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RANDOM FRACTALS

Contributed chapter to volume New perspectives in stochactic geometry,
edited by Wilfrid Kendall and Ilya Molchanov.

by Peter Mörters, University of Bath.

The term fractal usually refers to sets which, in some sense, have a self-similar
structure. Already in the seventies of the last century Mandelbrot (1982) made
a compelling case for the importance of this concept in mathematical modelling.
Indeed, some form of self-similarity is common in random sets, in particular
those arising from stochastic processes. Therefore studying fractal aspects is an
important feature of modern stochastic geometry.

Early progress in fractal geometry often referred to sets with obvious self-
similarity, like the fixed points of iterated function systems. These are toy exam-
ples, tailor-made to study self-similarity in its tidiest form. An overview of the
achievements in this period can be obtained from (Falconer, 2003).

Starting with the work of Taylor in the sixties, researchers were also looking
at sets, where self-similarity is more hidden. Such sets often arise in the context
of stochastic processes. A beautiful survey of the state of the art in the mid
1980s, written by the protagonist in this area, is (Taylor, 1986). In the last ten
years interest in this area has increased considerably, powerful techniques have
been developed, and very substantial progress has been made. Typical examples
of the fractals studied today are level sets of stochastic processes, the double
points of random curves, or the boundary of excursions of random fields. The
self-similar nature of these examples is typically less tidy and exploiting it means
entering deep into the geometry of the sets.

Very roughly speaking, a set is self-similar if it can be decomposed into
parts which look like scaled copies of the original set. This definition becomes
particularly powerful when ‘look like’ is interpreted in a statistical sense, i.e. if it
can be decomposed into parts which have (up to scaling) the same distribution
as the whole set. This idea is naturally linked to trees: Starting from the root
we identify the parts in the decomposition as the children of the root. Each part
is itself a scaled copy of the whole picture and hence has a decomposition of
the same kind as its parent, proceeding like this each point of the fractal has a
natural address in the tree.

A crucial tool to bring the self-similarity of a random set to light is therefore
its representation in terms of a tree, or sometimes a process on a tree. This tech-
nique has been exploited with great success in the last ten years and continues
to be a vital tool. My main aim in this chapter is to show that the first step in
many deep geometric problems for random sets is to find the self-similarity of
the problem and capture it in form of a tree picture. This picture determines
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the key direction of the argument, although the formalised proof often does not
make the tree structure explicit.

Questions in geometry are very often related to the size of sets. Other than in
classical geometry, random sets can often already be distinguished by the crudest
measure of size, which is dimension. The most powerful concept of dimension, but
by far not the only one, is Hausdorff dimension, introduced almost a century ago
by Hausdorff (1918). This concept extends the classical notion of dimension to
arbitrary metric spaces, allowing non-integer dimensions for sufficiently irregular
sets. The notion is based on a family of measures Hs, s ≥ 0, the s-Hausdorff
measures, which for integer values s = 1, 2, 3 coincide with the classical measures
of length, area, and volume. The Hausdorff dimension of a set A is the critical
value s > 0 where the function s 7→ Hs(A) jumps from infinity to zero. We do
not give a precise definition of Hausdorff measure and dimension here, but refer
the reader instead to the excellent book (Falconer, 2003).

The first section of this chapter is devoted to representing self-similarity in
terms of trees, and we initially confine ourselves to simple examples. We show how
to obtain the Hausdorff dimension of a set from a suitable tree representation
and apply this to finding the Hausdorff dimension of the zero set of a linear
Brownian motion.

In the second section we move to more sophisticated examples and present
two more recent results on the fine structure of planar Brownian motion, which
make great use of tree representations. On the one hand we look at the problem
of the favourite sites, solved by Dembo, Peres, Rosen, and Zeitouni (2001), and
on the other hand we study the multifractal spectrum of the intersection of two
paths, a result of Klenke and Mörters (2005). In both cases, rather than giving
details of the proof, we emphasise the underlying tree structure. We complete
the section with a discussion of an open problem initialised by work of Bass,
Burdzy, and Khoshnevisan (1994).

The second example introduces the notion of probability exponents, the gen-
eral use of which we discuss in the third section. This particular aspect of random
fractals has gained momentum through the discovery of an explicit formula for
the intersection and disconnection exponents by Lawler, Schramm, and Werner
(2001) and the subsequent award of the Fields medal to Werner in 2006. Here
we discuss work of Lawler (1996a) on the Hausdorff dimension of the Brownian
frontier and some closely related results.

1.1 Representing fractals by trees

There is no generally accepted definition of a statistically self-similar set, and we
do not attempt to give one. Instead, we define a class of statistically self-similar
sets, the Galton-Watson fractals, which comprises a number of interesting exam-
ples. We prove a formula for the Hausdorff dimension of Galton-Watson fractals,
which gives us the opportunity to explore the relationship between branching
processes and self-similarity and introduce basic ideas about probability on trees.
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The forthcoming book (Lyons and Peres, 2008) gives a comprehensive account
of this subject, on which much of this section is based.

1.1.1 Fractals and trees

We start with a general approach to capture the self-similar nature of fractals
by means of trees with weights, so called capacities, associated to the edges, and
investigate how the Hausdorff dimension of the fractal can be derived from the
tree and the capacities.

A tree T = (V, E) consists of a finite or countable set V of vertices and a set
E ⊂ V × V of edges. For every v ∈ V the set of parents {w ∈ V : (w, v) ∈ E}
consists of exactly one element, denoted by v̄, except for exactly one distinguished
element, called the root ρ ∈ V , which has no parent. For every v ∈ V there is a
unique self-avoiding path from the root to v, called the ancestral line, and the
number of edges in this path is the generation |v| of the vertex v ∈ V . For every
vertex v ∈ V we assume that the set of children {w ∈ V : (v, w) ∈ E} is finite.

sibling

parent

child

root

marked

offspring

vertex

Fig. 1.1. A tree, with a vertex in the second generation marked; its ancestral
line is dashed and the tree of its offspring shaded. One of its three siblings,
and one of its two children are pointed out, as well as its parent and the root.

The offspring of a vertex v is the collection of vertices having v on their
ancestral line. These vertices naturally form a subtree T (v) of T . The siblings of
v ∈ V are the vertices u 6= v with ū = v̄. A sequence (v0, v1, . . .) of vertices such
that v0 = ρ and v̄i = vi−1 for all i ≥ 1 is called a ray in the tree. The set of
rays in T is denoted by ∂T . Finally, a set Π ⊂ E is called a cutset if every ray
includes an edge from the set Π.
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We now describe a way to represent sets by marked trees. Let T = (V, E)
be an infinite tree and associate to each vertex v ∈ V a nonempty, compact set
Iv ⊂ R

d such that Iv = cl
(

int Iv

)

and

• if v is a child of u, then Iv ⊂ Iu;

• if u and v are siblings, then int Iu ∩ int Iv = ∅;
• for all rays ξ = (v0, v1, . . .) we have lim

n→∞
diam(Ivn

) = 0.

Then the set
I(T ) =

⋃

ξ∈∂T

⋂

v∈ξ

Iv

is represented by the tree T and the marks {Iv : v ∈ V }. Observe that, except for
a possible boundary effect, there is a one-to-one relationship between the points
of I(T ) and the rays of the tree, which can be interpreted as addresses.

It is easy to see that for every compact subset of R
d there are many represen-

tations, but the idea of the method is to pick one which captures the structure
of the set and leads to a simple tree.

We now give a formula for the Hausdorff dimension of sets in terms of the
parameters of the tree representation. To this end we have to discuss the notion
of flows on trees. Fix a mapping C : E → [0,∞] representing the capacities of
the edges. A mapping θ : E → [0, c] such that

• we have
∑

w̄=ρ θ
(

(ρ, w)
)

= c,

• for every vertex v 6= ρ we have θ
(

(v̄, v)
)

=
∑

w̄=v θ
(

(v, w)
)

,

• for every e ∈ E we have θ(e) ≤ C(e),

is called a flow of strength c > 0 through the tree with capacities C.

Theorem 1.1 Suppose that a set A ⊂ R
d is represented by a tree T and sets

{Iv : v ∈ V }. Assume additionally that

inf
v 6=ρ

diam(Iv)

diam(Iv̄)
> 0 and inf

v

vol(int Iv)

diam(Iv)d
> 0, (1.1)

and, for every s ≥ 0, define capacities Cs(e) = diam(Iv)s if e = (v̄, v). Then

dim A = inf
{

s : inf
Π cutset

∑

e∈Π

Cs(e) = 0
}

= sup
{

s : there is a flow with capacities Cs

}

.

Theorem 1.1 is not hard to prove. The first equality is little more than the
definition of Hausdorff dimension, the second is the famous max-flow min-cut
theorem from graph theory, which, when applied to trees, states that the maximal
strength of a flow with capacities C equals the minimal sum of capacities over
the edges in a cutset, see (Ford and Fulkerson, 1962).
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Example 1.2 The ternary Cantor set can be canonically represented by a bi-
nary tree such that Iv is an interval of length 3−|v|. Assigning capacities Cs =
3−sn to edges with end-vertex in the nth generation, it is easy to see that a
necessary and sufficient condition for a flow to exists is 3s ≤ 2. Hence we obtain
that the dimension of the Cantor set is log 2/ log 3.

1.1.2 Galton-Watson fractals

We now look at random sets given in terms of representations with randomly
chosen tree and marks. For this purpose let X = (N, A1, . . . , AN ) be a random
variable consisting of a nonnegative integer N and weights 0 < Ai ≤ 1. We
construct a (weighted) Galton-Watson tree by sampling, successively for each
vertex, an independent copy of X and assigning N children carrying weights
A1, . . . , AN . We will be concerned with tree representations with the property
that the diameter of the set associated with a vertex v is the product of the
weights along the ancestral line of v.

We now recall some well-known facts about Galton-Watson trees. The first
question is when a Galton-Watson tree can be infinite and hence suitable for
representing a set. Excluding the trivial case P{N = 1} = 1, we get that

p = P
{

tree infinite
}

> 0 if and only if EN > 1.

A slightly less known important fact is the following zero-one-law for Galton-
Watson trees. Let A be a set of trees or, equivalently, a property of trees. We
say that A is inherited if

• every finite tree is in A, and

• if the tree T ∈ A and v ∈ V is a vertex of the tree, then T (v) ∈ A.

Then every inherited property A has P{T ∈ A} ∈ {1 − p, 1} or, equivalently,

P
{

T ∈ A
∣

∣ tree infinite
}

∈ {0, 1}.

Suppose now that (random) sets {Iv : v ∈ V } are assigned to the vertices of the
Galton-Watson tree in the way of a tree representation such that additionally

inf
v

vol(int Iv)

diam(Iv)d
> 0,

and the normalized diameters correspond to the weights in the sense that

diam(Iv)

diam(Iρ)
=

n
∏

i=1

A(vi),

where (ρ, v1, . . . , vn) are the vertices on the ancestral line of the vertex v = vn

and A(v1), . . . , A(vn) are the associated weights. Then the set I(T ) represented
by this tree is a Galton-Watson fractal.
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By Theorem 1.1, to find the Hausdorff dimension of the Galton-Watson frac-
tals, we first need to study the existence of flows on Galton-Watson trees with
edge capacities

Cs

(

(v̄, v)
)

=
n

∏

i=1

A(vi)
s.

The answer to this question is given by the following theorem of Falconer (1986).
Note that the excluded case is trivial.

Theorem 1.3. (Falconer’s theorem) Suppose that a weighted Galton-Watson
tree is given by the generating variable X = (N, A1, . . . , AN ), let s > 0 and as-

sume that
∑N

i=1 As
i 6= 1 with positive probability. Let

γ = E
[

N
∑

i=1

As
i

]

.

(a) If γ ≤ 1 then almost surely no flow is possible.

(b) If γ > 1 then flow is possible almost surely given that the tree is infinite.

Note that in the special case when Ai = 1 almost surely, we recover the
criterion for trees being finite. We now give a proof of Theorem 1.3, which is
due to Falconer (part (a)) and Lyons and Peres (part (b)). The second part of
the proof uses the idea of percolation, which is another important technique in
fractal geometry.

Proof of (a): If (v0, . . . , vn) are the vertices on the ancestral line of w = vn and
let v = vj for some j ≤ n, we equip the tree T (v) with capacities Cv

s ((w̄, w)) =
∏n

i=j+1 A(vi)
s , and let θ(v) be the maximal strength of a flow in this subtree.

Abbreviating θ = θ(ρ) we have

θ =
∑

v̄=ρ

(

A(v)s ∧ (A(v)sθ(v))
)

=
∑

v̄=ρ

A(v)s
(

1 ∧ θ(v)
)

. (1.2)

Now suppose that γ ≤ 1 and suppose X = (N, A1, . . . , AN ) describes the children
of the root and their weights. Using independence, and the fact that θ and θ(v)
have the same distribution for every edge v,

E[θ] =
∞
∑

n=1

E
[

θ1{N=n}

]

=
∞
∑

n=1

n
∑

v=1

E
[

A(v)s(1 ∧ θ(v))1{N=n}

}

=

∞
∑

n=1

n
∑

v=1

E
[

A(v)s
1{N=n}

]

E
[

1 ∧ θ(v)
]

=

∞
∑

n=1

E
[

N
∑

v=1

A(v)s
1{N=n}

]

E
[

1 ∧ θ
]

= γE[1 ∧ θ] ≤ E[1 ∧ θ].
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Hence θ ≤ 1 almost surely and P{θ > 0} > 0 only if γ = 1. This already
shows that no flow is possible if γ < 1. In the case γ = 1 we get from (1.2) and
independence, using that θ ≤ 1, that

ess sup (θ) = ess sup
(

N
∑

v=1

A(v)s
)

ess sup (θ) .

Hence, if ess sup (θ) > 0 we have ess sup (
∑N

v=1 A(v)s) = 1. As E[
∑N

v=1 A(v)s] =

γ = 1 we must have
∑N

v=1 A(v)s = 1, which is the excluded case. Hence θ = 0
almost surely, which means that no flow is possible.

Proof of (b): We first look at a fixed (deterministic) tree T with weights A(v)
attached to the vertices. We introduce a family of random variables on this tree
T as follows. Independently for every edge e = (v̄, v) ∈ E we let

X(e) =

{

1 with probability A(v)s,
0 with probability 1 − A(v)s.

The intuition is that an edge e is open if X(e) = 1 and otherwise closed. We
consider the subtree T ∗ ⊂ T consisting of all edges which are connected to the
root by a path of open edges. Let Q(T ) = P{T ∗ is infinite }. For any cutset Π
note that

∑

e∈Π Cs(e) is the expected number of edges in Π, which are also in T ∗.
Hence

∑

e∈Π

Cs(e) ≥ P
{

e ∈ T ∗ for some e ∈ Π
}

≥ P
{

T ∗is infinite
}

.

If θ(T ) is the maximal strength of a flow in T , then the last inequality together
with the max-flow min-cut theorem shows that

Q(T ) > 0 =⇒ θ(T ) > 0. (1.3)

Now we use this result for a Galton-Watson tree, by performing a two-step
experiment: first sampling the tree T and the reducing it to T ∗. As a result of
the experiment, T ∗ is another Galton-Watson tree. Denoting by v1, . . . , vn the
children of the root, we get for the mean number of children in T ∗,

E
[

N
∑

i=1

X
(

(ρ, vi)
)

]

= E
[

∞
∑

n=1

n
∑

i=1

X
(

(ρ, vi)
)

1{N=n}

]

=

∞
∑

n=1

n
∑

i=1

E
[

X
(

(ρ, vi)
)

1{N=n}

]

=

∞
∑

n=1

n
∑

i=1

E
[

A(vi)
s
1{N=n}

]

=

∞
∑

n=1

E
[

N
∑

i=1

A(vi)
s
1{N=n}

]

= E
[

N
∑

i=1

A(vi)
s
]

= γ.
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If γ > 1, by the criterion for Galton-Watson trees being infinite, we have

0 < P
{

T ∗ is infinite
}

= E
[

Q(T )
]

.

Hence Q(T ) > 0 with positive probability, and by (1.3) we infer that θ(T ) >
0 with positive probability. In other words, P{θ(T ) = 0} < 1. As the event
{θ(T ) = 0} is inherited, we infer from the Galton-Watson zero-one-law that we
have θ(T ) > 0, almost surely on the tree being infinite. 2

Up to some technicalities, the dimension formula for Galton-Watson fractals,
found independently by Falconer (1986) and Mauldin and Williams (1986), now
follows by combining Falconer’s theorem and the dimension formula for tree
representations, Theorem 1.1.

Theorem 1.4. (Hausdorff dimension of Galton-Watson fractals)
Suppose that I(T ) is a Galton-Watson fractal associated with a weighted Galton-
Watson tree with generating variable X = (N, A1, . . . , AN ). Then, almost surely
on the event {I(T ) 6= ∅},

dim I(T ) = min

{

s : E
[

N
∑

i=1

As
i

]

≤ 1

}

.

An interesting corollary comes from the fact that in the critical case γ = 1
flow is impossible unless we are in the excluded case

∑N
i=1 As

i = 1, in which flow
is obviously possible.

Corollary 1.5 If dim I(T ) = s and
∑N

i=1 As
i 6= 1 with positive probability, then

Hs(I(T )) = 0 almost surely.

We now exploit our main result by giving formulas for the Hausdorff dimen-
sion of a variety of sets. The main example, presented in some detail, is the zero
set of a linear Brownian motion, which we study avoiding the use of local times.

Example 1.6 We define percolation fractals, or percolation limit sets. Fix the
ambient dimension d, a parameter p ∈ (0, 1) and an integer n ≥ 2. Divide
[0, 1]d into nd nonoverlapping compact subcubes of equal sidelength. Keep each
independently with probability p, and remove the rest. Apply the same procedure
to the remaining cubes ad infinitum. The remaining set is a Galton-Watson
fractal which has a generating random variable (N, A1, . . . , AN ), where N is
binomial with parameters nd and p, and Ai deterministic with Ai = 1/n. The
probability that it is nonempty is positive if and only if p > 1/nd. Moreover,

E
[

N
∑

i=1

As
i

]

=
( 1

n

)s

EN =
ndp

ns
.

This is ≤ 1 if and only if s ≥ d + log p
log n . Hence, almost surely on {I(T ) 6= ∅},

dim I(T ) = d +
log p

log n
.
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Example 1.7 We compare the following two random fractals: On the one hand
a percolation fractal based on dividing the unit interval [0, 1] into three non-
overlapping intervals of length 1/3 and keeping each with probability p = 2/3,
on the other hand the random fractal obtained by dividing [0, 1] into three non-
overlapping intervals of length 1/3 and keeping two randomly chosen intervals
out of the three, proceeding like this ad infinitum.

In both cases we obtain fractals of Hausdorff dimension s = log 2/ log 3.
To see this in the second case just observe that the 3-adic coding tree of the
fractal is the dyadic tree, exactly as in the case of the ordinary ternary Cantor
set. Corollary 1.5 indicates a significant difference between the two examples.
Whereas for the first case, by the corollary, the s-Hausdorff measure is zero, one
can show that in the second case the s-Hausdorff measure is strictly positive.
This can be seen from the fact that there exists a flow on the coding tree with
capacities Cs(v̄, v) = |Iv |s in the second example, whilst there is none in the first.

1.1.3 The dimension of the zero-set of Brownian motion

We now use the theory developed so far to calculate the dimension of the zero-
set of a Brownian motion W : [0, 1] → R. The idea of this proof is based on
Galton-Watson fractals and is due to Graf et al. (1988).

A first step is to make the problem more symmetric by looking at a Brow-
nian bridge instead of a Brownian motion. There are several ways of defining a
Brownian bridge B from a Brownian motion W :

• The process B(t) = W (t) − tW (1), for t ∈ [0, 1], is a Brownian bridge.

• Let T = sup{t < 1: W (t) = 0}, then the process C(t) =
√

1/T W (tT ), for
t ∈ [0, 1], is also a Brownian bridge.

Note that for a given sample path W of Brownian motion the two bridges B
and C have quite different sample paths. From the second definition it is easy to
see that the dimension of the zero set of a Brownian bridge and of a Brownian
motion have the same law. An important property of the Brownian bridge is
symmetry : If {B(t) : 0 ≤ t ≤ 1} is a Brownian bridge, then so is the process
{B̃(t) : 0 ≤ t ≤ 1} defined by B̃(t) = B(1 − t).

To study the dimension of the zero set of a Brownian bridge, define

T1 = sup{t ≤ 1/2 : B(t) = 0} and T2 = inf{t ≥ 1/2 : B(t) = 0}.

By symmetry the random variables T1 and 1 − T2 have the same distribution
(but they are not independent). The interval (T1, T2) does not contain any zeros,
and we remove it from [0, 1], which leaves us with two random intervals [0, T1] at
the left and [T2, 1] on the right. Moreover, it is not hard to show that the process

{
√

1/T1 B(tT1) : 0 ≤ t ≤ 1
}

is a Brownian bridge, which is independent of {B(t) : t ≥ T1}.
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Now we can represent the zero set of the Brownian bridge as a Galton-Watson
fractal: we start with the interval [0, 1] and remove the interval (T1, T2). To the
left of the removed interval, we have an independent Brownian bridge

{
√

1/T1 B(tT1) : 0 ≤ t ≤ 1
}

.

By symmetry, we also have an independent Brownian bridge
{
√

1/(1 − T2) B(1 − t(1 − T2)) : 0 ≤ t ≤ 1
}

.

to the right of the removed interval. If we apply the same procedure on each
of the remaining bridges, we iteratively construct the zero set of the Brownian
bridge by removing all gaps. The essence of all this is the following:

Lemma 1.8 The zero set of a Brownian bridge B is a Galton Watson fractal
with generating random variable X = (2, T1, 1 − T2). Hence dim{t ∈ [0, 1] :
B(t) = 0} = α, where α is the unique solution of

E
[

T α
1 + (1 − T2)

α
]

= 1.

We can now calculate the dimension by evaluating this expectation for the
right value of α.

Lemma 1.9
E[

√

T1 +
√

1 − T2] = 1.

Proof By symmetry of the Brownian bridge, T1 and 1 − T2 have the same
distribution, hence it suffices, to show that E[

√
1 − T2] = 1/2. We have, using the

definition of the Brownian bridge and the time inversion property of Brownian
motion,

T2 = inf
{

1/2 ≤ t ≤ 1: B(t) = 0
}

= inf
{

1/2 ≤ t ≤ 1 : W (t) − tW (1) = 0
}

d
= inf

{

1/2 ≤ t ≤ 1 : tW (1/t) − tW (1) = 0
}

= inf
{

1/2 ≤ t ≤ 1: W (1/t) − W (1) = 0
}

= 1/ sup
{

1 ≤ s ≤ 2: W (s) − W (1) = 0
}

.

As {W (s) − W (1) : s ≥ 1} has the same law as {W (s − 1) : s ≥ 1}, we have

T2
d
=

1

1 + sup
{

0 ≤ t ≤ 1 : W (t) = 0
}

and, in particular,

E
√

1 − T2 =

∫ 1

0

√

x

1 + x
f(x) dx ,

where f is the density of the random variable L = sup
{

0 ≤ t ≤ 1 : W (t) = 0
}

.
This random variable has the arcsine-distribution, which can be verified using
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the reflection principle of Brownian motion, see e.g. (Mörters and Peres, 2008).
We get that

E
√

1 − T2 =
1

π

∫ 1

0

√

x

1 + x

dx
√

x(1 − x)

=
1

π

∫ 1

0

dx√
1 − x2

=
1

π
arcsin(1) =

1

2
,

which completes the proof of Lemma 1.9. 2

We have thus proved the following result.

Theorem 1.10 Almost surely,

dim{t ∈ [0, 1] : W (t) = 0} = dim{t ∈ [0, 1] : B(t) = 0} = 1
2 .

1.2 Fine properties of stochastic processes

In this section we discuss two deeper results, which were solved using the tree
approach. We also state an interesting open problem, which may be suitable for
a treatment based on these ideas.

1.2.1 Favourite points of planar Brownian motion

Suppose (W (t) : 0 ≤ t ≤ 1) is a planar Brownian motion, and denote by

T (A) =

∫ 1

0

1{W (s)∈A} ds

the occupation time of the path in A ⊂ R
2. A famous problem of Erdős and Taylor

(stated in 1960 for the analogous random walk case) is to find the asymptotics
of the occupation time around the favourite points,

T ∗(ε) = max
x∈R2

T
(

B(x, ε)
)

as ε ↓ 0 .

This problem was solved by Dembo, Peres, Rosen, and Zeitouni (2001) exploiting
the deep self-similar structure of the Brownian path using tree ideas.

Theorem 1.11 Almost surely, T ∗(ε) ∼ 2ε2 log2 ε as ε ↓ 0.

A detailed account of the proof of this and some closely related results can
be found in (Dembo, 2005). Other than the original paper (Dembo et al., 2001),
this highly recommended source also discusses the tree analogy in depth. In our
account we focus entirely on a rough sketch of this analogy. This captures the
main idea of the proof, but neglects a lot of (often interesting) technical details.
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Recall that a planar Brownian motion is neighbourhood recurrent, i.e. any
ball is visited infinitely often as time goes to infinity. The main difficulty in
the proof of Theorem 1.11 lies in the fact that the occupation time in a ball
B(x, ε) is accumulated during a large number of excursions from its boundary,
whose lengths vary across a large range of scales. This leads to a complicated
dependence between T (B(x, ε)) and T (B(y, ε)), even if x and y are relatively far
away. The main merit of the tree picture is to organise this dependence structure
in a natural fashion.

If a ball is visited often, by the law of large numbers, the time spent in the
ball can be well approximated by the number of excursions from its boundary.
To be more precise, let x ∈ R

2 and consider a sequence of decreasing radii such
that εk/εk−1 = k−3. Fix a > 0 and let Nx

k be the number of excursions from
∂B(x, εk−1) to ∂B(x, εk) before time one. We call x ∈ R

s an n-perfect point if

Nx
k ≈ 3ak2 log k for all k ∈ {2, . . . , n} .

During an excursion from ∂B(x, εk) to ∂B(x, εk−1) the path spends on average
about 3ε2k log k time units in the ball B(x, εk), and these times are all independent,
so that a law of large numbers applies. As log(1/εk) ≈ 3k log k, we get that if x
is n-perfect then it is n-favourite in the sense that

T
(

B(x, ε)
)

ε2 log2 ε
≈ a for all ε2 ≥ ε ≥ εn . (1.4)

Strictly speaking the n-perfect points are only a subset of the n-favourite points,
but the difference is small enough for us to neglect this distinction from now on.
Note that, by definition, if x is n-perfect, it is also m-perfect for all m ≤ n.

We now focus on the favourite points inside a square S of sidelength ε1.
We partition S into (εn/ε1)

−2 = (n!)6 non-overlapping squares S(n, i) of side-
length εn with centres xn,i. This decomposition yields a natural tree represen-
tation of the cube S, with squares S(n, i) associated to the vertices in the nth
generation, such that any vertex is offspring of another one, if its associated
square is contained in that of the other. Observe that in this tree, denoted T ,
any vertex of the kth generation has exactly (k + 1)6 children.

In a rough approximation, which needs to be refined in the actual proof, we
represent the set

{

x ∈ S : lim
ε↓0

T
(

B(x, ε)
)

ε2 log2 ε
≈ a

}

by the tree Ta consisting of all vertices in the nth generation corresponding
to squares with n-perfect centre. Here we neglect the fact that, because of the
different centres, a square of sidelength εn with n-perfect centre may be contained
in a square of sidelength εk, k ≤ n, whose centre fails to be k-perfect. As most
squares are sufficiently far away from the boundary of their parental square,
this approximation turns out to be safe. We therefore have to show that, almost
surely, the tree Ta is infinite if a < 2 and finite if a > 2.
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To get hold of the squares with perfect centre, we fix a square S(n, i) and
map the planar Brownian curve onto a homogeneous Markov chain (Zk : k ∈ N)
with values on the set {1, . . . , n}. This Markov chain is started in Z0 = n, and
the transition probabilities of the Markov chain are given, for j ≥ 1, as

P
{

Zj = `
∣

∣Zj−1 = k
}

=



















1 if k = n, ` = n − 1,

pk if 1 < k < n, ` = k − 1,

1 − pk if 1 < k < n and ` = k + 1,

1 if k = ` = 1,

for

pk =
log εk+1 − log εk+2

log εk − log εk+2
.

S3

S
2 S1

Fig. 1.2. Brownian motion moving between squares. In this picture n = 4 and
the shown path yields the chain 4, 3, 4, 3, 2, 3, 2.

The rationale behind this choice is that, if S = S1 ⊃ S2 ⊃ · · · ⊃ Sn = S(n, i)
is the sequence of construction squares containing S(n, i), we follow the Brownian
curve from the first time it hits the boundary of Sn and, as indicated in Figure 1.2,
whenever the motion moves from the boundary of Sk to the boundary of Sk±1,
the chain moves from state k to k±1. If squares are approximated by concentric
balls of the same diameter, the probability that a Brownian motion started on the
sphere of radius εk+1 hits the sphere of radius εk before the sphere of radius εk+2

is given by pk, see e.g. (Mörters and Peres, 2008). The motion is stopped once
it leaves S, which makes one an absorbing state.
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Summarising, the square S(n, i) is kept in the construction if and only if the
associated Markov chain satisfies

∞
∑

`=1

1{Z` = k − 1, Z`+1 = k} ≈ 3ak2 log k for all k = 2, . . . , n.

The picture given so far suffices to show that ∂Ta = ∅ if a > 2. Indeed, using a
Markov chain calculation, one can see that, for any vertex v ∈ V with |v| = n
we have P{v ∈ Ta} ≈ (n!)−3a, and hence, looking at the expected number of
retained vertices,

E#
{

v ∈ Ta : |v| = n
}

≈ (n!)6−3a −→ 0 if a > 2 .

For the lower bound first moment arguments as above are insufficient and we
need to look at the more complex picture arising when two squares are considered
simultaneously. For this purpose we fix a < 2 and two vertices v, w from the nth
generation of T , whose oldest common ancestor is in generation 0 < m < n.
To get hold of P{v, w ∈ Ta} we look at the Markov chain (Zn : n ∈ N) on the
branching set {1, . . . , n}∪̇{m+1, . . . , n} shown in Figure 1.3. The chain can only
change branch when it moves up from state m, and in this case each branch is
chosen with the same probability. Otherwise the transition probabilities are the
same as before, where we allow ourselves an abuse of notation by using the same
symbol for the distinct states on the two branches of the state space that emerge
from state m.
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1

2

3=m

4

5

6

4

5

6

7=n 7=n

Fig. 1.3. The statespace of the Markov chain as a branching structure.

The rationale behind this chain is that the state j on the left branch represents
the construction square of sidelength εj containing the square representing v,
and the state j > k on the right branch represents the construction square of
sidelength εj containing the square representing w. The transition probabilities
mimic the consecutive visits of the boundaries of these squares by the Brownian
curve, though this mapping is imprecise about excursions between squares of
radius εm+1 and εm. This effect turns out to be negligible.
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A Markov chain calculation shows that

P
{

v, w ∈ Ta

}

≈ (n!)−6a (k!)3a ,

and from this we obtain a constant C > 0 and a bound on the variance

E
[(

#
{

v ∈ Ta : |v| = n
})2] ≤ C E

[

#
{

v ∈ Ta : |v| = n
}]2

.

We can therefore use the Paley-Zygmund inequality to derive, for any 0 < λ < 1,

P
{

#
{

v ∈ Ta : |v| = n
}

≥ (1 − λ)E
[

#
{

v ∈ Ta : |v| = n
}]

}

≥ λ2 E[#{v ∈ Ta : |v| = n}]2
E[(#{v ∈ Ta : |v| = n})2] ≥ C−1 λ2 > 0 .

Recall that, if a < 2, we have

E
[

#
{

v ∈ Ta : |v| = n
}]

−→ ∞,

and hence this argument shows that ∂Ta 6= ∅ with positive probability. A self-
similarity argument (not unlike the Galton-Watson zero-one law) shows that this
must therefore hold with probability one.

Let me emphasise the importance of the correct choice of the scales (εk) for
the success of the tree approximation. If the ratio εk−1/εk is chosen significantly
smaller, the excursion counts typically do not reflect the occupation times at
all radii and centres; observe that we need the equivalence analogous to (1.4)
simultaneously for all squares of sidelength εk, k ∈ {2, . . . , n}, so that a rigorous
proof requires a much more quantitative approach to this part of the argument
than our informal discussion suggests. Conversely, if the ratio εk−1/εk is chosen
significantly larger, we lose the necessary control over the occupation times for
intermediate radii.

Finally, a note of caution: Turning this picture into a full proof of Theo-
rem 1.11 still requires skill and a lot of work, as we oversimplified at many places.
Nevertheless, the tree representation gives a neat organisation of the complicated
dependencies, which greatly helps understanding and solving this hard problem.

1.2.2 The multifractal spectrum of intersection local time

The multifractal spectrum is an important means of describing the fine struc-
ture of a fractal measure, see (Mörters, 2008) for a subjective discussion of its
importance in the context of stochastic processes. For a precise definition, fix a
locally finite measure µ, which may be random or non-random. The value f(a)
of the multifractal spectrum is the Hausdorff dimension of the set of points x
with local dimension

lim
r↓0

log µ(B(x, r))

log r
= a, (1.5)

where B(x, r) denotes the open ball of radius r centred in x. In some cases of
interest, the limit in (1.5) has to be replaced by liminf or limsup to obtain an
interesting nontrivial spectrum.
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Examples of multifractal spectra for measures arising in probability are the
occupation measures of stable subordinators (Hu and Taylor, 1997), the states of
super-Brownian motion (Perkins and Taylor, 1998), and the harmonic measure
on a Brownian path (Lawler, 1997). The example we study here has some likeness
with the first two examples, for which a similar tree analogy could be built,
though details in the proof invariably differ considerably.

We look at two independent planar Brownian motions (W (1)

t : 0 ≤ t ≤ 1) and
(W (2)

t : 0 ≤ t ≤ 1) and study the intersection set

S =
{

x ∈ R
2 : there exist 0 ≤ s, t ≤ 1 with W (1)

s = W (2)

t = x
}

.

The natural measure on S is the intersection local time µ defined symbolically by

µ(A) =

∫

A

dx

2
∏

i=1

∫ 1

0

ds δ0(W
(i)

s − x) ,

Rigorous definitions of µ can be given by approximation of the ‘delta-function’ δ0,
but also as a suitable Hausdorff measure on S. Technical details of the construc-
tion are not of interest to us here.

Theorem 1.12 For every 2 ≤ a ≤ 70
11 we have, almost surely,

dim
{

x ∈ S : lim sup
r↓0

log µ(B(x, r))

log r
= a

}

=
1

12

(70

a
− 11

)

.

Moreover, there are no points with local dimension a < 2 or a > 70
11 in any

sense (liminf, limsup, or lim). At least heuristically, all the results concerning
values a ≥ 2 can be read off a tree picture, which we describe below. The full
proof of the result, which is inspired by this tree picture but does not make
explicit use of it, can be found in Klenke and Mörters (2005).

As S is the intersection of two independent sets of full dimensions (the Brow-
nian paths) it is not surprising that dimS = 2 and therefore µ(B(x, r)) ≈ r2 for
typical points x ∈ S. Fix a > 2 for the remainder of this section. For the points
x ∈ S with

µ(B(x, r)) ≈ ra � r2

we expect that

• the ball B(x, r) is visited only once by each Brownian motion,

• the intersection local time spent in B(x, r) during this visit is small.

Due to the first item, the recurrence effects that were so crucial in the proof of
Theorem 1.11 do not play a rôle here. Indeed, here we can assume that for disjoint
balls B(x, r) and B(y, r) the events {µ(B(x, r)) ≈ ra} and {µ(B(y, r)) ≈ ra} are
essentially independent. This simplifies the informal discussion immensely, but
making this argument rigorous is one of the main difficulties in the proof of
Theorem 1.12, which we do not discuss here.
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The remainder of our discussion of this example is based on this independence
(or locality) assumption. Fix a square S ⊂ R

2 of unit sidelength and pick a large
integer m. Divide the square into m2 squares of sidelength 1/m, and keep a
square if it contains a point of S, then repeat this procedure with any square
kept, and so on at infinitum. Identifying the squares kept in the procedure with
vertices in a tree T = (V, E), we obtain a tree representation of S ∩ S.

To connect the intersection local time µ to this tree representation, we recall
a result of Le Gall (1986), which states that µ can be recovered from the volume
of the Wiener sausages around the two Brownian paths, more precisely

lim
ε↓0

(log ε)2

π2
vol

(

S(1)

ε ∩ S(2)

ε ∩ A
)

= µ(A) ,

where S(i)
ε = {x ∈ R

2 : |W (i)

t − x| ≤ ε for some 0 ≤ t ≤ 1}. This suggests that,
given a square v ∈ V , we have that

µ(v) ≈ lim
n→∞

Zn(v)

m2nn−2
,

where Zn(v) is the number of offspring of v in the nth generation. Note that the
mean number of children of a vertex in the nth generation is of order ≈ m2(n−1

n )2

and hence is generation dependent.

Instead of looking for a strong analogy and discussing generation dependent
offspring distributions, for this exposition we sacrifice precision in favour of sim-
plicity and claim that in this analogous case the most interesting features of the
original problem are still present. More precisely, we look at a Galton-Watson
tree such that every vertex has a mean number m2 of children, and discuss the
multifractal spectrum of the branching measure µ̃ on its boundary, defined by

µ̃
(

B(v)
)

= lim
n→∞

Zn(v)

m2n
,

where B(v) is the set of rays passing through the vertex v. Fixing some b > 1,
we endow ∂T with the metric such that the distance of two rays is b−n, where
n is the generation of their last common ancestor. In this metric, the set B(v)
is the ball centred in v of radius b−|v|, so that for the choice of b = m this
corresponds to the sidelength and therefore, up to a constant, to the diameter
of the represented square.

We state a general result for the multifractal spectrum of Galton-Watson
trees with generating variable N and finite mean, which is taken from Mörters
and Shieh (2004).

Theorem 1.13 Suppose P{N = 0} = 0 and 0 < P{N = 1} < 1. Define

a = log EN > 0 and τ = − logP{N = 1}/ logEN > 0.

Then, for all a ≤ θ ≤ a
(

1 + 1
τ

)

, almost surely,

dim
{

(v0, v1, . . .) ∈ ∂T : lim sup
n→∞

log µ̃(B(vn))

−n
= θ

}

=
a

log b

(a

θ
(1 + τ) − τ

)

.
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Before looking at the structure of this result in more detail, let us adapt
the parameters of our tree representation in good faith. We have already noted
that EN = m2 and by construction we have N ≥ 1 so that the conditions of
Theorem 1.13 are satisfied. For the metric we would like to choose b = m, and
the remaining parameter is P{N = 1}, which we write as m−η for some η > 0,
which we discuss later. We obtain a = 2 logm, τ = η/2 and hence a predicted
spectrum of

dim
{

x ∈ S : lim sup
r↓0

log µ(B(x, r))

log r
= θ

}

= 2
(2

θ
(1 +

η

2
) − η

2

)

.

Note that neither side of this equation has any dependence on m, which gives us
a handle on η, which we only have to determine asymptotically for m ↑ ∞.

To do this we require knowledge of a probability exponent, roughly defined as
the rate of decay (as r ↑ ∞) of the probability of an increasingly unlikely event
involving Brownian paths running until they exit the ball B(0, r). Various kinds
of exponents can be defined and used in fractal geometry, see Lawler (1999).

In the present case we need an intersection exponent. To define these, suppose
k, m ≥ 1 are integers, and (W (i)

s : s ≥ 0) for i ∈ {1, . . . , k + m} are independent
Brownian motions started on the unit sphere ∂B(0, 1), and stopped upon leaving
B(0, en), i.e. at times T (i)

n = inf{s > 0: |W (i)
s | = en}. We denote by

B
(1)

n =

k
⋃

i=1

{

W (i)

s : 0 ≤ s ≤ T (i)

n

}

,

B
(2)

n =

k+m
⋃

i=k+1

{

W (i)

s : 0 ≤ s ≤ T (i)

n

}

,

two packets of paths, and assume that the starting points in different packets
are different. Denote by Vn the event that the two packets B

(1)
n and B

(2)
n do not

intersect each other. The intersection exponents are defined by the requirement
that there exist constants 0 < c < C such that

c exp{−n ξ(k, m)} ≤ P(Vn) ≤ C exp{−n ξ(k, m)} .

Lawler (1996b) showed that the intersection exponents ξ(k, m) are well-defined
by this requirement, and some years later the (highly nontrivial) techniques of
stochastic Loewner evolution (SLE) enabled Lawler, Schramm and Werner to
give the explicit values

ξ(k, m) =
(
√

24k + 1 +
√

24m + 1 − 2)2 − 4

48
.

For a short survey of the key steps in this development and some other early
applications of the SLE technique, see (Lawler et al., 2001).
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Let us explain how intersection exponents help identifying P{N = 1} in our
tree model. Suppose S is any square containing an intersection point (hence
corresponding to a vertex in the tree). The event {N = 1} means that the
Brownian paths intersect in one of the m2 congruent nonoverlapping subsquares
which cover S, but nowhere else in S.

S

S’

Fig. 1.4. Paths realising the event {N = 1}, the initial parts of both paths
are dashed.

We now fix one f these subsquares, say S ′, and assume (without significant
loss of generality, as in the previous section) that it is located sufficiently far away
from the boundary of S. We split both motions at the first time they hit ∂S ′

and apply time-reversal to the initial part of each motion. Though the reversed
part are strictly speaking not Brownian motions, they are sufficiently similar to
treat them as such. Then we are faced with four Brownian motions started at
∂S′, which we divide in two packets of two, with each packet consisting of the
(time-reversed) first part and the (non-reversed) second part of the same original
motion. We consider all motions up to the first time when they hit ∂S, which is
at distance of order m times the typical distance of the starting points. Hence,
applying Brownian scaling, we get

P
{

paths do not intersect outside S ′
}

≈ m−ξ(2,2).

As these events are disjoint for the m2 different squares S′ ⊂ S we can sum the
probabilities and obtain

P
{

N = 1
}

≈ m2−ξ(2,2) as m ↑ ∞.
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Hence η = ξ(2, 2) − 2 and plugging this into the prediction yields

dim
{

x ∈ S : lim sup
r↓0

log µ(B(x, r))

log r
= θ

}

= 2
ξ(2, 2)

θ
+ 2 − ξ(2, 2) .

Using the known value ξ(2, 2) = 35
12 of the intersection exponents gives the precise

formula claimed in Theorem 1.12.

As in the previous example, a note of caution is necessary: The tree analogy
is very suitable to develop an intuition for the problem and guess the right mul-
tifractal spectrum. However, in setting up the tree analogy, we have gone too far
to prove Theorem 1.12 by justification of the steps undertaken in this simplifi-
cation and it is preferable to start this proof from scratch. The original problem
needs serious treatment before some form of the claimed locality assumption can
be exploited, and it seems to be impossible to carry out the proof without using
the full power of the strong Markov property of the two Brownian motions.

However, an inspection of the proof of Theorem 1.13 gives structural insight,
which is directly applicable to the proof of Theorem 1.12. Indeed, given a vertex v
with |v| = n, the event

{

µ̃(B(v)) ≈ e−nθ
}

is typically coming up when Zk(v) = 1 for k = nθ/ logEN , i.e. when the vertex v
has just one offspring for k generations. This fact can be translated directly into
the Brownian world. A point x ∈ S typically satisfies

lim sup
r↓0

log µ(B(x, r))

log r
≈ a

if there exists a sequence rn ↓ 0 of radii such that

(

B(x, rn) \ B(x, ra/2
n )

)

∩ S = ∅ .

The occurence of large empty annuli at selected radii is also key to the under-
standing of the multifractal spectrum of super-Brownian motion (Perkins and
Taylor, 1998). Hence, despite greatly oversimplifying the situation, the tree ap-
proach gives valuable insight into the original problem, which can be exploited
directly in the proof.

1.2.3 Points of infinite multiplicity

In this section we turn our attention to an attractive unsolved problem. It is
known for a long time that planar Brownian motion has points of multiplicity p,
for any positive integer p. Moreover, Dvoretzky et al. (1958) have shown that,
almost surely, there exist points of uncountably infinite multiplicity, see (Le Gall,
1992) or (Mörters and Peres, 2008) for modern proofs. These arguments can also
be used to show that the Hausdorff dimension of the set of points of uncountably
infinite multiplicity is still two.
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How far can we go, before we see a reduction in the dimension? A natural way
is to count the number of excursions from a point. To be explicit, let (Ws : s ≥ 0)
be a planar Brownian motion and fix x ∈ R

2 and ε > 0. Let S−1 = 0 and, for any
integer j ≥ 0, let Tj = inf{s > Sj−1 : Ws = x} and Sj = inf{s > Tj : |Ws − x| ≥
ε}. Then define

Nx
ε = max

{

j ≥ 0: Tj < ∞
}

,

which is the number of excursions from x hitting ∂B(x, ε). Observe that Nx
ε = 0

for almost every point on the curve (with respect to the occupation time T
introduced in Section 1.2.1) and that

lim
ε↓0

Nx
ε = ∞ ⇐⇒ x has infinite multiplicity.

It is therefore a natural question to ask how rapidly Nx
ε can go to infinity when

ε ↓ 0. A partial answer is given in the following theorem of Bass et al. (1994).

Theorem 1.14

(a) Let 0 < a < 1
2 . Then, almost surely,

dim
{

x ∈ R
2 : lim

ε↓0

Nx
ε

log(1/ε)
= a

}

≥ 2 − a .

(b) Let 0 < a < 2e. Then, almost surely,

dim
{

x ∈ R
2 : lim

ε↓0

Nx
ε

log(1/ε)
= a

}

≤ 2 − a

e
.

(c) Almost surely, for every x ∈ R
2, we have

lim sup
ε↓0

Nx
ε

log(1/ε)
≤ 2e.

Note, for comparison, that for a linear Brownian motion, almost surely, for
every x ∈ R, we have

lim
ε↓0

(4ε) Mx
ε = Lx

t ,

where Mx
ε is the number of excursions from x hitting {x− ε, x+ ε} before time t,

and Lx
t is the local time at x, see e.g. (Mörters and Peres, 2008).

The proof of parts (b) and (c) of Theorem 1.14 is fairly straightforward,
though the statements are certainly not optimal. The delicate part is the lower
bound, given in (a). This argument is based on the construction of a local time,
a nondegenerate measure on the set

{

x ∈ R
2 : lim

ε↓0

Nx
ε

log(1/ε)
= a

}

.

The restriction to values a < 1/2 is due to the use of L2-estimates and appears
to be of a technical nature. It is believed that the following conjecture is true.
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Conjecture 1.1 Almost surely,

max
x∈R2

lim
ε↓0

Nx
ε

log(1/ε)
= 2.

Moreover, for any 0 < a < 2, almost surely,

dim
{

x ∈ R
2 : lim

ε↓0

Nx
ε

log(1/ε)
= a

}

= 2 − a .

This is still an open problem. Hope for its solvability comes from the fact
that one can represent the dependence structure of the random variables Nx

ε in
a tree picture similar to the one indicated in Section 1.2.1. However, because the
Brownian path is required to return exactly to a given point, this problem has
much less inherent continuity than the two previous ones, and therefore appears
to be much harder.

1.3 More on the planar Brownian path

We have seen in the second example of the previous section that in some cases,
once the tree technique has been exploited, there remains a serious challenge to
identify the rate of decay of certain probabilities associated with the underlying
process. This challenge can be formalised in the notion of probability exponents,
and in this section we give further evidence of their use in fractal geometry,
following ideas surveyed in Lawler (1999).

1.3.1 The Mandelbrot conjecture

We look at a famous example, the Mandelbrot conjecture: Let (Ws : 0 ≤ s ≤
1) be a planar Brownian motion running for one time unit and consider the
complement of its path,

{

x ∈ R
2 : x 6= Ws for any 0 ≤ s ≤ 1

}

.

This set is open and can be decomposed into connected components, exactly one
of which is unbounded. We denote this component by U and define its boundary
∂U as the frontier of the Brownian path. The frontier can be seen as the set of
points on the Brownian path which are accessible from infinity and is therefore
also called the outer boundary of Brownian motion.

According to a frequently told legend, Mandelbrot, when presented with a
simulation of the Brownian frontier, cast a brief glance at the picture and imme-
diately identified its dimension as 4/3, see (Mandelbrot, 1982). However, a more
rigorous confirmation of this conjecture took a long time. In the late nineties
Bishop et al. (1997) showed that the frontier has Hausdorff dimension strictly
larger than one, and about the same time Lawler (1996a) identified the Hausdorff
dimension in terms of a disconnection exponent.
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The disconnection exponents ξ(k), k ∈ N, can be defined as follows: Suppose
(W (i)

s : s ≥ 0) for i ∈ {1, . . . , k} are independent Brownian motions started
on the unit sphere ∂B(0, 1), and stopped upon leaving B(0, en), i.e. at times
T (i)

n = inf{s > 0: |W (i)
s | = en}. We denote by

Bn =

k
⋃

i=1

{

W (i)

s : 0 ≤ s ≤ T (i)

n

}

the union of the paths, and by Vn the event that Bn does not disconnect the ori-
gin from infinity, i.e. the origin is in the unbounded connected component of the
complement of Bn. The disconnection exponents are defined by the requirement
that there exist constants 0 < c < C such that

c exp{−n ξ(k)} ≤ P(Vn) ≤ C exp{−n ξ(k)} .

Lawler (1996a) showed that the disconnection exponents ξ(k) are well-defined by
this requirement, and —just as in the case of intersection exponents— Lawler,
Schramm and Werner found the explicit values

ξ(k) =
(
√

24k + 1 − 1)2 − 4

48
.

Note that this is in line with the intersection exponents as (formally, because of
our requirement that m be an integer)

lim
m↓0

ξ(k, m) = ξ(k),

and this corresponds to the observation that if Bn disconnects the origin from
infinity, no further independent packet (no matter how slim, i.e. how small m)
started at the origin can reach ∂B(0, en) without intersecting Bn. This can be
made rigorous by extending the definition of intersection exponents to noninteger
arguments.

In Lawler (1996a) the dimension of the frontier was identified to be 2− ξ(2),
so that Mandelbrot’s conjecture follows.

Theorem 1.15 Almost surely, the Hausdorff dimension of the frontier is

dim ∂U = 4
3 .

It is not hard to paint a tree picture that makes the connection of the dis-
connection exponents and the frontier clear. This time we prefer to work in the
time domain and use the following striking result of Kaufman, for a proof see
e.g. (Mörters and Peres, 2008).

Lemma 1.16. (Kaufman’s lemma) Suppose d ≥ 3 and (Ws : s ∈ [0, 1]) is a
d-dimensional Brownian motion. Then, almost surely, for every A ⊂ [0, 1],

dim
{

Ws : s ∈ A
}

= 2 dim A .
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Note that the ‘dimension doubling’ rule holds simultaneously for all sets
A ⊂ [0, 1] with a single exceptional set of probability zero. It can therefore be
applied to any random set A, which makes Kaufman’s lemma a powerful tool.

We now look at the decomposition of the unit interval [0, 1] into 2n nonover-
lapping intervals of equal length. Any such interval [j2−n, (j+1)2−n] is associated
to a vertex in a representing tree T if the set

B
(j)

n =
{

Ws : 0 ≤ s ≤ j2−n or (j + 1)2−n ≤ s ≤ 1
}

does not disconnect {Ws : j2−n ≤ s ≤ (j + 1)2−n
}

from infinity. With the rule
that a vertex v is an offspring of w if the interval associated to v is contained in
that associated to w, this constitutes a tree representation of the set

I(T ) = {s ∈ [0, 1] : Ws ∈ ∂U}.

This representation does not make I(T ) a Galton-Watson fractal, but the
following lemma taken from (Lawler, 1999, Lemma 1 and 2) indicates how, in a
special situation, the independence conditions of Theorem 1.4 can be weakened.

Lemma 1.17 Given a family of (not necessarily independent) zero-one valued
random variables

{

Y (j1, . . . , jn) : ji ∈ {0, 1}, n ∈ N
}

,

we build a random fractal A iteratively. Let S0 = {[0, 1]} and, given a collection
Sn of compact intervals of length 2−n, construct a collection Sn+1 by

• splitting each interval in Sn−1 into two nonoverlapping intervals of half
the length,

• adding any interval thus constructed to the collection Sn if

Y (j1, . . . , jn) = 1,

where
∑n

i=1 ji2
−i is the left endpoint of the interval.

Define the random fractal as

A =

∞
⋂

n=1

⋃

I∈Sn

I .

Then

(i) If

1
∑

j1,...,jn=0

E

n
∏

k=1

Y (j1, . . . , jk) ≤ C 2(1−α)n for some C > 0, then

dim A ≤ 1 − α almost surely.
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(ii) If, for some 0 < c < C < ∞ and ε > 0,

c 2−αn ≤ E

n
∏

k=1

Y (j1, . . . , jk) ≤ C 2−αn for all ε ≤
n

∑

i=1

ji2
−i ≤ 1 − ε,

and

E

n
∏

k=1

Y (j1, . . . , jk)Y (i1, . . . , ik) ≤ C 2−2αn
(

n
∑

i=1

(ii − ji)2
−i

)−α

,

for all ε ≤ ∑n
1 ji2

−i <
∑n

1 ii2
−i ≤ 1 − ε, then

dim A ≥ 1 − α with positive probability.

This lemma exploits a tree representation of A with the tree T given as a
subtree of a binary tree with vertices in the nth generation canonically denoted
by (j1, . . . , jn). Such a vertex is contained in T if and only if

n
∏

k=1

Y (j1, . . . , jk) = 1 .

The set attached to the vertex (j1, . . . , jn) is the closed interval of length 2−n

with left endpoint
∑n

1 ji2
−i, and the number of children of this vertex is

Y (j1, . . . , jn, 0) + Y (j1, . . . , jn, 1) .

Supposing that all the random variables Y (j1, . . . , jk) are independent, we get

min
{

s : E
{

2−sY (j1, . . . , jn, 0) + 2−sY (j1, . . . , jn, 1)
}

≤ 1
}

= min
{

s : 2−s−α+1 ≤ 1
}

= 1 − α,

confirming that this generalises a special case of Theorem 1.4.

In our case, we let Y (j1, . . . , jn) = 1 if and only if the set
{

Ws : 0 ≤ s ≤ ∑n
i=1 ji2

−i or
∑n

i=1 ji2
−i + 2−n ≤ s ≤ 1

}

does not disconnect

{Ws :

n
∑

i=1

ji2
−i ≤ s ≤

n
∑

i=1

ji2
−i + 2−n

}

from infinity. Using Brownian scaling and the definition of the disconnection
exponents, one can show that the probability of this event is of order 2−n

2 ξ(2),
and that the second condition in (ii) also holds. This argument therefore gives
that

dim
{

s ∈ [0, 1] : Ws ∈ ∂U
}

= 1− 1
2 ξ(2) = 2

3 ,

with positive probability, and an application of Kaufman’s lemma gives dim ∂U =
4
3 with positive probability. Some nontrivial extra work is required to show that
this actually holds with probability one.
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1.3.2 More on the geometry of the Brownian frontier

There are a variety of subsets of Brownian paths whose Hausdorff dimensions can
be expressed in terms of different probability exponents. Examples with known
exponents, like cutpoints, pioneer points and cone points of planar Brownian
motion are given in (Lawler, 1999) and (Lawler et al., 2001). Here we sketch two
results, which reveal further details about the geometry of the frontier.

To begin with, it is easy to observe that the Brownian frontier contains double
points of the Brownian motion. The argument, which is probably due to Paul
Lévy, goes roughly like this: If it did not, then by construction the frontier would
just be a stretch of the original Brownian path. This would however imply that
it had double points, which is a contradiction.

Knowing that there are double points on the frontier, it is natural to ask,
whether the frontier contains triple points. This problem was solved by Burdzy
and Werner (1996).

Theorem 1.18 Almost surely, there are no triple points on the frontier of a
planar Brownian motion.

A second natural question that comes up is how many double points one can
find on the Brownian frontier. Surprisingly, it turns out that while the set

D =
{

x ∈ R
2 : x = Ws = Wt for distinct s, t ∈ [0, 1]

}

of double points has full dimension on the entire path, it does not have full
dimension on the frontier. The following curious result is due to Kiefer and
Mörters (2008).

Theorem 1.19 Almost surely, the set of double points on the Brownian frontier
satisfies

dim
(

D ∩ ∂U
)

=

√
97 + 1

24
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In the proof of this result, a spatial approach is preferable. In this context it
is natural to consider Brownian motion up to the first exit time τ from a big ball,
rather than up to time one (it is not hard to see that this is equivalent). We fix a
compact square S0 of unit sidelength inside this ball, and a small ε > 0. Let Sn

be the collection containing those of the 22n nonoverlapping subsquares S ⊂ S0

of sidelength 2−n, which satisfy

• the Brownian motion (Ws : s ≥ 0) hits S, then moves to distance ε from S,
and then hits S again before time τ ;

• the union of the paths outside the square S does not disconnect its bound-
ary ∂S from infinity.

Then we have

S0 ∩ D ∩ ∂U =
⋃

ε>0

∞
⋂

n=1

⋃

S∈Sn

S,
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and the Hausdorff dimension can be determined (with positive probability) by
verifying a first and second moment criterion analogous to (i), (ii) in Lemma 1.17.

For the first moment criterion, we have to show that the probability that a
cube of sidelength 2−n is in Sn is bounded from above and below by constant
multiples of 2−nξ(4). Indeed, we may use three stopping times to split the path
into four pieces: They are the first hitting time of S, the first time afterwards
where the path has moved to distance ε from the square, the first hitting time
of S after that. If we reverse the first and third part in time, the four pieces are
sufficiently close to Brownian paths started on the boundary of the cube and
running for one time unit, to infer that the probability of disconnection is, up to
a factor which is polynomial in n, of order 2−nξ(4). At this place the proof is a
bit more delicate than the arguments in Section 1.2.2, because a careful control
of the polynomial factors is required.

This first moment argument, a slightly more sophisticated one for the second
moment, and a tree framework similar to the one above, show that, with positive
probability,

dim
(

D ∩ ∂U
)

= 2 − ξ(4) =

√
97 + 1

24
.

Again, some more work is required to show that this holds almost surely.

For Theorem 1.18 the argument is easier, as no lower bound is needed. Using
no more than the Borel-Cantelli lemma one can infer that for

T =
{

x ∈ R
2 : x = Wr = Ws = Wt for distinct r, s, t ∈ [0, 1]

}

we have T ∩ ∂U = ∅ almost surely, if ξ(6) > 2. The merit of the paper (Burdzy
and Werner, 1996) is mostly in providing this estimate long before the SLE-
technology allowed the precise calculation of this value.
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Brownian motion and the Erdős-Taylor conjecture on random walk. Acta
Math. 186 (2), 239–270.
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