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Abstract

On the boundary of a Galton-Watson tree one can define the visibility measure by splitting mass

equally between the children of each vertex, and the branching measure by splitting unit mass equally

between all vertices in the nth generation and then letting n go to infinity. The multifractal structure

of each of these measures is well studied. In this paper we address the question of a joint multifractal

spectrum, i.e., we ask for the Hausdorff dimension of the boundary points which have an unusual local

dimension for both these measures simultaneously. The resulting two-parameter spectrum exhibits a

number of surprising new features, among them the emergence of a swallowtail shaped spectrum for

the visibility measure in the presence of a nontrivial condition on the branching measure.
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1 Motivation

Multifractal analysis provides a way of encapsulating complex information about the fractal nature of an
object in a single curve, the multifractal spectrum. In this paper we show how a multifractal analysis
can also offer deep insight into the relationship of two fractal objects in the form of a two-parameter
multifractal spectrum. In particular we shall see that when one of the analysed measures fails to obey
the ‘multifractal formalism’ such an analysis can lead to the discovery of new phenomena which are deeply
rooted in the geometry of these measures.

Our test case is the boundary of a Galton-Watson tree with nonzero offspring at every vertex. This set
is, on the one hand, a familiar and well-studied object in probability and, on the other hand, it represents
the symbolic dynamics of a class of self-similar random fractals and as such it is representative of the
behaviour of a wider range of fractal objects with statistical self-similarity. Two natural measures can
be defined on the boundary of a Galton-Watson tree, the visibility measure and the branching measure.
Both have been studied separately from a multifractal point of view.

The visibility measure is easily defined, by starting at the root of the tree with a unit mass and, recursively,
at each vertex splitting it equally among the children. If the offspring distribution of the Galton-Watson
tree is nondegenerate and satisfies some mild moment conditions, the visibility measure is multifractal and
the multifractal formalism, see e.g. Falconer [11], applies, see Kinnison [16] for details. The branching
measure represents the uniform measure on the boundary. It can be defined by taking the uniform
distribution on the vertices in the nth generation and taking a limit as n → ∞. This measure is not
multifractal if the offspring variable has zero probability of taking the value one, and otherwise it is only
multifractal in a weaker sense. Only unusually large values of the upper local dimension are possible,
and can be represented in a spectrum of hyperbolic shape, see Shieh and Taylor [37] and Mörters and
Shieh [28]. In this situation the multifractal formalism does not apply as it always leads to a concave
spectrum.
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Liu and Rouault [20] proved that the visibility and the branching measure are mutually singular as
soon as the offspring random variable is non-degenerate. The aim of our analysis is to further clarify
the relationship of the two measures and express the results in terms of a two-parameter multifractal
spectrum, which gives the Hausdorff dimension of the set of points in the boundary, for which the local
dimensions of the two measures are given by the two parameters. This ‘simultaneous’ multifractal analysis
of the branching and visibility measure will unlock some surprising new features of the two measures and
the way they interact. Our proofs involve a combination of the multifractal formalism and percolation
techniques to establish the tricky lower bounds for the Hausdorff dimension.

2 Background and main results

2.1 Background on multifractal analysis

Multifractal spectra appeared first in the physics literature in papers by Mandelbrot [24], Benzi et al.
[5], Frisch and Parisi [13] and Halsey et al. [14], to study multifractal models that occur naturally in the
world, in particular in the area of turbulence. For more examples of the use of multifractal spectra in these
contexts, see the introduction to Lau and Ngai [18]. They have appeared in the mathematics literature
with increasing regularity over the last 20 years. Examples appear in the analysis literature in the work
of Rand [36], Brown et al. [8], Cawley and Mauldin [9] and Olsen [29] in the early 1990’s and more
recently in the probability literature in the work of Arbeiter and Patzschke [2] in the case of random self
similar fractals, Perkins and Taylor [35] in the case of super Brownian motion, Mannersalo et al. [25] and
Anh et al. [1] for products of stochastic processes, Berestycki [6] in the case of fragmentation processes,
and Klenke and Mörters [17] in the case of intersection local time of Brownian motion. For some further
examples of how multifractal spectra can improve our understanding about certain stochastic processes,
see Mörters [26].

Recently, simultaneous, or ‘mixed’, multifractal spectra for several measures were discussed in the context
of dynamical systems by Barreira et al. [3, 4] and, independently, in the context of geometric measure
theory by Olsen [30]. Olsen introduced a general framework [32] and Olsen and Winter in [31, 33] gave a
complete analysis of deterministic self-similar measures satisfying the open set condition. These papers
seek to generalize the ‘multifractal formalism’, established in the physics literature and verified in various
mathematical setups, to a simultaneous multifractal analysis. They do not investigate the situation when
the ‘multifractal formalism’ is violated by one of the involved measures. This situation however occurs
frequently for random measures and in the context of measures defined in terms of stochastic processes,
and is therefore of particular interest to us in the present paper.

We define multifractal spectra associated with the local dimensions (or Hölder exponents) of a fractal
measure. To this end, let µ be a locally finite measure on a metric space X. We define the local dimension
of the measure µ at a point x ∈ X as

dimµ(x) := lim
r↓0

log µ(B(x, r))

log r
,

whenever the limit exists, where B(x, r) is the closed ball of radius r centred at the point x ∈ X. We
also define the upper and lower local dimensions of µ at x to be

dimµ(x) := lim sup
r↓0

log µ(B(x, r))

log r
and dimµ(x) := lim inf

r↓0

log µ(B(x, r))

log r
,

respectively. The local dimension indicates the rate at which the µ-measure of the balls, centred at the
point x, decay as the radius of the balls shrinks to zero. The rate of decay of the measure of the balls
goes like the radius to the power of the local dimension. It follows that the larger the local dimension,
the faster the measure of the balls decays. The local dimension may vary considerably between different
points in the metric space. A measure µ is called monofractal if there exists a constant η such that
dimµ(x) = η for all x ∈ suppµ. Otherwise, the measure is often called multifractal.
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If the measure µ is multifractal, then its multifractal spectrum is the function

f(θ) = dim
{
x ∈ X : dimµ(x) = θ

}
,

where dim normally denotes the Hausdorff dimension and θ ranges over all possible values of the local
dimension. We are equally interested in the variants of this function arising when replacing the local
dimension by upper or lower local dimensions, or when the equality inside the set is replaced by an
appropriate inequality.

2.2 Background on Galton-Watson trees

Galton-Watson trees are characterised by a single parameter, the law of the offspring random variable N .
Throughout this paper we assume that N is nondegenerate and takes values in the natural numbers, in
particular it does not take the value zero. We allow N to be unbounded, but always assume that

γ(β) := − log E[Nβ+1] > −∞ for all β ∈ R.

We abbreviate m := EN > 1 and a := log EN > 0.

The Galton-Watson tree T is defined recursively: Start with the root ρ which constitutes the zeroth
generation. Given the tree up to the nth generation sample an independent family (N(v) : |v| = n) of
offspring variables indexed by the vertices in the nth generation of the tree, and attach precisely N(v)
children to vertex v. The union of these vertices then represent the (n + 1)st generation, and we define
an infinite tree by proceeding ad infinitum.

Given a vertex v in the nth generation, there exists a unique path ρ = v0, v1, . . . , vn = v from the root
to this vertex, such that vi is a child of vi−1 for all 1 ≤ i ≤ n. We sometimes identify v with its ancestral
line (v0, . . . , vn). A ray is an infinite sequence of vertices v0, v1, . . . such that v0 = ρ and (v0, . . . , vn) is
the ancestral line of vn for each n ∈ N. By ∂T we denote the boundary of the tree, consisting of all rays.
We equip the boundary of the tree with the metric d given by d(u, v) = e−n, where n is the generation
of the last common vertex of u, v ∈ ∂T . For ξ = (v0, v1 . . .) ∈ ∂T , let B(ξ, e−n) = B(vn) be the closed
ball with centre ξ and radius e−n, which coincides with set of all rays containing the vertex vn.

For every vertex v ∈ T we let T (v) be the subtree consisting of all successors of v, and note that,
conditional on v ∈ T the tree T (v) is again a Galton-Watson tree with the same offspring distribution.
We denote by Zn(v) the number of vertices of exactly nth generation in (and relative to) T (v), and
abbreviate Zn := Zn(ρ).

The visibility measure ν on ∂T is the probability measure defined by

ν
(
B(v)

)
=

n−1∏

j=0

N(vj)
−1,

where (v0, . . . , vn) is the ancestral line of the vertex v. Alternatively, ν is the law of the ray obtained as
the path of a random walk starting at the root and moving at every step to a randomly chosen child of
the current vertex. In [16] it is shown that under our assumptions on the Galton-Watson tree, for every

sup
β<0

−γ(β)
β < η < inf

β>0

−γ(β)
β ,

we have, almost surely,
dim

{
ξ ∈ ∂T : dimν(ξ) = η

}
= inf

β
{−ηβ − γ(β)}.

This spectrum is concave with a unique maximiser at

ηtyp :=
E[N log N ]

E[N ]
.

The proof of this result also shows that, for η ≤ ηtyp the same spectrum holds when dimν(ξ) = η is
replaced by dimν(ξ) ≤ η, while for η ≥ ηtyp we may replace it by dimν(ξ) ≥ η.
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To define the branching measure µ on ∂T we need a limiting operation. We define

µ
(
B(v)

)
= lim

k→∞

Zk(v)

Zk+n
,

whenever v ∈ T is in generation n. Martingale arguments, which are detailed in Section 3.2, show
that this limit exists almost surely and µ(B(v)) is nonzero for every vertex v ∈ T . The µ such defined
is a probability measure on ∂T and is called the branching measure or limit uniform measure in the
terminology of [22, 23]. Liu [19] showed in this setting that, almost surely,

dimµ(ξ) = a for all ξ ∈ ∂T ,

so that only for the upper local dimension we may see a nontrivial spectrum. To ensure this we assume
that the Galton-Watson tree is of Schröder type, i.e. P (N = 1) > 0. Under this condition it is shown by
Shieh and Taylor [37] and Mörters and Shieh [28] that, with

τ := −
log P (N = 1)

a

,

for all a ≤ θ ≤ a(1 + 1/τ), almost surely,

dim
{
ξ ∈ ∂T : dimµ(ξ) = θ

}
= a

(
a

θ
(1 + τ) − τ

)

.

Again we get the same result when we replace the condition dimµ(ξ) = θ on the left hand side by
dimµ(ξ) ≥ θ. If θ > a(1 + 1/τ), almost surely, the set on the left hand side is empty, however if
θ = a(1 + 1/τ) it is almost surely nonempty.

2.3 Statement of the main results

In the light of the previous results it is natural to ask for the Hausdorff dimension of the intersections of
the exceptional sets for the visibility and branching measures, i.e. for

dim
{
ξ ∈ ∂T : dimν(ξ) = η, dimµ(ξ) = θ

}

when a < θ ≤ a(1+1/τ). This set, however, is empty for any value of η: Indeed, for rays with untypically
large upper local dimension of the branching measure, the local dimension of the visibility measure cannot
exist. This is stated more precisely in our first theorem:

Theorem 2.1. Let θ > a. Then, almost surely, for all ξ ∈ ∂T we have that

dimµ(ξ) ≥ θ implies dimν(ξ) ≥
θ

a

dimν(ξ),

and therefore dimν(ξ) does not exist.

Therefore, in order to obtain an interesting spectrum, we have to look at the upper and lower local
dimension with respect to the visibility measure separately. As our condition on the upper local dimension
of the branching measure involves only unusual behaviour at exceptional scales, in order to enforce a
nontrivial interaction of the local behaviour of the two measures, we have to look at conditions on the
local behaviour of the visibility measure involving unusual behaviour at all scales. We therefore look at
the sets

G(θ, η) =
{
ξ ∈ ∂T : dimµ(ξ) ≥ θ, dimν(ξ) ≤ η

}

and
G(θ, η) =

{
ξ ∈ ∂T : dimµ(ξ) ≥ θ, dimν(ξ) ≥ η

}
.

Our main result gives the Hausdorff dimension of these sets. For its formulation define

η−
typ :=

a

θ
ηtyp.
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Theorem 2.2. For a ≤ θ ≤ a(1 + 1/τ) and η ≥ 0, we have almost surely:

(a) If η ≤ ηtyp then

dim G(θ, η) = −aτ
(

1 −
a

θ

)

+
a

θ

(

inf
β

{−βη − γ(β)}

)

if the right hand side is non-negative.

(b) If η ≥ η−
typ then

dim G(θ, η) = −aτ
(

1 −
a

θ

)

+
a

θ

(

inf
β

{

−βη
θ

a

− γ(β)

})

.

if the right hand side is non-negative.

Remark 2.1. The simultaneous multifractal spectrum produces a swallowtail shaped spectrum for the
visibility measure in the presence of a non-trivial condition on the branching measure. This can be seen
in Figure 1. If we consider values of θ > a it follows that η−

typ < ηtyp and the left and right branch of the
spectrum overlap.

Remark 2.2. Looking at values of the local dimension of branching measure equal to the typical local
dimension (i.e. taking θ = a) in Theorem 2.2 (a) and (b) leads to a variant of the multifractal spectrum
for the upper and lower local dimension of visibility measure, respectively. Similarly, setting η = ηtyp in
Theorem 2.2 (a) and η = η−

typ in (b) yields a variant of the spectrum for the branching measure. We

conjecture that in the definition of G(θ, η) and G(θ, η) all inequality signs can be replaced by equalities
without impairing the statement of Theorem 2.2. However, our proof techniques are not strong enough to
verify this.

The remainder of the paper is devoted to the proofs of our two main results, given in Section 3 and 4.
Each section starts with a heuristic explanation of the result and a sketch of the main tools of the proof.

3 Proof of Theorem 2.1

3.1 Heuristics

If, for some λ > 1, the ray ξ contains a substring ξn, . . . , ξλn consisting of vertices with only one offspring,
the balls B(ξn) and B(ξλn) are equal. Hence the ratio log µB(ξ, r)/ log r at r = e−n is by a factor λ larger
than at r = e−nλ. Therefore a ray with infinitely many such substrings typically has dimµ(ξ) ≥ aλ.

Conversely, a ray ξ with dimµ(ξ) ≥ θ typically has infinitely many substrings ξn, . . . , ξ(θ/a)n consisting of
vertices with predominantly only one offspring. In this case, the visibility measure of the balls B(ξ, e−n)
and B(ξ, e−nθ/a) is nearly equal, so that the ratio log νB(ξ, r)/ log r drops by a factor of a/θ when r
moves down from e−n to e−nθ/a. Therefore, if dimν(ξ) = η, following the radii rn = e−nθ/a produces a
sequence of radii with lim log νB(ξ, rn)/ log rn ≤ η a/θ.

The proof follows this heuristics closely. Lemma 3.3 shows that if a vertex v in the nth generation has
very little offspring for the next (θ/a − 1)n generations, this implies a lower bound for νB(w) for each
of these offspring vertices w. In Lemma 3.4, which will also be crucial in the proof of the upper bound
in Theorem 2.2, we show that a ray ξ with dimµ(ξ) ≥ θ has infinitely many vertices ξn which have very
little offspring for the next (θ/a−1)n generations. Combining these two ingredients completes the proof.

3.2 Proof of Theorem 2.1

We start with two very elementary lemmas.

Lemma 3.1. Let {an}
∞
n=1 and {bn}

∞
n=1 be real sequences and ϑ > 0. Then

lim sup
n→∞

an < ϑ lim inf
n→∞

bn

implies that for all ε > 0 exists n0 ∈ N such that, for all n ≥ n0, we have an < (ϑ + ε)bn.
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Figure 1: Multifractal spectrum of visibility measure on a Galton-Watson tree with geometric offspring
random variable with p = 0.5. The top curve provides the multifractal spectrum when θ = a while the
bottom curves provide the multifractal spectrum when θ = 4

3a. Here the left branch corresponds to

dim G(θ, η) while the right branch corresponds to dimG(θ, η). The two branches overlap on the interval
(η−

typ, ηtyp) ≈ (0.67, 0.89)

Proof. Suppose there exists ε > 0 and a sequence nk ↑ ∞ such that ank
≥ (ϑ + ε)bnk

. Then

lim sup
n→∞

an ≥ lim sup
k→∞

ank
≥ (ϑ + ε) lim sup

k→∞
bnk

≥ (ϑ + ε) lim inf
k→∞

bnk
≥ (ϑ + ε) lim inf

n→∞
bn,

which is a contradiction.

Lemma 3.2. For all 0 ≤ j ≤ k − 1 suppose that nj ∈ N. Then, for every n ∈ N

k−1∑

j=0

(nj − 1) ≤ n implies

k−1∏

j=0

nj ≤ en.

Proof. From the fact that log x ≤ x − 1, for all x > 0, we have

n ≥
k−1∑

j=0

(nj − 1) ≥
k−1∑

j=0

log nj = log

k−1∏

j=0

nj .

Hence the result follows by taking the exponent of both sides.

The next lemma makes precise the intuition that in a tree with little offspring after k generations, the
visibility measure of any vertex in generation k must not be small.
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Lemma 3.3. If k ∈ N and Zk ≤ n, then for all w ∈ T with |w| = k we have ν(B(w)) ≥ e−n.

Proof. Suppose Zk ≤ n and let w = (w0, . . . , wk) ∈ T is a vertex in the kth generation. As every vertex
has always at least one offspring in any later generation, we observe that

k−1∑

j=0

(N(wj) − 1) ≤ Zk ≤ n,

and so by Lemma 3.2 we have that
∏k−1

j=0 N(wj) ≤ en. Hence ν(B(w)) =
∏k−1

j=0 N(wj)
−1 ≥ e−n.

We now recall the relationship of the branching measure µ and martingales. Given a vertex v ∈ T , the
process (Zk(v)/m

k : k ∈ N) is a martingale, which by the Kesten-Stigum theorem is uniformly integrable
if and only if EN log N < ∞. This condition is satisfied under our moment assumptions and therefore
there exist random variables (W (v) : v ∈ T ) such that

lim
k→∞

Zk(v)

m
k

= W (v) almost surely, and EW (v) = 1.

Abbreviating W := W (ρ) we get, from the definition of the branching measure,

µ
(
B(v)

)
= lim

k→∞

Zk(v)

Zk+n
=

W (v)

Wm
n

for all v ∈ T , |v| = n, (1)

and moreover, for every k ∈ N, we obtain the decomposition

W (v) =
1

m
k

∑

w∈T
|w|=k

W (w) (2)

where (W (w) : |w| = k) are independent with the same distribution as W . From this formula and the
fact that W > 0 with positive probability, it is easy to see that W > 0 almost surely.

Our final lemma makes precise the intuition that a ray ξ with dimµ(ξ) ≥ θ has infinitely many vertices
ξn with very little offspring for the next (θ/a− 1)n generations. A weaker form of this lemma appears in
Lemma 5.3 of [37].

Lemma 3.4. Let θ ≥ a and ε > 0. We have that, almost surely, there exist only finitely many vertices
v ∈ T such that

log µ(B(v))

−|v|
≥ θ − ε and Zk(v) > ε|v|

where k = k(|v|, ε) is defined by

k(n, ε) =
⌊

n
(θ

a

− 1 −
ε

a

)

− A(ε)
⌋

. (3)

for a suitable constant A(ε).

Proof. Since W > 0 almost surely, we can choose A(ε) > 0 such that

P(W < m
−A(ε)) ≤ e−

2a

ε .

Using (1) it suffices to show that

P
( log W (v)

−|v| ≥ θ − a − ε and Zk(v) > ε|v|
)

(4)

is summable over the vertices of the tree, in order to use the Borel-Cantelli lemma. As the event that
v ∈ T is itself a random event we have to embed the tree T into the space

⋃∞
n=0 N

n using the canonical
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address of every vertex, so that the set of all vertices in the nth generation is a subset of N
n. It follows

that the sum of probabilities in (4) is equal to

∞∑

n=1

∑

v∈Nn

P
(
W (v) ≤ e−n(θ−a−ε), Zk(v) > εn

)
P(v ∈ T )

We can estimate

P
(
W ≤ e−n(θ−a−ε), Zk > εn

)
= P

(

m
−k

∑

w∈T
|w|=k

W (w) ≤ m
−n( θ

a
−1− ε

a
), Zk > εn

)

≤ P

( dεne
∑

j=1

Wj ≤ m
−A(ε), Zk > εn

)

,

where W1,W2 . . . are independent copies of W . Using this independence

P

( dεne
∑

j=1

Wj ≤ m
−A(ε), Zk > εn

)

≤ P
(
W ≤ m

−A(ε)
)dεne

≤ e−2na,

where the last inequality holds by definition of A(ε). Hence we have that

∞∑

n=1

∑

v∈Nn

P
(
W (v) ≤ e−n(θ−a−ε), Zk(v) > εn

)
P(v ∈ T )

≤
∞∑

n=1

e−2na

∑

v∈Nn

P(v ∈ T )

︸ ︷︷ ︸

=EZn

=

∞∑

n=1

e−na < ∞,

and the result follows from the Borel-Cantelli lemma.

Proof of Theorem 2.1. It suffices to show that, for a fixed 0 < ϑ < θ/a and 0 < δ < 1,

A := {ξ ∈ ∂T : dimµ(ξ) ≥ θ, dimν(ξ) < ϑ dimν(ξ), dimν(ξ) > δ} = ∅.

Let 1 > ε1 = θ
a
− ϑ > 0 and ε2 < (ε1a) ∧ δ2ϑ

4(2+ϑ+1/a) . There exists N2 ∈ N such that, for all n ≥ N2,

n

n + k(n, ε2)
>

(θ

a

−
ε2
a

)−1

−
1

2
δ. (5)

Now let ξ ∈ A. By Lemma 3.4 we see that Zk(ξn) ≤ ε2n infinitely often. Since dimν(ξ) > δ there exists
N3 ∈ N such that, for all n ≥ N3, we have

log ν(B(ξn))

−n
>

1

2
δ. (6)

Finally, by Lemma 3.1, there exists N4 ∈ N such that for all n ≥ N4 we have

log ν(B(ξn))

−n
< (ϑ + ε3)

log ν(B(ξn+k))

−(n + k)
, (7)

for ε3 = ε1 − ε2/a > 0. Let N1 = max{N2, N3, N4}. For n ≥ N1 we thus have, by (5) and (7), that

ν(B(ξn)) > exp
{(

(ϑ + ε3)
−1 − 1

2δ
)(

ϑ + ε3
)

log ν
(
B(ξn+k)

)}
.

For v ∈ T we denote by νv the visibility measure on the tree T (v). Hence

ν
(
B(ξn)

)
> ν

(
B(ξn+k)

)1− 1
2 δ(ϑ+ε3)

=
(
ν(B(ξn))νξn

(
B(ξk)

))1− 1
2 δ(ϑ+ε3)

.
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It follows that
(ν(B(ξn))

1
2 δ(ϑ+ε3) > νξn

(B(ξkn
))1−

1
2 δ(ϑ+ε3). (8)

From (6) we have that

(ν(B(ξn))
1
2 δ(ϑ+ε3) ≤ e−

1
4 nδ2(ϑ+ε3), (9)

and from Lemma 3.3 we have, for infinitely many n,

νξn
(B(ξk))1−

1
2 δ(ϑ+ε3) ≥ e−n(ε2+

1
2 ε2δ(ϑ+ε3)). (10)

Combining (8) with (9) and (10) we have 1
4δ2(ϑ + ε3) < ε2 + 1

2ε2δ(ϑ + ε3), and a small calculation shows
that this is in contradiction with the conditions on ε2. Hence A = ∅ and the proof is complete.

4 Proof of Theorem 2.2

4.1 Heuristics

Recall that to satisfy dimµ(ξ) ≥ θ the ray ξ typically has infinitely many substrings ξn, . . . , ξ θ
a

n in which

each vertex has exactly one offspring. The probability that a fixed vertex v is the first one in such a
string is

P{N = 1}( θ
a
−1)n = exp

{
− τ(θ − a)n

}
.

Looking at generation n, for n large, by the dimension spectrum for the visibility measure there are about

exp
{
n inf

β
{−ηβ − γ(β)}

}

vertices v which satisfy ν(B(vi)) ≈ e−iη for all 1 ≤ i ≤ n. By the law of large numbers we therefore
expect that in a large generation n we have about

exp
{
n
(
− τ(θ − a) + inf

β
{−ηβ − γ(β)}

)}

vertices v satisfying these two constraints.

Now look at G(θ, η) for η ≥ ηtyp. If a vertex v satisfies the two constraints above, then its single
descendants vi in generations i = n + 1, . . . , θ

a
n all satisfy the required lower bound ν(B(vi)) ≥ e−iη.

Therefore in generation θ
a
n we expect about exp{n(−τ(θ−a)+infβ{−ηβ−γ(β)})} vertices satisfying the

constraint on the branching measure for the radius e−n and the constraint on the visibility measure for
all radii 1 ≥ r ≥ e−n θ

a . This procedure can now be applied independently to all the subtrees descending
from these vertices, so that we expect the Hausdorff dimension of G(θ, η) to be

a

θ

(
− τ(θ − a) + inf

β
{−ηβ − γ(β)}

)
.

Next look at G(θ, η) for η ≤ η−
typ. If a vertex v satisfies the two constraints above, then its only

descendant w in generation θ
a
n has ν(B(w)) ≈ e−nη which violates the condition on the visibility measure

if θ > a. We therefore require that the vertex v satisfies ν(B(vi)) ≈ e−iη̃ for 1 ≤ i ≤ n and η̃ = θ
a
η,

to ensure that all descendants vi in generations i = n + 1, . . . , θ
a
n satisfy the required lower bound

ν(B(vi)) ≥ e−iη. In generation θ
a
n there are now exp{n(−τ(θ − a) + infβ{−η̃β − γ(β)})} vertices w

satisfying the constraint on the branching measure for the radius e−n and the constraint on the visibility
measure for all radii 1 ≥ r ≥ e−n θ

a . Applying the same procedure independently to all the subtrees
descending from these vertices, we now expect the Hausdorff dimension of G(θ, η) to be

a

θ

(
− τ(θ − a) + inf

β
{− θ

a
ηβ − γ(β)}

)
.

On a more technical level, we need to treat upper and lower bounds for the Hausdorff dimension separately.
For the upper bounds, given in Section 4.2, we use natural coverings of the sets G(θ, η) and G(θ, η). The
sets are covered by balls B(ξ θ

a
n) where ξn, . . . , ξ θ

a
n are strings of vertices with (mostly) one offspring, and

9



• in the first case we require that νB(ξn) ≥ e−nη,

• in the second case we require that νB(ξ θ
a

n) ≤ e−n θ
a

η.

For the lower bounds, proved in Section 4.3, we use the percolation technique suggested in [21] and used
in [28] to study the branching measure. For a given retention parameter p ∈ [0, 1] we remove any edge
from the tree independently with probability 1 − p and consider the connected component of the root.
If this connected component has a positive probability of being infinite, we obtain a lower bound on the
Hausdorff dimension of the boundary of the tree, given in terms of p. In our case we need to establish a
positive probability for the existence of a ray, which survives percolation and satisfies the constraints on
the visibility measure for balls of every radius, and the constraints on the branching measure for infinitely
many radii. The technical construction of this ray is based on the idea given in the heuristics above and a
density argument, which uses the Baire category theorem in a carefully constructed regular subset of ∂T .

4.2 The upper bounds

Given δ > 0 and η ≤ ηtyp, we cover G(θ, η) with balls of radius less than or equal to δ. To do this take
n0 = d− log δe, let ε > 0 and k as defined in (3). By Lemma 3.4 we have a cover for G(θ, η) given by

G(θ, η) ⊆
⋃

n≥n0

⋃

v∈T
|v|=n

log(ν(B(v)))
−n

≤η+ε

Zk(v)≤εn

⋃

w∈T (v)
|w|=k

B(w). (11)

Similarly, if η ≥ η−
typ, we have a cover for G(θ, η) given by

G(θ, η) ⊆
⋃

n≥n0

⋃

v∈T
|v|=n

Zk(v)≤εn

⋃

w∈T (v)
|w|=k

log ν(B(w))
−(n+k)

≥η−ε

B(w). (12)

Note that, in line with the heuristics, in (11) the condition on the visibility measure is tested for the
vertices in generation n, whereas in (12) it is tested for the vertices in generation n+ k. Verification that
the covers above give good upper bounds is very similar, and therefore we focus on (12).

We require the following lemma, which is a combination of two results from the literature.

Lemma 4.1. If nk/m
k → 0 as k → ∞, then P(Zk ≤ nk) = exp{−kaτ + o(k)}.

Proof. By Theorem 4 of Fleischmann and Wachtel [12] we have

P(Zk ≤ nk) = P(W < m
−knk)(1 + o(1)),

and a well-known result of Dubuc [10], see also Biggins and Bingham [7] and Mörters and Ortgiese [27]
states that here exist constants c, C > 0 such that, for 0 < ε < 1, we have

cετ ≤ P(W < ε) ≤ Cετ .

Hence P(Zk ≤ nk) ≤ C (1+o(1)) (m−knk)τ = exp{−kaτ+o(k)}, and analogously for the lower bound.

We need to bound the sum of diameters, raised to the power s, taken over all the covering balls, i.e.

∑

n≥n0

∑

v∈T
|v|=n

1{Zk(v) ≤ εn}
∑

w∈T (v)
|w|=k

1{ν(B(w)) ≤ e−(n+k)(η−ε)} |B(w)|s

To determine when this quantity is finite we take its expectation, which equals

∑

n≥n0

e−(n+k)s
E

[ ∑

w∈T
|w|=n+k

1{Zk(wn) ≤ εn}1{ν(B(w)) ≤ e−(n+k)(η−ε)}
]

. (13)
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Now note that for any vertex w ∈ T with |w| = n+k we have
∑n+k−1

j=n (N(wj)−1) ≤ Zk(wn), and hence,
by Lemma 3.2, Zk(wn) ≤ εn implies that

n+k−1∏

j=n

N(wj) ≤ eεn.

Now, for β > 0, it follows that the expectation of interest is equal to

∑

n≥n0

e−(n+k)s
E

[ ∑

w∈T
|w|=n+k

1{Zk(wn) ≤ εn,

n+k−1∏

j=n

N(wj) ≤ eεn, ν(B(w)) ≤ e−(n+k)(η−ε)}
]

=
∑

n≥n0

e−(n+k)s
E

[ ∑

w∈T
|w|=n+k

1{Zk(wn) ≤ εn,
n+k−1∏

j=n

N(wj)
β ≤ eβεn,

n+k−1∏

j=0

N(wj)
β ≥ eβ(n+k)(η−ε)}

]

≤
∑

n≥n0

e−(n+k)s
E

[ ∑

w∈T
|w|=n+k

1{Zk(wn) ≤ εn,
n−1∏

j=0

N(wj)
β ≥ eβ(n+k)(η−ε)−βεn}

]

.

Expressing the sum over the vertices in generation n + k as a sum over the vertices in generation n we
see that this is equal to

∑

n≥n0

e−(n+k)s
E

[

Zk(v)
∑

v∈T
|v|=n

1{Zk(v) ≤ εn,

n−1∏

j=0

N(vj)
β ≥ eβ(n+k)(η−ε)−βεn}

]

≤
∑

n≥n0

e−(n+k)selog εne−β(n+k)(η−ε)+βεn
E

[ ∑

v∈T
|v|=n

n−1∏

j=0

N(vj)
β 1{Zk(v) ≤ εn}

]

.

The expectation inside is, using Lemma 4.1,

E

[ ∑

v∈T
|v|=n

n−1∏

j=0

N(vj)
β 1{Zk(v) ≤ εn}

]

= E

[ ∑

v∈T
|v|=n

n−1∏

j=0

N(vj)
β
]

P{Zk(v) ≤ εn} = e−nγ(β)−kaτ+o(n).

Summarising, the expectation in (13) is finite if

−β ( θ
a
− ε

a
)(η − ε) + βε − τ

(
θ − a − ε

)
− γ(β) < s

(
θ
a
− ε

a

)
.

Solving for s and noting that ε > 0 was arbitrary, we get

dim G(θ, η) ≤ −aτ
(
1 − a

θ

)
+ a

θ inf
β>0

{
− βθη

a
− γ(β)

}
. (14)

It remains to show that the infimum can be extended to nonpositive values of β.

Lemma 4.2. If η > η−
typ then infβ>0{−

βθη
a

− γ(β)} = infβ{−
βθη
a

− γ(β)}.

Proof. Differentiating the variational problem with respect to β we see that

d
dβ {−

βθη
a

− γ(β)} = − θη
a

+ d
dβ log ENβ+1 = − θη

a
+ ENβ+1 log N

ENβ+1

and so the minimizer β0 satisfies a

θ
ENβ0+1 log N

ENβ0+1 = η. The assumption η > η−
typ implies β0 > 0.

Finally, when η = η−
typ then the minimiser in infβ{−

βθη
a

−γ(β)} is β = 0. Combining this with Lemma 4.2
and (14) completes the proof of the upper bound.
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4.3 The lower bounds

For the proof of the lower bound we will again focus on the proof of (b), as the proof of (a) is similar
but conceptually slightly easier. We use percolation on the tree in order to find a lower bound for the
dimension, and first provide a reminder of the notation and important facts.

Given an arbitrary, infinite tree T and a retention parameter p ∈ [0, 1], we define a family of independent
{0,1}-valued random variables X(v), indexed by the vertices, such that P(X(v) = 1) = p. The percolated
tree T ∗ is then comprised of the connected component of the root in the graph consisting of all the
vertices v ∈ T with X(v) = 1 and the edges between them. We use the following lemma of Lyons [21].

Lemma 4.3. Let T be an arbitrary, infinite tree. Then

(a) If p < e− dim ∂T , then ∂T ∗ = ∅ almost surely.

(b) If p > e− dim ∂T , then ∂T ∗ 6= ∅ with positive probability.

Remark 4.1. With the help of the Choquet capacitability theorem one can infer the following useful
consequence of Lemma 4.3: If an analytic set E ⊂ ∂T satisfies E ∩ ∂T ∗ 6= ∅ with positive probability,
then dim E ≥ − log p. This is the form in which we shall use Lemma 4.3.

For the visibility measure ν on a tree T , we define, for any η > 0,

F (η) :=
{
ξ ∈ ∂T : dimν(ξ) ≥ η

}
,

and a compact set A(η) ⊂ F (η) by

A(η) :=
{
ξ ∈ ∂T : ν

(
B(ξi)

)
≤ e−iη ∀i ∈ N

}
.

The next result is due to Hawkes [15] in a general set-up, and proved in the context of trees in the final
paragraph of [21].

Lemma 4.4. For any E ⊂ ∂T and ε > 0 we have

dim
(
E ∩ ∂T ∗

)
≥ log p + dim E − ε with positive probability.

We now focus our attention on Galton-Watson trees. Recall the Galton-Watson 0-1 law as described in
Peres [34]: A property A of trees is called inherited if all finite trees have property A and, whenever T
has property A, all its descendent subtrees T (v), for v ∈ T , have property A. For a Galton-Watson tree,
any inherited property A satisfies P(A | ∂T 6= ∅) ∈ {0, 1}.

The next lemma combines the multifractal spectrum for the visibility measure of Galton-Watson trees,
as given in [16], with Lemma 4.4. From now on P and the notion of probability refer to the joint law
of the Galton-Watson tree and the percolation variables indexed by this tree. Observe that, if T is a
Galton-Watson tree, then so is any percolated tree T ∗ derived from it.

Lemma 4.5. Let
sup
β<0

{−γ(β)
β

}
< η < inf

β>0

{−γ(β)
β

}
.

For every p ≥ exp(− infβ{−βη − γ(β)}) and ε > 0, we have

dim A(η) ∩ ∂T ∗ > log p + inf
β
{−βη − γ(β)} − ε with positive probability.

Proof. Recall from [16] that dimF (η) = infβ{−βη − γ(β)} almost surely. This easily implies that
dimA(η) > infβ{−βη − γ(β)} − ε with positive probability, and the result follows from Lemma 4.4.

We now formulate the key lemma for the proof. We define, for 0 < x < 1,

Ax(η) :=
{
ξ ∈ ∂T : e

log x
a

ην(B(ξi)) ≤ e−iη ∀i ∈ N
}
.
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Lemma 4.6. Fix θ ≥ a and
inf
β>0

{−γ(β)
β

}
> η̃ ≥ η ≥ η−

typ,

and a retention parameter

p > exp
{
aτ(1 − a

θ ) − a

θ inf
β
{−βη̃ − γ(β)}

}
.

Then there exists C, κ, ε0 > 0 such that, for all 0 < x < 1 and 0 < ε < ε0, we have

P
(
W < κx and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ (1 − a

θ )(inf
β
{−βη̃ − γ(β)} + aτ) + 2ε

)

≥ C xτ− log p
a .

Proof. Let
k := k(x) := d− log x

a
e and d :=

(
1 − a

θ

)(
inf
β
{−βη̃ − γ(β)} + aτ

)
.

We have, for any κ ≥ 1 and ε > 0,

P
(
W < κx and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

)

≥ P
(
W < κx and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε | Zk = 1

)
P(Zk = 1). (15)

Recall that P(Zk = 1) = P (N = 1)k. For a lower bound on the first probability in (15) use (2) to observe
that

P
(
W < κx and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε | Zk = 1

)

≥ P

(

m
−k

∑

w∈T
|w|=k

W (w) < m
−kκ and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

∣
∣
∣ Zk = 1

)

= P
(
W (w) < κ and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

∣
∣ Zk = 1

)

where w is the unique vertex in the kth generation. Note that kη ≥ − log x
a

η and hence, for 0 ≤ i ≤ k,

e
log x

a
ην(B(wi)) ≤ e−kην(B(wi)) = e−kη ≤ e−iη.

As Zk = 1 we have ∂T ∗ 6= ∅ only if X(wi) = 1 for i = 0, . . . , k, an event which has probability pk. We
hence see that

P
(
W (w) < κ and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

∣
∣ Zk = 1

)

≥ P
(
W < κ and dim(A(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

)
pk.

(16)

As in Lemma 4.5, by choice of p, there exists c0, ε0 > 0 such that

P
(
dim(A(η) ∩ F (η̃ + ε0) ∩ ∂T ∗) ≥ d + 2ε0

)
≥ c0.

Since W is finite, we have

P
(
dim(A(η) ∩ F (η̃ + ε0) ∩ ∂T ∗) ≥ d + 2ε0

)

= lim
κ→∞

P
(
W < κ and dim(A(η) ∩ F (η̃ + ε0) ∩ ∂T ∗) ≥ d + 2ε0

)
.

It follows that, for a large enough choice of κ > 1, we can bound this probability from below by a positive
constant c1 > 0. Putting this together with (16) we have, for all 0 < ε ≤ ε0, that

P
(
W < κx and dim(Ax(η) ∩ F (η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

)
≥ c1p

kP (N = 1)k ≥ Cxτ− log p
a

for a suitable constant C > 0.
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We now proceed with the proof of the lower bound. We fix θ ≥ a, η ≥ η−
typ = a

θ ηtyp and let η̃ := θ
a
η. We

also fix a retention parameter

p > pcrit := exp
{
aτ (1 − a

θ ) − a

θ inf
β
{− θ

a
βη − γ(β)}

}

and denote the percolated tree by T ∗. We define a compact set

A∗(η) := A(η) ∩ ∂T ∗ =
{
ξ ∈ ∂T ∗ : ν

(
B(ξn)

)
≤ e−nη for all n ∈ N

}

and, for 0 < ε < ε0 as in Lemma 4.6, its regularization

A◦(η) := A∗(η) \
⋃{

B(v) : dim
(
B(v) ∩ A∗(η) ∩ F (η̃ + ε)

)
<

(
1 − a

θ

)(
inf
β
{− θ

a
βη − γ(β)} + aτ

)
+ ε

}

.

Lemma 4.7. For a suitably small ε > 0, we have A◦(η) 6= ∅ with positive probability.

Proof. It obviously suffices to show that there exists ε > 0 such that, with positive probability,

dim
(
A∗(η) ∩ F (η̃ + ε)

)
≥

(
1 − a

θ

)(
inf
β
{− θ

a
βη − γ(β)} + aτ

)
+ 2ε.

By Lemma 4.5 we have, with positive probability,

dim
(
A∗(η̃ + ε)

)
≥ log p + inf

β
{−β(η̃ + ε) − γ(β)} − ε.

As p > pcrit we find ε > 0 such that

log p + inf
β
{−β(η̃ + ε) − γ(β)} − ε ≥ log pcrit + inf

β
{−βη̃ − γ(β)} + 2ε

=
(
1 − a

θ

)(
inf
β
{− θ

a
βη − γ(β)} + aτ

)
+ 2ε.

It remains to note that η̃ ≥ η and hence A∗(η) ∩ F (η̃ + ε) ⊇ A∗(η̃ + ε).

We may now consider 0 < ε < ε0 fixed to satisfy Lemma 4.7. For each N ∈ N, let

U(N) :=
{
ξ ∈ A◦(η) : ∃n ≥ N with − log µ(B(ξn)) > nθ + log W

κ

}
.

The following lemma is key to proving the lower bound for G(θ, η).

Lemma 4.8. Almost surely, for all N ∈ N, we have that U(N) is dense in A◦(η).

Proof. We need to show that, for any v ∈ T with B(v) ∩ A◦(η) 6= ∅, we find a ray ξ ∈ B(v) ∩ A◦(η) and
n ≥ N with − log µ(B(ξn)) > nθ + log(W/κ). For this purpose fix v ∈ T and abbreviate m = |v|. Recall
that T (v) is the tree consisting of the offspring of v and use the notation |w|v to indicate the generation
of w in T (v). Let G(n) be the σ-algebra generated by the event {v ∈ T ∗}, the random variable ν(B(v))
and the tree T (v) up to generation n including the random variables {X(w) : w ∈ T (v), |w|v ≤ n}.

Let Kn be the collection of vertices w = (w0, . . . , wn+m) with wm = v such that

ν
(
B(w)

)
≤ e−(m+n)η̃ and ν

(
B(wi)

)
≤ e−iη for all i ∈ {m, . . . ,m + n}.

Let Kn be the cardinality of Kn, which is a G(n)-measurable random variable. We define a sequence of
G(n) stopping times N0, N1, . . . by N0 = N and

Nk = min
{

n > Nk−1 : Kn ≥ exp
{
n
(
(1 − a

θ )(inf
β
{− θ

a
βη − γ(β)} + aτ) + ε

2

)}}

.

If v ∈ T satisfies B(v) ∩ A◦(η) 6= ∅, then these stopping times are finite, because the contrary would
imply an upper bound of (1 − a

θ )(infβ{−
θ
a
βη − γ(β)} + aτ) + ε

2 for the Hausdorff dimension of B(v) ∩
A∗(η) ∩ F (η̃ + ε), contradicting the assumption B(v) ∩ A◦(η) 6= ∅.
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For every vertex w ∈ KNj
define the sets Ax

w(η) and Fw(η) in the same way as Ax(η) and F (η), but with
reference to the tree T (w). Abbreviate

d :=
(
1 − a

θ

)(
inf
β

{
− θ

a
βη − γ(β)

}
+ aτ

)
+ 2ε and x := e(Nj+m)(a−θ).

Define the event

E(w) :=
{
− log µ(B(w)) > (Nj + m) θ + log W

κ and dim(Ax
w(η) ∩ Fw(η̃ + ε) ∩ ∂T (w)∗)) ≥ d

}

=
{
W (w) < κx and dim(Ax

w(η) ∩ Fw(η̃ + ε) ∩ ∂T (w)∗) ≥ d
}
,

where the second equality follows from (1). Given G(Nj), the events E(w) for w ∈ KNj
are independent.

Moreover, E(w) implies that there exists a ray

(w1, . . . , wm+Nj
, ξ1, ξ2, . . .) ∈ B(v) ∩ A◦(η)

such that − log µ(B(w)) > (Nj + m)θ + log(W/κ), which are the required properties.

Hence it remains to show that, given a vertex v ∈ T , |v| = m, such that N0, N1, . . . is a sequence of finite
stopping times, almost surely there exists j ≥ 1 and w ∈ KNj

such that E(w) holds. By Lemma 4.6 the
probability P(E(w) | G(Nj)) given w ∈ KNj

is bounded from below by a constant multiple of

exp
{
(Nj + m)(a − θ)(τ − log p

a
)
}

≥ exp
{
− (Nj + m)(1 − a

θ )(inf
β

{
− βη θ

a
− γ(β)

}
+ aτ)

}

=: h(Nj).

Recall that
KNj

≥ exp
(
Nj

((
1 − a

θ

)(
inf
β
{−βη θ

a
− γ(β)} + aτ

)
+ ε

2

))
.

Hence
P
(
E(w) fails for all w ∈ KNj

| G(Nj)) ≤
(
1 − C exp{h(Nj)}

)KNj ,

and the result follows as limj→∞

(
1 − C exp{h(Nj)}

)KNj = 0.

We now use Lemma 4.8 and the Baire (category) theorem to prove the following lemma, which will
eventually lead to a lower bound for G(θ, η). Define

A∗(θ, η) :=
{
ξ ∈ ∂T ∗ : ν

(
B(ξn)

)
≤ e−nη for all n ∈ N and

µ(B(ξn)) ≤ κ
W e−nθ for infinitely many n ∈ N

}
.

Lemma 4.9. With positive probability we have A∗(θ, η) 6= ∅.

Proof. Note that
⋂∞

N=1 U(N) ⊆ A∗(θ, η). Observe that U(N) is relatively open in A◦(η), which is
compact, and hence a complete metric space. Now Lemma 4.8 says that, almost surely, for every N ∈ N,
we have U(N) is dense in A◦(η). By the Baire theorem therefore

∞⋂

N=1

U(N) is dense in A◦(η)

and hence A∗(θ, η) is nonempty if A◦(η) 6= ∅, which by Lemma 4.7 is an event of positive probability.

We now complete the proof of Theorem 2.2 (b). By Lemma 4.9, if p > pcrit, with positive probability,

G(θ, η) ∩ ∂T ∗ ⊇ A∗(θ, η) 6= ∅.

Hence we obtain from the remark following Lemma 4.3 that dim G(θ, η) ≥ − log p with positive proba-
bility. Finally we observe that dim G(θ, η) < − log p is an inherited property of the Galton-Watson tree
and as a result either has probability 0 or 1 by the Galton-Watson 0-1 law. Since the complementary
event has positive probability, it must have probability zero. Letting p ↓ pcrit completes the proof.
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cesses, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), 233–255.

[13] U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, Proc. Int. Sch.
Phys. (1985), 84–88.

[14] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman, Fractal measures and
their singularities: The characterization of strange sets, Phys. Rev. A 33 (1986), 1141–1151.

[15] J. Hawkes, Trees generated by a simple branching process, J. London Math. Soc. 24 (1981), 373–384.

[16] A.L. Kinnison, The multifractal spectrum of harmonic measure for forward moving random walks on
a Galton-Watson tree, Stat. Prob. Letters 78 (2008), 3114 – 3121.

[17] A. Klenke and P. Mörters, The multifractal spectrum of Brownian intersection local times, Ann.
Probab. 33 (2005), 1255–1301.

[18] K.S. Lau and S.M. Ngai, Multifractal measures and a weak separation condition, Adv. Math. 141

(1999), 45 – 96.

[19] Q. Liu, Local dimensions of the branching measure on a Galton-Watson tree, Ann. Inst. H. Poincaré
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