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PETER MÖRTERS AND NADIA SIDOROVA

Abstract: We define a class of weakly self-avoiding walks on
the integers by conditioning a simple random walk of length n
to have a p-fold self-intersection local time smaller than nβ,
where 1 < β < (p+1)/2. We show that the conditioned paths
grow of order nα, where α = (p− β)/(p− 1), and also prove
a coarse large deviation principle for the order of growth.

1. Introduction and main results

Weakly self-avoiding walks are defined by multiplying the distribution of a
simple symmetric random walk path (Si : 1 ≤ i ≤ n) on Zd with a density
which is decreasing in the p-fold intersection local time

Λn(p) =
∑

0≤i1,...,ip≤n
1{Si1 = · · · = Sip}

of the walk, where p ∈ N and p ≥ 2. In the classical Domb-Joyce model this
density is given as

1
Zn

exp
{
− 1

T Λn(2)
}
,

where T > 0 is a temperature parameter and Zn is a normalising factor. This
model is well-understood in the one-dimensional case, where the resulting
polymers grow like ∼ c n and laws of large numbers, central limit theorems
and large deviation results are established, see [2] for a survey.

A natural alternative to the Domb-Joyce model is to choose densities

1{Λn(p) < bn}
P
{

Λn(p) < bn}

where bn grows slower than EΛn(p). In this paper we study this model in
dimension d = 1. At a first glance, this may look harder to analyse than
the Domb-Joyce model, but it turns out that interesting behaviour kicks in
on a coarser scale and we are helped by the fact that on this scale we can
understand, to a certain extent, what kind of behaviour of the walk realises
the event {Λn(p) < bn} with maximal probability. As bn varies between the
expectation and the minimum of Λn(p), we see weakly self-avoiding walks
with typical growth of any order between

√
n and n.
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To formulate our results precisely, we define the local time of the random
walk at z ∈ Z by

`n(z) =
n∑
i=0

1{Si = z},

which is exactly the number of visits to z until time n. Note that, for any
integer p > 1, the p-fold self-intersection local time is

Λn(p) =
∑
z∈Z

`pn(z).(1)

Hence, n ≤ Λn(p) ≤ np and it is not hard to show (see Lemma 3) that
EΛn(p) � n

p+1
2 (which means that the ratio of the two sides is bounded

away from zero and infinity). We define

S̄n = max
0≤i≤n

|Si|

and state a limit theorem for S̄n under the conditional probability.

Theorem 1 (Law of large numbers). Let εn ↓ 0 such that ε
2
p−1
n n → ∞.

Then there exist constants 0 < c < C <∞ such that

P
{
c
√
n ε
− 1
p−1

n ≤ S̄n ≤ C
√
n ε
− 1
p−1

n

∣∣ Λn(p) ≤ εn EΛn(p)
}
→ 1.

Remarks:

• The condition ε
2
p−1
n n→∞ ensures that εn EΛn(p) grows faster than

n, which is a strict lower bound for Λn(p). Hence the conditioning
event has positive probability.
• An important step in the proof of Theorem 1 is to analyse the

asymptotic behaviour of the probability of the conditioning event.
This result will be formulated as Theorem 3 in the next section.
• It would be interesting to see if there exists a constant c∗ > 0 such

that, in probability, S̄n ∼ c∗
√
n ε−1/(p−1)

n , but the methods of this
paper do not allow to show this.
• In Theorem 1, we assume that p is an integer, but it is plausible that

the same statement is true for any p > 1 if we use (1) as a definition
of Λn(p).

As a particular case of the law of large numbers, if we condition the random
walk on the event {Λn(p) ≤ nβ} for some 1 < β < p+1

2 , we obtain a typical
growth rate of

log S̄n
log n

∼ p− β
p− 1

for the weakly self-avoiding walk. Interestingly, it turns out that the prob-
ability of deviations from this behaviour decay with a speed dependent on
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the size of the deviation. The following coarse large deviation principle de-
scribes this behaviour. For its formulation we define log(2)(x) = log | log x|
for all 0 < x < 1, as well as log(2)(1) = −∞ and log(2)(0) =∞.

Theorem 2 (Large deviation principle). Suppose 1 < β < p+1
2 . Then, for

any 1 > a > p−β
p−1 , we have

lim
n↑∞

1
log n

log(2) P
{ log S̄n

log n
> a

∣∣∣Λn(p) ≤ nβ
}

= 2a− 1,

and, for any 0 < a < p−β
p−1 and c > 0 small enough

P
{
S̄n < cna

∣∣Λn(p) ≤ nβ
}

= 0 .

for all sufficiently large n.

Remark: In fact, we prove a stronger (but more technical) result, see
Proposition 1 for the precise formulation. In particular, our result shows
that the typical growth rate for any walk with Λn(p) ≤ nβ is p−β

p−1 , while
larger growth rates are possible but occur with subexponentially decaying
probability, and smaller rates are not possible at all.

Coming back to the beginning of this introduction, we see that, if p = 2,
the Domb-Joyce model can be interpreted as a limiting case of our models
when β ↓ 1, in which case both the self-intersection local time Λn(2), and
the growth of the polymer are linear in n. Hence the self-avoidance in the
Domb-Joyce model is significantly stronger than in our models.

2. Lower deviations for self-intersection local times

As an important step in the proof, we compute the asymptotics for the
probability of lower deviations of Λn(p) from its expectation. This is also of
independent interest.

Theorem 3. Let εn > 0 be such that εn → 0 and ε
2
p−1
n n→∞. Then,

− log P (Λn(p) ≤ εnEΛn(p)) � ε
− 2
p−1

n .

Remark: An analogous lower deviation regime also exists for self-inter-
sections of planar random walks, see [1, Theorem 1.2]. Results for the lower
deviations of self-intersection local times of one-dimensional Brownian mo-
tion are discussed in [4].

In the following, we fix p > 1 and abbreviate Λn = Λn(p). We assume that
εn > 0 is such that

εn → 0 and ε
2
p−1
n n→∞.
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We prepare the proof of Theorem 3 with two easy lemmas dealing with the
curtailed Green function

Gn(z) = E`n(z) =
n∑
i=0

P
(
Si = z

)
for z ∈ Z.

The first lemma is elementary and is included for the sake of self-containment.

Lemma 1. The curtailed Green function has the following properties:

(1)
∑
z∈Z

Gn(z) = n;

(2)
∑
z∈Z

G2
n(z) � n

3
2 ;

(3) Gn(0) �
√
n and Gn(1) �

√
n.

Proof. Formula (1) is trivial, and (2) is proved in [3, (3.4)]. To show (3), we
use the Stirling formula

n! = exp
{
n log n− n+ log

√
2πn+ δn

}
,

where δn → 0. We have

Gn(0) =
n∑
i=0

P(Si = 0) =
bn/2c∑
i=0

(
2i
i

)
2−2i =

bn/2c∑
i=0

(2i)!
(i!)2

2−2i

=
bn/2c∑
i=0

exp
{

2i log(2i)− 2i+ log
√

4πi

+ δ2i − 2i log i+ 2i− 2 log
√

2πi− 2δi − 2i log 2
}

=
bn/2c∑
i=0

exp
{

log
√

4πi+ δ2i − 2 log
√

2πi− 2δi
}
�
bn/2c∑
i=0

i−
1
2 �
√
n

and

Gn(1) =
n∑
i=0

P(Si = 1) =
dn/2e∑
i=1

(
2i− 1
i

)
2−2i+1 =

dn/2e∑
i=0

(
2i
i

)
2−2i − 1.

This implies Gn(0)−1 ≤ Gn(1) ≤ Gn+1(0)−1, which gives Gn(1) �
√
n. �

Lemma 2. For every q ∈ N, we have

Gbn/qc(z)G
q−1
bn/qc(0) ≤ E`qn(z) ≤ q!Gn(z)Gq−1

n (0).
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Proof. We first prove the lower bound. We have

E`qn(z) = E
n∑

i1=0

· · ·
n∑

iq=0

q∏
j=1

1{Sij = z}

≥
∑

0≤i1≤nq

∑
i1≤i2≤i1+n

q

· · ·
∑

iq−1≤iq≤iq−1+n
q

P
(
Si1 = z

) q∏
j=2

P
(
Sij−ij−1 = 0

)
=

∑
0≤i1≤nq

· · ·
∑

0≤iq≤nq

P
(
Si1 = z

) q∏
j=2

P
(
Sij = 0

)

=
( bn/qc∑

i=0

P
(
Si = z

))( bn/qc∑
i=0

P
(
Si = 0

))q−1
= Gbn/qc(z)G

q−1
bn/qc(0).

For the upper bound, we get

E`qn(z) ≤ q!
∑

0≤i1≤···≤iq≤n
P
(
Si1 = · · · = Siq = z

)
= q!

∑
0≤i1≤···≤iq≤n

P
(
Si1 = z

) q∏
j=2

P
(
Sij−ij−1 = 0

)
≤ q!

∑
0≤i1,...,iq≤n

P
(
Si1 = z

) q∏
j=2

P
(
Sij = 0

)
= q!Gn(z)Gq−1

n (0),

which completes the proof. �

In the next two lemmas, we study the asymptotic behaviour of the first two
moments of Λn.

Lemma 3. EΛn � n
p+1
2 .

Proof. Applying Lemmas 1 and 2 with q = p, we obtain

EΛn =
∑
z∈Z

E`pn(z) ≥ Gp−1
bn/pc(0)

∑
z∈Z

Gbn/pc(z) � n
p+1
2 ,

and

EΛn ≤ p!Gp−1
n (0)

∑
z∈Z

Gn(z) � n
p+1
2 ,

which completes the proof. �

Lemma 4. There exists c > 0 such that EΛ2
n ≤ cnp+1 for all n.
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Proof. We have

EΛ2
n = E

( ∑
0≤i1,...,ip≤n

1{Si1 = · · · = Sip}
)2

=
∑
z,w∈Z

∑
0≤i1,...,ip≤n
0≤j1,...,jp≤n

P(Si1 = · · · = Sip = z, Sj1 = · · · = Sjp = w)

≤ (2p)!
∑
z,w∈Z

∑
0≤l1≤···≤l2p≤n

∑
A⊂{1,...,2p}
|A|=p

2p∏
i=1

P
(
Sli−li−1

= az,wi (A)
)
,(2)

where l0 = 0 and, for all 2 ≤ i ≤ 2p,

az,w1 (A) =
{
z, if 1 ∈ A,
w, if 1 /∈ A, az,wi (A) =


z − w, if i ∈ A, i− 1 /∈ A,
w − z, if i /∈ A, i− 1 ∈ A,

0, if i, i− 1 ∈ A or
if i, i− 1 /∈ A,

Observe that if 1 ∈ A then az,w1 = z and there is an index i(A) ∈ {2, . . . , 2p}
such that az,wi(A) = w − z. On the other hand, if 1 /∈ A then az,w1 = w and
there is an index i(A) ∈ {2, . . . , 2p} such that az,wi(A) = z − w.
Further, denote ki = li − li−1 and notice that

P
(
Ski = az,wi (A)

)
≤ P

(
Ski ∈ {0, 1}

)
.

We will use this estimate to bound all the factors in the product in (2)
except those numbered 1 and i(A). This gives

EΛ2
n ≤ (2p)!

∑
z,w∈Z

∑
0≤k1,...,k2p≤n

∑
A⊂{1,...,2p}
|A|=p

2p∏
i=1

P
(
Ski = az,wi (A)

)
≤ (2p)!

∑
z,w∈Z

∑
0≤k1,...,k2p≤n

∑
A⊂{1,...,2p}
|A|=p

∏
i/∈{1,i(A)}

P
(
Ski = az,wi (A)

)
×
[
1{1 ∈ A}P

(
Sk1 = z

)
P
(
Ski(A)

= w − z
)

+ 1{1 /∈ A} P
(
Sk1 = w

)
P
(
Ski(A)

= z − w
)]
.
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Rearranging the terms, we obtain

EΛ2
n ≤ (2p)!

∑
z,w∈Z

∑
0≤k1,...,k2p≤n

1
2

(
2p
p

) 2p∏
i=3

P
(
Ski ∈ {0, 1}

)
[
P
(
Sk1 = z

)
P
(
Sk2 = w − z

)
+ P

(
Sk1 = w

)
P
(
Sk2 = z − w

)]
≤ (2p)!2

[ ∑
0≤k3,...,k2p≤n

2p∏
i=3

P
(
Ski ∈ {0, 1}

)]
×
[ ∑

0≤k1,k2≤n

∑
z,w∈Z

P
(
Sk1 = z

)
P
(
Sk2 = w

)]
= (2p)!2n2

[ n∑
k=0

P
(
Sk ∈ {0, 1}

)]2p−2

= (2p)!2n2
[
Gn(0) +Gn(1)

]2p−2 � np+1,

where the last line follows from Lemma 1. �

We fix some small number 0 < η < 1. Define

Bη
n =

{
sup

0≤i≤n

∣∣∣ Si√
n
− η
∣∣∣ < 1, 1 <

Sn√
n
< 1 + η

}
.

Lemma 5. P(Bη
n) � 1;

Proof. By Donsker’s invariance principle there is a standard one-dimensional
Brownian motion (Bt)0≤t≤1 defined on the same probability space as (Si)i∈N0

such that

P
(

sup
0≤i≤n

∣∣∣ Si√
n
−Bi/n

∣∣∣ > δ

)
→ 0,(3)

for any δ > 0. Further,

P
[

sup
0≤i≤n

∣∣ Si√
n
− η
∣∣ < 1, 1 < Sn√

n
< 1 + η

∣∣∣∣ sup
0≤i≤n

∣∣ Si√
n
−Bi/n

∣∣ ≤ δ]

≥ P
[

sup
0≤t≤1

∣∣Bt − η∣∣ < 1− δ, 1 + δ < B1 < 1 + η − δ
∣∣∣∣ sup

0≤i≤n

∣∣ Si√
n
−Bi/n

∣∣ ≤ δ]
→ P

(
sup

0≤t≤1

∣∣Bt − η∣∣ < 1− δ, 1 + δ < B1 < 1 + η + δ
)
> 0,

for δ < min{1−η, η/2}, which, together with (3), implies the statement. �
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Abbreviate an = EΛn and let (mn) be the sequence of natural numbers such
that 2mn ≤ n < 2mn+1.

Lemma 6 (Upper bound). There is a constant C > 0 such that

log P
(
Λn ≤ εnan

)
≤ −C ε

− 2
p−1

n .

Proof. Let (kn) be the sequence of natural numbers such that

cε
2
p−1
n n ≤ 2kn < 2cε

2
p−1
n n,

where the constant c will be specified later. Note that, by choice of εn, we
have 2kn →∞. To obtain an upper bound for P(Λn ≤ εnan), we only count
self-intersections occurring within 2mn−kn disjoint intervals of length 2kn .
We fix n and, for each 1 ≤ j ≤ 2mn−kn , denote

S
(n,j)
i = S(j−1)2kn+i − S(j−1)2kn , 0 ≤ i ≤ 2kn .

They are simple symmetric random walks starting at zero, which are inde-
pendent. Denote, for z ∈ Z,

`
(n,j)

2kn
(z) =

2kn∑
i=0

1{S(n,j)
i = z} =

j2kn∑
i=(j−1)2kn

1{Si = z + S(j−1)2kn}.

For each 1 ≤ j ≤ 2mn−kn , denote by

Ynj =
j2kn∑

i1=(j−1)2kn

· · ·
j2kn∑

ip=(j−1)2kn

1{Si1 = · · · = Sip}

the number of p-fold self-intersections in the j-th interval. We have

Ynj =
∑
z∈Z

j2kn∑
i1=(j−1)2kn

· · ·
j2kn∑

ip=(j−1)2kn

1{Si1 = · · · = Sip = z + S(j−1)2kn}

=
∑
z∈Z

[
`
(n,j)

2kn
(z)
]p
,

and by Lemma 3 we get

EYnj = EΛ2kn � 2
kn(p+1)

2 .

Notice that

Λn ≥
2mn−kn∑
j=1

(
Ynj − 1

)
and so

P (Λn ≤ εnan) ≤ P
( 2mn−kn∑

j=1

Ynj ≤ εnan + n
)
∼ P

( 2mn−kn∑
j=1

Ynj ≤ εnan
)

(4)
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(it is easy to see that the equivalence follows from n = o(εnan)). Using
Markov’s inequality and the independence of Ynj for fixed n and different j,
we obtain, for each s > 0,

P
( 2mn−kn∑

j=1

Ynj ≤ εnan
)
≤ exp {sεnan}E exp

{
− s

2mn−kn∑
j=1

Ynj

}
= exp

{
sεnan + 2mn−kn log Ee−sΛ2kn

}
.(5)

It is easy to check that ex ≤ 1 + x+ x2 for all x < 0 and so

Ee−sΛ2kn ≤ 1− sEΛ2kn + s2EΛ2
2kn .

Using log(1 + x) ≤ x for all x > −1, we obtain

log Ee−sΛ2kn ≤ −sEΛ2kn + s2EΛ2
2kn .(6)

Combining (4), (5), and (6), we get

(7)
P
(
Λn ≤ εnan

)
≤ min

s>0
exp

{
− s

[
2mn−knEΛ2kn − εnan

]
+ s22mn−knEΛ2

2kn

}
.

The optimal value of s is given by

s =
[
2mn−knEΛ2kn − εnan

]
2kn−mn−1

[
EΛ2

2kn

]−1
.

By Lemma 3 there are constants c1, c2 > 0 such that

EΛ2kn ≥ c12
kn(p+1)

2 and an = EΛn ≤ c2n
p+1
2 .

By choice of the sequences mn and kn, we obtain

(8)
2mn−knEΛ2kn − εnan ≥ c12mn2

kn(p−1)
2 − c2εnn

p+1
2

≥ εnn
p+1
2
(
c
p−1
2 c12−1 − c2

)
> 0,

where the last inequality holds if we choose c large enough. Computing the
corresponding value in (7), we obtain

P (Λn ≤ εnan) ≤ exp
{
−
[
2mn−knEΛ2kn − εnan

]2
2mn−kn+2EΛ2

2kn

}
.(9)

By Lemma 3 we have εnan � εnn
p+1
2 and, using the choice of kn and mn

and again Lemma 3 we also have

2mn−knEΛ2kn � n2
kn(p−1)

2 � εnn
p+1
2 ,

which, together with (8), implies

2mn−knEΛ2kn − εnan � εnn
p+1
2 .(10)

Further, by Lemma 4 there is a constant c3 such that

2mn−kn+2EΛ2
2kn ≤ c3n2knp � ε

2p
p−1
n np+1.(11)
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Finally, combining (9), (10), and (11), we obtain

log P (Λn ≤ εnan) ≤ −
[
2mn−knEΛ2kn − εnan

]2
2mn−kn+2EΛ2

2kn

≤ −Cε
− 2
p−1

n ,

for some C > 0. �

Lemma 7 (Lower bound). There exist constants c, C > 0 such that, for
each gn satisfying gn ≥ c, and

gnn
− 1

2 ε
− 1
p−1

n −→ 0,

one has

log P
(
Λn ≤ εnan, S̄n > gnn

1
2 ε
− 1
p−1

n

)
≥ −Cε

− 2
p−1

n g2
n.

Proof. Let (kn) be a sequence of even natural numbers such that 2kn < n
and kn → ∞, which will be specified later. To prove the lower bound,
we describe a strategy of a random walk, the probability of which is large
enough to provide the required bound, which implies that the p-fold self
intersection local time is small and the maximal displacement is large.

For this purpose, we divide the time interval into 2mn−kn time sub-intervals
of length 2kn and observe the path on the coarse time scale (that is, at
times i2kn , 0 ≤ i ≤ 2mn−kn). As a strategy, we consider the event that
on the coarse scale the path moves up in each step, whereas on the fine
scale the path behaves typically. Hence, in one coarse time step, the path
moves up by a distance of order 2kn/2. Then we optimise over (kn). This
strategy guarantees that the path will have almost no self-intersections at
times belonging to different sub-intervals. S̄n will be large, because the path
is forced to go up (instead of fluctuating) on the coarse scale.

Let 0 < η < 1/2 be fixed. Denote by

Aηnj =
{

sup
(j−1)2kn≤i≤j2kn

∣∣Si−S(j−1)2kn

2kn/2
− η
∣∣ < 1, 1 <

S
j2kn

−S
(j−1)2kn

2kn/2
< 1 + η

}
the event that the random walk, considered on the i-th sub-interval, stays
at distance of order 2kn/2 from its starting point and moves up by a distance
of order 2kn/2 during the whole time. Further, denote by

Aηn =
2mn−kn+1⋂

j=1

Aηnj ,

the event that this happens on each sub-interval.
10



Using the independence of the events Aηnj , for j = 1 . . . , 2mn−kn+1, we obtain
by Lemma 5

(12)
log P(Aηn) = log

2mn−kn+1∏
j=1

P(Aηnj) = 2mn−kn+1 log P(Bη
2kn

)

� −n2−kn .

Consider the event Aηn. Notice that on this event we have

S̄n > 2mn−kn(1− η)2
kn
2 > 2mn−

kn
2
−1 > gnn

1
2 ε
− 1
p−1

n ,

where the last inequality is satisfied if we choose kn in such a way that

2kn < nε
2
p−1
n /(16g2

n) −→∞.(13)

Thus, the strategy leads to the desired growth of the walks. We now check
that it also gives the right self-intersection local times. Note that for any
1 ≤ j1, j2 ≤ 2mn−kn+1 such that |j2 − j1| ≥ 2 the j1-th and j2-th pieces of
length 2kn of (Si) do not intersect. Indeed, let (j1 − 1)2kn ≤ i1 ≤ j12kn and
(j2 − 1)2kn ≤ i1 ≤ j12kn . Then

Si2 > S(j2−1)2kn − (1− η)2
kn
2 > S(j2−2)2kn + η2

kn
2

≥ Sj12kn + η2
kn
2 > S(j1−1)2kn + (1 + η)2

kn
2 > Si1 .

For each 1 ≤ j ≤ 2mn−kn+1, define independent simple random walks start-
ing at zero by

S
(n,j)
i = S(j−1)2kn+i − S(j−1)2kn , for 0 ≤ i < 2kn .

Denote by `
(n,j)

2kn−1
(z) the local time of S(n,j) at z, and define independent

random variables

Ynj =
∑
z∈Z

[
`
(n,j)

2kn−1
(z)
]p
, for j ∈ {1, . . . , 2mn−kn+1}.

As n < 2mn+1 we have, on the event An, that

Λn ≤
2mn−kn+1−1∑

j=1

(j+1)2kn−1∑
i1=(j−1)2kn

· · ·
(j+1)2kn−1∑
ip=(j−1)2kn

1{Si1 = · · · = Sip}

=
2mn−kn+1−1∑

j=1

∑
z∈Z

( (j+1)2kn−1∑
i=(j−1)2kn

1{Si = z}
)p
.
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Using the inequality (a + b)p ≤ 2p−1(ap + bp), which holds for all a, b ≥ 0
and p ∈ N, we obtain

Λn ≤ 2p−1
2mn−kn+1−1∑

j=1

∑
z∈Z

[( j2kn−1∑
i=(j−1)2kn

1{Si = z}
)p

+
( (j+1)2kn−1∑

i=j2kn

1{Si = z}
)p]

= 2p−1
2mn−kn+1−1∑

j=1

[
Ynj + Yn(j+1)

]
≤ 2p

2mn−kn+1∑
j=1

Ynj .

Let Z(η)

nj , 1 ≤ j ≤ 2mn−kn+1 be a family of independent random variables
such that Z(η)

nj has the same distribution as Ynj conditioned on Aηnj . Since
Aηnj are independent for all j, and Ynj1 is independent of Aηnj2 for all j1 6= j2,
we obtain

(14)

P
(
Λn ≤ εnan, S̄n > gnn

1
2 ε
− 1
p−1

n

)
≥ P

[
Λn ≤ εnan

∣∣Aηn]P(Aηn)

≥ P
[
2p

2mn−kn+1∑
j=1

Ynj ≤ εnan
∣∣∣ 2mn−kn+1⋂

j=1

Aηnj

]
P(Aηn)

= P
(

2p
2mn−kn+1∑

j=1

Z(η)

nj ≤ εnan
)
P(Aηn).

We show that the first probability on the right hand side converges to one.
By Lemma 5 we have

(15)

EZ(η)

nj =
E[Ynj1{Aηnj}]

P(Aηnj)
≤

EΛ2kn−1

P(Bη
2kn−1

)
� 2

kn(p+1)
2 ,

E
[
(Z(η)

nj )2
]

=
E[Y 2

nj1{A
η
nj}]

P(Aηnj)
≤

EΛ2
2kn−1

P(Bη
2kn−1

)
≤ c12kn(p+1),

for some c1 > 0. Observe that

P
(

2p
2mn−kn+1∑

j=1

Z
(η)
nj > εnan

)

= P
(

2−mn+kn−1
2mn−kn+1∑

j=1

Z
(η)
nj − EZ(η)

n1 > 2−p−mn+kn−1εnan − EZ(η)
n1

)

≤ P
(
|2−mn+kn−1

2mn−kn+1∑
j=1

Z
(η)
nj − EZ(η)

n1 | > 2−p−mn+kn−1εnan − EZ(η)
n1

)
.

By Lemma 3 and (15), there are constants c2, c3 > 0 such that

an ≥ c2n
p+1
2 and EZ(η)

n1 ≤ c32
kn(p+1)

2 ,
12



which implies

2−p−mn+kn−1εnan − EZ(η)
n1 ≥ 2−p−1n

p−1
2 2knεnc2 − c32

kn(p+1)
2 > 0,

where the last inequality holds if we choose

2kn < nε
2
p−1
n (c22−p−1/c3).(16)

Let c = (2p−3c3/c2)
1
2 , and note that, for all gn ≥ c, the inequality (13)

implies (16). We now choose kn to be the even number satisfying

nε
2
p−1
n /(64g2

n) ≤ 2kn < nε
2
p−1
n /(16g2

n),

so that (13) and (16) are satisfied, 2kn < n and 2kn → ∞, where the latter
follows from the growth condition imposed on gn.
Using the Chebyshev inequality, we obtain that

P
(

2p
2mn−kn+1∑

j=1

Z
(η)
nj > εnan

)
≤ VarZ(η)

n1

2mn−kn+1[2−p−mn+kn−1εnan − EZ(η)
n1 ]2

.

It follows from the choice of (kn) that

[2−p−mn+kn−1εnan − EZ(η)
n1 ]2 ≥ c4ε

2(p+1)
p−1

n np+1g−4
n ,

for some c4 > 0 independent of gn. From (15) we obtain, for some c5, c6 > 0
independent of gn,

VarZ(η)
n1 ≤ c52kn(p+1) ≤ c6ε

2(p+1)
p−1

n np+1g−2(p+1)
n .

Using these two formulas and the asymptotics for kn, we obtain

P
(

2p
2mn−kn+1∑

j=1

Z
(η)
nj > εnan

)
≤ c7g

−2p
n ε

2
p−1
n ≤ c8ε

2
p−1
n −→ 0,

where c7, c8 > 0 are independent of gn. Hence

P
(

2p
2mn−kn+1∑

j=1

Z
(η)
nj ≤ εnan

)
≥ 1− c8ε

2
p−1
n → 1.

It follows now from (14) and (12) that

log P
(

Λn ≤ εnan, S̄n > gnn
1
2 ε
− 1
p−1

n

)

≥ log P
(

2p
2mn−kn+1∑

j=1

Z
(η)
nj ≤ εnan

)
+ log P(Aηn)

≥ log(1− c8ε
2
p−1
n )− c9n2−kn ≥ −Cg2

nε
− 2
p−1

n ,

with some c9, C > 0 independent of gn. �
13



Proof of Theorem 3. Let gn = c be a constant sequence, where c is taken
from Lemma 7. Then the assumptions on the growth of gn hold by choice
of εn. Hence we can use Lemma 7 to obtain a lower bound,

log P
(
Λn ≤ εnan

)
≥ log P

(
Λn ≤ εnan, S̄n > cn

1
2 ε
− 1
p−1

n

)
≥ −Cc2 ε

− 2
p−1

n .

The upper bound from Lemma 6 completes the proof. �

3. Growth of the weakly self-avoiding walk

We now state a more general version of Theorem 2, which also includes
Theorem 1. The result of Theorem 2 follows immediately by specialising to
the case εn = nβ−(p+1)/2.

Proposition 1. Let εn > 0 be such that εn → 0 and ε
2
p−1
n n → ∞. There

exists c1 > 0 such that eventually,

P
(
S̄n ≤ c1n

1
2 ε
− 1
p−1

n

∣∣ Λn(p) ≤ εnEΛn(p)
)

= 0,

and there exists c2 > 0 such that

− log P
(
S̄n ≥ c2n

1
2 ε
− 1
p−1

n

∣∣ Λn(p) ≤ εnEΛn(p)
)
� ε
− 2
p−1

n .

In particular, S̄n � n
1
2 ε
− 1
p−1

n in probability.

Moreover, for any gn ≥ c2 such that gnn−
1
2 ε
− 1
p−1

n → 0, one has

− log P
(
S̄n > gnn

1
2 ε
− 1
p−1

n

∣∣ Λn(p) ≤ εnEΛn(p)
)
� g2

nε
− 2
p−1

n .

Proof of Proposition 1. Denote fn = c1n
1
2 ε
− 1
p−1

n , where c1 > 0 will be spec-
ified later. On the event {S̄n < fn}, we have `n(z) = 0 for |z| ≥ fn, and∑

|z|<fn

`n(z) = n.(17)

Consider the function ϕ defined on the simplex S = {x ∈ Rm : xi ≥ 0 ∀i,
x1 + · · ·+ xm = a} by ϕ(x) = xp1 + · · ·+ xpm. As ϕ has the global minimum
at the point (a/m, . . . , a/m) we have xp1 + · · ·+xpm ≥ apm1−p. Applying this
together with the condition (17), we obtain eventually

Λn =
∑
|z|<fn

`pn(z) ≥ np(2dfne − 1)1−p ≥ np31−pf1−p
n = (3c1)1−pεnn

p+1
2 .

Since an = EΛn � n
p+1
2 by Lemma 3, one can pick c1 small enough in order

to ensure that {
Λn ≤ εn an

}
⊂
{
S̄n > fn

}
,

which finishes the proof of the first statement.
14



Now fix gn such that gn ≥ c2, and gnn
−1/2ε

−1/(p−1)
n → 0 (where c2 > 0 will

be specified later). Define

fn = gnn
1
2 ε
− 1
p−1

n .

By the reflection principle we have

P(S̄n > fn) ≥ P( max
0≤i≤n

Si > fn) = 2P(Sn > fn),

and

P
(
S̄n > fn

)
≤ P

(
max

0≤i≤n
Si > fn

)
+ P

(
min

0≤i≤n
Si < −fn

)
= 2 P

(
max

0≤i≤n
Si > fn

)
= 4 P

(
Sn > fn

)
.

Hence P(S̄n > fn) � P(Sn > fn). Further, the Azuma-Hoeffding inequality
gives

log P
(
Sn > fn

)
≤ − f2

n
2n .

In particular, this implies

(18)
log P

(
S̄n > gnn

1
2 ε
− 1
p−1

n ,Λn ≤ εnan
)

≤ log P
(
S̄n > fn

)
≤ −f

2
n

2n
+ log 4 = −g

2
n

2
ε
− 2
p−1

n + log 4.

The corresponding lower bound is given by Lemma 7. For c2 > c, we have

(19) log P
(
S̄n > gnn

1
2 ε
− 1
p−1

n ,Λn ≤ εnan
)
≥ −Cε

− 2
p−1

n g2
n,

where C is independent of gn. Recall that, by Theorem 3,

log P
(
Λn ≤ εnan

)
� −ε

− 2
p−1

n ,

which, together with (18) and (19), implies

log P
(
S̄n > gnn

1
2 ε
− 1
p−1

n

∣∣ Λn ≤ εnan
)

= log
(
S̄n > gnn

1
2 ε
− 1
p−1

n ,Λn ≤ εnan
)
− log P

(
Λn ≤ εnan

)
� −g2

nε
− 2
p−1

n ,

if c2 is chosen large enough so that the first probability dominates even in
the case when gn is constant. �
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