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Abstract

Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B1

1
, . . . , B1

n1
; . . . ; Bp

1
, . . . , Bp

np
be independent

planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold
intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the
packets

⋃ni

j=1
Bi

j [0, t2], i = 1, . . . , p, have no joint intersection. The case p = 2 is well-known and,
following two decades of numerical and mathematical activity, Lawler, Schramm and Werner (2001)
rigorously identified precise values for these exponents. The exponents have not been investigated
so far for p > 2. We present an extensive mathematical and numerical study, leading to an exact
formula in the case n1 = 1, n2 = 2, and several interesting conjectures for other cases.

AMS 2000 subject classification: 60J65.
Keywords: Brownian motion, intersection exponent.
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1 Introduction

1.1 Motivation and overview

Finding exponents, which describe the decay of some probabilities, and dimensions of some sets as-
sociated with stochastic models of physical systems is one of the core activities in statistical physics.
While in general one often has to resort to numerical methods to get a handle on the values of the
exponents, for planar models conformal invariance may help to answer these questions explicitly, and
there is now a substantial body of rigorous and non-rigorous methods available. For example, by
making the assumption that critical planar percolation behaves in a conformally invariant way in the
scaling limit and using ideas involving conformal field theory, Cardy [4] determined the asymptotic
probability, as N → ∞, that there exists a two-dimensional critical percolation cluster crossing a
rectangle. A rigorous proof of Cardy’s formula was later given by Smirnov [25]. Following consid-
erable numerical work, see for example [18, 26] and references therein, Saleur and Duplantier [24]
predicted the fractal dimension of the hull of a large percolation cluster using a non-rigorous Coulomb
gas technique. Rigorous versions of this result have been given based on Cardy’s formula, for example
by Camia and Newman [2, 3].

In [6] Duplantier and Kwon suggested that ideas of conformal field theory can also be used to pre-
dict the probability of pairwise non-intersection between planar Brownian paths. Early research by
Burdzy, Lawler and Polaski [1] and Li and Sokal [20] was of numerical nature, but ten years later,
Duplantier [5] gave a derivation based on non-rigorous methods of quantum gravity, and soon after
that Lawler, Schramm and Werner [14, 15, 16] gave a rigorous proof based on the Schramm-Loewner
evolution (SLE), one of the greatest achievements in probability in recent years. We also mention
here some very recent developments with the long term aim of making the quantum gravity approach
rigorous, see Duplantier and Sheffield [7], and Rhodes and Vargas [23].

In this paper we look at joint intersections of three or more planar Brownian paths, a question which
has been neglected so far in the literature, but which came up in our recent investigation of the
multifractality of intersection local times [8]. In the simplest case, given three independent Brownian
paths B1, B2, B3 started uniformly on the unit circle, we are interested in the asymptotic behaviour,
as t → ∞, of the non-intersection probability

P
{
B1[0, t] ∩ B2[0, t] ∩ B3[0, t] = ∅

}
.

Observe that this probability goes to zero, for t ↑ ∞, as three, or any finite number, of Brownian
paths in the plane eventually intersect, see e.g. [21, Chapter 9.1]. Recall for comparison, that the
non-intersection exponents for three Brownian paths studied in the aforementioned papers deal with
pairwise non-intersections, i.e. in the case of three Brownian motions either with

P
{
B1[0, t] ∩ B2[0, t] = ∅, B2[0, t] ∩ B3[0, t] = ∅, B1[0, t] ∩ B3[0, t] = ∅

}
, or with

P
{
B1[0, t] ∩

(
B2[0, t] ∪ B3[0, t]

)
= ∅

}
.

Our study starts with the observation that, for positive integers n1, . . . , np and independent planar
Brownian motions

B1
1 , . . . , B1

n1
; . . . ;Bp

1 , . . . , Bp
np

,
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Triple Point
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n  =1, n  =2, n  =2321

Figure 1: Illustration of a triple point (p = 3) with n1 = 1, n2 = 2 and n3 = 2.

nontrivial exponents

ςp(n1, . . . , np) = − lim
t→∞

2

log t
log P

{ n1⋃

j=1

B1
j [0, t] ∩ . . . ∩

np⋃

j=1

Bp
j [0, t] = ∅

}

exist, see Theorem 1 and the subsequent remark. In Theorem 2 we show that, for 2 ≤ n3 ≤ · · · ≤ np,
we have

ςp(1, 2, n3, . . . , np) = 2.

These are the only exponents we could determine exactly beyond the well-known case of p = 2.
Rigorous proofs of both theorems are given in Section 2.

The bulk of this paper is devoted to the presentation of a detailed numerical study of the values
of the, in our opinion, most interesting remaining exponents, see Section 3. One of the motiva-
tions of this study was to test the conjecture, motivated by Theorem 2, that the value of the ex-
ponents ςp(n1, n2, n3, . . . , np) depend only on the two smallest parameters. This conjecture was not
supported by our numerical investigations.

Finally, we remark that we have not been able to use either SLE techniques or quantum gravity to
derive even a non-rigorous exact prediction of the exponents if p > 2. We hope however that our
numerical study triggers interest in this problem and that, as in the motivational examples discussed
above, future research will address the question of exact formulas for multiple intersection exponents.
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1.2 Statement of the main theorems

Let p ≥ 2 and n1, . . . , np be positive integers and B1
1 , . . . , B1

n1
; . . . ;Bp

1 , . . . , Bp
np independent planar

Brownian motions started uniformly on the unit circle ∂B(0, 1). We define p packets by

B
1(r) :=

n1⋃

j=1

B1
j

[
0, τ1

j (r)
]
, . . . ,Bp(r) :=

np⋃

j=1

Bp
j

[
0, τp

j (r)
]
,

where τ i
j(r) := inf{t ≥ 0: |Bi

j(t)| = r} and r ≥ 1.

Theorem 1. The limit

ςp(n1, . . . , np) := − lim
r→∞

1

− log r
log P

{
B

1(r) ∩ . . . ∩ B
p(r) = ∅

}

exists and is positive and finite.

Remarks:

• Using a standard argument, see [13, Lemma 3.14], one can replace the paths stopped upon
hitting the circle of radius r, by paths running for t = r2 time units. This leads to the
characterisation of the exponents given in the overview.

• For p = 2 all exponents are known, see [14, 15, 16]:

ς2(n1, n2) =

(√
24n1 + 1 +

√
24n2 + 1 − 2

)2 − 4

48
.

The technique used to identify the exponents, which is based on the Schramm-Loewner evolution
(SLE), does not seem to allow us to identify the exponents for p > 2.

• We conjecture that one can strengthen this result, as this was done for p = 2 in [12], and show
that there exists a constant c > 0, depending on the starting points, such that

lim
r→∞

rςp(n1,...,np)
P

{
B

1(r) ∩ . . . ∩ B
p(r) = ∅

}
= c.

However, this is quite subtle and would go beyond the scope of this paper.

There is a trivial symmetry of the exponents, namely for every permutation σ ∈ Sym(p), we have

ςp
(
n1, . . . , np

)
= ςp

(
nσ(1), . . . , nσ(p)

)
.

Moreover, there are two trivial monotonicity rules for these exponents

(A) ςp(n1, . . . , np) ≤ ςp−1(n1, . . . , np−1),

(B) ςp(n1, . . . , np) ≤ ςp(m1, . . . ,mp), if ni ≤ mi for i = 1, . . . , p.
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As a result of the symmetry of the exponents, we may henceforth assume that the arguments of the
exponents are increasing in size, i.e. n1 ≤ · · · ≤ np. There is one interesting situation in which we can
determine the exponents explicitly.

Theorem 2. We have ςp(1, 2, n3, . . . , np) = 2 for any p ≥ 2 and 2 ≤ n3 ≤ · · · ≤ np.

As ςp(1, 2, . . . , 2) ≤ ςp(1, 2, n3, . . . , np) ≤ ς2(1, 2) by the monotonicity rules, it suffices to show that

(1.1) ςp(1, 2, . . . , 2) = 2 .

The proof of this fact is based on the technique of hitting the intersection of p − 1 Brownian paths
by a further path, using an idea of Lawler, see [10] or [11, Section 3], originally used to determine the
exponent ς2(1, 2) = 2.

Remark: The definition of the exponents ςp(n1, . . . , np) can be naturally extended to a real argu-
ment λ > 0 in place of np by letting

ςp(n1, . . . , np−1, λ) :=

− lim
r→∞

1

− log r
log E

[
P
{
B

1(r) ∩ . . . ∩ B
p−1(r) ∩ Bp

1

[
0, τp

1 (r)
]

= ∅
∣∣ B

1(r), . . . ,Bp−1(r)
}λ

]
.

The mapping λ 7→ ςp(n1, . . . , np−1, λ) cannot always be analytic: for instance, recall that ς3(1, 2, 1) ≤
ς2(1, 1) = 5

4 , but ς3(1, 2, λ) = 2 for all λ ≥ 2, by Theorem 2 and the monotonicity rules. However, for
p = 2 this mapping is analytic, see [17].

1.3 Conjectures

In this section we formulate the main conjecture motivated by our numerical studies. A detailed
description of these studies and their outcomes will be given in Section 3.

Let p ∈ N and n1, . . . , np ∈ N with n1 ≤ n2 ≤ · · · ≤ np. Define

k := max
{
2, min

{
ℓ ∈ {1, . . . , p} : nℓ+1 > nℓ

}}
,

with k := p if the set is empty. We conjecture that

(1.2) ςp(n1, . . . , np) = ςk(n1, . . . , nk).

In fact, this holds, by Theorem 2 for the case k = 2, nk = 2, and we have numerical evidence for

• ς3(1, 1, 2) = 1.2503 ± 0.0011 to be compared with ς2(1, 1) = 5
4

• ς4(1, 1, 1, 2) = 1.02 ± 0.004 to be compared with ς3(1, 1, 1) = 1.027 ± 0.005

• ς3(2, 2, 3) = 2.937 ± 0.01 to be compared with ς2(2, 2) = 35
12 = 2.91666 . . ..

This is evidence that if p packets of Brownian motions are required not to intersect, this is achieved
by the k smallest packets not intersecting, if these are strictly smaller than the p − k largest packets.
Beyond this conjecture it is interesting to compare further values, namely
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• ς3(1, 3, 3) = 2.688 ± 0.01 with ς2(1, 3) = 13+
√

73
8 = 2.693000 . . .

• ς3(2, 3, 3) = 3.767 ± 0.06 with ς2(2, 3) = 47+5
√

73
24 = 3.738334113 . . .,

which is evidence supporting the conjecture that in some cases nonintersection is achieved by the two
smallest packets not intersecting, even if the second and third smallest have the same size. However
this cannot be expected in all situations, as can be seen comparing

• ς3(1, 1, 1) = 1.027 ± 0.005 with ς2(1, 1) = 5
4 .

2 Proofs of Theorems 1 and 2.

2.1 Proof of Theorem 1

Denote by x = (x1
1, . . . , x

1
n1

; . . . ;xp
1, . . . , x

p
np) vectors with n1 + · · · + np entries in R

2, playing the role
of configurations of our motions at time zero. Consider

ar := sup
|xi

j |=1

Px

{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}
,

where the subindex of P indicates the starting points of the Brownian motions. Using the strong
Markov property and Brownian scaling, we get, for any r, s ≥ 1,

ars ≤ sup
|xi

j|=1

Px

{ n1⋃

j=1

B1
j

[
0, τ1

j (r)] ∩ · · · ∩
np⋃

j=1

Bp
j

[
0, τp

j (r)] = ∅,

n1⋃

j=1

B1
j

[
τ1
j (r), τ1

j (rs)] ∩ · · · ∩
np⋃

j=1

Bp
j

[
τp
j (r), τp

j (rs)] = ∅
}

= sup
|xi

j|=1

Ex

[
1
{ n1⋃

j=1

B1
j

[
0, τ1

j (r)] ∩ · · · ∩
np⋃

j=1

Bp
j

[
0, τp

j (r)] = ∅
}

× P(Bi
j
(τ i

j
(r))

{ n1⋃

j=1

B1
j

[
τ1
j (r), τ1

j (rs)] ∩ · · · ∩
np⋃

j=1

Bp
j

[
τp
j (r), τp

j (rs)] = ∅
}]

≤ aras .

Hence the function given by bt := log a2t is subadditive and, by the subadditivity lemma, see e.g. [11,
Lemma 5.2.1], we thus have limt→∞ bt/t = inft>0 bt/t. Therefore,

ς̃p(n1, . . . , np) := − lim
r→∞

1

log r
log sup

|xi
j |=1

Px

{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}

exists, and is positive.

Next, we show that we can replace the optimised starting points by starting points uniformly chosen
from the unit circle. Clearly, we have

(2.1) P
{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}
≤ sup

|xi
j |=1

Px

{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}
,

6



where P refers to the original scenario of Brownian motions started uniformly on the unit circle.

Conversely, using the Markov property, for r > 2, we have

sup
|xi

j |=1

Px

{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}

≤ sup
|xi

j |=1

Ex

[
P(Bi

j(τ
i
j (2)))

{ n1⋃

j=1

B1
j

[
τ1
j (2), τ1

j (r)] ∩ · · · ∩
np⋃

j=1

Bp
j

[
τp
j (2), τp

j (r)] = ∅
}]

.

By the Harnack principle, the law of the vector (Bi
j(τ

i
j(2))) is bounded, uniformly in x, by a constant

multiple of the uniform distribution on the (n1 + · · · + np)-fold cartesian power of the circle ∂B(0, 2).
Denoting this constant by C and using Brownian scaling,

(2.2)

P

{ n1⋃

j=1

B1
j

[
0, τ1

j (r/2)] ∩ · · · ∩
np⋃

j=1

Bp
j

[
0, τp

j (r/2)] = ∅
}

≥ C−1 sup
|xi

j |=1

Px

{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}
.

Combining (2.1) and (2.2) yields that

ςp(n1, . . . , np) := − lim
r→∞

1

log r
log P

{
B

1(r) ∩ · · · ∩ B
p(r) = ∅

}

exists and coincides with ς̃p(n1, . . . , np). Note, finally, that the monotonicity rule (A) implies that
ςp(n1, . . . , np) ≤ ς2(n1, n2) < ∞, and hence the exponents are positive and finite. ⋄

2.2 Proof of Theorem 2

Recall that it suffices to show (1.1). We start by formulating the key lemma. We let W 1, . . . ,W p be
independent Brownian paths. For r, s > 0 denote by τ i(x, r) the first hitting time by the motion W i

of the circle ∂B(x, r) with centre x and radius r, and let τ i(x, r, s) be the first hitting time of ∂B(x, s)
after τ i(x, r).

Lemma 3. Fix x ∈ B(0, 1). Suppose that W 1, . . . ,W p are independent Brownian paths started uni-
formly on the circle ∂B(0, 2). Define the set

(2.3) W :=

p⋂

j=2

W j[0, τ j(0, 4)]

and the events

(2.4)

Ex,r =
{
W 1[0, τ1(x, r/2)] ∩ W = ∅

}
,

Nx,r =
{
W 1[0, τ1(x, r/2, r)] ∩ W 6= ∅

}
,

Hx,r =
{
τ i(x, r/2) < τ i(0, 4) for all i = 1, . . . , p

}
.

Then

lim inf
r↓0

1

| log r| log P
[
Ex,r ∩ Nx,r

∣∣Hx,r

]
≥ −ςp(1, 2, . . . , 2).
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Let us first see how (1.1) follows from this lemma. Let

τ = inf
{
t > 0 : W 1(t) ∈ W

}
.

Now let B be a collection of pairwise disjoint discs of fixed radius 0 < r < 1/2 with centres in the disc
B(0, 1), which has cardinality at least (2r)−2. Then, obviously,

1 ≥ P
{
W 1[0, τ1(0, 4)] ∩ W 6= ∅

}
≥

∑

B∈B

P
{
W 1(τ) ∈ B, τ < τ1(0, 4)

}
.

Now, fix a disc B = B(x, r) ∈ B. The event {W 1(τ) ∈ B, τ < τ1(0, 4)} is implied by the events

Ex,r ∩ Nx,r ∩ {τ1(x, r/2) < τ1(0, 4)}.
Recall that

P
[
Hx,r

]
= P

{
τ1(x, r/2) < τ1(0, 4)

}p
= ro(1) .

Combining this with Lemma 3, for any ε > 0 and sufficiently small r > 0,

P
{
W 1(τ) ∈ B, τ < τ1(0, 4)

}
≥ rςp(1,2,...,2)+ε.

This implies

1 ≥
∑

B∈B

rςp(1,2,...,2)+ε ≥ r−2+ςp(1,2,...,2)+2ε ,

and therefore ςp(1, 2, . . . , 2) ≥ 2 − 2ε. The lower bound follows as ε > 0 was arbitrary, and the upper
bound in (1.1) follows from ςp(1, 2, . . . , 2) ≤ ς2(1, 2) = 2, as is known from [10, 11]. ⋄

Proof of Lemma 3. Before we describe the technical details we sketch the idea of the proof. Since
the paths of p planar Brownian motions intersect with positive probability, by Brownian scaling, the
conditional probability of Nx,r given Hx,r is bounded from below as r → 0. Hence this condition can be
neglected when computing the probability in Lemma 3. For j = 1, . . . , p we decompose the paths W j

into the pieces W j[0, τ j(x, r/2)] and W j[τ j(x, r/2), τ j(0, 4)]. By time reversal for W j[0, τ j(x, r/2)],
we can compare the probability in question with the non-intersection probability for packets of size
n1 = 1, n2 = · · · = np = 2, which is of order ≈ rςp(1,2,...,2).

We now come to the technical details, see the appendix in [22] for the necessary facts about Brownian
excursions between concentric spheres. Let ̺1 = r and ̺j = r/2 for j = 2, . . . , p. Conditioned
on {τ i(x, ̺j/2) < τ i(x, 3)} the path W i[0, τ i(x, ̺j/2)] is contained in an excursion from ∂B(x, 3) to

∂B(x, ̺j/2). The time-reversal of this excursion is contained in the path of a Brownian motion W̃ i

started uniformly on ∂B(x, ̺j/2) and stopped upon reaching ∂B(x, 3), say at time τ̃ i(x, 3). Analogously
to (2.3) and (2.4) define the set

W̃ =

p⋂

j=2

(
W̃ j[0, τ̃ j(x, 3)] ∪ W j[τ j(x, r/4, r/2), τ j(0, 4)]

)
,

and the events
Ẽx,r =

{
W̃ 1[0, τ̃1(x, 3)] ∩ W̃ = ∅

}
,

Ñx,r =

{ p⋂

j=1

W j[τ j(x, ρj/2), τ j(x, ρj/2, ρj)] 6= ∅
}

,

H̃x,r =
{
τ j(x, ̺j/2) < τ j(x, 3) for all j = 1, . . . , p

}
.
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Note that W 1[0, τ1(x, ρ1)] ∩ B(x, r/2) = ∅ and W j[τ j(x, ρj/2), τ j(x, ρj/2, ρj)) ⊂ B(x, r/2) for j =
2, . . . , p. Hence

W 1[0, τ1(x, ρ1)] ∩
(
W \ W̃

)
⊂ W 1[0, τ1(x, ρ1)] ∩

p⋂

j=2

W j[τ j(x, ρj/2), τ j(x, ρj/2, ρj)) = ∅

which implies Ẽx,r ⊂ Ex,r. Note that trivially, we have H̃x,r ⊂ Hx,r and Ñx,r ⊂ Nx,r which implies

(2.5) Ex,r ∩ Nx,r ∩ Hx,r ⊃ Ẽx,r ∩ Ñx,r ∩ H̃x,r.

Finally, note that

(2.6) f(x, r) :=
P[H̃x,r]

P[Hx,r]
=

P
{
τ1(x, ̺1/2) < τ1(x, 3)

}p

P
{
τ1(x, r/2) < τ1(0, 4)

}p ≥ 1

2

for all x and for sufficiently small values of r > 0.

By (2.5), (2.6) and the definition of the conditional probability, we conclude

(2.7) P
[
Ex,r ∩ Nx,r

∣∣ Hx,r

]
≥ f(x, r) P

[
Ẽx,r ∩ Ñx,r

∣∣H̃x,r

]
.

Fix ε > 0. Invoking the definition of the exponent, the Harnack principle and Brownian scaling, for
sufficiently small r > 0,

P
[
Ẽx,r

∣∣ H̃x,r

]
≥ rςp(1,2,...,2)+ε.

Define the compact sets

C :=
{
y = (y1, . . . , yp) : yj ∈ ∂B(0, ̺j/2) for j = 1, . . . , p

}
and

D :=
{
z = (z1, . . . , zp) : zj ∈ ∂B(0, ̺j) for j = 1, . . . , p

}
.

For y ∈ C and z ∈ D let (W̄ j, j = 1, . . . , p) be an independent family of Brownian motions where
each motion W̄ j is started at yj and is conditioned to leave B(0, ̺j) at zj (at time τ̄ j). Denote by
Py,z the corresponding probability measure. It is easy to see that the map

φ : C × D → [0, 1], (y, z) 7→ Py,z

{
W̄ 1[0, τ1] ∩ . . . ∩ W̄ p[0, τp] 6= ∅

}

is continuous and strictly positive, and independent of r by Brownian scaling. Hence

c := inf
y∈C, z∈D

φ(y, z) > 0.

We infer that
P
[
Ñx,r

∣∣ Ẽx,r ∩ H̃x,r

]
≥ c > 0.

Hence, combing our results, for sufficiently small r > 0

P
[
Ẽx,r ∩ Ñx,r

∣∣H̃x,r

]
= P

[
Ẽx,r

∣∣ H̃x,r

]
P
[
Ñx,r

∣∣ Ẽx,r ∩ H̃x,r

]
≥ c rςp(1,2,...,2)+ε,

and this completes the proof as ε > 0 was arbitrary. ⋄
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3 Simulations

To get hold of those exponents which we could not determine explicitly, we have performed Monte
Carlo simulations. This has successfully generated conjectures in the p = 2 case, see Duplantier and
Kwon [6], Li and Sokal [20] and Burdzy, Lawler and Polaski [1].

3.1 The general scheme. Before we list and analyse the simulated data, we explain how we got
it. Fix positive integers p and n1, . . . , np. The aim is to get an estimate on ςp(n1, . . . , np). Instead
of Brownian motions we simulate two-dimensional symmetric nearest neighbour random walks. As
it reduces computing effort, we work with boxes rather than with discs. (For comparison we have
performed some of the simulations also with discs and there was no significant difference in the results.)
First we fix an increasing sequence of box half-lengths L0, . . . , LK (in most cases Lk+1 = ⌊1.1 · Lk⌋
and the maximal value m = LL restricted to 20000, 40000 or 80000) and the sample size N of the
simulation.

Step 1. We start n1 + . . . + np independent random walks at the origin 0 ∈ Z
2 and stop each of

them when it hits the (graph) boundary of the box {−L0, . . . , L0}2 = [−L0, L0]
2 ∩ Z

2. This defines
the starting positions of the random walks.

Step 2. Assume we are at level k (after Step 1 we are at level k = 1). Independently run the random
walks until they hit the boundary of the box {−Lk, . . . , Lk}2 ⊂ Z

2. Separately, keep track of the set
Ak,i ⊂ {−Lk + 1, . . . , Lk − 1}2 of points that are visited by the ith package of ni random walks before
hitting the boundary of {−Lk, . . . , Lk}2 (after Step 1).

If Ak,1 ∩ . . . ∩ Ak,p = ∅, then we say that we have survived level k and we enter level k + 1 (that is,
we perform Step 2 again with k replaced by k + 1). Otherwise we stop this sample and start a new
simulation in Step 1.

By Nk we denote the number of samples that have survived level k. Clearly, N0 = N . We should have

Nk/N ≈ (Lk/L0)
−ςp(n1,...,np).

Hence in a double logarithmic plot of log(Nk) against log(Lk) the points should be on a line with slope
−ςp(n1, . . . , np). Linear regression then gives an estimate for the exponent ςp(n1, . . . , np).

As it turns out that a line can be fitted well only for large values of Lk, we have neglected the small
values of Lk in order to get a reasonable estimate for ςp(n1, . . . , np). In Figure 3.4.1 below we plotted
the data points used for the linear regression with solid circles, the other points with hollow circles.

As can be seen from Figure 3.4.1, for ξ(1, 1) this gives a pretty good estimate of the exact value 5
4 ,

even with a moderate computing effort of about 2000 hours CPU time. However, for ξ(1, 1, 1) the
points tend to lie on a straight line only for large values of Lk and thus require

(i) a large maximal box size m = LK and thus a big computer memory of size (2m + 1)2 bytes in
order to keep track of the visited points,

(ii) a large sample size N0 in order that NK ≈ N0 · (LK/L0)
−ξ(1,1,1) is big enough to obtain reliable

data from the simulation.

Since the CPU time we need for each sample grows with m, (i) and (ii) imply that we need huge
amounts of CPU time. Furthermore, with huge sample sizes and box sizes, we run into the order of
the cycle length of the common 48 bit linear congruence random number generators.
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The computations were performed on different computers, mainly on two parallel Linux clusters at
the University of Mainz on Opteron 2218 processors with 2.6GHz and on Opteron 244 processors with
1.8GHz. The programme code is written in C. As random number generator we used drand64(), a 64
bit linear congruence generator following the rule

rn+1 = (arn + c) mod 264

with
a = 6364136223846793005 and c = 1

(see [9, pp106-108]).

The linear regression method does not give a quantitative estimate on the statistical error. In order
to get such an error estimate we did the following. Having in mind that the systematic error is large
for small box sizes, we choose a minimal box number kmin ∈ {1, . . . ,K − 1} and neglect the data from
all smaller boxes. Furthermore, we pretend that the asymptotics for pL is exact for k ≥ kmin, that is,

(3.1) pLk
= C L−ς

k for all k ≥ kmin

for some C > 0. In particular, the conditional probability to have no multiple intersections before
leaving BLk+1

given there is no multiple intersection before leaving BLk
is

p̄k :=
pLk+1

pLk

=

(
Lk

Lk+1

)−ς

=: q−ς
k .

Here the likelihood function for the observation

(Nkmin
, Nkmin+1, . . . , NK) = n := (nkmin

, nkmin+1, . . . , nK)

is

(3.2)

Ln(ς) = C(n)

K−1∏

l=kmin

p̄l
nl+1(1 − p̄l)

nl−nl+1

= C(n)

K−1∏

l=kmin

q̄l
ςnl+1(1 − q̄l

ς)nl−nl+1

for some C(n) > 0. The log-likelihood function is

(3.3) Ln(ς) = log C(n) +

K−1∑

l=kmin

(
nl+1ς log(ql) + (nl − nl+1) log

(
1 − qς

l

))
.

The maximum likelihood estimator (MLE) ς̂ is defined by

(3.4) Ln

(
ς̂
)

= sup
ς>0

Ln(ς).

We compute the derivatives

(3.5) L′
n(ς) =

K−1∑

l=kmin

nl+1 log(ql) −
K−1∑

l=kmin

(nl − nl+1)
log(ql) qς

l

1 − qς
l

11



and

(3.6) L′′
n(ς) = −

K−1∑

l=kmin

(nl − nl+1)
(log(ql))

2 qς
l

(1 − qς
l )

2
.

Clearly, L′′
n(ς) < 0, hence ς 7→ Ln(ς) is strictly concave and thus ς̂ is the unique solution of

(3.7) L′
n(ς̂) = 0.

Hence, for given data, the MLE can easily be computed numerically (we used a Newton approximation
scheme).

Denote by ς̂n0
the MLE for sample size n0. By standard theory for MLEs, (ς̂)n0∈N is consistent and

asymptotically normally distributed. In fact, by Corollary 6.2.1 of [19],

(3.8) ς̂n0

n0→∞−→ ς stochastically.

Furthermore, by [19, Corollary 6.2.3], (ς̂)n0
is asymptotically efficient (that is, optimal) and by [19,

Theorem 6.2.3] (with N0,1 the standard normal distribution)

(3.9)
√

n0I(ς)
(
ς̂n0

− ς
) n0→∞−→ N0,1 in distribution.

Here

(3.10) I(ς) = −E[L′′
N(ς)|N0 = 1] = pLkmin

K−1∑

l=kmin




l−1∏

m=kmin

p̄m


(

1 − p̄l

)(log(ql))
2 qς

l

(1 − qς
l )

2

is the Fisher information for one sample. As we do not know the true value of ς and since we do not
know pLkmin

, we replace I(ς) by

In(ς) = − 1

n0
L′′

n(ς).

By the law of large numbers IN (ς)
n0→∞−→ I(ς) almost surely, uniformly in ς in compact sets. Hence

by (3.8), we have IN (ς̂)
n0→∞−→ I(ς) stochastically. Hence we use

(3.11) σ̂ 2 := −1/L′′
N (ς̂)

as an estimator for the variance of ς̂ and obtain

(3.12)
ς̂ − ς

σ̂

n0→∞−→ N0,1 in distribution.

Concluding, an asymptotic 95% confidence interval for ς is given by

(3.13)
[
ς̂ − 2 σ̂, ς̂ + 2 σ̂

]
.

We have performed the simulations for the exponents ς2(1, 1) and ς2(2, 2) as benchmark problems, and
then did the simulations on a larger scale for

ς3(1, 1, 1), ς3(1, 1, 2), ς4(1, 1, 1, 1), ς4(1, 1, 1, 2).
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3.2 Two-level scheme. The simulations turn out to be very time-consuming, especially for the
exponents with a larger numerical value. In order to get a more efficient scheme in this situation
consider the following simplification of the simulation scheme presented above:

Assume there are only three box sizes, L0 (about 30), L1 (about 10 000) and L2 = 2L1. Then (3.7)
can be solved explicitly and the maximum likelihood estimator for ς is

ς̂ = − log(n2/n1)

log(2)
.

In order to reduce the variance of ς̂ we have to increase N1, that is the sample size n0. However,
since it takes much CPU time to obtain a sample that contributes to N1, we may wish to use this
very sample as the starting point for a number m of trials running from box size L1 to L2. Assume
that x among these m trials have survived until L2 (that is, have reached the boundary of the L2-box
without producing a multiple intersection), then pS = x

m
is an estimator for the conditional probability

of producing no multiple intersection until leaving the L2-box for the given realisation S of the paths
of all walks in the L1-box. Now we can prescribe the number n = n1 of “master samples” and for
i = 1, . . . , n let xi be the corresponding number of surviving trials and write p̂i := xi/m. Hence for

p :=
pL2

pL1

= E[pS]

we get the unbiased estimator

p̂ =
1

n

n∑

l=1

p̂i.

The unbiased estimator for the variance of p̂ is

σ̂2
p =

1

n(n − 1)

n∑

l=1

(p̂i − p̂)2.

From p̂ and σ̂2
p we obtain the estimators for ς and the variance σ2 of ς̂

(3.14) ς̂ = − log(p)

log(2)
and σ̂2 =

σ̂2
p

(log(2) p̂)2
.

We have employed this scheme for the exponents with numerical values larger than 2, and we explain
now why it is more efficient in these cases.

The expected time planar random walk needs to go from the boundary of {−L, . . . , L}2 to the boundary
of {−L− 1, . . . , L + 1}2 is of order L. The probability that a given sample ever reaches the boundary
of {−L− 1, . . . , L + 1}2 is of order L−ς . Hence (if we stop the simulation as soon as the first multiple
intersection is detected) the expected CPU time for each sample until box size L1 is of order

L1∑

L=L0

L1−ς .

For ς > 2 this sum is of order 1, for ς ≤ 2, it is of order L2−ς
1 . Now the probability that a sample

reaches box size L1 without producing a multiple intersection is of order L−ς
1 . Hence the expected

13



CPU time needed for simulating a “master sample” is of order L2∨ς . On the other hand, each of the
trials started from the master sample needs an expected CPU time of order L2

1. Hence for ς > 2 we
can run m = Lς−2

1 trials without increasing the CPU significantly.

In order to make a good choice for m, compute the variance of p̂

Var[p̂] = n−1Var[pS ] +
1

mn
E[pS(1 − pS)] ≤ n−1Var[pS ] +

1

mn
E[pS ].

The quantities Var[pS ] and E[pS] ≈ 2−ς can be estimated from a test simulation as well as the expected
CPU time T1 to produce a master sample and the expected time T2 used for each subsequent trial.
Now it is an optimisation problem for the total CPU time n(T1 +mT2) versus the variance Var[p̂]. For
some of the simulations we have done test runs and solved the optimisation problem. Here m = 1000
turned out to be a reasonable choice that we have then used in all simulations.

We have performed the simulations according to this scheme with L0 = 30, L1 = 10000, L2 = 20000
and m = 1000 for the exponents

ς3(1, 3, 3), ς3(2, 2, 2), ς3(2, 2, 3), ς3(2, 3, 3), ς4(2, 2, 2, 2).

3.3 Numerical results. We present our estimated values ς̂ together with a statistical error of
2σ. For the systematic error it is hard to make a good judgement. From the graphical representation
of the results (see below) it seems that for ς3(1, 1, 2) the systematic error is of a smaller order than
the statistical error. For ς3(1, 1, 2) and ς3(1, 1, 1) it is presumably of the same order. Finally, for
ς4(1, 1, 1, 1) and, even worse for ς5(1, 1, 1, 1, 1) we seem to systematically underestimate the values. It
would require a lot larger Lmax to get more accurate results. For that reason we have not taken too
much effort to reduce the statistical error. However, we give the results of the simulations just to
provide an idea of the possible values.

exponent ς̂ 2σ̂ rigorous Lmin Lmax n0/10
6 CPU

time/h

ς2(1, 1) 1.2502 0.001 5/4 1069 20 000 500 2 064

ς2(2, 2) 2.9188 0.0033 35
12 = 2.9167 163 20 000 40 000 1 879

ς3(1, 1, 1) 1.027 0.005 [1/2, 5/4] 18 575 80 000 60 8 262

ς3(1, 1, 2) 1.2503 0.0011 [1, 5/4] 1069 80 000 200 5 858

ς4(1, 1, 1, 1) 0.877 0.006 [1/4, 5/4] 39 813 80 000 20 18 262

ς4(1, 1, 1, 2) 1.02 0.004 [1/2, 5/4] 27 194 40 000 200 35 212

ς5(1, 1, 1, 1, 1) 0.74 0.02 [1/8, 5/4] 27 194 40 000 0.74 1 147

Table 1: Numerical results obtained from the first simulation scheme.
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exponent ς̂ 2σ̂ rigorous n CPU

time/h

ς3(1, 3, 3) 2.688 0.01 [2, (13 +
√

73)/8] 18 100 61 860

ς3(2, 2, 2) 2.786 0.01 [2, 35/12] 16 000 47 943

ς3(2, 2, 3) 2.937 0.01 [2, 35/12] 23 000 116 888

ς3(2, 3, 3) 3.767 0.057 [2, 35/12] 1 000 179 543

ς4(2, 2, 2, 2) 2.664 0.01 [2, 35/12] 16 000 63 496

Table 2: Numerical results obtained from the second simulation scheme.

3.4 Detailed Data.

3.4.1 Exponent ς2(1, 1).

The exact value ς2(1, 1) = 5/4 is known. This simulation is used as a benchmark test for our simula-
tion.

Lk nk

30 500000000

33 455164209

36 414185142

39 379373384

42 349383901

46 315390855

50 286840826

55 257075021

60 232385705

66 207870728

72 187620511

79 168084821

86 151902122

94 136553134

103 122326905

Lk nk

113 109366745

124 97714439

136 87320799

149 78109962

163 69978568

179 62384176

196 55800459

215 49786852

236 44382636

259 39563995

284 35298660

312 31418279

343 27932867

377 24837149

414 22109889

Lk nk

455 19660552

500 17483797

550 15525080

605 13788917

665 12253892

731 10890052

804 9669275

884 8589857

972 7631215

1069 6776772

1175 6020939

1292 5347118

1421 4747333

1563 4214131

1719 3741150

Lk nk

1890 3323382

2079 2950258

2286 2620862

2514 2327160

2765 2066024

3041 1834523

3345 1628901

3679 1446024

4046 1283655

4450 1140213

4895 1012659

5384 898680

5922 797641

6514 708293

7165 628813

Lk nk

7881 557957

8669 495180

9535 439662

10488 389839

11536 345918

12689 307046

13957 272420

15352 241798

16887 214746

18575 190486

20000 173506

Values used for the fit: Lk = 1069 . . . 20 000. CPU time 2064h.
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Figure 2: Linear regression for the simulation of ς2(1, 1).
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Figure 3: Simulation for ς2(1, 1). The co-ordinate shows kmin, the ordinate shows the corresponding
ς̂ with error bars. The vertical line indicates kmin = 40 which we chose for our estimate of ς̂ . The
horizontal line shows the true value.
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3.4.2 Exponent ς(2, 2).

The exact value ς2(2, 2) = 35/12 = 2.91666 . . . is known. Also this simulation serves as a benchmark
for our simulations.

Lk nk

30 40000000000

33 27956276949

36 19934507109

39 14769670878

42 11270896745

46 8156016609

50 6108280379

55 4423365460

60 3315611015

66 2432628801

72 1842369408

79 1375726309

86 1056545535

94 803537797

103 607993657

Lk nk

113 459313243

124 347384944

136 263528000

149 200799711

163 153819037

179 116600065

196 89210485

215 67932955

236 51656232

259 39313221

284 30007400

312 22780638

343 17265563

377 13094893

414 9961095

Lk nk

455 7559087

500 5737717

550 4343548

605 3288311

665 2496057

731 1893876

804 1434709

884 1087314

972 823685

1069 624023

1175 473832

1292 359121

1421 271557

1563 205432

1719 155585

Lk nk

1890 117893

2079 89442

2286 67757

2514 51314

2765 38803

3041 29341

3345 22363

3679 16949

4046 12813

4450 9738

4895 7339

5384 5571

5922 4218

6514 3229

7165 2477

Lk nk

7881 1872

8669 1450

9535 1108

10488 853

11536 650

12689 479

13957 348

15352 266

16887 193

18575 151

20000 123

Values used for the fit: Lk = 605 . . . 20000. CPU time 1879h.

10 20 30 40 50 60 70

2.
8

2.
9

3.
0

3.
1

ς (2,2)  n0 = 40 000 000 000, Lmax = 20 000

ς̂(2,2) = 2.9188 ± 0.0032

ς̂±
2σ̂

Figure 4: Simulation for ς2(2, 2). The co-ordinate shows kmin, the ordinate shows the corresponding
ς̂ with error bars. The vertical line indicates kmin = 34 which we chose for our estimate of ς̂ . The
horizontal line shows the true value.

17



3.4.3 Exponent ς3(1, 1, 1).

The exact value of ς3(1, 1, 1) is unknown.

Lk nk

30 60000000

33 59710616

36 58947709

39 57896946

42 56673833

46 54898618

50 53061195

55 50777396

60 48570208

66 46070175

72 43747356

79 41266693

86 39014779

94 36696389

103 34372986

113 32097711

124 29906035

136 27820941

Lk nk

149 25859377

163 24028791

179 22226328

196 20584233

215 19009323

236 17526913

259 16147690

284 14873454

312 13666336

343 12537025

377 11494795

414 10540910

455 9652748

500 8835893

550 8076259

605 7376857

665 6740503

731 6155608

Lk nk

804 5614962

884 5121770

972 4670981

1069 4256241

1175 3879722

1292 3534606

1421 3218775

1563 2930010

1719 2666485

1890 2426899

2079 2208165

2286 2009516

2514 1827541

2765 1661614

3041 1510468

3345 1372149

3679 1246493

4046 1132343

Lk nk

4450 1028587

4895 934379

5384 848491

5922 770449

6514 699523

7165 635064

7881 576119

8669 523319

9535 474777

10488 430885

11536 391134

12689 354964

13957 321882

15352 291736

16887 264553

18575 239803

20432 217707

22475 197364

Lk nk

24722 179046

27194 162421

29913 147273

32904 133514

36194 121333

39813 109856

43794 99544

48173 90226

52990 81910

58289 74069

64117 67148

70528 60809

77580 54981

80000 53301

Values used for the fit: Lk = 18575 . . . 80 000. CPU time 8262h.
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Figure 5: Simulation for ς3(1, 1, 1). The co-ordinate shows kmin, the ordinate shows the corresponding
ς̂ with error bars. The vertical line indicates kmin = 70 which we chose for our estimate of ς̂ . The
horizontal line shows the estimated value.
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3.4.4 Exponent ς3(1, 1, 2).

The exact value of ς3(1, 1, 2) is unknown.

Lk nk

30 200000000

33 198136199

36 193436538

39 187242650

42 180308394

46 170682110

50 161176218

55 149901066

60 139521065

66 128301060

72 118361321

79 108205442

86 99385254

94 90671582

103 82304628

113 74445095

124 67187208

136 60566796

Lk nk

149 54585738

163 49210675

179 44119702

196 39647836

215 35523866

236 31776899

259 28415711

284 25417521

312 22668175

343 20191522

377 17981958

414 16028002

455 14267282

500 12694594

550 11279842

605 10020648

665 8909164

731 7917614

Lk nk

804 7029965

884 6245336

972 5545792

1069 4923405

1175 4374033

1292 3885012

1421 3449618

1563 3062025

1719 2718548

1890 2415286

2079 2144282

2286 1904636

2514 1690316

2765 1499756

3041 1331441

3345 1181425

3679 1048523

4046 930691

Lk nk

4450 826443

4895 733837

5384 651874

5922 578486

6514 513593

7165 456239

7881 405240

8669 359523

9535 319391

10488 283792

11536 251871

12689 223767

13957 198585

15352 176146

16887 156219

18575 138744

20432 123285

22475 109424

Lk nk

24722 97235

27194 86246

29913 76472

32904 67873

36194 60371

39813 53674

43794 47628

48173 42353

52990 37627

58289 33387

64117 29608

70528 26339

77580 23407

80000 22541

Values used for the fit: Lk = 1069 . . . 10 000. CPU time 5858h.
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Figure 6: Simulation for ς3(1, 1, 2). The co-ordinate shows kmin, the ordinate shows the corresponding
ς̂ with error bars. The vertical line indicates kmin = 40 which we chose for our estimate of ς̂ . The
horizontal line shows the conjectured value ς3(1, 1, 2) = ς2(1, 1) = 5/4.

19



3.4.5 Exponent ς4(1, 1, 1, 2).

The exact value of ς4(1, 1, 1, 2) is unknown.

Lk nk

30 200000000

33 199921620

36 199482984

39 198565228

42 197176986

46 194683952

50 191624492

55 187237710

60 182471375

66 176514402

72 170515344

79 163642608

86 157023575

94 149860203

103 142343356

113 134666159

Lk nk

124 126992806

136 119464557

149 112181604

163 105219661

179 98203442

196 91672706

215 85304312

236 79199999

259 73434697

284 68044645

312 62863201

343 57973159

377 53412940

414 49196512

455 45240841

500 41572496

Lk nk

550 38132997

605 34954676

665 32040238

731 29348812

804 26850724

884 24560465

972 22451887

1069 20511329

1175 18739197

1292 17110256

1421 15612645

1563 14238301

1719 12983348

1890 11838167

2079 10786022

2286 9827571

Lk nk

2514 8950110

2765 8149013

3041 7419539

3345 6752347

3679 6144676

4046 5589138

4450 5082774

4895 4621823

5384 4201858

5922 3819442

6514 3470994

7165 3155561

7881 2866913

8669 2604947

9535 2366048

10488 2149715

Lk nk

11536 1953289

12689 1773558

13957 1609927

15352 1461067

16887 1326172

18575 1203707

20432 1092672

22475 991657

24722 900187

27194 816464

29913 740704

32904 672302

36194 609756

39813 553485

40000 550828

Values used for the fit: Lk = 27194, . . . , 40 000. CPU time 35 212h.
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Figure 7: Simulation for ς4(1, 1, 1, 2). The co-ordinate shows kmin, the ordinate shows the correspond-
ing ς̂ with error bars. The vertical line indicates kmin = 74 which we chose for our estimate of ς̂ . The
horizontal line shows the estimated value.
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3.4.6 Exponent ς4(1, 1, 1, 1).

The exact value of ς4(1, 1, 1, 1) is unknown.

Lk nk

30 20000000

33 19996035

36 19972855

39 19923361

42 19846358

46 19704559

50 19524417

55 19258012

60 18958581

66 18573948

72 18172653

79 17698995

86 17228707

94 16704112

103 16136193

113 15537061

124 14922694

136 14299200

Lk nk

149 13677483

163 13066040

179 12433477

196 11828110

215 11220785

236 10622843

259 10040743

284 9483483

312 8935078

343 8402393

377 7892203

414 7410458

455 6946326

500 6504855

550 6081417

605 5681289

665 5304532

731 4949662

Lk nk

804 4613179

884 4297577

972 4001670

1069 3722426

1175 3461745

1292 3217081

1421 2987877

1563 2773980

1719 2573328

1890 2386906

2079 2213006

2286 2051046

2514 1899964

2765 1758768

3041 1628269

3345 1506688

3679 1393480

4046 1289159

Lk nk

4450 1191616

4895 1101052

5384 1017194

5922 939586

6514 867259

7165 801006

7881 739646

8669 682392

9535 629677

10488 580582

11536 535316

12689 493266

13957 454757

15352 419131

16887 386266

18575 356146

20432 328229

22475 302420

Lk nk

24722 278878

27194 256535

29913 236157

32904 217434

36194 200369

39813 184289

43794 169567

48173 156118

52990 143655

58289 132091

64117 121391

70528 111643

77580 102601

80000 99860

Values used for the fit: Lk = 39813 . . . 80 000. CPU time 18 262h.
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ς (1,1,1,1)  n0 = 20 000 000, Lmax = 80 000

ς̂(1,1,1,1) = 0.8772 ± 0.006

ς̂±
2σ̂

Figure 8: Simulation for ς4(1, 1, 1, 1). The co-ordinate shows kmin, the ordinate shows the correspond-
ing ς̂ with error bars. The vertical line indicates kmin = 78 which we chose for our estimate of ς̂ . The
horizontal line shows the estimated value.
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3.4.7 Exponent ς5(1, 1, 1, 1, 1).

The exact value of ς5(1, 1, 1, 1, 1) is unknown.

Lk nk

30 744165

33 744158

36 744107

39 743886

42 743487

46 742538

50 741155

55 738765

60 735484

66 730711

72 725183

79 718008

86 710226

94 700782

103 689769

113 677384

Lk nk

124 663493

136 648801

149 633473

163 617246

179 599664

196 581885

215 562961

236 543820

259 524462

284 505282

312 485535

343 465955

377 446300

414 426779

455 407418

500 388692

Lk nk

550 370165

605 352289

665 335283

731 318821

804 302365

884 286416

972 271268

1069 256593

1175 242487

1292 229014

1421 216285

1563 204002

1719 192310

1890 181055

2079 170456

2286 160399

Lk nk

2514 150828

2765 141592

3041 133025

3345 124845

3679 117257

4046 109961

4450 102996

4895 96520

5384 90434

5922 84699

6514 79371

7165 74357

7881 69601

8669 65234

9535 61002

10488 56977

Lk nk

11536 53144

12689 49724

13957 46458

15352 43355

16887 40574

18575 37983

20432 35448

22475 33083

24722 30843

27194 28666

29913 26699

32904 24955

36194 23207

39813 21616

40000 21535

Values used for the fit: Lk = 27194 . . . 40 000. CPU time 1147h.
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ς (1,1,1,1,1)  n0 = 740 000, Lmax = 40 000

ς̂(1,1,1,1,1) = 0.7403 ± 0.0176

ς̂±
2σ̂

Figure 9: Simulation for ς5(1, 1, 1, 1, 1). The co-ordinate shows kmin, the ordinate shows the corre-
sponding ς̂ with error bars. The vertical line indicates kmin = 74 which we chose for our estimate of
ς̂. The horizontal line shows the estimated value.
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3.4.8 Exponent ς3(1, 3, 3).

The exact value of ς3(1, 3, 3) is unknown. As it turns out that ς3(1, 3, 3) > 2, we have performed
simulations according to our scheme 2. That is, we have generated n master samples of random
walk paths that reach the boundary of the L1-box (here L1 = 10000). For each such master sample
i we have run m = 1000 trials and have counted the fraction p̂i of trials where the paths reached
the boundary of the L2-box (with L2 = 2L1). As n = 18100 we cannot give the complete data set
p1, . . . , pn but rather give the empirical mean and the standard deviation of p̂

p̂ = 0.155202983425414, σ̂p = 0.000536918044881792.

From this we compute
ς̂3(1, 3, 3) = 2.6877718045551

with standard deviation
σ̂ = 0.00499094143436367.

We conjecture that

ς3(1, 3, 3) = ς2(1, 3) =
13 +

√
73

8
= 2.693000 . . .

We conclude with a histogram of the values pi:

(1,3,3) Histogram of p,  18100  samples
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Figure 10: Histogram of the values pi for ς3(1, 3, 3).
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3.4.9 Exponent ς3(2, 2, 2).

The exact value of ς3(2, 2, 2) is unknown. We have performed a simulation with the second scheme
with N = 16000, n = 1000, L1 = 10000, L2 = 20000. Mean and standard deviation are

p̂ = 0.1449495, σ̂p = 0.000497221297799643.

From this we compute
ς̂3(2, 2, 2) = 2.78637773802317

with standard deviation
σ̂ = 0.00494888703003405.

3.4.10 Exponent ς3(2, 2, 3).

The exact value of ς3(2, 2, 3) is unknown. We conjecture

ς3(2, 2, 3) = ς2(2, 2) =
35

12
= 2.916666 . . .

We have performed a simulation with the second scheme with N = 23000, n = 1000, L1 = 10000,
L2 = 20000. Mean and standard deviation are

p̂ = 0.130559, σ̂p = 0.000444444142417374.

From this we compute
ς̂3(2, 2, 3) = 2.93722618256156

with standard deviation
σ̂ = 0.00491116935805033.

3.4.11 Exponent ς3(2, 3, 3).

The exact value of ς3(2, 3, 3) is unknown. We conjecture

ς3(2, 3, 3) = ς2(2, 3) =
47 + 5

√
73

24
= 3.738334113 . . .

We have performed a simulation with the second scheme with N = 1000, n = 1000, L1 = 10000,
L2 = 20000. Mean and standard deviation are

p̂ = 0.073458, σ̂p = 0.00144828442088002.

From this we compute
ς̂3(2, 3, 3) = 3.76693657262376

with standard deviation
σ̂ = 0.0284439101500224.

This simulation was particularly time consuming (179 543h CPU time) as the actual value of ς3(2, 3, 3)
is rather large and it thus takes a tremendous amount of time to generate each master sample.
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3.4.12 Exponent ς4(2, 2, 2, 2).

The exact value of ς4(2, 2, 2, 2) is unknown. We have performed a simulation with the second scheme
with N = 16000, n = 1000, L1 = 10000, L2 = 20000. Mean and standard deviation are

p̂ = 0.157732125, σ̂p = 0.000521232849038418.

From this we compute
ς̂4(2, 2, 2, 2) = 2.66445157389522

with standard deviation
σ̂ = 0.00476745017196814.
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