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Abstract

We show by three simple examples how multifractal spectra can enrich
our understanding of stochastic processes. The first example concerns
the problem of describing the speed of fragmentation in a stick-breaking
process, the second concerns the nature of a phase transition in a simple
model of statistical mechanics, and the third example discusses the speed
of emergence in Kingman’s coalescent.

1 Introduction

I am often asked why I am interested in Hausdorff dimension. Are there
any important problems that can be solved using Hausdorff dimension? Can
Hausdorff dimension really add to our understanding of stochastic processes?
I believe that the answer is yes to both questions, and in this article I attempt
to give some evidence in the case of the second question, by means of three
examples. I will focus on the notion of a multifractal spectrum or dimension
spectrum, which in its broadest form refers to the Hausdorff dimension of a
parametrised family of sets, seen as a function of the parameter.

The examples are chosen on the one hand for their relative simplicity, on the
other hand to illustrate the diversity of shapes, which a multifractal spectrum
can take. A common thread in all the examples is the notion of a tree, which
either features prominently in the initial description or presents a very valuable
reformulation of the model. Moreover, all our proofs rely, in some form or
other, on one of the most beautiful and powerful ideas of probability theory,
the concept of a martingale. Nevertheless, I will not give full details of any
proofs in this review, but only sketch the basic ideas.

In the first example of this paper we look at the iterated breaking of a stick
of unit length into a (random) finite number of parts. With every point on
the stick we associate a fragmentation speed, measuring the rate at which the
length of the part containing this point goes to zero. Attempting to plot the
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fragmentation speed as a function of the point position of the stick we are
confronted with an extremely irregular (or fractal) function. A multifractal
spectrum turns out to be exactly the right way to organise the information
contained in this function in a comprehensible way.

In the second example we look at a simple model of a polymer in a random
environment. We associate random weights to the vertices of a regular tree
and model a polymer chain attracted by large weights and repelled by small
weights by a path in the tree. More precisely, for fixed large n, we associate
to each path v from the root to the nth generation a probability proportional
to exp{βH(v)} where H(v) is the sum of the weights along v and β > 0 is
an inverse temperature parameter. This model often has a phase transition,
a sudden qualitative change as β increases from zero to infinity, which is
noticeable in the limiting behaviour of the normalisation factor, or partition
function. In the absence of a spatial component in this model, the qualitative
difference between the two phases is difficult to grasp. A multifractal spectrum
helps attaching a physical meaning to this phase transition.

In the third example we look at a famous process arising in the context of
mathematical biology. Kingman’s coalescent describes the genealogy of a
population in terms of a process with values in the set of partitions of N:
Consider a population consisting at time one of infinitely many individuals,
which are represented by the natural numbers. For any s > 0 the individuals
are then grouped into blocks B ⊂ N sharing the same ancestor at time 1 − s.
This model has the interesting feature that at s = 0 there is a transition from
a partition consisting of infinitely many finite blocks to partitions consisting
of finitely many infinite blocks. A multifractal spectrum allows us to better
understand how this instant coalescence happens.

The first two examples represent the first steps in ongoing work with current
PhD students of mine and I would like to thank them for permission to include
this material here and for providing the illustrative pictures: The first example
is drawn from joint work with Adam Kinnison, the second one from joint
work with Marcel Ortgiese. Both will publish more substantial accounts of
their work when the time is right, and I hope this article can serve as an
advertisement for their work.

The third example was communicated to me by Julien Berestycki, and full
details are yet to be written. It is an adaptation of results in Berestycki,
Berestycki and Schweinsberg [2], which concerns the class of Beta-coalescents.
The Kingman coalescent is a limiting case of the Beta-coalescents, which is
different in some respects. Its advantage from our point of view is that its
treatment can be based on more familiar concepts. Readers interested in the
original result and a more sophisticated treatment of Beta-coalescents are
recommended to consult [2], and to see also [5] and the contribution of Birkner
and Blath in this volume for a survey of related results.
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2 The speed of fragmentation in stick-breaking

Suppose that N is a nondegenerate random variable with values in the positive
integers, and assume that

γ(β) := log IE
[

N1−β
]

<∞ for every β ∈ R.

We begin with a stick of length one, represented by the unit interval. At the
first stage we sample N and break this stick into N sticks of length 1/N . At
the nth stage we sample for every stick of the (n − 1)st stage an independent
random variable N and break this stick into N further pieces of equal length.
Hence, at any time n, we have a partition of the unit interval into a finite,
random number of intervals (or sticks) of random length.

Having done this we can associate with every point x ∈ [0, 1] a decreasing
sequence (`1, `2, . . .) where `n = `n(x) is the length of the stick containing x in
the nth stage. The fragmentation speed at x is

f(x) := − lim
n→∞

1

n
log `n(x),

whenever this limit is defined. It is a natural problem to explore the nature of
the random function f for various distributions of N .

We first note that

f(x) = lim
n→∞

1

n

n
∑

j=1

logNn(x),

where Nn(x) is the number of pieces in which the stick containing x is broken
in the nth step. For any fixed x the sequence N1(x), N2(x), . . . is i.i.d. and
hence, by the law of large numbers, f(x) = IE[logN ] almost surely. By Fubini’s
theorem we thus get

0 =

∫ 1

0
IE

∣

∣f(x)− IE[logN ]
∣

∣ dx = IE

∫ 1

0

∣

∣f(x)− IE[logN ]
∣

∣ dx,

and hence, almost surely,

f(x) = IE[logN ] for Lebesgue-almost all x.

But the analysis does not end with the fact that f is constant almost every-
where. The plot in Figure 1 reveals its fractal nature even in the case when N
is uniformly distributed. What one might guess from the picture is that f is
bounded from above and below, and that values above seem to be a lot more
common than values below IE logN .
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Figure 1: Plot of the speed in the case of the uniform distribution on {1, 2, 3}
using an approximation based on the fragmentation after 16 steps. The typical
value of f is here IE logN ≈ 0.597.

The interesting question is therefore: How frequent are the various values of f?
Can we measure and compare the size of the sets

S(a) :=
{

x ∈ [0, 1] : − lim
n→∞

1
n

log `n(x) = a
}

for all possible values of a? If this can be done, the nontrivial information
contained in f would take the form of a function mapping any possible value a
to the size of the set S(a).

The next theorem shows that this is indeed possible when Hausdorff dimension
is used as the notion of size. The resulting (deterministic) function is a typical
example of a multifractal spectrum, see Figure 2 for an example plot.

Theorem 1 (Kinnison). For every a ≥ 0, almost surely

dim S(a) = 1
a

inf
β
{aβ + γ(β)} ,

whenever the right hand side is nonnegative.

Remark: Our stick-breaking process is a discrete-time example of a random
fragmentation process. A thorough multifractal analysis of continuous-time ho-
mogeneous fragmentation models has been performed by J. Berestycki [1]. Our
result is not contained in his, and our proof uses a different setup, but there is
still a great similarity of ideas. For further study in the mathematical theory
of random fragmentation I recommend the recent book of Bertoin [3].
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Figure 2: The multifractal spectrum for the stick-breaking process with N
uniformly distributed on {1, 2, 3} is the bold curve, the dotted curves are the
diagonal and the function a 7→ infβ{aβ + γ(β)} included for comparison.

The idea of the proof of Theorem 1

We reinterpret the problem in terms of a tree, which will allow us to introduce
the crucial objects in a natural manner. First, represent the closed unit
interval [0, 1] as the root ρ of the tree, then let N(ρ) be the number of parts
into which the unit interval is split, representing the new sticks as the children
of the root. Continuing this process, any vertex v in the nth generation of the
tree represents a stick arising after n breaking steps. Let N(v) be the number
of parts in which this stick is broken, represent the parts as the children of the
vertex v, and continue ad infinitum.

Denote the resulting tree by T and, for each vertex v ∈ T , denote by |v| its
generation and by T (v) the tree of descendants of v, which is rooted in v.
Obviously, T is a Galton-Watson tree with offspring distribution given by the
law of N . The rays in this tree are sequences of vertices (v0, v1, v2, . . .) such
that v0 = ρ and vi+1 is a child of vi. The set of rays, called the boundary ∂T
of the tree, carries a metric structure given by the genealogical distance,

d(u, v) = exp
{

−min{n ∈ N : un 6= vn}
}

for u, v ∈ ∂T.

There is a canonical mapping φ from the tree to the unit interval [0, 1] such
that the sequence of nested closed subintervals represented by the vertices of a
ray is mapped onto the unique point contained in every interval. Except on a
countable set (the boundary points of the construction intervals) this mapping
is invertible. Note however that the metric on the tree is not equivalent to the
Euclidean metric on the interval.
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Now run a random walk on the tree T , starting at the root and moving at each
step to each of the children of the current vertex with the same probability.
The resulting random sequence (X0, X1, . . .) is a ray. Hence the distribution ν
of this ray is a measure on ∂T and it is easy to observe that it is mapped
under φ onto the Lebesgue measure λ on [0, 1]. Therefore, φ is an isomorphism
from the (random) measure space (∂T,Borel, ν) to the (non-random) measure
space ([0, 1],Borel, λ). Moreover, any random walk on T , which starts in
the root and in each step moves from a vertex to one of its children, gen-
erates a measure on ∂T and hence, via the mapping φ, also on the interval [0, 1].

The key to the proof is the use of a family {M (β)
n : n ∈ N} of nonnegative

martingales, defined, for any β ∈ R, by

M (β)
n = e−nγ(β)

∑

|v|=n

n−1
∏

j=0

N(vj)
−β .

Let M (β)(T ) := limM
(β)
n . Under our moment conditions this convergence

holds in the L1-sense and the limit is almost surely positive, see for example [17].

We now sketch the proof of the upper bound in Theorem 1. To describe an
efficient covering of S(a), fix some large m ∈ N and interpret

S :=
{

v ∈ T : |v| = n ≥ m, ∑n−1
j=0 logN(vj) ≈ an

}

as a collection of intervals. This collection covers S(a) and its s-value is

∑

I∈S

|I|s ≈
∞

∑

n=m

∑

|v|=n

e−ans 1
{
∑n−1

j=0 logN(vj) ≈ an
}

.

Suppose for a moment that a > IE[logN ]. Let β < 0 and, using Chebyshev’s
inequality, estimate the expected s-value of the covering from above by

∞
∑

n=m

e−n(as−aβ) IE
∑

|v|=n

n−1
∏

j=0

N(vj)
−β .

By the convergence results for {M (β)
n : n ∈ N} the expectation is of order enγ(β).

Hence the expected s-value is finite if s > 1
a

(

γ(β)+aβ
)

. Optimising over β < 0
gives the required upper bound. For the case a < IEN the analogous argument
can be performed choosing β > 0.

For the sketch of the more delicate lower bound in Theorem 1 we introduce

SpinedTrees =
{

(T, v) : v ∈ ∂T
}

,

the space of trees endowed with a ray acting as a ‘spine’. There is a canonical
shift θ : SpinedTrees → SpinedTrees which maps (T, v) to the tree T (v1) of
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descendants of the first vertex in the original spine, together with the trace
(v1, v2, . . .) of the spine in this tree.

Denote by GW the distribution of our Galton-Watson tree. Given T , we
select a spine (X0, X1, . . .) by following a random walk started at the root
and, in each step, moving to each of the children w of the current vertex with
a probability proportional to M (β)(T (w)). Let µ(β)

T be the law of this spine in ∂T .

If β 6= 0, the measure µ(β)

T makes a size-biased choice of the trees T (v1), T (v2), . . .
along the spine, and hence the measure given by µ(β)

T (dv)GW(dT ) is not shift-
invariant on SpinedTrees. However, it is not hard to show (see, e.g. [18] for
similar arguments) that this size-bias can be compensated entirely by introduc-
ing the martingale limit M (β)(T ) as a density for GW, i.e.

µ(β)

T (dv) M (β)(T ) GW(dT )

is a shift-invariant and ergodic measure on SpinedTrees. The ergodic theorem
now allows us to determine the speed of fragmentation as

f(φ(v)) = lim
n→∞

1

n

n−1
∑

j=0

logN(Xj) =

∫∫

logN(ρ) M (β)(T ) GW(dT )

=
IE[N1−β logN ]

IE[N1−β ]
for µ(β)

T -almost every v and GW-almost every T .

Every subset of [0, 1] which has full measure for µ(β)

T ◦ φ−1 has at least the
Hausdorff dimension given by a lower bound on the local dimension in each
point. The local dimension in φ(v) equals

dimµ(β)

T ◦ φ−1(φ(v)) = lim
n→∞

log
(

∏n
j=1

M(β)(T (vj ))
P

M(β)(T (w))

)

− log
(
∏n−1

j=0 N(vj)
) ,

where the sums in the denominators are over all siblings w of the vertex in
the argument of the numerator. Denoting a(β) = IE[N 1−β logN ]/IE[N 1−β] and
using the ergodic theorem and a small calculation, this limit equals

−1

a(β)

∫∫

log
( M (β)(T (v1))

∑

M (β)(T (w))

)

µ(β)

T (dv)M (β)(T ) GW(dT )

=
1

a(β)

(

log IE
[

N1−β
]

+ β a(β)
)

,

for µ(β)

T -almost every v and GW-almost every T .

Hence we get a lower bound for the spectrum as

dim S(a(β)) ≥ 1
a(β)

(

γ(β) + β a(β)
))

.

As a(β) = −γ ′(β), for any a = a(β) the parameter β is the minimiser in
the variational problem characterising the spectrum. Hence this lower bound
coincides with the upper bound, completing the sketch of the argument.
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3 A polymer model in a random environment

We look at a very crude model of a polymer in a disordered medium, which was
introduced by Derrida and Spohn in [8]. The main interest here is to understand
the effect of the disorder on the asymptotic behaviour of the polymer and the
occurrence of a phase transition.

To describe the disorder we let V be a random variable such that

φ(t) := IE
[

etV
]

<∞ for all t > 0.

Let T be a binary tree with root ρ. We endow T with a disordered medium
V = (V (v) : v ∈ T ) by letting each random weight V (v) be an independent
copy of the random variable V . We identify vertices v in the tree with the
chain (v0, . . . , vn), starting from the root v0 and ending at vn = v, such that
each vi+1 is a child of vi.

In the ‘finite volume’ setting, the polymers of length n are given by the vertices
v ∈ T in the nth generation. For any inverse temperature β > 0 the probability
of a polymer v of length n is given by

P (β)(v) =
1

Zn(β)
exp

{

β
n

∑

j=1

V (vj)
}

,

with a normalisation factor

Zn(β) =
∑

|v|=n

exp
{

β

n
∑

j=1

V (vj)
}

,

which is called the partition function.

One expects in this and similar models that the behaviour of the polymer
depends on the parameter β in the following manner: If β is small, we are in an
entropy-dominated regime, where the fluctuations in V have no big influence and
limiting features are largely the same as in the case of a uniformly distributed
polymer. For large values of β we may encounter an energy-dominated regime
where, due to the disorder, the phase space breaks up into pieces separated by
free energy barriers. Polymers then follow specific tracks with large probability,
an effect often called localisation.

In such a simple model there are not too many features to distinguish the phases,
and a crucial rôle is played by the free energy, defined as lim(βn)−1 logZn(β).
We further define, for any β > 0,

h(β) =
1

β
log IE exp{βV + log 2} =

1

β
log

(

2φ(β)
)

.

As β 7→ βh(β) is strictly convex, one can see that h′ has at most one positive
root. If it exists, we define βc > 0 to be this root, and we let βc =∞ otherwise.
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Theorem 2 (Buffet, Patrick and Pulé [7]). Almost surely, the free energy is

lim
n→∞

1

βn
logZn(β) =

{

h(β) if β ≤ βc,
h(βc) if β ≥ βc.

Remark: At the critical temperature 1/βc the model has a phase transition
and, for low temperatures, it is in a frozen state. The two phases are often called
the weak disorder phase (β < βc), and the strong disorder phase (β > βc).

0 1 2 3
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h(β)

βc

lim
n→∞

1

βn
log Zn(β)

0 1 2 3

1

2

3

4
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6

7

β

h(β) = lim
n→∞

1

βn
log Zn(β)

Figure 3: The free energy in the case of a standard normal distribution (top),
where βc < ∞, and in the case of a binary distribution given by P{V = 1} =
1− P{V = −1} = p (bottom), where βc =∞.

In the weak disorder phase we have

1

βn
logZn(β) ∼ 1

βn
log

∑

|v|=n

IE exp
{

β
n

∑

j=1

V (vj)
}

,
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and hence, at high temperatures, it may look like all polymers v ∈ T with
|v| = n making the same contribution to Zn(β), namely the joint mean

IE exp
{

β
n

∑

j=1

V (vj)
}

= φ(β)n .

In fact, this impression is wrong, and even at high temperatures only a vanishing
proportion of the paths contribute to the free energy. The precise picture is
conveyed by a multifractal spectrum.

To describe this spectrum we need a notion of a Hausdorff dimension of a tree.
For the purpose of this article we use the growth rate

dim(T̃ ) := lim
n→∞

1

n
log #

{

v ∈ T̃ : |v| = n
}

as a notion of dimension and restrict the discussion to trees T̃ where this notion
is well-defined. Let us emphasise that there is the more powerful concept of the
branching number of a tree, introduced by Lyons, which is the appropriate way
to measure the average number of children per vertex in an infinite tree. The
logarithm of the branching number coincides with the Hausdorff dimension
of the boundary of the tree, which carries a natural metric structure. For
sufficiently regular trees this notion of dimension coincides with the growth
rate, but in general the growth rate, if it exists, is the larger number. In this
article we may restrict attention to the easier concept.

Theorem 3 (Ortgiese). Define f : (0, βc)→ [0,∞) by

f(β) = log 2 + log φ(β)− φ′(β)

φ(β)
β .

(a) For every 0 < β < βc, almost surely, there exists a tree T̃ ⊂ T with
dim(T̃ ) = f(β) such that

lim
n→∞

1

βn
log

∑

v∈T̃

|v|=n

exp
{

β

n
∑

j=1

V (vj)
}

= h(β) .

(b) Almost surely, for every 0 < β < βc and every tree T̃ ⊂ T such that
dim(T̃ ) < f(β), we have

lim
n→∞

1

βn
log

∑

v∈T̃
|v|=n

exp
{

β

n
∑

j=1

V (vj)
}

< h(β) .

Remark: If 0 < β < βc the free energy is supported by a tree of dimen-
sion f(β). The rays v in this tree have the exceptional behaviour

lim
n→∞

1

n

n
∑

j=1

V (vj) = a(β) :=
φ′(β)

φ(β)
> IEV .
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Figure 4: The dimension spectrum obtained by plotting the minimal dimension
of a tree supporting the free energy at each β < βc for a standard normal
distribution (left) and at each β <∞ for the binary distribution (right).

If β ↑ βc <∞ the dimension of this tree is going to zero and beyond the critical
value there are no more rays with an average weight big enough to sustain a free
energy of size h(β). Instead, if β > βc and n large, a subexponential number of
polymers of length n with the maximal weight

1

n

n
∑

j=1

V (vj) ≈ a(βc)

support Zn(β). We conjecture however, that these polymers are scattered all
over the tree and therefore no subtree T̃ ⊂ T with dim(T̃ ) < log 2 supports the
free energy for all large n in the low temperature regime.

The idea of the proof of Theorem 3

The key to the proof of Theorem 3 lies in the existence and fractal structure
of the infinite volume Gibbs measure in the weak disorder regime. This object
is of course also of independent interest.

To define the infinite volume Gibbs measure as a limit of the finite volume
Gibbs measures we need to embed, for every n ∈ N, the nth generation of the
binary tree in its boundary ∂T . The easiest way to do this is by extending a
vertex w = (w0, . . . , wn) uniquely to a ray w+ = (w0, w1, . . .) by letting wi+1 be
the left child of wi for any i ≥ n. We can then define the finite volume Gibbs
measures on the boundary ∂T as

µ(β)
n :=

1

Zn(β)

∑

|w|=n

exp
{

β
n

∑

j=1

V (wj)
}

δw+ ,

and, if possible, the infinite volume Gibbs measure as the almost-sure limit in
the weak topology of measures

µ(β) := lim
n→∞

µ(β)
n .
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Martingales play the key role in the proof of existence of this measure in the
weak disorder regime. Indeed, it is easy to verify that,

M (β)
n (v) = 2−nφ(β)−n

∑

w∈T (v)
|w|−|v|=n

exp
{

β

|v|+n
∑

j=|v|+1

V (wj)
}

defines a martingale {M (β)
n (v) : n ∈ N} for every β > 0 and v ∈ T . Criteria for

uniform integrability of these martingales can be found, for example, in [17]
or [7]. They show that precisely if β < βc the martingales {M (β)

n (v) : n ∈ N}
converge almost surely to a strictly positive limit, which we denote by M (β)(v).

Now focus on the weak disorder regime β < βc and note that

Zn(β) = 2n φ(β)nM (β)
n (ρ) ∼ 2n φ(β)n M (β)(ρ),

and from this we readily get the weak disorder part of Theorem 2. For every
vertex v ∈ T we denote by B(v) ⊂ ∂T the set of all rays passing through the
vertex v. The collection (B(v) : v ∈ T ) is exactly the collection of all balls
in ∂T . We obtain, with m := n− |v| ≥ 0,

µ(β)
n

(

B(v)
)

=
1

Zn(β)

∑

w∈T (v)
|w|=n

exp
{

β

n
∑

j=1

V (wj)
}

=
1

Zn(β)
2mφ(β)m exp

{

β

|v|
∑

j=1

V (vj)
}

M (β)
m (v) ,

and combining the last two displays we get

lim
n→∞

µ(β)
n

(

B(v)
)

= 2−|v| φ(β)−|v| exp
{

β

|v|
∑

j=1

V (vj)
} M (β)(v)

M (β)(ρ)
.

This suffices to ensure, for every 0 < β < βc, the almost sure existence of the
infinite volume Gibbs measure µ(β), which is characterised by

µ(β)
(

B(v)
)

= 2−|v| φ(β)−|v| exp
{

β

|v|
∑

j=1

V (vj)
} M (β)(v)

M (β)(ρ)
.

The key to Theorem 3 is now that, other than in some otherwise similar models
such as the random energy model discussed in [6], the measures µβ are fractal
measures in the sense that they are supported by a very thin subset of ∂T .

This can be explored using the method of spined trees in a way similar to the
previous example: Let P the distribution of the environment V and, given V,
we select the spine according to the infinite volume Gibbs measure µ(β)

V

(indicating the dependence on the environment by an additional subindex).
Slightly abusing the notation of the previous example, we let SpinedTrees be
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the space of weights attached to the vertices of a binary tree with a marked
spine. Recall the definition of the canonical shift θ on SpinedTrees.

Writing M (β)

V instead of M (β)(ρ), the measure on SpinedTrees given by

µ(β)

V (dv)M (β)

V P(dV),

is shift-invariant and ergodic. From the ergodic theorem we thus obtain

lim
n→∞

1

n

n
∑

j=1

V (vj) =

∫

V (ρ)M (β)

V P(dV) =
φ′(β)

φ(β)
= a(β) ,

and, recalling the representation of the infinite volume Gibbs measure,

lim
n→∞

−1

n
log µ(β)

(

B(vn)
)

= log 2 + log φ(β)−
∫

(

β V (ρ) + log
M (β)(v1)

M (β)(ρ)

)

µ(β)

V (dv)M (β)

V P(dV)

= log 2 + log φ(β)− β a(β),

for µ(β)-almost every v ∈ ∂T and P-almost every medium V.

For the proof of Theorem 3 (a) we use Egorov’s theorem to select a compact
set A ⊂ ∂T such that µ(β)(A) > 0 and the two convergences just proved hold
uniformly for all rays in A. We then define the tree

T̃ =
⋃

v∈A

∞
⋃

j=1

{vj} ⊂ T .

Note that, by compactness of A, we have ∂T̃ = A. The second convergence
readily ensures that

dim
(

T̃
)

= log 2 + log φ(β) − β a(β) = f(β) ,

and, using the first convergence, we get

lim
n→∞

1

βn
log

∑

v∈T̃

|v|=n

exp
{

β

n
∑

j=1

V (vj)
}

=
f(β)

β
+ a(β) = h(β)

and this completes the sketch of the proof of Theorem 3 (a).

The consideration of the infinite volume Gibbs measures µ(β) also establishes
the lower bound in the ‘crude spectrum’

lim
n→∞

1

n
log #

{

v ∈ T : |v| = n,

n
∑

j=1

V (vj) ≥ na(β)
}

= f(β),

while the corresponding upper bound follows easily from Cramér’s theorem.
Theorem 3 (b) can now be established by studying for any η < f(β) the ‘worst
case scenario’ of a tree T̃ ⊂ T with dim(T̃ ) < η, which captures in each gener-
ation n the maximal possible value of

∑

exp{β∑

V (vj)}.
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4 The speed of emergence in Kingman’s coalescent

Kingman’s coalescent is probably the most studied object in mathematical
genetics and the key problems in this area are certainly more fundamental than
the study of multifractal spectra. However, there are also some mathematical
aspects on which a multifractal spectrum can shed some light.

We start the investigation from a simple population model. Suppose first
that the population consists of n individuals positioned at {1, . . . , n}. Each
position i carries an independent exponential clock with rate (n − 1)/2 and,
once this clock rings, the individual at position i produces two offspring, one
at position i, the other one at a position j ∈ {1, . . . , n} \ {i} chosen uniformly
at random. At the same time the individual that used to be at position j dies.

1

2

3

4

5

0 t

s

{1}{2}{3}{4}{5}

{1}{2}{3, 4}{5}

{1}{2, 5}{3, 4}

{1, 3, 4}{2, 5}

Figure 5: An illustration of Kingman’s coalescent restricted to 5 individuals.
The population evolves from left to right, a cross at position j indicates that the
particle in the position j dies and is replaced by the offspring of the particle in
the position connected to the cross by a vertical line. The coalescent is obtained
by looking from right to left.

For any fixed time t > 0 this population model gives rise to a natural Markov
process of ancestral partitions (Π(n)

s : 0 ≤ s ≤ t) called the n-coalescent. It takes
values in the space of partitions of {1, . . . , n} and we declare i, j ∈ {1, . . . , n}
to be in the same partition set of Π(n)

s if the individuals in position i and j at
time t have the same ancestor at time t − s. Note that this process starts at
time s = 0 with the trivial partition consisting entirely of singletons.

Kingman [14] has shown that there exists a unique Markov process (Πs : s ≥ 0)
with values in the space of partitions of N such that, for all n ∈ N and t > 0,
the process running for t time units obtained by restricting partitions to
{1, . . . , n} is an n-coalescent. This process is called Kingman’s coalescent.
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One of the key features of Kingman’s coalescent is that it comes down from
infinity, which means that for every time s > 0 the number of partition sets, or
blocks, in Πs is almost surely finite. Define the frequency of a block B ⊂ N as

lim
n→∞

1

n
#(B ∩ {1, . . . , n}).

At all times s > 0 all blocks of Πs have positive frequency, almost surely. In
order to understand the instant transition from a state of dust at time s = 0,
when all blocks are singletons, to a state at time s > 0 when the partition
consists of finitely many blocks of positive frequency, we would like to follow
the sequences of nested blocks as s ↓ 0, and study the possible rates of decrease
of the block frequencies in form of a multifractal spectrum.

We need to rigorously define a metric space representing the sequences of nested
blocks. This construction is due to Evans [9]. We first define a (random) metric
on N by letting

δ(i, j) = inf
{

s > 0 : i, j ∈ B for some B ∈ Πs

}

.

The required metric space (S, δ) is the completion of (N, δ). Indeed, the set S
is simply the boundary of a rooted, binary tree and all the interesting random
structure enters in the metric δ. It is shown in [9] that dimS = 1.

Given an element x ∈ S we need to make sense of the speed of coalescence at x.
For this purpose we define a probability measure η on (S,Borel) by letting

η(B(x, s)) = lim
n→∞

1

n
#

{

i ∈ {1, . . . , n} : δ(i, x) ≤ s
}

.

This uniquely defines a probability measure η on S. We define the lower and
upper speed of emergence of x ∈ S as

speed(x) = lim inf
s↓0

log η(B(x, s))

log s
, speed(x) = lim sup

s↓0

log η(B(x, s))

log s
.

From the results of [9] we infer that, almost surely,

speed(x) = speed(x) = 1,

for η-almost every x. The multifractal spectrum shows the presence of points
of exceptional upper speed of emergence.

Theorem 4 (Berestycki et al.). Almost surely, if 1 ≤ a ≤ 2, then

dim
{

x ∈ S : speed(x) ≥ a
}

=
2

a
− 1,

and there are no points x ∈ S with speed(x) > 2 or speed(x) < 1.
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Remark:

(a) This is a very different kind of spectrum compared to those in the previous
sections, as variations in the speed only happen at exceptional times s > 0
and lower speeds exceeding one can not occur. Spectra of this kind have
been associated with the ‘breakdown of the multifractal formalism’ in
various examples, see e.g. [20] or [15].

(b) It is conjectured that the lower speed of emergence equals one for all
x ∈ S, which would be in contrast with the case of Beta-coalescents with
parameter 1 < α < 2. In that case exceptionally small lower speeds can
occur, see [2, Theorem 5.1].

0 1 2

1

a

f(a)

Figure 6: The dimension spectrum for the upper speed of emergence in
Kingman’s coalescent.

The idea of the proof of Theorem 4

The key to the proof is to establish a link between the metric space S equipped
with the measure η and a tree of excursions embedded in a Brownian motion
equipped with a local time measure. The multifractal structure of the local
time can then be analysed, for example using a percolation technique.

For an (unfortunately very superficial) sketch of this link, we start with a Brow-
nian motion {B(t) : 0 ≤ t ≤ τ} stopped at

τ = inf{t > 0: L0(t) = 1},

where {Ls(t) : t ≥ 0} is the local time process at level s. Write Zt = Lt(τ) and
recall from the Ray-Knight theorem that {Zt : t ≥ 0} is a Feller diffusion. Then
define an increasing process {R(t) : 0 ≤ t < T} by

R(t) =

∫ t

0

1

Zs
ds.
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Note that this process explodes at time T = max0≤t≤τ B(t). Therefore
its inverse {R−1(t) : t ≥ 0} maps the positive halfline onto [0, T ). For any
0 < s < 1 we let E(s) be the set of excursions of the Brownian motion above
level R−1(s) that reach level R−1(1). Note that E(s) is a finite set, but the
number of elements in E(s) is increasing to infinity as s ↑ 1.

We denote by Ξ the set of functions (ζ(s) : 0 ≤ s < 1) such that

• ζ(s) ∈ E(s) for any 0 ≤ s < 1,

• ζ(s2) is contained in ζ(s1) for any 0 < s1 < s2 < 1.

Ξ is a complete metric space when endowed with the metric

d(ζ1, ζ2) = inf
{

1− s : ζ1(s) = ζ2(s)
}

,

and there exists a metric isomorphism Φ: Ξ→ S, such that

η
(

B(Φ(ζ), s)
)

= Z−1
R−1(1)

`
(

ζ(1− s)
)

for all ζ ∈ Ξ and 0 < s < 1,

where `(e) denotes the local time of the excursion e ∈ E(1− s) at level R−1(1).

We now rescale the paths (ζ(s) : 0 < s < 1) by letting

ζ ′(s) = ζ
(

R(sR−1(1))
)

for 0 < s < 1,

so that ζ ′(s) is an excursion above level sR−1(1) which reaches level R−1(1).
Note that the mapping ψ : Ξ→ Ξ′ which maps every path ζ to its rescaling ζ ′

is a bijection, but does not preserve the metric d. However, because

R−1(1)−R−1(1− t) ∼ qt as t ↓ 0,

for some (random) constant q, small distances are only linearly affected by ψ
and hence dim (ψ(A)) = dimA for any A ⊂ Ξ and

speed
(

Φ(ζ)
)

= lim sup
s↓0

log `(ζ ′(1− s))
log s

.

Starting from this representation, the idea of the proof is to test for which
deletion parameters the set of paths with high upper speed of emergence
has a positive probability of surviving a (suitably defined) percolation
process. This technique is the continuous time analogue of the percolation
technique based on [16] and used for a similar problem in a discrete setup in [19].

To be precise, fix the deletion parameter 0 < λ < 1. With any path (ζ ′ : 0 ≤
s ≤ 1) we associate a Poison process, or clock, with intensity measure

λ
ds

1− s on (0, 1),

which kills the path at the first strike of the clock. Any paths ζ ′1, ζ
′
2 ∈ Ξ′,
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• share the same clock for 0 < s ≤ d(ζ ′1, ζ
′
2), but

• have independent clocks for d(ζ ′1, ζ
′
2) < s < 1.

We say that a set A ⊂ Ξ′ of paths survives percolation, if there exists a path
in A, which has lifetime one. Then any analytic set has positive probability of
surviving the percolation if its Hausdorff dimension is > λ, but zero probability
if it is < λ.

To find, for a ≥ 1, the critical deletion parameter of the set

{

ζ ′ ∈ Ξ′ : lim sup
s↓0

log `(ζ ′(1− s))
log s

≥ a
}

one proves the following key estimate: For an excursion e ∈ E(0),

lim
x↓0

1

log x
log P

({

`(e) ≤ x
}

∩
{

{ζ ′ : ζ ′(0) = e} survives
})

= 1 + λ .

Roughly speaking, this holds because the typical local time of an excursion
above level 1− x which reaches height one is of order x. Therefore the optimal
strategy to obtain the event {`(e) < x} is to ensure that only one of the ex-
cursions above level 1 − x, which are embedded in e, reaches height one. The
probability of this event is of order x and, given this, the probability that the
set of paths starting with ζ ′(0) = e survives percolation is, up to a constant
multiple, equal to the probability that the path (ζ ′(s) : 0 < s < 1−x) survives,
which is

exp
{

− λ
∫ 1−x

0

ds

1− s
}

= xλ.

With the key estimate at hand we roughly argue as follows: Typically the
number of excursions above level 1− s that reach level 1 is of order 1/s. Out of
the paths (ζ ′(t) : 0 ≤ t ≤ 1−s) ending in these excursions typically a proportion
of order sλ survives up to this time. Hence, for a fixed small s > 0, we can
expect of order sλ−1 conditionally independent trials to realise the event

{

`
(

ζ ′(1− s)
)

≤ sa
}

∩
{

B(ζ ′, s) survives
}

.

By scaling the key estimate, this event has probability of order
(sa

s

)1+λ

= s(a−1)(1+λ) .

Hence, the expected number of paths (ζ ′(t) : 0 ≤ t ≤ 1 − s), which survive the
percolation procedure and satisfy `

(

ζ ′(1− s)
)

≤ sa is

sλ−1 s(a−1)(1+λ),

indicating that the threshold for the existence of paths of length one occurs
when λ − 1 + (a − 1)(1 + λ) = 0 or, equivalently, when λ = 2/a − 1. This
argument readily gives the upper bound in Theorem 4, while the lower bound
follows with only marginally more effort, exploiting the self-similarity of the
Brownian structure by means of Baire’s theorem.
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5 Conclusion

We have reviewed different forms of multifractal spectra using some simple
but interesting examples. At least for me, the spectra (and their derivation)
have been helpful in forming an intuition for the studied processes. Many of
the martingale and tree ideas used in our proofs can be considered as part
of the folklore and have been rediscovered many times in different guises.
While it is impossible to give a full list of the relevant publications here,
[4, 10, 11, 12, 13, 16, 18, 21] represents a good selection of the pioneering
papers, from which these ideas have been formed.
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