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Abstract

Suppose that y is the branching measure on the boundary of a su-
percritical Galton-Watson tree with offspring variable N such that
E[Nlog N] < co. We survey recent results on the multifractal spec-
trum and logarithmic multifractal spectrum of the measure u, and also
add a new result. Our tool is percolation on the Galton-Watson tree.
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1 Branching measure on a Galton-Watson tree

We consider a Galton—-Watson tree 1" starting from a single progenitor, the
root p. Let N be its offspring variable and suppose it satisfies m := EN > 1,
which means that the process is supercritical. A sequence V' = (vg,v1,...) of
vertices in T such that vg = p and v; 1 is a child of v;, for every 1, is called a
ray. By 0T we denote the boundary of the tree consisting of all rays. We say
that the tree survives if T # () and denote by ¢ > 0 the survival probability.
The set 9T can be equipped with a metric d by letting d(U,V) = e if
n is the generation of the last, or oldest, vertex present in both rays U
and V. With respect to this metric it is well-known that, almost surely on



0T # 0, the Hausdorff dimension of 97 is a := log m, see Hawkes (1981) and
Lyons (1990), and for example Liu (2001), Watanabe (2004) for refinements.

Suppose that Z, is the number of individuals in the n'" generation of the
tree. Then W, := Z,,/m" defines a martingale, and hence the limit

exists almost surely. By a famous theorem of Kesten and Stigum (1966) we
have : |
| ¢ if E[NlogN]| < oo,
PAW >0} = { 0 otherwise.
We are only interested in the case E[N log N] < co. In this case, for every
vertex v € T we let T(v) be the subtree consisting of all successors of v,
and by W (v) the martingale limit of T'(v). This allows us to build a natural
measure u, called the branching measure, on 9T by the requirement
w
u{Vear :veV}= m(:)

for all vertices v € T in generation n.

Note that the set on the left is also the closed ball of radius e~ around any
ray (vg,v1,...) with v, = v. Almost surely, for u-almost every V € 97T,
1 B(V,e ™

n—0o —-n

7

i.e. the local dimension of u is a almost everywhere. We are interested in
the question whether there exist exceptional rays, where the local dimension
has a different value. In this case the measure p is called multifractal. If the
measure is multifractal, we ask how many rays (in the sense of Hausdorff
dimension) exist for a given local dimension, the resulting function is called
the multifractal spectrum.

From now on we assume that P{N = 0} = 0. This is no loss of generality,
indeed, if we prune a Galton-Watson tree by removing all its finite subtrees,
we do not change its boundary. The pruned tree is still a Galton-Watson tree
(with a modified offspring variable), see Athreya and Ney (1972, Chapter 1,
Section 12). To avoid trivialities we also assume P{N = k} < 1 for all
positive integers k.

2 The multifractal spectrum

We say that the offspring variable is of Schrdder type if P{N <1} > 0 and
otherwise, if P{N < 1} = 0, we say it is of Bdéttcher type.



Theorem 2.1 (Multifractal spectrum I, thin part)
Suppose N is of Schrdder type. Define T := —log P{N = 1}/a. Then, for
alla <0< a(l + %), almost surely,

dim {VeaT : limsupw:0}:a(g(l+7)—7>. (1)

n—o00 —n g

If6>a (1 + %), almost surely, the set on the left hand side of (1) is empty,
however if § = a(l + %) it is almost surely nonempty.

This result was first stated and partially proved by Shieh and Taylor (2002).
A full proof is given in Morters and Shieh (2004).

If N is ‘heavy tailed’ there is also a nontrivial multifractal spectrum for local
dimensions below the typical value. For the formulation of this result, let

r := lim inf —log P{N > :v}
oo IOgCE

Note that r € [1,00] and r = co if and only if all positive integer moments
of N exist. We use the convention 1/c0 = 0.

Theorem 2.2 (Multifractal spectrum II, thick part)
For all a(l — %) < 0 < a, almost surely,

dim {V € oT : liminfM

n—o00 —n

zﬁ}za(l—r)+0r. (2)

If 6 < a(l — %), almost surely, the set on the left hand side of (2) is empty,
however if § = a(l — %) it 18 almost surely nonempty.

This result substantiates Remark 5.1 in Shieh and Taylor (2002); the re-
sult is yet unpublished. Its proof, which we will sketch in Section 4, is a
straightforward adaptation of the method of Mérters and Shieh (2002).

3 The logarithmic multifractal spectrum

From Theorems 2.1 and 2.2 we infer that, if N is of Bottcher type and not
heavy tailed (i.e. 7 = o0), then the branching measure is not multifractal;
see also Liu (2001, Theorem 4.1). In order to obtain nontrivial spectra at



both ends we study variations on a finer scale. This idea goes back to Shieh
and Taylor (1998) who use the term logarithmic multifractal analysis.

We first look at points which are exceptionally thin. We let M_ = essinf N
and \_ = 1 —logm/log M_. Under our standing assumptions we always
have A_ < 0. In the Bottcher case the value

r_ := lim inf — log P{W < x}
mJ,O .Tl/)\_

is positive and finite.

Theorem 3.1 (Spectrum of thin points) In the Béticher case we have,
almost surely,

n—oo  m-"mr-

dim {VeaT : liminfmze} —a—r g (3)

for all @ > (a/r_)*-. If 0 < (a/r_)*-, almost surely, the set on the left hand
side of (3) is empty, however if @ = (a/r_)*- it is almost surely nonempty.

This result is proved in Morters and Shieh (2002).

We now turn to the study of exceptionally thick points. Let M, = esssup N
and Ay = 1—logm/log M. If M, = oo this means that Ay = 1. Under our
standing assumptions we always have Ay > 0. If (and only if) ess sup N < oo
or 0 < sup{t : Elexp(tN)] < oo} < 00, the value

. o~ log P{W > &}
T4 = hg%(glf myiw

is positive and finite.

Theorem 3.2 (Spectrum of thick points) If either ess sup N < oo or
0 < sup{t : Elexp(tN)] < oo} < 0o we have, almost surely,

: .t pB(Vie™) _ 1 _ 1A
dim {V € oT : 1171;I1—>S£p W =60;=a-— T'_|_(9 +, (4)
for all 0 < 0 < (a/r ). If 0 > (a/ry)™, almost surely, the set on the

left hand side of (4) is empty, however if § = (a/ry ) it is almost surely
nonempty.



This result is proved in Morters and Shieh (2002), a partial result can be
found in Shieh and Taylor (2002).

Remark: The thin and thick points of this paper have exceptionally small
or large mass in a sequence of centred balls with radii decreasing to zero. An
entirely different problem would be to study points which have exceptional
behaviour in all small centred balls. This problem remains open.

4 Sketch of the proof of Theorem 2.2.

We use percolation on trees to study Hausdorff dimension, an idea sug-
gested by Lyons (1990). Our method is also influenced by the techniques of
Khoshnevisan, Peres and Xiao (2000) in the Euclidean case.

If T is any tree and p € [0,1], we attach to each edge e of the tree an
independent {0, 1}-valued random variable X (e) with P{X(e) = 1} = p. We
denote by T™ the connected component of the root p in the graph consisting
of all edges e with X(e) = 1. We say that T* is the result of running
percolation with retention parameter p on T. The following lemma is due to
Lyons (1990), see also Remark 2 in Morters and Shieh (2004).

Lemma 4.1 For an analytic set S C 9T, if p < exp(—dimS), then SN
IT* = 0 almost surely, and if p > exp(—dimS), then T* NS # O with
positive probability.

If we run independent percolation on a Galton-Watson tree 7', the uncon-
ditional distribution of T™ is again the law of a Galton-Watson tree. If m
is the mean offspring number of T', then pm is the mean offspring number
of T*. Hence 0T* # () with positive probability if and only if p > 1/m.

Lemma 4.2 For any retention parameter 1/m < p <1,

1
li log P({W N {oT™ = —r.
lim o g P{W > 2} n {07 # 0}) = —
Remark: In the case p = 1 this is the well-known, see for example

Liu (2001, p.202). Intuitively it is clear that the events {W > z} and
{0T* # B} are nonnegatively correlated. The proof can achieved with the
technique of Lemma 3.4 in Morters and Shieh (2002). ]



For 6 > a define an analytic subset of 3T by
A6 {V € 0T hmlnf 1 log uB(V, ) < 9}

We exploit Lemma 4.2 in order to determine the probability that a ray in
A(6) survives percolation.

Lemma 4.3

(a) If the retention parameter is chosen satisfying

1 1
— — —0
m<p<mexp(7"(a )
then A(0) N OT* = O almost surely.

(b) If the retention parameter is chosen satisfying
P2

€xXp (T(a - 9))7

then A(0) N OT* # O almost surely on OT* # (.

BI'—‘

Before proving this, we show how Theorem 2.2 follows from this. Note first
that the upper bound in (2) follows readily by combining Lemma 4.1 with
Lemma 4.3 (a).

To prove the lower bound in (2) we fix # > a and study the analytic set
S(0) = {V € 0T : hmlnf L log uB(V,e™") = 9}.

We run percolation with retention parameter

p= % exp (r(a - (9))

and note that
S(0) NoT* = (A() NoT*)\ (] A6 — ).
N=1

Now A(0) N dT* # ( almost surely on 0T* # @, by Lemma 4.3 (b). On
the other hand, by Lemma 4.3 (a) we know that A(§ — &) N 9T* = @
almost surely. We infer that, with positive probability, S(6) N oT* # 0.
Now, by Lemma 4.1, the Hausdorff dimension of S(6) is bounded below



by —logp = a(1l — r) 4+ Or with positive probability. The complementary
property dim S(6) < a(l — r) + Or is a property of a tree T, which is
inherited by all its subtrees T'(v) and also holds for all finite trees, hence it
must have probability zero or one. Therefore our lower bound holds with
probability one, and this finishes the proof of the lower bound in (2). [

Proof of Lemma 4.3. Assume first that p is chosen as in part (a) of
the lemma. Note that, for any n and ¢ > 0, if A(6) N IT* # @ there
exists a vertex v € T* with |v] =: m > n such that T (v)* # @ and
—log u(0T(v)) < m(f + ¢). Hence, we obtain, using Lemma 4.2,

P{A( ) NoT* # 0}

< ZEZP{ log 11(0T (v)) < m(6 +¢) and 9T (v)* # 0 |v € T*}

o

= f: Z P{W > exp(m(logm — 6 —¢)) and 9T* # 0}
veT*
[v|=m

< f: "m™exp (—rm(a— 0 —¢))

= i m(logp+a—ria—6—c)),

recalling that a = logm. By our choice of p, we may choose ¢ > 0 so
small that the sum on the right is convergent, and hence the upper bound
converges to zero as n — 00.

Now assume that p is chosen as in part (b) of the lemma. For every positive
integer N we let

U(N) = {V €8T : thereisn> N with —loguB(V,e™™) < n(d + %)}.

Our aim is to show that U(N) N 9T* is dense in 9T* almost surely. But
we first argue how we can use this to finish the proof of Lemma 4.3 (b).
Note that U(N) N 9T™* is relatively open in 97*, which is a compact, hence
complete, metric space. By Baire’s Theorem,

U(N)NoT* is dense in 9T™.
1

8



But note that Ny—; U(N) = A(f), hence A(6) N 8T* must be dense in
OT™* almost surely. This implies that A(#) N 9T* is nonempty almost surely
conditional on T™* # (), which is the required statement.

To show that, for fixed integer N, the set U(N) N OT™* is dense in 0T we

fix some vertex v € T, denote its generation by m, and show that, almost
surely conditional on 9T (v)* # (), we have U(N) N aT (v)* # 0.

Let G(n) be the o-field generated by the finite subtree T,,(v) C T(v), con-
sisting of the first n generations of T'(v), together with the random variables
{X(e): e € T,,(v)}. Let K,, be the collection of vertices in T'(v)* of genera-
tion n and let K, be the cardinality of K,. Note that the random variable
K, is G(n)-measurable. We let ny,no, ... be a sequence of positive determin-
istic integers to be determined later, and define a sequence of G(n)-stopping
times N1, No,... by Ny =1 and, for k > 1,

Ny, = min{n >N 1+ng 1 : K, >exp (n(r(a— 0) — %))}
Almost surely on 9T (v)* # (), we have
dim 0T (v)* = log(pm) = r(a — 0).

This implies that {N; : j > 1} is a sequence of finite stopping times, almost
surely on 0T (v)* # 0. For every vertex w € T'(v) of generation N; define
the event

E(w) = { — log u(dT(w)) < (N; +m)(0 + &) and OT (w)* # (z)}
= {W(w) > exp ((N; +m)(a—60— %)) and 9T (w)* # (z)}_

Given G(Nj) the events F(w), w € Ky, are independent and, by the lower
bound in Lemma 4.2 for a suitable choice of integer n;, they have probability
exceeding

exp (= (Nj+m)(r+1)(a—0-4))

Hence the probability that among the vertices w € Ky, none satisfies E(w)
is less than

Kn; .
(1—exp(—(Nj—l—m)(r—l—%)(a—e—%))) =% o,

as Kn; > exp (Nj(r(a—0) — %)) We infer that, almost surely on 9T (v)*,
there exist infinitely many vertices w € T'(v)* such that F(w) holds. Hence
there exists a ray £ € 0T (v)* NU(NN) and we are done. ]



5 Other measures on the boundary of a
Galton-Watson tree

The branching measure p is not the only interesting measure on the bound-
ary of a Galton-Watson tree. Liu and Rouault (1997) study the harmonic
measure v, which is also called the wvisibility measure or equally—splitting
measure. It is obtained as the distribution of the random ray arising when a
particle moves on the vertices of the tree starting at the root and choosing
in each step independently and uniformly among the children of the current
vertex.

They show that, almost surely, 4 and v are mutually singular. They also
prove that, almost surely, for p-almost every ray V,

5 logvB(V,e™™)  E[Nlog N]
im =
n—oo —n EN ’

whereas for v-almost every ray V,

lim logvB(V,e™™)

n—oo —n

= E[log N].

In particular the measure v has carrying dimension E[log N], which is
strictly smaller than the dimension of the branching measure, and v is mul-
tifractal. Its multifractal spectrum seems to be unknown.

Lyons, Pemantle and Peres (1995,1996) study a whole family of harmonic
measures on 9T corresponding to random walks in which the particle is
allowed to move backwards towards the root. They show that all these mea-
sures on 971 are supported by a set of Hausdorff dimension strictly smaller
than logm. Again the multifractal structure of these measures is unknown,
and represents a (probably rather hard) challenge for future research.
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