates. We prefer to follow an alternative route here, which draws heavily
on the result of Lawler, which we stated as Lemma 2.3.

By scaling we may assume that U is contained in the unit ball B(0, 1
2), and by monotonicity we may

even assume that U = B(0, 1
2) and R > 1. It thus suffices to prove that, for some constant c > 0,

P
{
`~t

(
B(0, 1

2)
)

< 2−n(4−d)
}
≥ c 2−nξ .

Recall that τ (i)

2−n is the first time W (i) hits the sphere ∂B(0, 2−n), the notation B(i)(j, k) for the packets
of Brownian paths and `j,k for their intersection local times, which was introduced in the beginning
of the previous section. We also write

E(1)(n, ε) :=
M⋃
i=1

B
(
W (i)(τ (i)

2−n), 2ε2−n
)
, and E(2)(n, ε) :=

M+N⋃
i=M+1

B
(
W (i)(τ (i)

2−n), 2ε2−n
)
.

Then, by scaling, for a fixed small ε > 0,

P
{

`n,∞ < 2−n(4−d), B(1)(n,∞) ∩ E(2)(n, ε) = ∅,B(2)(n,∞) ∩ E(1)(n, ε) = ∅
}

= P
{
`0,∞ < 1, B(1)(0,∞) ∩ E(2)(0, ε) = ∅, B(2)(0,∞) ∩ E(1)(0, ε) = ∅

}
=: δ > 0 .

(2.9)
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By Lemma 2.3 there is a constant c(ε) > 0 such that, whenever x(1), . . . , x(M+N) ∈ ∂B(0, 2−n) satisfy
|x(i) − x(j)| > 2ε2−n, then

P
(x(i))

{
B(1)(0, n) ∩B(2)(0, n) = ∅, B(1)(0, n) ∩B(0, 2−n) ⊂ E(1)(n, ε),

B(2)(0, n) ∩B(0, 2−n) ⊂ E(2)(n, ε)
}
≥ c(ε) 2−nξ .

(2.10)

Note that whenever Brownian paths W (1), . . . ,W (M+N) started at the origin satisfy the events consid-
ered on the left hand side of (2.9) and (2.10), the packet B(1)(0, n) cannot intersect B(2)(n,∞), and
the packet B(2)(0, n) cannot intersect B(1)(n,∞). Finally, there exists η = η(R) > 0 such that, for all
x(1), . . . , x(M+N) ∈ ∂B(0, 1),

P
(x(i))

{
τ (i)

1/2 > τ (i)

R for all i ∈ {1, . . . ,M + N}
}
≥ η . (2.11)

Finally, if Brownian paths W (1), . . . ,W (M+N) started at the origin satisfy the events considered on the
left hand side of (2.9) and (2.10), and they do not return to B(0, 1/2) after the times τ (1)

1 , . . . , τ (M+N)

1 ,
they also satisfy `~t(B(0, 1/2)) < 2−n(4−d). This gives a lower bound of δηc(ε) 2−nξ for the probability
of this event, as required.

3. Proof of the exact packing measure of double points

3.1 The lower bound for the packing measure

In this section we prove Theorem 1.1 (ii). The essential ingredient in the proof is an analysis of the
lower envelope of the intersection local time of two independent Brownian motions in R3. We shall
show the following.

Proposition 3.1. Let ` be the intersection local time of two independent Brownian motions in R3

started in the origin and running for positive and negative times until they hit the ball of radius one.
Then, for any gauge function φ satisfying∫

0+

r−1−ξφ(r)ξ dr = ∞, (3.1)

we have

P
{

lim inf
r↓0

`(B(0, r))
φ(r)

= 0
}

= 1.

We also use the following lemma, which is a special case of [MS99, Theorem 3.2]. For its formulation
we denote by M(R3) the space of all finite measures on R3 endowed with the weak topology, and for
a measure µ ∈ M(R3) and u ∈ R3 define T uµ by T uµ(A) = µ(u + A). Let ` be as in Proposition 3.1
and denote by `∗ the intersection local time of two Brownian motions running for one unit of time.

Lemma 3.2. Consider a Borel set M ⊂M(Rd)× Rd with the following properties:

• If (µ, x) ∈ M and ν ∈M(Rd) are such that ν = µ on B(x, ε) for some ε > 0, then (ν, x) ∈ M ,
• if (µ, x) ∈ M , then (T uµ, x− u) ∈ M for all u ∈ Rd.

Then
P(0,0)

{
(`, 0) ∈ M

}
> 0

implies that, for every choice of initial points x1, x2,

P(x1,x2)

{
(`∗, x) ∈ M for `∗-almost every point x

}
= 1 .
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Proof of the lower bound in Theorem 1.1. Let us first see how Proposition 3.1 implies the lower bound
in Theorem 1.1. We suppose that φ satisfies (3.1) and apply Lemma 3.2 to the set

M =
{

(µ, x) : lim inf
r↓0

µ(B(x, r))
φ(r)

= 0
}

,

which implies that, almost surely, for `∗-almost every x,

lim inf
r↓0

`∗(B(x, r))
φ(r)

= 0 .

By [LT86, Lemma 1] this implies that, for the set S of intersections of the two paths, Pφ(S) = ∞
provided that `∗(S) > 0, which by [KM05, Proposition 2.3], is equivalent to S 6= ∅.
Now look at a single Brownian path W : [0,∞) → R3. Then

W (1) : [0, 1] → R3, W (1)(t) = W (1 + t)−W (1)

W (2) : [0, 1] → R3, W (2)(t) = W (1− t)−W (1)
are independent Brownian motions with the same starting point and therefore we have just shown
that Pφ(S) = ∞ almost surely. The set S is however a subset of D and this completes the proof of
the lower bound in Theorem 1.1 subject to the proof of Proposition 3.1. �

We prepare the proof of Proposition 3.1 with a lemma, which is a combination of facts due to Lawler,
see [La96a, (2)] or [La98, Theorem 2.1] and the proofs given there. Supposing now that the Brownian
motions W (i) are two-sided, we define, for s > 0 the hitting times

T (i)

+ (s) := inf
{
t > 0: |W (i)(t)| = s

}
and T (i)

− (s) := sup
{
t < 0: |W (i)(t)| = s

}
.

Lemma 3.3. For 0 < s < r < ∞ define packets of Brownian motions,

B(i)
s,r := W (i)

(
[T (i)

+ (s), T (i)

+ (r)] ∪ [T (i)

− (r), T (i)

− (s)]
)
, for i = 1, 2;

fix a small ε > 0 and let

E(i)
s := B(W (i)(T (i)

+ (s)), εs) ∪B(W (i)(T (i)

− (s)), εs) for i = 1, 2.

Let ` be the intersection local time running (for positive and negative time) until the first hitting of
∂B(0, r). Then there exist 0 < c < C < ∞, independent of r and s, such that

P
{
`(B(0, r)) < s, B(1)

s,r ∩B(2)
s,r = ∅

}
≤ C

(s

r

)ξ

and
P
{
`(B(0, r)) < s, B(1)

s,r ∩B(2)
s,r = ∅ and

B(i)

0,s ∩ E(3−i)
s = ∅, B(i)

s,r ∩
(
B(0, s) \ E(i)

s

)
= ∅ for i = 1, 2

}
≥ c

(s

r

)ξ
.

Proof. The upper bound follows from (1.1) by simply forgetting the condition on the intersection
local time. For the lower bound note that the probability that up to the first hitting of ∂B(0, s) the
intersection local time is less than s, and simultaneously B(1)

0,s∩E(2)
s = ∅ and B(2)

0,s∩E(1)
s = ∅ is bounded

from below by a positive constant (depending only on ε, which was fixed). Moreover, Lemma 2.3
shows that, starting from starting points at least εs apart, the probability that B(1)

s,r ∩B(2)
s,r = ∅ and

B(i)
s,r ∩

(
B(0, s) \ E(i)

s

)
= ∅, for both i = 1, 2,

is bounded below by a constant multiple of
(

s
r

)ξ. Clearly, this combination of events does imply
`(B(0, r)) < s, and so the proof is complete. �
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Proof of Proposition 3.1. For notational convenience we may assume that φ is defined on [0, 1]. We
let h(r) := φ(r)/r for 0 < r < 1. By [Be03, Lemma 1] the condition (3.1) implies that

∞∑
n=1

h(2−n)ξ = ∞. (3.2)

As this is equivalent to
∑

h(2−n)ξ ∧ 1 = ∞ we may assume, without losing generality, that φ(r) ≤ r
for all 0 < r < 1.

We denote by `n,∞ the total intersection local time of the Brownian motions W (1), W (2) until they first
hit the sphere of radius 2−n, i.e. up to time T (i)

+ (2−n) for positive times, resp. T (i)

− (2−n) for negative
times. For i = 1, 2 we define the packets

B(i)(n) := W (i)
(
[T (i)

+ (φ(2−n)), T (i)

+ (2−n+1)] ∪ [T (i)

− (2−n+1), T (i)

− (φ(2−n))]
)

the initial pieces
I(i)(n) := W (i)

(
[0, T (i)

+ (φ(2−n))] ∪ [T (i)

− (φ(2−n)), 0]
)
,

and the union of balls

E(i)(n) := B
(
W (i)(T (i)

+ (φ(2−n))), εφ(2−n)
)
∪B

(
W (i)(T (i)

− (φ(2−n))), εφ(2−n)
)
.

We also define the stopping times

S(i)

+ (n) := inf
{
t > T (i)

+ (2−n+1) : |W (i)(t)| = 2−n
}
,

for positive times, and

S(i)

− (n) := sup
{
t < T (i)

+ (2−n+1) : |W (i)(t)| = 2−n
}
,

for negative times. The hitting probabilities of spheres by a Brownian motion in d = 3 give that there
exists c(3.3) > 0 such that

P
{
S(i)

+ (n) > T (i)

+ (1), S(i)

− (n) < T (i)

− (1)
}
≥ c(3.3) for all n ≥ 1. (3.3)

Note that (3.3) makes use of the fact that d = 3. We now look at the events

E(n) :=
{
`n,∞ < φ(2−n), B(1)(n) ∩B(2)(n) = ∅ and I(i)(n) ∩ E(3−i)(n) = ∅,
B(i)(n) ∩

(
B(0, r) \ E(i)(n)

)
= ∅, S(i)

+ (n) > T (i)

+ (1), S(i)

− (n) < T (i)

− (1) for i = 1, 2
}
.

By Lemma 3.3, Inequality (3.3) and independence there exist (new) constants 0 < c < C < ∞, such
that

c h(2−n)ξ ≤ P
(
E(n)

)
≤ C h(2−n)ξ . (3.4)

We now show that there exists a constant C(3.5), such that for n ≥ m,

P
(
E(n) ∩ E(m)

)
≤ C(3.5) h(2−n)ξ

[
h(2−m)ξ + 2−(n−m)ξ

]
. (3.5)

Indeed, we look at two cases: First assume that φ(2−m) ≥ 2−n+1. Then

P
{
B(1)(n) ∩B(2)(n) = ∅

}
≤ C h(2−n)ξ .

The analogous bound applies to the probability that B(1)(m) ∩B(2)(m) = ∅. As the latter bound is
independent of the starting points of the packets, by independence, we get an upper bound

P
(
E(n) ∩ E(m)

)
≤ C2 h(2−n)ξh(2−m)ξ .
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Second assume that φ(2−m) ≤ 2−n+1. Introducing the packets,

B(i)(n, m) := W (i)
(
[T (i)

+ (φ(2−n)), T (i)

+ (2−m+1)] ∪ [T (i)

− (2−m+1), T (i)

− (φ(2−n))]
)
,

for i = 1, 2, we get that

E(n) ∩ E(m) ⊂
{
`m,∞ < φ(2−n), B(1)(n, m) ∩B(2)(n, m) = ∅

}
.

The upper bound in Lemma 3.3 ensures that

P
(
E(n) ∩ E(m)

)
≤ C2−(n−m)ξh(2−n)ξ,

and this completes the proof of (3.5).

With (3.5) at hand we use the Kochen-Stone version of the Borel-Cantelli lemma, see [KS64]. Using
(3.4) and (3.2), we have

∞∑
n=1

P
(
E(n)

)
≥ c

∞∑
n=1

h(2−n)ξ = ∞. (3.6)

We use (3.5) to estimate

lim inf
k→∞

∑k
m=1

∑k
n=1 P(E(n) ∩ E(m))( ∑k
n=1 P(E(n))

)2

≤ lim inf
k→∞

k∑
m=1

2
k∑

n=m

C(3.5) h(2−n)ξ
(
h(2−m)ξ + 2−(n−m)ξ

)
c2

( ∑k
n=1 h(2−n)ξ

)2

≤
2C(3.5)

c2

(
1 +

1
1− 2−ξ

lim inf
k→∞

( k∑
n=1

h(2−n)ξ
)−1)

=
2C(3.5)

c2
.

(3.7)

By the Kochen-Stone lemma, (3.6) and (3.7) imply that P
{
E(n) infinitely often

}
> 0, and, together

with Blumenthal’s zero-one law, this implies that

P
{

lim inf
r↓0

`(B(0, r))
φ(r)

≤ 1
}

= 1.

By applying this to a gauge function φ̃ such that limr↓0 φ̃(r)/φ(r) = 0 and such that (3.1) still holds,
the proof of Proposition 3.1 is completed.

3.2 The upper bound for the packing measure

In this section we give a proof of Theorem 1.1 (i). We now assume that the gauge function satisfies∫
0+

r−1−ξφ(r)ξ dr < ∞ . (3.8)

and, for convenience, that φ is defined on the entire interval [0, 1]. By [Be03, Lemma 1], this implies
that there exists an integer N > 1 and some 0 < ρ < 1 such that

∞∑
n=1

Nnξ φ(ρ N−n)ξ < ∞ . (3.9)

Hence φ(ρ N−n) < ρN−n−2/
√

3 for all but finitely many n, and we may therefore assume, without
losing generality, that

h(r) :=
φ(r)

r
≤ 1

N2
√

3
, for all 0 < r < 1. (3.10)
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We start by looking at the intersection S of the paths of two independent Brownian motions W (1) and
W (2), each running for infinite time t(1) = t(2) = ∞, and first show that, almost surely, Pφ(S) = 0. By
`∞ we denote the intersection local time of the two motions. The key ingredient here is the following
variant of the upper bound in Theorem 1.2.

Lemma 3.4. There exists a constant C3.4 > 0 such that, for any r > 0, starting points x(1), x(2) with
|x(i)| ≥ r, and 0 < a < 1,

Px(1),x(2)

{
`∞(B(0, r)) < ra

∣∣ τ (1)
ra < ∞, τ (2)

ra < ∞
}
≤ C3.4 aξ ,

where, as before, ξ = ξ3(2, 2).

Proof. To avoid repetition of arguments we only give a sketch of the proof. By considering the
intersection local times only from the first hitting times of ∂B(0, r), we may assume that |x(i)| = r
and by scaling as in (2.1) we may further assume that r = 1. Finally, it suffices to prove the result for
the case 0 < a < 1/4, as otherwise the right hand side is bounded away from zero.

There are two options for the main part of the proof: One can either repeat the arguments used to
prove the upper bound in Theorem 1.2, which is given in Section 2.2, dividing the Brownian motion
according to the hitting times of spheres with decreasing, rather than increasing radii. Then the first
term on the right hand side of (2.7) can be estimated using Lemma 2.1 instead of (1.1), and all further
arguments can be carried out with only obvious changes.

Alternatively one can use the time-reversal technique of Lemma 2.1 to derive the result from the upper
bound in Theorem 1.2. More precisely, a brief inspection of the setup of the proof of the upper bound
in Theorem 1.2, given in Section 2.2, shows that, for a suitable C(3.11) > 0, the bound

Px(1),x(2){`∞(B(0, 1)) < b} ≤ C(3.11) bξ for 0 < b < 1, (3.11)

still holds if the starting points are located on ∂B(0, b) instead of the origin. We may now continue
by using time-reversal, exactly as in the proof of Lemma 2.1: We show that we may assume that
the starting points are uniformly distributed on ∂B(0, 1), then pass to the intersection local times of
the Brownian excursions embedded in our paths. Time-reversing the excursions and dropping a small
inital part, we arrive at the intersection local times of Brownian paths, started in ∂B(0, ηa) for some
η > 1, and stopped upon hitting ∂B(0, 1). The result then follows by applying (3.11) with b = ηa. �

Fix a cube C at positive distance from the starting points W (1)(0) and W (2)(0), it clearly suffices to
show that Pφ(S ∩ C) = 0. For ease of notation we assume that C = [0, 1)3. Let D(n) be the class of
N -adic cubes of sidelength N−n, consisting of the cubes

D =
3∏

i=1

[
kiN

−n, (ki + 1)N−n
)
, for some ki ∈ {0, . . . , Nn − 1}.

For any n ∈ N let k = k(n) ∈ N be such that

N−n−k−1 < φ
(
ρ N−n

)
≤ N−n−k. (3.12)

For any D ∈ D(n + k) there is a unique compact cube D∗ with the same centre and sidelength
(ρ/

√
3) N−n−1, and (3.10) ensures that D∗ ⊃ D.
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We now consider an arbitrary packing (B(xi, ri)) of S consisting of balls contained in C. Associate to
each ball B(xi, ri) in the packing the integer ni ∈ N such that,

ρ N−ni−1 < ri ≤ ρ N−ni , (3.13)

and the unique cube Di ∈ D(ni + k(ni)) with xi ∈ Di. Then D∗
i ⊂ B(xi, ri), because the diameter

ρ N−ni−1 of D∗
i is smaller than ri and xi ∈ D∗

i . Moreover, Di is hit by both motions. Abbreviating
ki = k(ni) and using (3.12) we infer that

∞∑
i=1

φ(ri) ≤
∞∑
i=1

N−ni−ki 1{`∞(D∗
i ) ≥ N−ni−ki}+

∞∑
i=1

N−ni−ki 1{`∞(D∗
i ) ≤ N−ni−ki}. (3.14)

As the balls B(xi, ri) and hence the cubes D∗
i are disjoint, we obtain for the first term in (3.14),

∞∑
i=1

N−ni−ki 1{`∞(D∗
i ) ≥ N−ni−ki} ≤

∞∑
i=1

`∞(D∗
i ) ≤ `∞(C). (3.15)

To treat the second term in (3.14) we define the collection of cubes,

S(n + k) =
{
D ∈ D(n + k) : D is hit by both motions, and `∞(D∗) ≤ N−n−k

}
.

Observe that
∞∑
i=1

N−ni−ki 1{`∞(D∗
i ) ≤ N−ni−ki} ≤

∞∑
n=1

N−n−k(n) #S(n + k(n)) =: X . (3.16)

Note that the random variable X on the right hand side of (3.16) is independent of the choice of the
packing. We now show that it is almost surely finite. For this purpose recall from Lemma 3.4, that
there exists a constant C(3.17) such that, for all n ∈ N and D ∈ D(n + k),

P
{
`∞(D∗) ≤ N−n−k

∣∣ D is hit by both motions
}
≤ C(3.17) N−kξ . (3.17)

and recall that, for a constant C(3.18) only depending on the distance of C to the starting points,

P{D is hit by both motions
}
≤ C(3.18) N−2(n+k). (3.18)

Using (3.17), (3.18) and the fact that #D(n + k) = N3(n+k), we get

EX =
∞∑

n=1

N−n−k(n)
∑

D∈D(n+k(n))

P{D is hit by both motions
}

× P
{
`∞(D∗) ≤ N−n−k(n)

∣∣ D is hit by both motions
}

≤ C(3.18)

∞∑
n=1

N−3(n+k(n))
∑

D∈D(n+k(n))

P
{
`∞(D∗) ≤ N−n−k(n)

∣∣ D is hit by both motions
}

≤ C(3.17)C(3.18)

∞∑
n=1

N−k(n)ξ ≤ C(3.19)

∞∑
n=1

Nnξφ(ρN−n)ξ,

(3.19)
where C(3.19) > 0 is a suitable constant. As the series on the right of (3.19) converges by (3.9), we
infer that EX < ∞, and hence X < ∞ almost surely.
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We hence see from (3.14) that
∞∑
i=1

φ(ri) ≤ `∞(C) + X < ∞ almost surely,

and, as the δ-packing was chosen arbitrarily, we infer that Pφ(S ∩C) ≤ P φ(S ∩C) < ∞. Applying this
result to φ̃ with limr↓0 φ̃(r)/φ(r) = ∞ such that (3.8) still holds, gives Pφ(S ∩ C) = 0 almost surely.

Finally, we look at a single Brownian path W : [0, 1) → R3. Let Dy(n) := {k2−n : k = 0, . . . , 2n − 1},
for n ∈ N, and Dy(0) := {0, 1}. For each x ∈ Dy(n)\ Dy(n − 1) there exists a minimal y = y(x) ∈
Dy(n − 1) with x < y, and a maximal z = z(x) ∈ Dy(n − 1) with x > z. Then [0, 1) × [0, 1) can be
decomposed (up to the diagonal) into countably many subsets I × J , J × I where

I = [x, y(x)) and J = [z(x), x), for n ≥ 1, x ∈ Dy(n)\ Dy(n− 1).

For each such set, the previous result can be applied to the two independent Brownian motions

W (1) : [0, 2−n) → R3 W (1)(t) = W (x + t)−W (x)

W (2) : (0, 2−n] → R3 W (2)(t) = W (x− t)−W (x),

for x ∈ Dy(n)\ Dy(n− 1). Note that D is the union (over all decomposition sets) of the intersections
of the paths of these independent Brownian motions. Hence, almost surely, under (3.8), we have
Pφ(D) = 0, and this completes the proof.

4. Appendix: Brownian excursions between spheres

In this section we recall facts on Brownian excursions between concentric spheres, which were used in
our proofs. Fix a dimension d ≥ 2, radii s 6= r, and take a Brownian motion (W (t) : t ≥ 0) started
uniformly on the sphere ∂B(0, s) ⊂ Rd and, if d ≥ 3 and s > r, condition the path on eventually
hitting ∂B(0, r). Define random times

τ := inf
{
t > 0 : |W (t)| = r

}
and τ∗ := sup

{
t < τ : |W (t)| = s

}
.

Then the random path e : [0, τ − τ∗] → Rd defined by e(t) = W (t + τ∗) is called a Brownian excursion
from ∂B(0, s) to ∂B(0, r) and ζ := τ − τ∗ is called its lifetime.

Proposition 4.1. Let e be a Brownian excursion from ∂B(0, s) to ∂B(0, r) and let ζ be its lifetime.
Then its time-reversal e∗ : [0, ζ] → Rd, which is defined by e∗(t) = e(ζ − t), is a Brownian excursion
from ∂B(0, r) to ∂B(0, s).

Proof. Without loss of generality we may assume that 0 < r < s. We invoke the skew-product
representation, which states that the underlying Brownian motion (W (t) : t ≥ 0) can be written as
W (t) = β(Ht) R(t), where

• the radial part (R(t) : t ≥ 0) is a Bessel process with index ν = d
2 − 1 started at R(0) = s;

• the spherical part (β(u) : u ≥ 0) is a Brownian motion on the unit sphere ∂B(0, 1) ⊂ Rd,
started uniformly at random, and independent of the radial part;

• the winding clock is Ht =
∫ t
0 R(u)−2 du.
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Hence, to prove our result, it suffices to consider the radial parts of the processes. Conditioning
(R(t) : 0 ≤ t ≤ τ) on τ < ∞ (if d ≥ 3) turns it into a Bessel process of index −ν stopped at
its first hitting time of level r. By the Williams reversal theorem, see [W74], the time reversal
(R(τ − t) : 0 ≤ t ≤ τ − τ∗) is a Bessel process with index ν considered between its last passage time
at level r and its first passage time at level s. This readily implies the result. �
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[LG86] J.-F. Le Gall. The exact Hausdorff measure of Brownian multiple points. In: Seminar
on Stochastic Processes (1986), Birkhäuser, Basel, pp 107–137.
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