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Abstract. We generalize the results of Montgomery [31] for the Bochner Laplacian on high
tensor powers of a line bundle. When specialized to Riemann surfaces, this leads to the Bergman
kernel expansion for semipositive line bundles whose curvature vanishes at finite order. The
proof exploits the relation of the Bochner Laplacian on tensor powers with the sub-Riemannian
(sR) Laplacian.

1. Introduction

In [31] Montgomery studied the spectrum, and in particular the smallest eigenvalue, of the
Bochner (magnetic) Laplacian on the tensor powers Lk := L⊗k of a Hermitian line bundle L.
He assumed that the underlying manifold is a Riemann surface and that the curvature of the
line bundle vanishes transversally along a curve. The problem goes back at least to the work
Simon et al. [2, 35] and Guillemin-Uribe [18] among others, who assumed the curvature is
symplectic. The problem has since also been actively explored under different assumptions on
the curvature. The first theorem in this article proves the most general such leading asymptotic
for the smallest eigenvalue of the Bochner Laplacian on tensor powers.

The holomorphic analog of the above is the study of the Bergman kernel of a holomorphic
line bundle L on a complex manifold. The Bergman kernel is the Schwartz kernel of the
projector from smooth sections of L onto holomorphic ones. The analysis of the Bergman
kernel and holomorphic sections associated to tensor powers has important applications in
complex geometry (see [14, 26]). When L is positive, the leading asymptotic for the Bergman
kernel along the diagonal was first proved in [38] and later improved to a full expansion in
[11, 39] using the Szegő kernel parametrix of [9]. Subsequently, a different geometric method
for the expansion was developed in [12, 26, 27] inspired by the analytic localization technique
of [8]. The problem of the expansion for semipositive line bundles is largely open. A second
objective of this article is to give the first proof of the Bergman kernel expansion at vanishing
points of the curvature. We achieve this for a semipositive line bundle L on a Riemann surface.

1.1. Statement of the main results. We now state our results more precisely. Let Y n−1

be a compact Riemannian manifold of dimension n − 1 with complex Hermitian line bundle(
L, hL

)
and vector bundle

(
F, hF

)
. We equip these with unitary connections ∇L, ∇F to obtain

the Bochner Laplacian

(1.1) ∆k :=
(
∇F⊗Lk

)∗
∇F⊗Lk : C∞

(
Y ;F ⊗ Lk

)
→ C∞

(
Y ;F ⊗ Lk

)
, k ∈ N,

on tensor powers F ⊗Lk, where the adjoint is taken with respect to the natural L2 metric. As
the above is elliptic, self-adjoint and positive, one has a complete orthonormal basis

{
ψkj
}∞
j=1

of L2
(
Y ;F ⊗ Lk

)
consisting of its eigenvectors ∆kψ

k
j = λj (k)ψkj , with eigenvalues 0 ≤ λ0 ≤
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λ1 . . .. Denote by RL =
(
∇L
)2 ∈ Ω2 (Y ; iR) the purely imaginary curvature form of the unitary

connection ∇L. The order of vanishing of RL at a point y ∈ Y is now defined1

(1.2) ry − 2 = ordy
(
RL
)

:= min
{
l|J l

(
Λ2T ∗Y

)
3 jlyRL 6= 0

}
, ry ≥ 2,

where jlRL denotes the lth jet of the curvature. We shall assume that this order of vanishing
is finite at all points of the manifold i.e.

(1.3) r := max
y∈Y

ry <∞.

The function y 7→ ry being upper semi-continuous, gives a decomposition Y =
⋃r
j=2 Yj of the

manifold via

Yj := {y ∈ Y |ry = j} with each Y≤j :=

j⋃
j′=2

Yj′(1.4)

being open. Our first theorem is now the following.

Theorem 1. Let (L, hL)→
(
Y, gTY

)
, (F, hF )→

(
Y, gTY

)
be Hermitian line and vector bundles

on a compact Riemannian manifold with unitary connections ∇L, ∇F . Assuming that the cur-
vature RL vanishes to finite order at all points, with maximal order r (1.3), the first eigenvalue
λ0 (k) of the Bochner Laplacian satisfies

(1.5) λ0 (k) ∼ Ck2/r, as k →∞,
for some positive constant C. Moreover, the first eigenfunction concentrates on Yr:

(1.6)
∣∣ψk0 (y)

∣∣ = O
(
k−∞

)
; y ∈ Y≤r−1.

The leading constant above (1.5) can be identified

(1.7) C = inf
y∈Yr

λ0 (∆y)

in terms of the bottom of the spectrum of certain model Laplacians ∆y := ∆gTYy ,jr−2RLy
, de-

pending on the metric gTYy and first non-vanishing jet tensors jr−2RL
y , defined on the tangent

space TyY at each y ∈ Y (see Section A). The first case of the above theorem is r = 2, when
the curvature RL is non-vanishing, and can be found in [19]. Here the model Laplacian is a
harmonic oscillator. The bottom of its spectrum is explicitly given λ0 (∆y) = 1

2
tr
√
−J2

y in
terms of the endomorphism Jy : TyY → TyY , defined by the equation gTY (., Jy.) = RL (., .). In
[31] a particular case of r = 3, with Y a Riemann surface, is considered. It is surpising that the
general case, despite being attempted, has been missed therein and in several references since
then.

Without further hypotheses, the structure of the locus Yr may be quite general; locally any
closed subset of a hypersurface (see Section 3.0.2 below). To obtain further information on
the small eigenvalues, we introduce additional assumptions. First, we assume Yr =

⋃N
j=1 Yr,j

to be a union of embedded submanifolds of dimensions dj := dim (Yr,j). At points y ∈ Yr, the
first non-vanishing jet of the curvature jr−2

y RL ∈ Sr−2T ∗y Y ⊗ Λ2T ∗y Y may be thought of as an
element of the product with the (r − 2)th symmetric power. We say that the curvature RL

vanishes non-degenerately along Yr if the following implication holds

(1.8) isv
(
jr−2
y RL

)
= 0, ∀s ≤ r − 2 =⇒ v ∈ TyYr,

1The reason for this normalization, besides a simplification of resulting formulas, is the significance of ry as
the degree of nonholonomy of a relevant sR distribution (see Proposition 6).
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where is above denotes the s-fold contraction of the symmetric part of jr−2
y RL. In Remark

9 below we note the following less invariant definition of the non-degeneracy condition (1.8)
above in local coordinates: it is equivalent to assuming that the leading order part RL

0 in
the Taylor expansion of the curvature at y ∈ Yr locally defines the same locus Yr = Y 0

r :={
y ∈ Y |ordy

(
RL

0

)
= r − 2

}
as (1.4). In Remark 9 we also note that our non-degeneracy condi-

tion (1.8) on the curvature is less restrictive than the assumption of Yr being a ’magnetic well’
for the curvature RL that appears in earlier works [19].

Now set dmax
j := max {dj}Nj=1 and let NYr,j := TY ⊥r,j ⊂ TY denote the normal bundle of

each Yr,j. Note that there is a natural density on each NYr,j coming from the metric. Denote
by χ[c1,c2] the characteristic function for [c1, c2]. In Section 3.2 we show that under the non-
degeneracy hypothesis (1.8), the Schwartz kernel of the model Laplacian on the tangent space
χ[c1,c2] (∆y) (v, v) = O

(
|v|−∞

)
, v ∈ NYr,j,y, is rapidly decaying, and thus integrable, in the

normal directions.
Our next result is on the asymptotics for the Weyl counting function N

[
c1k

2/r, c2k
2/r
]
for

the number of eigenvalues of ∆k in the given interval.

Theorem 2. Let (L, hL)→
(
Y, gTY

)
, (F, hF )→

(
Y, gTY

)
be Hermitian line and vector bundles

on a compact Riemannian manifold with unitary connections ∇L, ∇F . Assuming Yr ⊂ Y (1.4)
to be a union of embedded submanifolds along which the curvature vanishes non-degenerately
(1.8), the counting function satisfies the asymptotics

(1.9) N
[
c1k

2/r, c2k
2/r
]
∼ k

dmax
j
r

∑
dj=dmax

j

∫
NYr,j

χ[c1,c2] (∆y) (v, v) , as k →∞.

If further Yr is a finite set of points (or dmax
j = 0), then the smallest eigenvalue of the Bochner

Laplacian has a complete asymptotic expansion2

(1.10) λ0 (k) = k2/r

[
N∑
l=0

λlk
−l/r +O

(
k−(2N+1)/r

)]
, ∀N ∈ N0, as k →∞.

Next, we consider the case when
(
Y, hTY

)
is a complex Hermitian manifold. The line and

vector bundles
(
L, hL

)
,
(
F, hF

)
are then assumed to be holomorphic. Taking ∇L,∇F to be the

Chern connections, one also has the associated Kodaira Laplacian

�q
k : Ω0,q

(
Y ;F ⊗ Lk

)
→ Ω0,q

(
Y ;F ⊗ Lk

)
, 0 ≤ q ≤ m,

acting on tensor powers3. The first eigenvalue of the above is typically 0 with ker�q
k =

Hq
(
X;F ⊗ Lk

)
being cohomological and corresponding to holomorphic sections. The Bergman

kernel Πq
k (y, y′) is the Schwartz kernel of the orthogonal projector Πq

k : Ω0,q
(
Y ;F ⊗ Lk

)
→

ker�q
k. Its value on the diagonal is given

(1.11) Πq
k (y, y) =

Nq
k∑

j=1

|sj (y)|2 , N q
k := dimHq

(
X;F ⊗ Lk

)
,

in terms of an orthonormal basis {sj}
Nq
k

j=1 of Hq
(
X;F ⊗ Lk

)
, and thus controls pointwise norms

of sections in ker�q
k in the spirit of (1.6). To obtain the asymptotics of Πq

k (y, y), we specialize
to the case of Riemann surface (n−1 = 2). Furthermore, in addition to vanishing at finite order

2The same result holds for the mth eigenvalue λm (k) for any fixed m ∈ N0.
3Twisting by an additional bundle F is fairly standard in complex geometry, for instance one is often required

to choose F to be the canonical bundle (see Proposition 14 below).
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(1.3), the curvature is assumed to be semipositive: RL (w, w̄) ≥ 0, for all w ∈ T 1,0Y . Under
these assumptions one has H1

(
X;F ⊗ Lk

)
= 0 for k sufficiently large, with the asymptotics of

the Bergman kernel Πk := Π0
k being given by the following.

Theorem 3. Let Y be a compact Riemann surface and (L, hL)→ Y a semipositive line bundle
whose curvature RL vanishes to finite order at any point. Let (F, hF )→ Y be another Hermitian
holomorphic vector bundle. Then the Bergman kernel Πk := Π0

k has the pointwise asymptotic
expansion on diagonal

(1.12) Πk (y, y) = k2/ry

[
N∑
j=0

cj (y) k−2j/ry

]
+O

(
k−2N/ry

)
, ∀N ∈ N.

Here cj are sections of End (F ), with the leading term c0 (y) > 0 being given in terms of the
Bergman kernel of the model Kodaira Laplacian on the tangent space at y (A.9).

Note that at points where RL is positive one has ry = 2 and the above expansion recovers the
usual Bergman kernel expansion at these points. The presence of fractional exponents, at points
where the curvature vanishes, given in terms of the order of vanishing, represents a new feature.
It would be desirable to have a more explicit formula for the leading term c0 at vanishing points
for the curvature. The final example 17 computes the leading term explicitly in the case of
semipositive line bundles obtained from branched coverings. Finally, we note that unlike (1.6)
the Bergman kernel expansion (1.12) does not exhibit any concentration phenomenon.

1.2. Background and commentary. The result of Theorem 1 was shown by Montgomery
[31] in the case when Y is a Riemann surface and RL vanishes to first order (r = 3) along
a curve. The case of non-vanishing curvature (r = 2), and a special case of the expansion
(1.10) for r ≥ 2, can be found in the work of Helffer-Mohamed [19]. The problem has since
been explored in several further cases. All such previous works however are more restrictive in
dimension, the curvature RL or the geometry of the manifold and bundles. Our Theorem 1 is
the most general leading asymptotic for the first Bochner eigenvalue. The only assumption is
the finite order of vanishing of the curvature RL and corresponds to Hörmander’s condition on
the unit circle of L.

The proof here uses the relation of the Bochner Laplacian with the sub-Riemannian (sR)
Laplacian on the unit circle bundle of L, this is a manifestation of the semiclassical/microlocal
correspondence in this context. Asymptotic bounds on the smallest eigenvalue can be ob-
tained by replacing Guillemin-Uribe’s use of the Melin inequality on the unit circle [18] by the
subelliptic estimate of Rothschild-Stein [33]. The leading asymptotic (1.5) however requires un-
derstanding the sharp constant in the subelliptic estimate. Here we instead exploit a pointwise
heat kernel expansion for the sR Laplacian [4, 24] on the circle bundle, this is also consistent
with our method for the other announcements.

The first part of Theorem 2 is similarly the semiclassical analog of Weyl’s law for hypoelliptic
operators of Hörmander-type. The main difficulty here is the non-uniform nature of the relevant
heat kernel expansion which does not immediately yield heat trace asymptotics. Prior results
on hypoelliptic Weyl law’s include the one by Métivier [30] and the eigenvalue estimates of
Fefferman-Phong [17].

The leading asymptotic of the Bergman kernel for positive line bundles on a compact complex
manifold was first proved in [38] and later improved to a full expansion in [11, 39] as a conse-
quence of the Boutet de Monvel-Sjöstrand parametrix [9]. Our geometric method here is closer
to [12, 27] and we refer to [26] for a detailed account of this technique and its applications. The
problem of the expansion for semipositive line bundles is well-known and largely unresolved,
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see [26, Prob. 4.8] or [13] for the analogous problem for weakly pseudoconvex domains. Our
final Theorem 3 is the first instance where the expansion has been proved at vanishing points
of the curvature for surfaces, and this is yet unresolved in higher dimensions. A key step in our
proof of Theorem 3, although one among several, is Corollary 15 below. This gives an O

(
k2/r

)
spectral gap for the Kodaira Laplacian on tensor powers by combining Theorem 1 with the
method of [25]. Donnelly has earlier shown in [16] that the corresponding does not hold in
higher dimensions as a counterexample to Siu’s eigenvalue conjecture [36] (see Remark 16 be-
low). Despite the counterexample, the problem of generalizing Theorem 3 to higher dimensions
remains open, perhaps by circumventing the use of Corollary 15. Previously, [6] proved an
asymptotic estimate for the Bergman kernel of semipositive line bundles. In [5] the expansion
is proved on the positive part, and away from the augmented base locus, assuming the line
bundle to be ample. In [21] the expansion is proved on the positive part when one twists by
the canonical bundle (i.e. F = KY ). The analogous problem of the boundary expansion for the
Bergman kernel of weakly pseudoconvex domains in C2 has also been recently solved by the
second author in [22], refining earlier estimates on Bergman kernels from [28, 32].

The analysis of holomorphic sections and the Bergman kernel for positive line bundles has sev-
eral applications, particularly to the Tian-Yau-Donaldson program in Kähler geometry, Berezin-
Toeplitz quantization, holomorphic torsion and its relation to Arakelov geometry, random holo-
morphic sections and the quantum Hall effect (see [26] for these references). Our Theorem 3
opens the way to extending these applications of Bergman kernels to the case of semipositive
line bundles, which we plan to explore in a sequel to this article.

1.3. Organization of the article. The paper is organized as follows. In Section 2 we begin
with some standard preliminaries on sub-Riemannian geometry and the sR Laplacian. In
particular 2.1.1 gives a proof of the on-diagonal expansion for the sR heat kernel. In Section
3 we specialize to the case of sR structures on unit circle bundles. Here Section 3.1 proves
Theorem 1 based on an analogous heat kernel expansion for the Bochner Laplacian on tensor
powers Theorem 8. Next Section 3.2 and Section 3.3 prove the Weyl law and expansion of the
first eigenvalue of Theorem 2 respectively. In Section 4 we come to the case of the Kodaira
Laplacian on tensors powers of semipositive line bundles on a Riemann surface. Here we prove
the Bergman kernel expansion Theorem 3 in Section 4.1.

2. sub-Riemannian geometry

Sub-Riemannian (sR) geometry is the study of (metric-)distributions in smooth manifolds.
More precisely, let Xn be an n-dimensional, compact, oriented differentiable manifold X. Let
Em ⊂ X be a rank m subbundle of the tangent bundle which is assumed to be bracket gen-
erating: sections of E generate all sections of TX under the Lie bracket. The subbundle E is
further equipped with a metric gE. We refer to the triple

(
X,E, gE

)
as a sub-Riemannian (sR)

structure. Riemannian geometry corresponds to E = TX.
The obvious length function l (γ) :=

∫ 1

0
|γ̇| dt may be defined on the set of horizontal paths

of Sobolev regularity one connecting the two points x0, x1 ∈ X as

ΩE (x0, x1) :=
{
γ ∈ H1 ([0, 1] ;X) |γ (0) = x0, γ (1) = x1, γ̇ (t) ∈ Eγ(t) a.e.

}
.

This also defines the sub-Riemannian distance function via

(2.1) dE (x0, x1) := inf
γ∈ΩE(x0,x1)

l (γ) .
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The Chow–Rashevskii theorem shows that this distance is finite, or that there exists a horizontal
path connecting any two points on X, giving the manifold the structure of a metric space(
X, dE

)
.

The canonical flag of the distribution E at any point x ∈ X is defined by

(2.2) E0 (x)︸ ︷︷ ︸
={0}

⊂ E1 (x)︸ ︷︷ ︸
=E

⊂ . . . ⊂( Er(x) (x) = TX

where Ej+1 := Ej + [Ej, Ej] , 0 ≤ j ≤ r (x) − 1 denotes the span of the jth brackets. The
number r (x) is called the step or degree of nonholonomy of the distribution at x and in general
depends on the point x ∈ X. Furthermore, the ranks of the subspaces Ej (x) might also might
depend on x ∈ X and Ej need not define a locally trivial vector bundles. The growth vector,
weight vectors and Hausdorff dimension of the distribution at x ∈ X are defined via

mE (x) =
(
mE

0︸︷︷︸
:=0

, mE
1︸︷︷︸

=m

,mE
2 , . . . , m

E
r︸︷︷︸

=n

)
, with mE

j (x) := dim Ej (x) ,(2.3)

wE (x) =
(
wE1 (x) , . . . , wEn (x)

)
:=
(

1, . . . , 1︸ ︷︷ ︸
mE1 times

, 2, . . . 2︸ ︷︷ ︸
mE2 −mE1 times

, . . . , r, . . . , r︸ ︷︷ ︸
mEr −mEr−1 times

)
(2.4)

Q (x) :=
m∑
j=1

j
(
mE
j (x)−mE

j−1 (x)
)

=
n∑
j=1

wEj (x) .(2.5)

A point x ∈ X is called regular if mE
j ’s are locally constant functions near x or each distribution

Ej is a locally trivial vector bundle near x. Mitchell’s measure theorem shows that Q (x) agrees
with the Hausdorff dimension of

(
X, dE

)
as a metric space at a regular point x ∈ X. We call

the distribution E equiregular if each point x ∈ X is regular. Hence in the equiregular case
each Ej is a subbundle of TX with r (x), mE

j (x) and Q (x) all being constants independent of
x.

An important notion is that of a privileged coordinate system at x. To define this, fix
a set of local orthonormal frame of vector fields U1, U2, . . . Um for E near x. The E−order
ordE,x (f) of a function f ∈ C∞ (X) at a point x ∈ X is the maximum integer s ∈ N0 for
which

∑m
j=1 sj = s implies that (U s1

1 . . . U sm
m f) (x) = 0. Similarly the E−order ordE,x (P ) of a

differential operator P at the point x ∈ X is the maximum integer for which ordE,x (Pf) ≥
ordE,x (P ) + ordE,x (f) holds for each function f ∈ C∞ (X). One then has the obvious re-
lation ordE,x (PQ) ≥ ordE,x (P ) + ordE,x (Q) for any pair of differential operators P,Q. A
set of coordinates (x1, . . . , xn) near a point x ∈ X is said to be privileged if each xj has
E-order wEj (x) at x. A privileged coordinate system always exists near any point [3, pg.
36]. Furthermore, the coordinate system may be chosen such that each ∂

∂xj
equals the value

of some bracket monomial in the generating vector fields at x. The E−order of the mono-
mial xα in privileged coordinates is clearly w.α, while the defining vector fields Uj all have
E−order −1. A basic vector field is one of the form xα∂xj for some j and has E−order
w.α − wj. We may then use a Taylor expansion to write Uj =

∑∞
q=−1 Û

(q)
j with each vector

field Û (q)
j being a sum of basic vector fields of E-order q. If one defines the rescaling/dilation

δεx = (εw1x1, . . . , ε
wnxn) in privileged coordinates, the vector fields Û (q)

j are those appearing in
the corresponding expansion (δε)∗ Uj =

∑∞
q=−1 ε

qÛ
(q)
j for the defining vector fields. A differen-

tial operator P on Rn is said to be E−homogeneous of ordE (P ) iff (δε)∗ P = εordE(P )P . It is
clear that the product of two such homogeneous differential operators P1, P2 is homogeneous of



BOCHNER LAPLACIAN AND SEMIPOSITIVE BERGMAN KERNEL 7

ordE (P1P2) = ordE (P1) + ordE (P2). The nilpotentization of the sR structure at an arbitrary
x ∈ X is the sR manifold given via X̂ = Rn,Ê := R

[
Û

(−1)
1 , . . . , Û

(−1)
m

]
with the metric ĝE

corresponding to the identification Û (−1)
j 7→ (Uj)x. The nilpotentization µ̂ of a smooth measure

µ at x is also defined as the leading part µ̂ = µ̂(0) under the privileged coordinate expansion
(δε)∗ µ = εQ(x)

[∑∞
q=0 µ̂

(q)
]
. These nilpotentizations can be shown to be independent of the

choice of privileged coordinates up to sR isometry [3, Ch. 5].

2.1. sR Laplacian. Here we define the sub-Riemannian (sR) Laplacian and state its basic
properties. It shall be useful to define it as acting on sections of an auxiliary complex Hermitian
vector bundle of rank l with connection

(
F, hF ,∇F

)
. To define this first define the sR-gradient

∇gE ,F s ∈ C∞ (X;E ⊗ F ) of a section s ∈ C∞ (X;F ) by the equation

(2.6) hE,F
(
∇gE ,F s, v ⊗ s′

)
:= hF

(
∇F
v s, s

′) , ∀v ∈ C∞ (X;E) , s′ ∈ C∞ (X;F ) ,

where hE,F := gE ⊗ hF . Next, one defines the divergence or adjoint of this gradient. In the
sR context, the lack of canonical volume form presents a difficulty in doing so, hence we shall
choose an auxiliary non-vanishing volume form µ. The divergence

(
∇gE ,F

)∗
µ
ω ∈ C∞ (X;F ) of

a section ω ∈ C∞ (X;E ⊗ F ) is now defined to be the formal adjoint satisfying

(2.7)
∫ 〈(

∇gE ,F
)∗
µ
ω, s

〉
µ = −

∫ 〈
ω,∇gE ,F s

〉
µ, ∀s ∈ C∞ (X;F ) .

The sR-Laplacian acting on sections of F is then defined by the composition

(2.8) ∆gE ,F,µ :=
(
∇gE ,F

)∗
µ
◦ ∇gE ,F : C∞ (X;F )→ C∞ (X;F ) .

In terms of a local orthonormal frame {Uj}mj=1 for E, we have the expression

(2.9) ∆gE ,F,µs =
m∑
j=1

[
−
(
∇F
Uj

)2

s+
(
∇gEUj

)∗
µ
∇F
Uj
s

]
with

(
∇gEUj

)∗
µ
being the divergence of the vector field Uj with respect to µ. Changing the

volume form µ changes the sR Laplacian (2.8) by a conjugate, up to a term of order zero.
The sR Laplacian ∆gE ,F,µ is non-negative and self-adjoint with respect to the obvious inner

product 〈s, s′〉 =
∫
X
hF (s, s′)µ, s, s′ ∈ C∞ (X;F ). Its principal symbol is easily computed to

be the Hamiltonian

(2.10) σ = σ
(
∆gE ,F,µ

)
(x, ξ) = HE (x, ξ) = |ξ|E|

2 ∈ C∞ (T ∗X)

while its sub-principal symbol is zero. The characteristic variety

Σ∆
gE,F,µ

=
{

(x, ξ) ∈ T ∗X|σ
(
∆gE ,F,µ

)
(x, ξ) = 0

}
= {(x, ξ) | ξ|E = 0} =: E⊥(2.11)

is the annihilator of E. From the local expression (2.9) and the bracket generating condition
on E, the Laplacian ∆gE ,F,µ is seen to be a sum of squares operator of Hörmander type [20].
It is then known to be hypoelliptic and satisfies the following optimal sub-elliptic estimate [33]
with a gain of 1

r
derivatives

(2.12) ‖ψs‖2
H1/r ≤ C

[〈
∆gE ,F,µϕs, ϕs

〉
+ ‖ϕs‖2

L2

]
, ∀s ∈ C∞ (X;F )

for all ϕ, ψ ∈ C∞c (X), with ϕ = 1 on spt (ψ), and where r := supx∈X r (x) is the maximum
step size of the distribution.
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Thus on a compact manifold the sR Laplacian has a compact resolvent, a discrete spectrum
of non-negative eigenvalues approaching infinity and a well-defined heat operator e−t∆gE,F,µ .

2.1.1. sR heat kernel. We shall now describe the asymptotics of the heat kernel e−t∆gE,F,µ .
One first begins with the finite propagation speed for the sR wave equation [29]: the Schwartz
kernel Kt (x, y) of the half-wave operator eit

√
∆
gE,F,µ is supported

(2.13) spt Kt ⊂
{

(x, y) |dE (x, y) ≤ |t|
}

in a |t| size neighborhood of the diagonal measured with respect to the sR distance (2.1). From
this one obtains a localization for the heat kernel. To state it, fix a Riemannian metric gTX

and a privileged coordinate ball BgTX

% (x), centered at a point x, of radius %x depending on x.
Let U1, . . . , Um be a local orthonormal frame for E on this ball. Let χ ∈ C∞c ([−1, 1] ; [0, 1])
with χ = 1 on

[
−1

2
, 1

2

]
. Define the modified measure and vector fields on Rn via

µ̃ = µ̂+ χ

(
dg

TX
(x, x′)

%x

)
(µ− µ̂) ,

Ũj = U
(−1)
j + χ

(
dg

TX
(x, x′)

%x

)(
Uj − U (−1)

j

)
, 1 ≤ j ≤ m,(2.14)

in terms of the nilpotentization at x given by these privileged coordinates. These modified
vector fields can be seen to be bracket generating for % sufficiently small. The connection on F
can be written ∇F = d+A, in terms of an orthonormal trivialization for F over the ball, where
A ∈ Ω1

(
BgTX

% (x) ; u (l)
)
, A (0) = 0, is a one form valued in the Lie algebra u (l) of the unitary

group. A modified sR metric g̃E on Rn is now defined by requiring the vector fields (2.14) to
be orthonormal. While a modified connection on the trivial vector bundle of rank rk (F ) on Rn

is defined as ∇̃F := d+χ
(
dE(x,x′)

%

)
A. A formula similar to (2.9) now gives an sR Laplacian on

Rn via

∆̃gE ,F,µs =
m∑
j=1

[
−
(
∇̃F
Ũj

)2

s+
(
∇g̃E Ũj

)∗
µ̃
∇̃F
Ũj
s

]
.

Being semi-bounded from below, it is essentially self-adjoint and has a well-defined heat kernel
on Rn using functional calculus. Furthermore from the bracket generation of (2.14), it is of
Hörmander type and satisfies a local sub-elliptic estimate (2.12). Next, an application of finite
propagation speed for the wave operator (2.13) gives localization for the heat kernel for the sR
Laplacian. Namely, there exist constants ρ1,x, Cx depending on x such that

e−t∆gE,F,µ (x, x′) ≤ Ct−2nr−1e−
dE(x,x′)2

4t(2.15)

e−t∆gE,F,µ (x, x′)− e−t∆̃gE,F,µ (x, x′) ≤ Cxe
−
%21,x
16t(2.16)

for dE (x, x′) ≤ %1,x and t ≤ 1.
We now have the following on diagonal expansion for the sR heat kernel.

Theorem 4. There exist smooth sections Aj ∈ C∞ (X;End (F ))such that

(2.17)
[
e−t∆gE,F,µ

]
µ

(x, x) =
1

tQ(x)/2

[
A0 (x) + A1 (x) t+ . . .+ AN (x) tN +O

(
tN
)]

∀x ∈ X, N ∈ N. The leading term A0 =
[
e−∆̂

ĝE,µ̂

]
µ̂

(0, 0) is a multiple of the identity and given

in terms of the scalar heat kernel on the nilpotent approximation at x.
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Proof. By (2.16) it suffices to demonstrate the expansion for the localized heat kernel e−t∆̃gE,F,µ (0, 0)
at the point x. Next, the heat kernel of the rescaled sR-Laplacian

(2.18) ∆̃ε
gE ,F,µ := ε2 (δε)∗ ∆̃gE ,F,µ

under the privileged coordinate dilation satisfies

(2.19) e
−t∆̃ε

gE,F,µ (x, x′) = εQ(x)e−tε
2∆̃

gE,F,µ (δεx, δεx
′) .

Rearranging and setting x = x′ = 0, t = 1; gives

ε−Q(x)e
−∆̃ε

gE,F,µ (0, 0) = e−ε
2∆̃

gE,F,µ (0, 0)

and it suffices to compute the expansion of the left-hand side above as the dilation ε→ 0. To
this end, first note that the rescaled Laplacian has an expansion under the privileged coordinate
dilation

(2.20) ∆̃ε
gE ,F,µ =

(
N∑
j=0

εj∆̂
(j)

gE ,F,µ

)
+ εN+1R(N)

ε , ∀N.

Here each ∆̂
(j)

gE ,F,µ
is an ε-independent second-order differential operator on Rn of homogeneous

E−order j − 2. While each R(N)
ε is an ε-dependent second-order differential operator on Rn of

E-order at least N − 1. The coefficient functions of ∆̂
(j)

gE ,F,µ
are polynomials of degree at most

j+ 2r. While those of R(N)
ε are uniformly C∞-bounded in ε. The first term is a scalar operator

given in terms of the nilpotent approximation at x

(2.21) ∆̂
(0)

gE ,F,µ
= ∆ĝE ,µ̂;x =

m∑
j=1

(
Û

(−1)
j

)2

.

This expansion (2.20) along with the subelliptic estimate (2.12) now gives(
∆̃ε
gE ,F,µ − z

)−1

−
(

∆̂
(0)

gE ,F,µ
− z
)−1

= O
Hs

loc→H
s+1/r−2
loc

(
ε |Imz|−2) ,

∀s ∈ R. More generally, we let Ij := {p = (p0, p1, . . .) |pα ∈ N,
∑
pα = j} denote the set of

partitions of the integer j and define

(2.22) Czj :=
∑
p∈Ij

(
∆̂

(0)

gE ,F,µ
− z
)−1

[∏
α

∆̂
(pα)

gE ,F,µ

(
∆̂

(0)

gE ,F,µ
− z
)−1
]
.

Then by repeated applications of the subelliptic estimate we have

(2.23)
(

∆̃ε
gE ,F,µ − z

)−1

−
N∑
j=0

εjCzj = O
Hs

loc→H
s+N(1/r−2)
loc

(
εN+1 |Imz|−2Nwn−2

)
,

∀s ∈ R. A similar expansion as (2.20) for
(

∆̃ε
gE ,F,µ + 1

)M (
∆̃ε
gE ,F,µ − z

)
, M ∈ N, also gives

(2.24)(
∆̃ε
gE ,F,µ + 1

)−M (
∆̃ε
gE ,F,µ − z

)−1

−
N∑
j=0

εjCzj,M = O
Hs

loc→H
s+N(1/r−2)+Mr
loc

(
εN+1 |Imz|−2Nwn−2

)
where Czj,M = O

Hs
loc→H

s+N(1/r−2)+Mr
loc

(
εN+1 |Imz|−2Nwn−2

)
, j = 0, . . . , N , with

Cz0,M =
(

∆̂
(0)

gE ,F,µ
+ 1
)−M (

∆̂
(0)

gE ,F,µ
− z
)−1

.
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For M � 0 sufficiently large, Sobolev’s inequality gives an expansion for the corresponding
Schwartz kernels of (2.24) in C0 (Rn × Rn). The heat kernel expansion now follows by plugging
the resolvent expansion into the Helffer-Sjöstrand formula (see [15, Ch. 8, eq. 8.3] for this
formula and the notion of an analytic continuation used therein). Finally, to see that the
expansion only involves even powers of ε, or that (2.17) has no half-integer powers of t, note
that the operators ∆̂

(j)

gE ,F,µ
in the expansion (2.20) change sign by (−1)j under the rescaling

δ−1. Thus the Schwartz kernel for Czj (2.22) then changes sign by (−1)j under this change of
variables giving Czj (0, 0) = 0 for j odd. �

The above proof similarly gives an expansion for functions of the Laplacian

(2.25)
[
ϕ
(
t∆gE ,F,µ

)]
µ

(x, x) =
1

tQ(x)/2

[
Aϕ0 (x) + Aϕ1 (x) t+ . . .+ AϕN (x) tN +O

(
tN
)]
,

∀ϕ ∈ S (R). As usual, the same proof gives a point-wise, near-off diagonal expansion for the
heat kernel and its derivatives: i.e. an asymptotic expansion for

[
ϕ
(
t∆gE ,F,µ

)]
µ

(
δ
t
1
2
x, δ

t
1
2
x′
)
,

as t → 0, on the chosen privileged coordinate ball in the C∞-norm on the product. This is
only a matter of different substitutions in (2.19) and in the Helffer-Sjöstrand formula for ϕ in
(2.24).

However both the above and the expansion Theorem 4 hold only pointwise along the diagonal.
In particular, the leading order Q (x) is in general a function of the point x on the diagonal.
This hence does not immediately give heat trace or spectral function asymptotics for the sR
Laplacian as the expansion might not be uniform or integrable in x. In the equiregular case,
where Q (x) = Q is constant, a uniform set of privileged coordinates, privileged at each point
in a neighborhood of x, may be chosen in the proof. This gives the uniformity of the expansion
in x and one obtains the asymptotics for the Weyl counting function N (λ), for the number of
eigenvalues of ∆gE ,F,µ below λ.

Theorem 5. For an equiregular sR manifold case there is a heat trace expansion

tr e−t∆gE,F,µ =
1

tQ/2
[
a0 + a1t+ . . .+ aN t

N +O
(
tN
)]
,

∀N ∈ N, with leading term given by a0 =
∫
X

[
e−∆̂

ĝE,µ̂

]
µ̂

(0, 0)µ. Thus the Weyl counting

function satisfies

N (λ) =
λQ/2 (1 + o (1))

Γ (Q/2 + 1)

∫
X

[
e−∆̂

ĝE,µ̂

]
µ̂

(0, 0)µ.

The above two theorems are by now well known [4, 24, 30, 37], with the investigation of
the small time heat kernel asymptotics having begun in [7]. The above proof is based on the
analytic localization technique [8] combined with the use of sR geometric privileged coordinate
dilations.

3. Bochner Laplacian on tensor powers

A natural place where sub-Riemannian structures arise is on unit circle bundles. To be
precise, let us consider

(
X,E, gE

)
a corank 1 sR structure on an n-dimensional manifold X.

We assume that there is a free S1 action on X with respect to which the sR structure is
invariant and transversal: the generator e ∈ C∞ (TX) of the action and E are transversal
at each point. The quotient Y := X/S1 is then a manifold with a Riemannian metric gTY
induced from gE. Equivalently, the natural projection π : X → Y is a principal S1 bundle with
connection given by the horizontal distribution E. Let L := X ×ρ S1 → Y be the Hermitian
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line bundle associated to the standard one-dimensional representation ρ of S1 with induced
connection ∇L and curvature RL. Since the distribution is of corank 1, the growth vector at
x is simply a function of the step r (x) and given by mE (x) =

(
0, n− 1, n− 1, . . . , n− 1︸ ︷︷ ︸

r(x)−1 times

, n
)

(2.3). Equivalently, the canonical flag (2.2) is given by

Ej (x) =

{
E; 1 ≤ j ≤ r (x)− 1

TX; j = r (x)
.

Also, note that the weight vector at x is wE (x) =
(

1, 1, . . . , 1︸ ︷︷ ︸
n−1 times

, r (x)
)
, while the Hausdorff

dimension is given by Q (x) = n− 1 + r (x). On account of the S1 invariance, each of mE (x) ,
r (x) and Q (x) descend to functions on the base manifold Y . The degree of nonholonomy r (x)
at x is now characterized in terms of the order of vanishing of the curvature RL as below.

Proposition 6. The degree of nonholonomy of an S1 invariant sR structure

r (x)− 2 = ord
(
RL
)

:= min
{
l|jlπ(x)

(
RL
)
6= 0
}

(3.1)

is given in terms of the order of vanishing of the curvature RL on the base.

Proof. In terms of local coordinates on Y and a local orthonormal section l for L, we may write
∇L = d + iaL; aL ∈ Ω1 (Y ), while E = ker

[
dθ + aL

]
with θ being the induced coordinate on

each fiber of X. The proposition now follows on noting [Ui, Uj] =
(
daL
)
ij
∂θ = RL

ij∂θ for the
local generating vector fields Uj := ∂yj − aLj ∂θ, 1 ≤ j ≤ n − 1. Repeated brackets among the
Uj’s are then given in terms of derivatives of the curvature RL. �

Thus we see that the bracket generating condition is equivalent to the curvature RL having
a finite order of vanishing at each point of Y .

3.0.2. Structure of Yr. As noted before, the function y 7→ ry (1.2) is upper semi-continuous
and gives a decomposition of the manifold Y =

⋃r
j=2 Yj; Yj := {y ∈ Y |ry = j} with each

Y≤j :=
⋃j
j′=0 Yj′ being open. We next address the local structure of Yr, the locus of highest

vanishing order for the curvature.

Proposition 7. The subset Yr ⊂ Y is locally any closed subset of a hypersurface.

Proof. First, express the curvature RL = RL
ijdyi ∧ dyj in some coordinates centered at y ∈ Yr.

By definition, Yr is described by equations of the following type near y

∂αyR
L
ij = 0, ∀i, j = 1, 2, . . . , n− 1, α ∈ Nn−1

0 , |α| ≤ r − 3, while(3.2)

∂α0
y R

L
i0j0
6= 0, for some i0, j0 = 1, 2, . . . , n− 1, α0 ∈ Nn−1

0 , |α0| = r − 2.(3.3)

The second equation (3.3) implies that one of the functions ∂αyRL
ij, |α| = r − 3, has a non-zero

differential and cuts out a hypersurface.
Conversely, let S ⊂ {0} × Bn−2

y2,...,yn−1
⊂ Rn−1

y1,y2,...,yn−1
be any closed subset of the n− 2 dimen-

sional ball, sitting inside the hypersurface {y1 = 0} in n−1 dimensions. By an application of the
Whitney extension theorem, there exists a smooth function f (y2, . . . , yn−1) ∈ C∞

(
Rn−2
y2,...,yn−1

)
such that S = {0} ×

{
fy3 = . . . = fyn−1 = 0

}
. The closed two form

RL = d

[
−fdy1 +

1

2
y2

1dy2

]
= (y1 + fy2) dy1dy2 +

n−1∑
j=3

fyjdy1dyj
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is the curvature of some connection on the trivial line bundle over the ball. This curva-
ture form satisfies r = 3 with Y3 =

{
y1 + fy2 = fy3 = . . . = fyn−1 = 0

}
. The local structure

of Y3 near the origin is now the same as S under the diffeomorphism (y1, y2 . . . , yn−1) 7→
(y1 + fy2 , y2, . . . , yn−1). �

3.1. Smallest eigenvalue. The unit circle bundle of L being X, the pullback C ∼= π∗L→ X
is canonically trivial via the identification π∗L 3 (x, l) 7→ x−1l ∈ C. Pick an auxiliary complex
Hermitian vector bundle with connection

(
F, hF ,∇F

)
on Y and we denote by the same notation

its pullback to X. Pulling back sections then gives the identification

(3.4) C∞ (X;F ) = ⊕k∈ZC∞
(
Y ;F ⊗ Lk

)
.

Each summand on the right-hand side above corresponds to an eigenspace of∇F
e with eigenvalue

−ik. While horizontal differentiation dH on the left corresponds to differentiation with respect
to the tensor product connection∇Lk on the right-hand side above. Pick an invariant density
µX on X inducing a density µY on Y . This now defines the sR Laplacian ∆gE ,F,µX acting on
sections of F . By invariance the sR Laplacian commutes

[
∆gE ,F,µX , e

]
= 0 with the generator

of the circle action and hence preserves the decomposition (3.4). It acts via

(3.5) ∆gE ,F,µX = ⊕k∈Z∆k

on each component where ∆k is the Bochner Laplacian (1.1) on the tensor powers F ⊗Lk, with
adjoint being taken with respect to µY .

Next, we show that the heat kernel expansion for the sR Laplacian Theorem 4 gives a
corresponding heat kernel expansion for the Bochner Laplacian.

Theorem 8. The heat kernel of the Bochner Laplacian ∆k has the following pointwise expansion
on the diagonal

(3.6) e
− t

k2/r
∆k (y, y) =

{
k(n−1)/r

[∑N
j=0 a2j (y; t) k−2j/r +O

(
k−(N+1)/r

)]
; y ∈ Yr

O (k−∞) ; y ∈ Y≤r−1

with leading coefficient a0 (y; t) = e−t∆y (0, 0) being the heat kernel of the model operator (A.3)
on the tangent space.

Proof. The Fourier decomposition for the Laplacians (3.5), gives the corresponding relation

(3.7) e−T∆k (y1, y2) =

[∫
dθ e

−T∆
gE,F,µX

(
ly1 , ly2e

iθ
)
e−ikθ

]
ly1 ⊗ l∗y2

between the heat kernels with ly1 , ly2 denoting two unit elements in the fibers of L above y1, y2

respectively. We again note that the kernels are computed with respect to the densities µX , µY
chosen before. The above relation together with (2.15) first gives

(3.8) e
− 1

k2/r
∆k (y1, y2) = cε,Nk

−N , ∀N ∈ N,

when d (y1, y2) > ε > 0.
Choosing a coordinate system centered at a point y ∈ Y and a local orthonormal section l

of L gives an induced coordinate system on the unit circle bundle near x. It is easy to see that
this induced coordinate system is privileged at each point on the fiber above y.

Next, using (3.7) with T = ε2t and y1 = y2 belonging to this coordinate chart, one has

e−ε
2t∆k (y1, y1) =

[∫
dδεθ

′ e
−ε2t∆

gE,F,µX

(
l (y1) , l (y1) eiδεθ

′
)
e−ikδεθ

′
]
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where δε denotes the privileged coordinate dilation as before. Now setting y1 = εy = δεy, the
equations (2.19), (2.20) in the proof of Theorem 4 give an expansion for the integrand above

(3.9) e−ε
2t∆k (δεy, δεy) =

∫
dδεθ

′e−ikδεθ
′
ε−Q(y)

[
N∑
j=0

a2j (y, θ′; t) ε2j +
ε2N+1

tQ(y)/2
RN+1 (y, θ′; t)

]
uniformly in t ≤ 1 and y ∈ BR (0), ∀R > 0. A slight difference above being that the co-
efficients aj (y, θ′; t) above are computed with respect to the model nilpotent sR Laplacian
∆̂y := ∆̂gTYy ,jr−2RLy

(A.5) on the product S1
θ×Rn−1 rather than (2.21) on Euclidean space. In par-

ticular, the leading term is a0 (y, θ′; t) = e−t∆̂y (y, 0; y, θ′). Now set ε = k−
1
r and r1 (y) := 1− r(y)

r
to obtain

e
− t

k2/r
∆k

(
k−

1
r y, k−

1
r y
)

=

∫
dδk−1/rθ′e−ik

r1(y)θ′ kQ(y)/r

[
N∑
j=0

a2j (y, θ′; t) k−2j/r +O
(
k−(2N+1)/r

)]

=

{
k(n−1)/r

[∑N
j=0 a2j (y; t) k−2j/r +O

(
k−(2N+1)/r

)]
; y ∈ Yr

O (k−∞) ; y ∈ Y≤r−1

(3.10)

following a stationary phase expansion in θ′. Finally, setting y = y1 = y in (3.10) proves the
theorem.

Above we again note that the remainders are uniform for y ∈ BR (0) , ∀R > 0. The first
coefficient is given by the model Laplacian on the tangent space ∆y := ∆gTYy ,jr−2RLy

via

a0 (y; t) =

∫
dθ′e−iθ

′
e−t∆̂y (y, 0; y, θ′) = e−t∆y (y, y)

by (A.7). While the general coefficient has the form

a2j (y; t) = − 1

π

∫
C
∂̄ρ̃ (z) Cz2j (y, y) dzdz̄

Cz2j =
∑
p∈I2j

(∆y − z)−1

[∏
α

4pα (∆y − z)−1

]
(3.11)

as in (2.22), for some set of second-order differential operators 4j, j = 1, 2, . . . , (see also (3.9)
below). Above ρ̃ denotes an almost analytic continuation of ρ ∈ S (R) satisfying ρ (x) = e−tx,
x ≥ 0. �

We now show how the heat kernel expansion immediately proves our first Theorem 1.

Proof of Theorem 1. We first give a short argument for asymptotic bounds on the smallest
eigenvalue

(3.12) C1k
2/r − C1 ≤ λ0 (k) ≤ C [1 + o (1)] k2/r.

The upper bound follows easily from a min-max argument. Namely by the min-max principle
for self-adjoint operators applied to the model operator ∆y on the tangent space at y ∈ Yr, there
exists ψ̃ ∈ C∞c (Rn−1), ‖ψ‖ = 1 such that

〈
∆yψ̃, ψ̃

〉
≤ λ0 (∆y)+ε, for each ε > 0. Furthermore,

the model operator arises as the leading term (δk−1/r)∗∆k = k2/r
[
∆y +O

(
k−1/r

)]
under the

rescaling δk−1/ry := k−1/ry in geodesic coordinates centered at y (cf. also subsection 3.3 below).
From the min-max principle for ∆k one then obtains

λ0 (k)

k2/r
≤ k−2/r

〈
∆kψ̃

k
0 , ψ̃

k
0

〉
≤ λ0 (∆y) + o (1)
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for ψ̃k0 := k(n−1)/r (δk−1/r)
∗ ψ̃. The upper bound (3.12) now follows. For the lower bound, we

combine the trick of Guillemin-Uribe with the Rothschild-Stein subelliptic estimate (2.12) on
the circle bundle to obtain

C1

∥∥∥∂1/r
θ s

∥∥∥2

≤ C1 ‖s‖2
H1/r ≤

[〈
∆gE ,F,µXs, s

〉
+ ‖s‖2

L2

]
,

∀s ∈ C∞ (X;F ) . Letting s = π∗ψk0 be the pullback of the orthonormal eigenfunction ψk0 of ∆k

gives C1k
2/r ≤ (λ0 (k) + 1) as required. To obtain the leading asymptotic (1.5) in Theorem 1

however one needs to show C1 = C in (3.12). This requires a closer look at the Rothschild-Stein
subelliptic estimate (2.12) and in particular identifying the sharp constant therein.

We instead take an alternate route via the heat kernel, this is also consistent with our proofs
of the other two theorems in the introduction. First for any 0 < t1 < t2, y ∈ Yr and R > 0, one
has the following estimate at leading order using (3.10)

λ0 (k)

k2/r
≤ 1

(t2 − t1)
ln


∫
BR(0)

d
(
k−

1
r y
)
e
− t1

k2/r
∆k

(
k−

1
r y, k−

1
r y
)

∫
BR(0)

d
(
k−

1
r y
)
e
− t2

k2/r
∆k

(
k−

1
r y, k−

1
r y
)


=
1

(t2 − t1)
ln

(∫
BR(0)

dye−t1∆y (y, y) +O
(
k−1/r

)∫
BR(0)

dye−t2∆y (y, y) +O (k−1/r)

)

=
1

(t2 − t1)
ln

(∫
BR(0)

dye−t1∆y (y, y)∫
BR(0)

dye−t1∆y (y, y)

)
+O

(
k−1/r

)
.(3.13)

This already gives an upper bound on the first eigenvalue. To identify the constant (1.7) one
takes the limit as t1 → t2 to obtain

λ0 (k)

k2/r
≤

∫
BR(0)

dy
[
∆ye

−t1∆y
]

(y, y)∫
BR(0)

dye−t1∆y (y, y)
+O

(
k−1/r

)
,

∀t1 > 0. Using Proposition 19 of Section A, this gives lim supk→∞
λ0(k)

k2/r
≤ λ0 (∆y) + ε,∀ε > 0,

y ∈ Yr, and hence

(3.14) lim sup
k→∞

λ0 (k)

k2/r
≤ inf

y∈Yr
λ0 (∆y) .

For the lower bound on λ0 (k), first note that as in (2.25) one may prove an on diagonal
expansion

ϕ

(
1

k2/r
∆k

)
(y, y) = k(n−1)/r

[
aϕ0 (x) + aϕ1 (x) k−1/r + . . .+ aϕN (x) k−N/r +O

(
k−(N+1)/r

)]
∀ϕ ∈ S (R), and where the coefficient aϕj has the form (3.11) with ρ̃ replaced with an analytic
continuation of ϕ. Next note that each of the terms Cz2j (3.11) is holomorphic in z for Rez <
C := infy∈Yr λ0 (∆y). This gives ϕ

(
1

k2/r
∆k

)
(y, y) = O

(
k−N

)
,∀N ∈ N, uniformly in y ∈ Y , for

ϕ ∈ C∞c (−∞, C). Thus

ϕ

(
λ0 (k)

k2/r

)
≤ tr ϕ

(
1

k2/r
∆k

)
= O

(
k−N

)
and hence inf

y∈Yr
λ0 (∆y) ≤ lim inf

k→∞

λ0 (k)

k2/r
.(3.15)

From (3.14), (3.15) we have (1.5).



BOCHNER LAPLACIAN AND SEMIPOSITIVE BERGMAN KERNEL 15

The estimate on the eigenfunction (1.6) then follows from
∣∣ψk0 (y)

∣∣2 ≤ e
λ0(k)

k2/r e
− 1

k2/r
∆k (y, y) on

using (3.6) and (1.5). �

3.2. Weyl law. In this subsection and the next, we shall prove Theorem 2 assuming Yr =⋃N
j=1 Yr,j to be a union of embedded submanifolds, of dimensions dj := dim (Yr,j), along which

the curvature RL vanishes non-degenerately (1.8). Before proceeding, the following remark on
our non-degeneracy hypothesis is in order.

Remark 9. (Non-degeneracy hypothesis) The non-degeneracy hypothesis (1.8) can be described
more explicitly in local coordinates. Namely, if we choose a coordinate systemy1, . . . , ydj︸ ︷︷ ︸

=y′

; ydj+1, . . . , yn−1︸ ︷︷ ︸
=y′′


near y ∈ Yr,j in which Yr,j = {y′′ = 0} is given by the vanishing of the last n− 1− dj of these
coordinates, then the curvature can be Taylor expanded as

(3.16) RL =
∑
|α|=r−2

n∑
p,q=1

Rpq,α (y′′)
α
dypdyq︸ ︷︷ ︸

=RL0

+O
(

(y′′)
r−1
)
.

The non-degeneracy condition (1.8) is now seen to be equivalent to the implication

(3.17)
(
∂βRL

0

)
(y) = 0, ∀ |β| < r − 2 ⇐⇒ y′′ = 0.

That is, the (r − 2)-order vanishing locus Yr = Y 0
r :=

{
y ∈ Y |ordy

(
RL

0

)
= r − 2

}
is locally the

same for the curvature RL and its leading part RL
0 . An example of a curvature that is not

non-degenerate in this sense is RL = (y2
1 + y4

2) dy1dy2. Here r = 4, the leading part of the
curvature is RL

0 = y2
1dy1dy2, while {0} = Y4 6= Y 0

4 = {y1 = 0}.
A more restrictive condition, that is common in the literature and satisfied in the Montgomery

case [31], is that the curvature RL defines a ’magnetic well’ at Yr [19]. This assumes the existence
of positive constants C1, C2 > 0 for which the curvature satisfies

(3.18) C1d
g (y, Yr)

r−2 ≤
∣∣RL (y)

∣∣ ≤ C2d
g (y, Yr)

r−2 , ∀y ∈ Y,

with dg denoting the Riemannian distance above. It is easy to see that the above (3.18) is
stronger than and implies our non-degeneracy hypothesis (3.17). Examples of curvatures in
dimension two that are non-degenerate (3.17) without defining a magnetic well (3.18) are RL =
y1y2dy1dy2 (normal crossing), y1y2 (y1 + y2) dy1dy2, y1y2 (y2

1 − y2
2) dy1dy2 (multiple crossings),

y1 (y2 − y2
1) dy1dy2 (tangential crossing), y1 (y3

1 − y2
2) dy1dy2 (cuspidal vanishing) and y1

(
yk+1

1 ± y2
2

)
dy1dy2

(A±k singularity). While in higher dimension a general class of examples is given by curvatures
of the form RL = fdf ∧ y1dy1 ∈ Ω2 (Rn−1), for f = y2 . . . yn−1g (y2, . . . , yn−1), with g being any
homogeneous polynomial. The vanishing set Y≥3 for these curvatures includes {0} × V [g] for
the variety V [g] := {g = 0} ⊂ Rn−2

y2,...,yn
corresponding to the arbitrary homogeneous polynomial

g. While the highest order vanishing locus Yr = {0} is the origin for the above.

By a standard Tauberian argument, the first part of Theorem 2 on the asymptotics of the
Weyl counting function now follows from the following heat trace expansion.
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Theorem 10. Assume that Yr =
⋃N
j=1 Yr,j is a union of embedded submanifolds, of dimensions

dj := dim (Yr,j), along which the curvature RL vanishes non-degenerately (1.8). For any f ∈
C∞ (Y ), the heat trace of the Bochner Laplacian satisfies the asymptotics

(3.19) tr
[
fe
− t

k2/r
∆k

]
=

N∑
j=1

{
M∑
s=0

k(dj−2s)/r

[∫
NYr,j

aj,s (f ; t)

]
+O

(
k(dj−2M−1)/r

)}
∀M ∈ N, t ≤ 1. Moreover, the leading terms above are given by

(3.20) aj,0 (f ; t) = f |Yr,j e
−t∆y (v, v) , v ∈ NyYr,j,

in terms of the pullback to the normal bundle of f |Yr,j .

Proof. By Theorem 8 it suffices to consider f supported in a sufficiently small neighborhood of
a given point y ∈ Yr,j. We then again choose a coordinate system near y in which Yr,j is given
by the vanishing of the last n − 1 − dj of the coordinates and in which the curvature has the
Taylor expansion (3.16). We may further assume the coordinate vector fields

{
∂yj
}n−1

j=1
to be

orthonormal at y. The model operator (A.4) on the tangent space

∆y = −
∑
|α|=r−2

n∑
p,q=1

(
∂yp +

i

r
yq (y′′)

α
Rpq,α

)2

,

is given in terms of this leading part of the curvature. Below it shall also be useful to define
the model semiclassical k-Bochner Laplacian

(3.21) ∆mod
y;k := −

∑
|α|=r−2

n∑
p,q=1

(
∂yp +

ik

r
yq (y′′)

α
Rpq,α

)2

, ∀k > 0,

corresponding to the leading part of the curvature in (3.16).
Next from (3.10) one has

e
− 1

k2/r
∆k (δεy, δεy) = k(n−1)/r

[
N∑
j=0

a2j

(
εk1/ry; t

)
k−2j/r +O

(
k−(2N+1)/r

)]
,

with a0

(
εk1/ry; t

)
= e−t∆y

(
εk1/ry, εk1/ry

)
,(3.22)

uniformly for k−1/r ≥ ε and y ∈ B1 (0). Furthermore, substituting t = 1
ε2k2/r

in (3.9) we obtain

e
− 1

k2/r
∆k (δεy, δεy) = ε−(n−1)

∫
dθ′e−ikε

rθ′

[
N∑
j=0

a2j

(
y, θ′;

1

ε2k2/r

)
ε2j(3.23)

+
ε2N+1

(εk1/r)
n−1+rR2N+1

(
y, θ′;

1

ε2k2/r

)]
,

a0

(
y, θ′;

1

ε2k2/r

)
= e

− 1

ε2k2/r
∆̂y (y, 0; y, θ′)(3.24)

uniformly for k ∈ N, k−1/r ≤ ε and y ∈ B1 (0). The leading term above is identified with the
heat kernel

e
− 1

k2/r
∆mod
y;k (y, y) =

∫
dθ′e−ikε

rθ′ a0

(
y, θ′;

1

ε2k2/r

)
,
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of the model k-Bochner Laplacian (3.21) for k := kεr. One next chooses

y =
(

0, . . . , 0︸ ︷︷ ︸
=y′

; ydj+1, . . . , yn−1︸ ︷︷ ︸
=y′′

)
, |y′′| = 1,

of the given form so that ordy

(
RL

0

)
< r − 2 by (3.17). Then

(3.25) e
− 1

k2/r
∆mod
y;k (y, y) = e−∆y

(
k1/ry, k1/ry

)
= O

(
k−∞

)
,

follows by a stationary phase type argument as in Theorem 8. A similar argument applied
to the subsequent terms in (3.24), which are given by convolution integrals with the leading
part, shows that

∫
dθ′e−ikε

rθ′ a2j

(
y, θ′; 1

ε2k2/r

)
= O (k−∞), ∀j. In particular, the terms of (3.23),

(3.24) are integrable in ε for fixed k. Thus (3.22), (3.24), (3.25) and a Taylor expansion for f
near y = 0 combine to give (3.19). �

3.3. Expansion for the smallest eigenvalue. In this subsection we prove the second part
of Theorem 2 on the expansion for the first eigenvalue λ0 (k), assuming non-degeneracy (1.8)
and when Yr is a finite set of points. The same argument as below, with a minor modification,
also gives an expansion for the mth eigenvalue λm (k) for any fixed m ∈ N0.

Before proceeding, we note a short argument showing that a weaker version of the second
part (1.10) of Theorem 2 is immediate from its first part (1.9). Namely, when Yr is a finite set
of points (or dmax

j = 0), the number of eigenvalues for the Bochner Laplacian N
[
c1k

2/r, c2k
2/r
]
,

for c1 < C < c2, has a limit as k → ∞ by (1.9). Furthermore, by Theorem 10 the functional
traces tr ϕ

(
1

k2/r
∆k

)
, ϕ ∈ C∞c (c1, c2), involving the eigenvalues in this interval, have expansions

in powers of k−1/r. Thus for k sufficiently large λ0 (k) is a root of the polynomial pk−1/r (λ) :=
Πλj(k)∈[c1k2/r,c2k2/r] (λ− λj (k)) of a fixed degree in λ. The coefficients of this polynomial can

be written in terms of the functional traces and hence have expansions in powers of k−1/r. By
an application of analytic perturbation theory for polynomial roots [23, Ch. 2.2], the smallest
eigenvalue λ0 (k) has an expansion in powers of k−1/Mr, where M ∈ N is the multiplicity of one
of the roots of p0 (λ).

The above argument is however insufficient to obtain an expansion in powers of k−1/r. Below
we instead show that λ0 (k) is an eigenvalue of a family of self-adjoint matrices Ak−1/r , of fixed
rank, whose entries admit expansions in k−1/r. One may then apply analytic perturbation
theory for self-adjoint matrices. This requires working at the level of eigenfunctions and our
technique again partly borrows from [8, Ch. 9].

We first need some terminology. Let % < min
{

1
2
, 1

2
igTY

}
be smaller than half the injectivity

radius igTY of
(
Y, gTY

)
. Choose a geodesic coordinate system on a ball B2% (y) centered at

y ∈ Yr. Below it shall also be useful to choose % small enough so that the balls {B2% (y)}y∈Yr
are disjoint. Choose local trivializations l, {sj}rank (F )

j=1 of L, F over B2% (y) that are parallel with
respect to ∇L, ∇F respectively along geodesics starting at the origin. The Bochner Laplacian
can be written in this local frame and coordinates as ∆k =

(
∇F⊗Lk

)∗
∇F⊗Lk where

∇F⊗Lk =d+ aF + kaL

aLp =

∫ 1

0

dρ
(
ρyqRL

pq (ρx)
)
,

aFp =

∫ 1

0

dρ
(
ρyqRF

pq (ρx)
)
,(3.26)
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With χ ∈ C∞c ([−1, 1] ; [0, 1]) with χ = 1 on
[
−1

2
, 1

2

]
, we define the modified connections on

Rn−1 via

∇̃F = d+ χ

(
|y|
2%

)
aF

∇̃L = d+


∫ 1

0

dρ ρyk
(
R̃L
)
jk

(ρy)︸ ︷︷ ︸
=ãLj

 dyj, where

R̃L = χ

(
|y|
2%

)
RL +

[
1− χ

(
|y|
2%

)]
RL

0 .(3.27)

Further, we choose a modified metric g̃TY which is Euclidean outside B2% (y) and agrees with
gTY on B% (y). This defines the modified Bochner Laplacian ∆̃k :=

(
∇̃F⊗Lk

)∗
∇̃F⊗Lk agreeing

with ∆k = ∆̃k on the geodesic ball B% (y).
A dilation as before is now defined via δk−1/ry :=

(
k−1/ry1, . . . , k

−1/ryn−1

)
and we consider

the rescaled Bochner Laplacian

(3.28) 4 := k−2/r (δk−1/r)∗ ∆̃k.

Using a Taylor expansion and (3.27), the rescaled Bochner Laplacian has an expansion

4 =

(
N∑
j=0

k−j/r4j

)
+ k−2(N+1)/rEN+1, ∀N.(3.29)

where each 4j = aj;pq (y) ∂yp∂yq + bj;p (y) ∂yp + cj (y)(3.30)

is a k-independent, self-adjoint, second-order differential operator while each

(3.31) Ej =
∑

|α|=N+1

yα
[
aαj;pq (y; k) ∂yp∂yq + bαj;p (y; k) ∂yp + cαj (y; k)

]
is a k-dependent self-adjoint, second-order differential operator on Rn−1 . Furthermore the
functions appearing in (3.30) are polynomials with degrees satisfying

deg aj = j, deg bj ≤ j + r − 1, deg cj ≤ j + 2r − 2

deg bj − (j − 1) = deg cj − j = 0 (mod 2)(3.32)

and whose coefficients involve

aj : atmost j − 2 derivatives of RTY

bj, cj : atmost j − 2 derivatives of RF , RTY and atmost j + r − 2 derivatives of RL(3.33)

The coefficients aαj;pq (y; k) , bαj;p (y; k) , cαj (y; k) of (3.31) are moreover uniformly C∞ bounded in
k. The leading term of (4.19) is computed

(3.34) 40 = ∆y := ∆gTYy ,jr−2RLy

in terms of the model Bochner Laplacian on the tangent space TY (A.3). We shall see below
that these operators (3.30) are the same as those appearing in (3.11).

Next, in our chosen coordinates and trivialization, the curvature RL again has a Taylor
expansion as in (3.16) with the non-degeneracy condition (1.8) being equivalent to (3.17). If
Yr is further a finite set of points then the model operator (3.34) at y ∈ Yr has a discrete
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spectrum, EssSpec (∆y) = ∅, by Proposition 18 in Section A. We then set λ0,y < λ1,y to be
the two smallest eigenvalues of ∆y and E0,y := ker [∆y − λ0,y] the smallest eigenspace. Any
normalized ψ̃ ∈ E0,y defines a quasimode

ψ̃k (y) :=χ

(
2 |y|
%

)
k(n−1)/2rψ̃

(
k1/ry

)︸ ︷︷ ︸
=k(n−1)/2rδ∗

k−1/r
ψ̃

∈ C∞
(
Y ;F ⊗ Lk

)
, satisfying

∥∥∥ψ̃k∥∥∥ =1 + o (1)

∆kψ̃k =k2/rλ0,yψ̃k +OL2

(
k1/r

)
.(3.35)

And we define Ẽ0,y to be the span of the quasimodes corresponding to an orthonormal basis of
E0,y . Finally set λ̄0 := miny∈Yr λ0,y, Ȳr :=

{
y ∈ Yr|λ0,y = λ̄0

}
⊂ Yr and λ̄1 := min

{
λ1,y|y ∈ Ȳr

}
∪{

λ0,y|y ∈ Yr \ Ȳr
}
> λ̄0. Further set Ẽ0 := ⊕y∈ȲrẼ0,y ⊂ C∞

(
Y ;F ⊗ Lk

)
and Ẽ⊥0 to be its L2

orthogonal complement.
We now have the following proposition.

Proposition 11. There exist c > 0, k0 ∈ N such that∣∣∣〈∆kψ̃, ψ̃
〉
− λ̄0k

2/r
∣∣∣ ≤ ck1/r(3.36)

〈∆kψ, ψ〉 ≥
1

2

(
λ̄0 + λ̄1

)
k2/r(3.37)

for each k > k0 and ψ̃ ∈ Ẽ0, ψ ∈ C∞
(
Y ;F ⊗ Lk

)
∩ Ẽ⊥0 of unit L2-norm.

Proof. The first equation (3.36) follows easily from construction (3.35).

For (3.37), we first set χyψ := χ

(
dg
TY

(.,y)
%

)
ψ, with dgTY being the Riemannian distance, for

each y ∈ Yr and split

ψ =

(∑
y∈Yr

χy

)
ψ︸ ︷︷ ︸

=ψ1

+

(
1−

∑
y∈Yr

χy

)
ψ︸ ︷︷ ︸

=ψ2

.

Now since the ψ2 is compactly supported away from Yr, an argument similar to (3.12) gives

(3.38) 〈∆kψ2, ψ2〉 ≥
[
c1k

2/(r−1) − c2

]
‖ψ2‖2

for some constants c1, c2 > 0 depending only on %. Next since χyψ, y ∈ Ȳr, has compact support
in B% (y), we may decompose

k−(n−1)/2r
(
δ−1
k−1/r

)∗
χyψ = ψ0

y︸︷︷︸
∈ker[40−λ̄0]

+ ψ+
y︸︷︷︸

∈ker[40−λ̄0]
⊥

.

Clearly ψ0
y is orthogonal to ψ+

y and 40ψ
+
y while

〈
40ψ

+
y , ψ

+
y

〉
≥ λ̄1

∥∥ψ+
y

∥∥2 by definition. Fur-
thermore, χyψ ⊥ Ẽ0,y by construction and hypothesis. Hence we may compute〈

χyψ, k
(n−1)/2rδ∗k−1/r ψ̃

〉
=
〈
χyψ, (1− χ) k(n−1)/2rδ∗k−1/r ψ̃

〉
=
〈
k−(n−1)/2r

(
δ−1
k−1/r

)∗
χyψ,

[
1− χ

(
k−1/ry

)]
ψ̃
〉

= o (1) ‖χyψ‖
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for any normalized ψ̃ ∈ E0,y. This in turn gives
∥∥ψ0

y

∥∥ = o (1) ‖χyψ‖,
∥∥ψ+

y

∥∥ = [1− o (1)] ‖χyψ‖
and hence〈

40k
−n/2r (δ−1

k−1/r

)∗
χyψ, k

−n/2r (δ−1
k−1/r

)∗
χyψ

〉
=
〈
40ψ

0
y , ψ

0
y

〉
+
〈
40ψ

+
y , ψ

+
y

〉
≥ λ̄1

∥∥ψ+
y

∥∥2 ≥
[
λ̄1 − o (1)

]
‖χyψ‖2 .

On account of the rescaling (3.28), (3.29), (3.34) we then have

(3.39) 〈∆kχyψ, χyψ〉 ≥ k2/r
[
λ̄1 − o (1)

]
‖χyψ‖2 .

Finally, with χ1 =
∑

y∈Ȳr χy we estimate∥∥∥∇F⊗Lkψ
∥∥∥ ≥ ρ

∥∥∥χ1∇F⊗Lkψ
∥∥∥+ (1− ρ)

∥∥∥(1− χ1)∇F⊗Lkψ
∥∥∥

= ρ
∥∥∥−dχ1ψ +∇F⊗Lkχ1ψ

∥∥∥+ (1− ρ)
∥∥∥dχ1ψ +∇F⊗Lk (1− χ1)ψ

∥∥∥
= ρ

∥∥∥∇F⊗Lkχ1ψ
∥∥∥+ (1− ρ)

∥∥∥∇F⊗Lk (1− χ1)ψ
∥∥∥−O (1) ‖ψ‖

≥ ρk1/r
[
λ̄1 − o (1)

]1/2 ‖χ1ψ‖+ (1− ρ)
[
c1k

2/(r−1) − c2

]1/2 ‖(1− χ1)ψ‖ −O (1) ‖ψ‖

≥ 1

2

(
λ̄0 + λ̄1

)1/2
k1/r ‖ψ‖

for k � 0 by (3.38) and (3.39). �

Following the above proposition, the min-max principle for eigenvalues gives

Spec (∆k) ⊂
[
λ̄0k

2/r − ck1/r, λ̄0k
2/r + ck1/r

]︸ ︷︷ ︸
Ik:=

∪
[

1

2

(
λ̄0 + λ̄1

)
k2/r,∞

)
.(3.40)

Next, choose α ∈
(
λ̄0,

λ̄0+λ̄1
2

)
. And let Γ = {|z| = α} and ϕ ∈ Cc (0, α), with ϕ = 1 near λ̄0,

define a circular contour in the complex plane and a cutoff function respectively. The resolvent(
1

k2/r
∆k − z

)−1 then exists for z ∈ Γ, k � 0 and one may define via

P0 :=
1

2πi

∫
Γ

(
1

k2/r
∆k − z

)−1

= ϕ

(
1

k2/r
∆k

)
the spectral projection onto the span of the ∆k-eigenspaces with eigenvalue in the first interval
Ik of (3.40). Finally, (3.36) and (3.37) imply that

(3.41) P0 : Ẽ0
∼−→ E0 :=

⊕{
ker (∆k − λ) : λ ∈ Ik

}
is an isomorphism for k � 0. We now have the following.

Theorem 12. For any two quasimodes ψ̃k, ψ̃′k ∈ Ẽ0 (3.35), the inner product

(3.42)
〈
ψ̃k,∆kP0ψ̃

′
k

〉
= k2/r

N∑
j=0

c̃jk
−j/r +O

(
k(1−N)/r

)
has an asymptotic expansion for some c̃j ∈ R, j = 0, 1, . . ..

Proof. For two quasimodes ψ̃k, ψ̃′k localized at two different points of Ȳr one has
〈
ψ̃k,∆kP0ψ̃

′
k

〉
=

O (k−∞) following a similar off-diagonal decay for the kernel of ϕ
(

1
k2/r

∆k

)
as (3.8). We now
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consider two ψ̃k, ψ̃′k ∈ Ẽ0,y of the form (3.35) localized at the same point y ∈ Ȳr. In this case,
first a finite propagation argument as in (2.16) gives〈

ψ̃k,∆kP0ψ̃
′
k

〉
=

〈
ψ̃k, ∆̃kϕ

(
1

k2/r
∆̃k

)
ψ̃′k

〉
+O

(
k−∞

)
, while

1

k2/r
∆̃kϕ

(
1

k2/r
∆̃k

)
(y, y′) = k(n−1)/r4ϕ (4)

(
k1/ry, k1/ry′

)
(3.43)

follows by a similar rescaling as in (2.19). We now obtain an expansion for the right-hand side
above by a resolvent expansion for 4 similar to (2.23). Namely, let

Ij :=
{
p = (p0, p1, . . .) |pα ∈ N,

∑
pα = j

}
denote the set of partitions of the integer j and define

Czj :=
∑
p∈Ij

(40 − z)−1

[∏
α

4pα (40 − z)−1

]
.

Then by repeated applications of the local elliptic estimate we have

(3.44) (4− z)−1 −
N∑
j=0

k−j/rCzj = OHs
loc→H

s+2
loc

(
k−(N+1)/r |Imz|−2rN−2

)
,

for each N ∈ N, s ∈ R. Plugging the above expansion into the Helffer-Sjöstrand formula then
gives

(3.45) 4ϕ (4)−
N∑
j=0

k−j/rCϕj = OHs
loc→H

s+2
loc

(
k−(N+1)/r

)
∀N ∈ N and for some k-independent Cϕj ∈ L2 (Rn−1 × Rn−1), j = 0, 1, . . . . A similar argument
as (2.24), replacing (3.44) by the resolvent expansion for (4+ 1)−M (4− z)−1, shows that the
last expansion above is valid in C l (Rn−1 × Rn−1), ∀l ∈ N. Hence plugging (3.45) into (3.43)
finally gives 〈

ψ̃k,∆kP0ψ̃
′
k

〉
− k2/r

(
N∑
j=0

cjk
−j/r

)
= O

(
k−(N−1)/r

)
∀N ∈ N, with c̃j :=

〈
ψ̃, Cϕj ψ̃

′
〉
as required. �

The proof of Theorem 2 now follows from the above and is summarized below.

Proof of Theorem 2. As noted before, the first part of the theorem regarding the Weyl law (1.9)
follows from Theorem 10 by a Tauberian argument.

For the second part of the theorem regarding the expansion for λ0 (k), note from (3.41)
that the low lying eigenvalues of ∆k are given by Spec

(
∆k|E0

)
= Spec

(
∆k|P0Ẽ0

)
for k � 0.

But since the matrix coefficients of ∆k|P0Ẽ0
were just shown to have an expansion in Theorem

12, the expansion for the smallest eigenvalue λ0 (k) now follows by an application of standard
perturbation theory for self-adjoint matrices as in [23, Ch. 2.6]. �

Remark 13. (Spectrum and abnormals) Our Theorem 1 and Theorem 2 proved in this section
are generalizations of the results in [31]. This latter article seems to have been motivated by
describing a correspondence between the asymptotics of sR Laplace spectrum and the phe-
nomenon of singular or abnormal geodesies in sR geometry, and claims to have achieved this
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goal. However our generalization of its results here shows that this is not the case, as indeed
the concentration of the eigenfunction ultimately occurs on the locus Yr where the Hausdorff
dimension is maximized. And this in general has little if anything to do with abnormals. As a
reference for the first spectral study of abnormals in sR geometry we refer instead to the recent
article [34] of the second author.

4. Kodaira Laplacian on tensor powers

In this final section, we shall prove the Bergman kernel expansion in Theorem 3. Thus we
now specialize to the case when Y is a complex Hermitian manifold with integrable complex
structure J . For the arguments of this section, we shall further need to restrict to the two
dimensional case, when Y is a Riemann surface (see Remark 16). The metric gTY is induced
from the Hermitian metric on the complex tangent space TCY = T 1,0Y . Further (L, hL), (F, hF )
are chosen to be a Hermitian, holomorphic line and vector bundles respectively. We denote by
∇L, ∇F the corresponding Chern connections. The curvature RL of ∇L is a (1, 1) form which
is further assumed to be semipositive

RL (w, w̄) ≥ 0, ∀w ∈ T 1,0Y.(4.1)

We also assume as before that the curvature RL vanishes at finite order at any point of Y . We
note that semipositivity implies that the order of vanishing ry − 2 ∈ 2N0 of the curvature RL

at any point y is even. Semipositivity and finite order of vanishing imply that there are points
where the curvature is positive, the set where the curvature is positive is in fact an open dense
set. Hence degL =

∫
Y

i
2π
RL > 0, so that L is ample.

Denote by
(
Ω0,∗ (X;F ⊗ Lk

)
; ∂̄k
)
the Dolbeault complex and define the Kodaira Laplace and

Dirac operators acting on Ω0,∗ (X;F ⊗ Lk
)
via

�k :=
1

2
(Dk)

2 = ∂̄k∂̄
∗
k + ∂̄∗k ∂̄k(4.2)

Dk :=
√

2
(
∂̄k + ∂̄∗k

)
.(4.3)

Clearly, Dk interchanges while �k preserves Ω0,0/1. We denote D±k = Dk|Ω0,0/1 and �0/1
k =

�k|Ω0,0/1 . The Clifford multiplication endomorphism c : TY → End (Λ0,∗) is defined via c (v) :=√
2 (v1,0 ∧ −iv0,1), v ∈ TY , and extended multiplicatively to the entire exterior algebra Λ∗TY .
Denote by ∇TY ,∇T 1,0Y the Levi-Civita and Chern connections on the real and holomorphic

tangent spaces as well as by ∇T 0,1Y the induced connection on the anti-holomorphic tangent
space. Denote by Θ the real (1, 1) form defined by contraction of the complex structure with
the metric Θ (., .) = gTY (J., .). This is clearly closed dΘ = 0, or Y is Kähler, and the complex
structure is parallel ∇TY J = 0 or ∇TY = ∇T 1,0Y ⊕∇T 1,0Y .

With the induced tensor product connection on Λ0,∗⊗F ⊗Lk being denoted via ∇Λ0,∗⊗F⊗Lk ,
the Kodaira Dirac operator (4.3) is now given by the formula

(4.4) Dk = c ◦ ∇Λ0,∗⊗F⊗Lk .

Next, we denote by RF the curvature of ∇F and by κ the scalar curvature of gTY . Define
the following endomorphisms of Λ0,∗

ω
(
RF
)

:= RF (w, w̄) w̄iw̄, τF := RF (w, w̄)

ω
(
RL
)

:= RL (w, w̄) w̄iw̄, τL := RL (w, w̄)

ω (κ) := κw̄iw̄,(4.5)
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in terms of an orthonormal section w of T 1,0Y . The Lichnerowicz formula for the above Dirac
operator [26, Thm. 1.4.7] simplifies for a Riemann surface and is given by

2�k = D2
k =

(
∇Λ0,∗⊗F⊗Lk

)∗
∇Λ0,∗⊗F⊗Lk + k

[
2ω
(
RL
)
− τL

]
+
[
2ω
(
RF
)
− τF

]
+

1

2
ω (κ) .

(4.6)

We now have the following.

Proposition 14. Let Y be a compact Riemann surface, (L, hL)→ Y a semipositive line bundle
whose curvature RL vanishes to finite order at any point. Let (F, hF ) → Y be a Hermitian
holomorphic vector bundle. Then there exist constants c1, c2 > 0, such that

‖Dks‖2 ≥
(
c1k

2/r − c2

)
‖s‖2

for all s ∈ Ω0,1
(
Y ;F ⊗ Lk

)
.

Proof. Writing s = |s| w̄ ∈ Ω0,1
(
Y ;F ⊗ Lk

)
in terms of a local orthonormal section w̄ gives

(4.7)
〈[

2ω
(
RL
)
− τL

]
s, s
〉

= RL (w, w̄) |s|2 ≥ 0

from (4.1), (4.5). This gives〈
D2
ks, s

〉
=

〈[(
∇Λ0,∗⊗F⊗Lk

)∗
∇Λ0,∗⊗F⊗Lk + k

[
2ω
(
RL
)
− τL

]
+
[
2ω
(
RF
)
− τF

]
+

1

2
ω (κ)

]
s, s

〉
≥
〈(
∇Λ0,∗⊗F⊗Lk

)∗
∇Λ0,∗⊗F⊗Lks, s

〉
− c0 ‖s‖2

≥
(
c1k

2/r − c2

)
‖s‖2

from Theorem 1, (4.6) and (4.7). �

We now derive as a corollary a spectral gap property for Kodaira Dirac and Laplace operators
Dk, �k corresponding to Theorem 1.

Corollary 15. Under the hypotheses of Proposition 14 there exist constants c1, c2 > 0, such that
Spec (�k) ⊂ {0} ∪

[
c1k

2/r − c2,∞
)
for each k. Moreover, kerD−k = 0 and H1

(
Y ;F ⊗ Lk

)
= 0

for k sufficiently large.

Proof. From Proposition 14, it is clear that

(4.8) Spec
(
�1
k

)
⊂
[
c1k

2/r − c2,∞
)

for some c1, c2 > 0 giving the second part of the corollary. Moreover, the eigenspaces of D2
k|Ω0,0/1

with non-zero eigenvalue being isomorphic by Mckean-Singer, the first part also follows. �

The vanishing H1
(
Y ;F ⊗ Lk

)
= 0 for k sufficiently large also gives

dim H0
(
Y ;F ⊗ Lk

)
= χ

(
Y ;F ⊗ Lk

)
= k

[
rk (F )

∫
Y

c1 (L)

]
+

∫
Y

c1 (F ) + 1− g,(4.9)

by Riemann-Roch, with χ
(
Y ;F ⊗ Lk

)
, ch

(
F ⊗ Lk

)
, Td (Y ), g denoting the holomorphic Euler

characteristic, Chern character, Todd genus and genus of Y respectively.

Remark 16. Our proof of the last two results Proposition 14 and Corollary 15 follows [18, 25]
from the positive case. In the semipositive case however the proof only works on a Riemann
surface, since in higher dimensions there are more components to the

[
2ω
(
RL
)
− τL

]
term (4.7)

in the Lichnerowicz formula (4.6) which semipositivity is insufficient to control.
Indeed, Donnelly has shown a counterexample to the existence of a spectral gap for semi-

positive line bundles in higher dimensions [16]. In the same paper [16, Cor. 3.3], Donnelly
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has also observed that on a Riemann surface the Kodaira Laplacian satisfies an O (1) spectral
gap: Spec (�k) ⊂ {0} ∪ [c,∞), for some c > 0, by using its equivalence with the closed range
hypothesis for the Kohn Laplacian �b on the unit circle. It is however crucial for our proof of
the Bergman kernel expansion Theorem 3 that the size of the spectral gap is O

(
k2/r

)
, as in

Corollary 15, or that it is at least growing with k.

4.1. Bergman kernel expansion. We now investigate the asymptotics of the Bergman kernel.
Recall that this is the Schwartz kernel Πk (y1, y2) of the projector onto the kernel of �k with
respect to the L2 inner product given by the metrics gTY , hF and hL. Alternately, if {sj}

N0
k

j=1

denotes an orthonormal basis of eigensections of H0
(
X;F ⊗ Lk

)
then

(4.10) Πk (y1, y2) :=

Nk∑
j=1

sj (y1)⊗ sj (y2)∗ .

We wish to describe the asymptotics of Πk (y, y) along the diagonal in Y × Y .
Next as in 3.3, we fix a geodesic coordinate system centered at y ∈ Y . By using parallel

transport of an orthonormal basis {w}, {l}, {fj}rk(F )
j=1 for T 1,0

y Y , Ly , F with respect to ∇T 1,0Y ,
∇L, ∇F respectively we obtain a local orthonormal trivialization for the corresponding bundles
over a geodesic ball B2% (y). In this frame and coordinate system, the connection on the tensor
product ∇Λ0,∗⊗F⊗Lk again has a similar expression as (3.26).

We now define a modified frame {w̃} on T 1,0R2 which agrees with {w} on B% (y) and with{
1√
2

(∂x1 + i∂x2)
}

outside B2% (y). Also define the modified metric g̃TY and almost complex

structure J̃ on R2 to be standard in this frame and hence agreeing with gTY , J on B% (y).
The Christoffel symbol of the corresponding modified induced connection on Λ0,∗now satisfies
ãΛ0,∗

= 0 outside B2% (y).
Further we may as before define the modified connections ∇̃F , ∇̃L (3.27) as well as the

corresponding tensor product connection ∇̃Λ0,∗⊗F⊗Lk which agrees with ∇Λ0,∗⊗F⊗Lk on B% (y).
Clearly the curvature of the modified connection ∇̃L is given by R̃L (3.27). This modified
curvature can also be seen to be semipositive and vanishing to order ry − 2 for % sufficiently
small. We now define the modified Kodaira Dirac operator on R2 by the similar formula
D̃k = c ◦ ∇̃Λ0,∗⊗F⊗Lk , agreeing with Dk on B% (y) by (4.4). This has a similar Lichnerowicz
formula

D̃2
k = 2�̃k :=

(
∇̃Λ0,∗⊗F⊗Lk

)∗
∇̃Λ0,∗⊗F⊗Lk︸ ︷︷ ︸

=∆̃k

+k
[
2ω
(
R̃L
)
− τ̃L

]
+
[
2ω
(
R̃F
)
− τ̃F

]
+

1

2
ω (κ̃)

(4.11)

with the adjoint being taken with respect to the metric g̃TY and corresponding volume form.
Also the endomorphisms R̃F , τ̃F , τ̃L and ω (κ̃) are the obvious modifications of (4.5) defined
using the curvatures of ∇̃F , ∇̃L and g̃TY respectively. The above (4.11) again agrees with �k on
B% (y) while the endomorphisms R̃F , τ̃F , ω (κ̃) all vanish outside B% (y). Being semi-bounded
below (4.11) is essentially self-adjoint. A similar argument as Corollary 15 gives a spectral gap

(4.12) Spec
(
�̃k

)
⊂ {0} ∪

[
c1k

2/ry − c2,∞
)
.

To repeat some parts of the argument, first note that by construction the localized Bochner
Laplacian in (4.11) is the rescaled model Laplacian ∆̃k = k2/rR∆0R−1 on the complement of a
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compact ball B% (y)c. Using the global subelliptic estimate for the model Laplacian (A.6), one
obtains c1, c2 > 0 such that

(4.13)
〈

∆̃ks, s
〉
≥
(
c1k

2/r − c2

)
‖s‖2

for each s ∈ C∞c (B% (y)c) supported outside the ball. Combinig this with the local subelliptic
estimate on the compact ball B% (y) one obtains (4.13) for each s ∈ C∞c (R2) and hence for
all s in Dom

(
∆̃k

)
as an unbouded operator on L2. The spectral gap (4.12) for �̃k now again

follows by the Lichnerwicz formula as in the proof of 15.
By elliptic regularity, the projector Π̃k from L2

(
R2; Λ0,∗

y ⊗ Fy ⊗ L⊗ky
)
onto ker

(
�̃k

)
then has

a smooth Schwartz kernel with respect to the Riemannian volume of g̃TY .
We are now ready to prove the Bergman kernel expansion Theorem 3.

Proof of Theorem 3. First choose ϕ ∈ S (Rs) satisfying ϕ (0) = 1. For c > 0, set ϕ1 (s) =
1[c,∞) (s)ϕ (s). On account of the spectral gap Corollary 15, and as ϕ1 decays at infinity, we
have

ϕ (�k)− Πk = ϕ1 (�k) with

‖�a
kϕ1 (�k)‖L2→L2 = O

(
k−∞

)
(4.14)

∀a ∈ N. Combining the above with semiclassical Sobolev and elliptic estimates gives

(4.15) |ϕ (�k)− Πk|Cl(Y×Y ) = O
(
k−∞

)
,

∀l ∈ N0. Next, we may write ϕ (�k) = 1
2π

∫
R e

iξ�kϕ̂ (ξ) dξ via Fourier inversion. Since �k = �̃k

on B% (y), we may use a finite propagation argument as in (2.16) to conclude

ϕ (�k) (y′, y) = ϕ
(
�̃k

)
(y′, 0) +O

(
k−∞

)
for y′ ∈ B %

2
(y). Next, since the operator �̃k also satisfies a spectral gap (4.12), similar argu-

ments as above for the localized Kodaira Laplacian give
∥∥�̃a

kϕ1

(
�̃k

)∥∥
L2

loc→L
2
loc

= O (k−∞). And

there after local elliptic regularity gives
∣∣∣ϕ (�̃k

)
− Π̃k

∣∣∣
Clloc(Y×Y )

= O (k−∞) similar to (4.15).

Thus we now have a localization of the Bergman kernel

Πk (., y) = O
(
k−∞

)
, on B% (y)c

Πk (., y)− Π̃k (., 0) = O
(
k−∞

)
, on B% (y) .(4.16)

It thus suffices to consider the Bergman kernel of the model Kodaira Laplacian (4.11) on R2.
Next, with the dilation δk−1/ry =

(
k−1/ry1, . . . , k

−1/ryn−1

)
as in Section 3.3, the rescaled

Kodaira Laplacian

(4.17) � := k−2/ry (δk−1/r)∗ �̃k

satisfies

ϕ

(
�̃k

k2/ry

)
(y, y′) = k2/ryϕ (�)

(
yk1/ry , y′k1/ry

)
(4.18)
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for ϕ ∈ C∞c (R) as in (3.43). Using a Taylor expansion via (3.27), the rescaled Kodaira Laplacian
again has an expansion

� =

(
N∑
j=0

k−j/ry�j

)
+ k−2(N+1)/ryEN+1, ∀N,(4.19)

where each �j = aj;pq (y) ∂yp∂yq + bj;p (y) ∂yp + cj (y)(4.20)

is a k-independent self-adjoint, second-order differential operator while each

(4.21) Ej =
∑

|α|=N+1

yα
[
aαj;pq (y; k) ∂yp∂yq + bαj;p (y; k) ∂yp + cαj (y; k)

]
is a k-dependent self-adjoint, second-order differential operator on R2 . Furthermore the func-
tions appearing in (4.20) are again polynomials with degrees satisfying the same conditions in
(3.32) and (3.33). While the coefficients aαj;pq (y; k) , bαj;p (y; k) , cαj (y; k) of (4.21) are uniformly
C∞ bounded in k. Using (3.27), (A.4), (A.9) and (A.10) the leading term of (4.19) is computed

(4.22) �0 = �y := �
gTY ,j

ry−2
y RL,JTY

in terms of the model Kodaira Laplacian on the tangent space TY (A.9).
Next, we obtain an expansion for the right-hand side of (4.18) by a resolvent expansion for

� as in (3.45). Namely, we let Ij := {p = (p0, p1, . . .) |pα ∈ N,
∑
pα = j} denote the set of

partitions of the integer j and define

(4.23) Czj =
∑
p∈Ij

(z −�0)−1 [Πα

[
�pα (z −�0)−1]] .

Then by repeated applications of the local elliptic estimate using (4.19) we have

(4.24) (z −�)−1 −

(
N∑
j=0

k−j/ryCzj

)
= OHs

loc→H
s+2
loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
,

for each N ∈ N, s ∈ R. Plugging the above into the Helffer-Sjöstrand formula gives

(4.25) ϕ (�)−
N∑
j=0

k−j/ryCϕj = OHs
loc→H

s+2
loc

(
k−(N+1)/ry

)
∀l, N ∈ N0 and for some k-independent C

ϕ
j ∈ C∞ (R2 × R2), j = 0, 1, . . .. The leading term

C
ϕ
0 = ϕ (�0) = ϕ (�y) is given in terms of the modal Kodaira Laplacian. Again a similar

argument as (2.24), replacing (4.24) by the resolvent expansion for (� + 1)−M (z −�)−1, shows
that (4.25) is valid at the level of kernels in C l (R2 × R2), ∀l ∈ N. Finally choosing ϕ supported,
and equal to one, near 0 gives (1.12) from the spectral gap (4.12) as well as (4.18) and (4.25).
The leading term c0 (y) = C0 (0, 0) = Π0 (0, 0) := Π�0 (0, 0) is seen to be the model Bergman
kernel on the tangent space. See the argument in Section A at the bottom of page 29 for the
positivity c0 (y) > 0. From this identification of c0 (y) with the model kernel one sees that it has
a locally smooth extension c0,ry (y′) for y′ near y, depending only on the type ry at y. However
such an extension might have nothing to do with the Bergman kernel at points y′ other than y.
Finally, to show that there are no odd powers of k−j/ry , one again notes that the operators �j

(4.20) change sign by (−1)j under δ−1x := −x. Thus the Schwartz kernel for Czj (4.23) changes
sign by (−1)j giving Czj (0, 0) = 0 for j odd. �

We end by giving an example where semipositive bundles arise and where the first term of
the Bergman kernel expansion (1.12) above can further be made explicit.
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Example 17. (Branched coverings) Consider f : Y → Y0 a branched covering of a Riemann
surface Y0 with branch points {y1, . . . , yM} ⊂ Y . The Hermitian holomorphic line bundle on
Y is pulled back

(
L, hL

)
=
(
f ∗L0, f

∗hL0
)
from one on Y0. If

(
L0, h

L0
)
is assumed positive,

then
(
L, hL

)
is semipositive with curvature vanishing at the branch points. In particular, near

a branch point y ∈ Y of local degree r
2
one may find holomorphic geodesic coordinate such

that the curvature is given by RL = r2

4
(zz̄)r/2−1RL0

f(y) +O
(
|z|r−1). The leading term of (1.12)

is given by the model Bergman kernel Π�0 (0, 0) of the operator �0 = bb†, b† = 2∂z̄ + a,
a = r

4
z (zz̄)r/2−1RL0

f(y). An orthonormal basis for ker (�0) is then seen to be

sα (z) :=

 1

2π

r

Γ
(

2(α+1)
r

) [RL0

f(y)

] 2(α+1)
r

1/2

zαe−Φ, α ∈ N0, with

Φ (z) :=
1

4
(zz̄)r/2RL0

f(y).

Since sα (0) = 0 for α ≥ 1, the model Bergman kernel at the origin is now computed

c0 (y) = Π0 (0, 0) := Π�0 (0, 0) = |s0 (0)|2 =
1

2π

r

Γ
(

2
r

) [RL0

f(y)

] 2
r

at the vanishing or branch point y.

Appendix A. Model operators

Here we define certain model Bochner, Kodaira Laplacians and Dirac operators acting on
a vector space V . The Bochner Laplacian is intrinsically associated to a triple

(
V, gV , RV

)
consisting of a metric gV and a non-vanishing tensor 0 6= RV ∈ Sr−2V ∗ ⊗ Λ2V ∗, r ≥ 2. While
the Kodaira Laplacian depends on an additional complex structure JV on V . Throughout the
article, the vector space V = TyY is the tangent space of the manifold, with gV = gTYy the
Riemannian metric, JV = Jy the complex structure and RV = jr−2RL

y the first non-vanishing
jet of the auxiliary curvature RL at a point y ∈ Y .

We say that the tensor RV is nondegenerate if the following is satisfied

(A.1) Sr−s−2V ∗ ⊗ Λ2V ∗ 3 isv
(
RV
)

= 0, ∀s ≤ r − 2 =⇒ TyY 3 v = 0.

Above is denotes the s-fold contraction of the symmetric part of RV .
For v1 ∈ V , v2 ∈ Tv1V = V , contraction of the antisymmetric part, denoted by ι, of RV gives

ιv2R
V ∈ Sr−2V ∗ ⊗ V ∗. The contraction may then be evaluated

(
ιv2R

V
)

(vr1) at vr1 := v�r1 ⊗ v1

for v1 ∈ V and hence viewed as a homogeneous degree r − 1 polynomial function on V . The
tensor RV now determines a one form aR

V ∈ Ω1 (V ) via

(A.2) aR
V

v1
(v2) :=

∫ 1

0

dρ
(
ιv2R

V
)

((ρv1)r) =
1

r

(
ιv2R

V
)

(vr1) ,

which we may view as a unitary connection ∇RV = d + iaR
V on a trivial Hermitian vector

bundle E of arbitrary rank over V . The curvature of this connection is clearly RV now viewed
as a homogeneous degree r− 2 polynomial function on V valued in Λ2V ∗. One now defines the
model Bochner Laplacian, intrinsically associated to the tuple

(
V, gV , RV

)
, via

(A.3) ∆0 = ∆gV ,RV :=
(
∇RV

)∗
∇RV : C∞ (V ;E)→ C∞ (V ;E) .
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depending on the pair
(
gV , RV

)
. An orthonormal basis {e1, e2, . . . , en}, determines components

Rpq,α := RV (e�α; ep, eq), α ∈ Nn−1
0 , |α| = r − 2, as well as linear coordinates (y1, . . . , yn) on

V . The connection form in these coordinates is given by aRVp = i
r
yqyαRpq,α. While the model

Laplacian (A.3) is given

(A.4) ∆0 = −
n∑
q=1

(
∂yp +

i

r
yqyαRpq,α

)2

.

As in (3.5), the above may now be related to the nilpotent sR Laplacian on the product S1
θ ×V

given by

(A.5) ∆̂0 = ∆̂gV ,RV := −
n∑
q=1

(
∂yp +

i

r
yqyαRpq,α∂θ

)2

,

and corresponding to the sR structure
(
S1
θ × V, ker

(
dθ + aR

V
)
, π∗gV , dθvolgV

)
where the sR

metric corresponds to gV under the natural projection π : S1
θ × V → V . Note that the above

differs from the usual nilpotent approximation of the sR Laplacian since it acts on the product
with S1. Following [33, Part III, Sec. 16], the above satisfies a subelliptic estimate: there exists
C > 0 such that

(A.6) ‖s‖2
H1/r ≤ C

[〈
∆̂0s, s

〉
+ ‖s‖2

L2

]
, ∀s ∈ C∞c

(
S1
θ × V

)
.

As (3.7), the heat kernels of (A.3), (A.5) are now related

(A.7) e−t∆0 (y, y′) =

∫
e−iθe−t∆̂0 (y, 0; y′, θ) dθ.

Next, assume that the vector space V is of even dimension and additionally is equipped with
an orthogonal endomorphism JV ∈ O (V );

(
JV
)2

= −1. This gives rise to a linear integrable
almost complex structure on V , a decomposition V ⊗C = V 1,0⊕V 0,1 into ±i eigenspaces of J
and a Clifford multiplication endomorphism c : V → End (Λ∗V 0,1). We further assume that RV

is a (1, 1) form with respect to J that is SkV ∗ 3 RV (w1, w2) = 0, ∀w1, w2 ∈ V 1,0. The (0, 1)
part of the connection form (A.2) then gives a holomorphic structure on the trivial Hermitian
line bundle C with holomorphic derivative ∂̄C = ∂̄ +

(
aV
)0,1. One may now define the model

Kodaira Dirac and Laplace operators, intrinsically associated to the tuple
(
V, gV , RV , JV

)
, via

D0 = DgV ,RV ,JV :=
√

2
(
∂̄C + ∂̄∗C

)
(A.8)

�0 = �gV ,RV ,JV :=
1

2

(
DgV ,RV ,JV

)2(A.9)

acting on C∞ (V ; Λ∗V 0,1). The above (A.3), (A.9) are related by the Lichnerowicz formula

(A.10) �0 = ∆0 + c
(
RV
)

where c
(
RV
)

=
∑

p<q R
i1...ir−2
pq yi1...yir−2c (ep) c (eq). We may choose a complex orthonormal

basis {wj}mj=1 of V 1,0 that diagonalizes the tensor RV : RV (wi, w̄j) = δijRjj̄; Rij̄ ∈ Sr−2V ∗.
This gives complex coordinates on V in which (A.9) may be written as

�0 =

dimV/2∑
q=1

bjb
†
j + 2

(
∂zjaj + ∂z̄j āj

)
w̄jiw̄j(A.11)

where bj := −2∂zj + āj, b†j = 2∂z̄j + aj, for aj =
1

r
Rjj̄zj,
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with each Rjj̄ (z), 1 ≤ j ≤ dimV/2, being a real homogeneous function of order r − 2.
Being symmetric with respect to the standard Euclidean density and semi-bounded below,

both ∆0 and �0 are essentially self-adjoint on L2. We shall need the following information
regarding their spectrum.

Proposition 18. There exists c > 0 such that Spec (∆0) ⊂ [c,∞). For RV satisfying the non-
degeneracy condition (A.1) one has EssSpec (∆0) = ∅. While for dimV = 2 with RV (w, w̄) ≥ 0
semipositive one has Spec (�0) ⊂ {0} ∪ [c,∞) .

Proof. The proof of the first part is similar to that of (3.12). Introduce the deformed Laplacian
∆k := ∆gV ,kRV obtained by rescaling the tensor RV . From (A.4) ∆k = k2/rR∆0R−1 are
conjugate under the rescaling R : C∞ (V ;E)→ C∞ (V ;E), (Ru) (x) := u

(
yk1/r

)
implying

Spec (∆k) = k2/rSpec (∆0)

EssSpec (∆k) = k2/rEssSpec (∆0)(A.12)

By an argument similar to (3.12), one has Spec (∆k) ⊂
[
c1k

2/r − c2,∞
)
for some c1, c2 > 0 for

RV 6= 0. From here Spec (∆0) ⊂ [c,∞) follows. Next, under the non-degeneracy condition, the
order of vanishing of the homogeneous curvature RV (of the homogeneous connection aRV (A.2))
is seen to be maximal at the origin: ordy

(
RV
)
< r−2 for y 6= 0. Following a similar sub-elliptic

estimate (2.12) on V × S1
θ as in (3.12), we have

k2/(r−1) ‖u‖2 ≤ C
[
〈∆ku, u〉+ ‖u‖2

L2

]
, ∀u ∈ C∞c (V \B1 (0)) ,

holds on the complement of the unit ball centered at the origin. Combining the above with
Persson’s characterization of the essential spectrum [1, Ch. 3]

EssSpec (∆k) = sup
R

inf
‖u‖=1

u∈C∞c (V \BR(0))

〈∆ku, u〉 ,

we have EssSpec (∆k) ⊂
[
c1k

2/(r−1) − c2,∞
)
. From here and using (A.12), EssSpec (∆0) = ∅

follows.
For the final part, similarly set �k := �gV ,kRV ,JV and note that k2/rSpec (�0) = Spec (�k) ⊂
{0} ∪

[
c1k

2/r − c2,∞
)
by an argument similar to Corollary 15. �

Next, the heat e−t∆0 , e−t�0 and wave eit
√

∆0 , eit
√
�0 operators being well-defined by func-

tional calculus, a finite propagation type argument as in (2.15) gives ϕ (∆0) (., 0) ∈ S (V ),
ϕ (�0) (., 0) ∈ S (V ) are of Schwartz class for ϕ ∈ S (R). When EssSpec (∆0) = ∅ any eigen-
function of ∆0 also lies in S (V ). Finally, under the hypothesis of 18, the Schwartz kernel
Π0 (., 0) ∈ S (V ) of the projector Π0 = Π�0 onto the kernel of �0 is also seen to be of Schwartz
class, on choosing ϕ supported close to the origin.

The constant a0 := Π0 (0, 0) is also the leading term in the boundary expansion ΠD (z, z) ∼
a0 (−ρ)−2− 2

r for the Bergman kernel of a weakly pseudoconvex finite type domainD := {ρ < 0} ⊂
C2 as z → x′ ∈ ∂D a point on its boundary [22, Thm. 2]. Here r = r (x′) is the typer of the point
on the boundary. In this case, [10, Thm. 2] proved the lower bound ΠD (z, z) ≥ c (−ρ)−2− 2

r for
some c > 0. Thus a0 > 0.

We now state another proposition regarding the heat kernel of ∆0. Below we denote λ0 (∆0) :=
inf Spec (∆0) .
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Proposition 19. For each ε > 0 there exist t, R > 0 such that the integral of the heat kernel
satisfies ∫

BR(0)
dx
[
∆0e

−t∆0
]

(x, x)∫
BR(0)

dx e−t∆0 (x, x)
≤ λ0 (∆0) + ε

Proof. Setting P := ∆0 − λ0 (∆0) it suffices to show∫
BR(0)

dx
[
Pe−tP

]
(x, x)∫

BR(0)
dx e−tP (x, x)

≤ ε

for some t, R > 0. With ΠP
[0,x] denoting the spectral projector onto [0, x], we split the numerator∫

BR(0)

dx
[
Pe−tP

]
(x, x) =

∫
BR(0)

dx
[
ΠP

[0,4ε]Pe
−tP ] (x, x) +

∫
BR(0)

dx
[(

1− ΠP
[0,4ε]

)
Pe−tP

]
(x, x) .

From P ≥ 0, ΠP
[0,4ε]Pe

−tP ≤ 4εe−tP and
(

1− ΠP
[0,4ε]

)
Pe−tP ≤ ce−3εt, ∀t ≥ 1, we may bound

(A.13)

∫
BR(0)

dx
[
Pe−tP

]
(x, x)∫

BR(0)
dx e−tP (x, x)

≤ 4ε+
ce−3εtRn−1∫

BR(0)
dx e−tP (x, x)

∀R, t ≥ 1. Next, as 0 ∈ Spec (P ) there exists ‖ψε‖L2 = 1, ‖Pψε‖L2 ≤ ε. It now follows that∥∥∥ψε − ΠP
[0,2ε]ψε

∥∥∥ ≤ 1
2
and hence

1

2
= −1

4
+

∫
BRε (0)

dx |ψε (x)|2 ≤
∫
BRε (0)

dx

∣∣∣∣∫ dyΠP
[0,2ε] (x, y)ψε (y)

∣∣∣∣2
≤
∫
BRε (0)

dx

(∫
dyΠP

[0,2ε] (x, y) ΠP
[0,2ε] (y, x)

)
=

∫
BRε (0)

dxΠP
[0,2ε] (x, x) ,

for some Rε > 0, using
(

ΠP
[0,2ε]

)2

= ΠP
[0,2ε] and Cauchy-Schwartz. This gives∫

BRε (0)

dx e−tP (x, x) ≥ e−2εt

2
, t > 1.

Plugging this last inequality into (A.13) gives∫
BRε (0)

dx
[
Pe−tP

]
(x, x)∫

BRε (0)
dx e−tP (x, x)

≤ 4ε+ ce−εtRn−1
ε

from which the theorem follows on choosing t large. �
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