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Abstract. In earlier work [32] the authors proved the Bergman kernel expansion for semi-
positive line bundles over a Riemann surface whose curvature vanishes to atmost finite order
at each point. Here we explore the related results and consequences of the expansion in the
semipositive case including: Tian’s approximation theorem for induced Fubini-Study metrics,
leading order asymptotics and composition for Toeplitz operators, asymptotics of zeroes for
random sections and the asymptotics of holomorphic torsion.
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1. Introduction

Geometric quantization is a procedure to relate classical observables (smooth functions) on
a phase space (a symplectic manifold) to quantum observables (bounded linear operators) on
the corresponding quantum space (sections of a line bundle). In the case when the line bundle
in question is positive, and consequently the underlying manifold Kähler, a well known quan-
tization recipe is that of Berezin-Toeplitz [5, 28, 34]. Showing the validity of the quantization
prodecure involves proving that it has the right properties in the semiclassical limit. Key to
the proof is the analysis of the semiclassical limit of the Bergman kernel [14, 16, 30, 29, 38].
In earlier work [32] the authors proved the Bergman kernel expansion in the case when the
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underlying line bundle is only semipositive, with curvature vanishing at finite order at each
point, on a Riemann surface. It is the purpose of this article to explore the corresponding
applications of the expansion therein to results in geometric quantization in the semi-positive
case. These include the Tian’s approximation theorem for induced Fubini-Study metrics, lead-
ing order asymptotics and composition for Toeplitz operators, asymptotics of zeroes for random
sections and the asymptotics of holomorphic torsion.

We now state our results more precisely. Let Y 2 be a compact Riemannian surface equipped
with an integrable complex structure J and Hermitian metric hTY . Consider holomorphic,
Hermitian line and vector bundles

(
L, hL

)
,
(
F, hF

)
on Y and let ∇L,∇F be the corresponding

Chern connections. Denote by RL =
(
∇L
)2 ∈ Ω2 (Y ; iR) the corresponding curvature of the

line bundle. The order of vanishing of RL at a point y ∈ Y is now defined

(1.1) ry − 2 = ordy
(
RL
)

:= min
{
l|J l

(
Λ2T ∗Y

)
3 jlyRL 6= 0

}
, ry ≥ 2,

where jlRL denotes the lth jet of the curvature. We shall assume that this order of vanishing
is finite at any point of the manifold i.e.

(1.2) r := max
y∈Y

ry <∞.

The function y 7→ ry being upper semi-continuous then gives a decomposition of the manifold
Y =

⋃r
j=2 Yj; Yj := {y ∈ Y |ry = j} with each Y≤j :=

⋃j
j′=0 Yj′ being open. Furthermore, the

curvature is assumed to be semipositive: RL (w, w̄) ≥ 0, for all w ∈ T 1,0Y .
Associated to the above one has the Kodaira Laplacian

�qk : Ω0,q
(
Y ;F ⊗ Lk

)
→ Ω0,q

(
Y ;F ⊗ Lk

)
, 0 ≤ q ≤ 1,

acting on tensor powers. The kernel of the Kodaira Laplacian ker�qk = Hq
(
X;F ⊗ Lk

)
is

cohomological and corresponds to holomorphic sections. The Bergman kernel Πq
k (y, y′) is the

Schwartz kernel of the orthogonal projector Πq
k : Ω0,q

(
Y ;F ⊗ Lk

)
→ ker�qk. Its value on the

diagonal is

Πq
k (y, y) =

Nq
k∑

j=1

|sj (y)|2 , N q
k := dimHq

(
X;F ⊗ Lk

)
,

for an orthonormal basis {sj}
Nq
k

j=1 ofHq
(
X;F ⊗ Lk

)
. Under these assumptions one hasH1

(
X;F ⊗ Lk

)
=

0 for k � 0. We now first recall our theorem from [32] on the asymptotics of the Bergman
kernel Πk := Π0

k.

Theorem 1.1 ([32, Theorem 3]). Let Y be a compact Riemann surface and (L, hL) → Y a
semipositive line bundle whose curvature RL vanishes to finite order at any point. Let (F, hF )→
Y be another Hermitian holomorphic vector bundle. Then the Bergman kernel Πk := Π0

k has
the pointwise asymptotic expansion on diagonal

(1.3) Πk (y, y) = k2/ry

[
N∑
j=0

cj (y) k−2j/ry

]
+O

(
k−2N/ry

)
, ∀N ∈ N.

Here cj are sections of End (F ), with the leading term c0 (y) = ΠgTYy ,j
ry−2
y RL,JTYy (0, 0) > 0 being

given in terms of the Bergman kernel of the model Kodaira Laplacian on the tangent space at
y (A.8).
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To explain our first consequence of the above, note that the cohomology H0(Y ;F ⊗ Lk) is
endowed with an L2 product induced by hTY , hL and hF . This induces a Fubini-Study metric
ωFS on the projective space P

[
H0
(
Y ;F ⊗ Lk

)∗]. The Kodaira map is now defined

Φk : Y → P
[
H0
(
Y ;F ⊗ Lk

)∗]
,

Φk (y) :=
{
s ∈ H0

(
Y ;F ⊗ Lk

)
|s (y) = 0

}
.(1.4)

It is well known that the map is holomorphic. We now have the semi-positive version of Tian’s
approximation theorem.

Theorem 1.2. Let Y be a compact Riemann surface and (L, hL), (F, hF ) be holomorphic
Hermitian line bundles on Y such that (L, hL) is semi-positive and its curvature vanishes at
most at finite order. Then the Fubini-Study forms induced by the Kodaira map (1.4) converge
uniformly on Y to the curvature RL of the line bundle with speed k−1/3∥∥∥∥1

k
Φ∗kωFS −

i

2π
RL

∥∥∥∥
C0(Y )

= O
(
k−1/3

)
as k →∞.

For the next application we consider the Toeplitz quantization of functions on Y , or more
generally sections of F . The Toeplitz operator Tf,k operator corresponding to a section f ∈
C∞ (Y ;End (F )) is defined via

Tf,k : C∞
(
Y ;F ⊗ Lk

)
→ C∞

(
Y ;F ⊗ Lk

)
Tf,k := ΠkfΠk,(1.5)

where f denotes the operator of pointwise composition by f . Each Toeplitz operator above
further maps H0

(
Y ;F ⊗ Lk

)
to itself. A generalized Toeplitz operator, see 5.6 below, acting

on H0
(
Y ;F ⊗ Lk

)
is defined as one having an asymptotic expansion in k−1 with coefficients

being the Toeplitz operators (1.5) as above. Our next result is now as follows.

Theorem 1.3. Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a compact
Riemann surface Y and assume that (L, hL) is semi-positive line bundle and its curvature RL

vanishes to finite order at any point. Given f, g ∈ C∞ (Y ;End (F )), the Toeplitz operators (5.1)
satisfy

lim
k→∞
‖Tf,k‖ = ‖f‖∞ := sup

y∈Y
u∈Fy\0

|f(y)u|hF
|u|hF

,(1.6)

Tf,kTg,k = Tfg,k +OL2→L2

(
k−1/r

)
.(1.7)

Moreover, the space of generalized Toeplitz operators supported on the subset Y2 where the
curvature is positive form an algebra under operator addition and composition.

For our next result, we consider the asymptotics of zeroes of random sections associated to
tensor powers. To state the result first note that the natural L2 metric on H0

(
Y ;F ⊗ Lk

)
gives

rise to a probability density µk on the sphere
SH0

(
Y ;F ⊗ Lk

)
:=
{
s ∈ H0

(
Y ;F ⊗ Lk

)
| ‖s‖ = 1

}
,

of finite dimension χ
(
Y ;F ⊗ Lk

)
− 1 (2.15). We now define the product probability space

(Ω, µ) :=
(
Π∞k=1SH

0
(
Y ;F ⊗ Lk

)
,Π∞k=1µk

)
. To a random sequence of sections s = (sk)k∈N ∈ Ω

given by this probability density, we then associate the random sequence of zero divisors Zsk =
{sk = 0} and view it as a random sequence of currents of integration in the space Ω′0,0 (Y ) of
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currents of bidimension (0, 0). Note that we can introduce a large class of probability measures
as in [4] on the space of holomorphic sections for which our results still hold.

We now have the following.

Theorem 1.4. Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a compact
Riemann surface Y and assume that (L, hL) is semi-positive line bundle and its curvature RL

vanishes to finite order at any point. Then for µ-almost all s = (sk)k∈N ∈ Ω, the sequence of
currents

1

k
Zsk ⇀

i

2π
RL

converges weakly to the semi-positive curvature form.

Our final result concerns the asymptotics of holomorphic torsion. Below τL := RL (w, w̄) in
terms of an orthonormal section w of T 1,0Y .

Theorem 1.5. Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a compact
Riemann surface Y and assume that (L, hL) is semi-positive line bundle and its curvature RL

vanishes to finite order at any point. The holomorphic torsion satisfies the asymptotics

ln Tk := −1

2
ζ ′k (0) = −k ln k

∫
Y

[
τL

8π

]
− k

∫
Y

[
τL

8π
ln

(
τL

2π

)]
+ o (k)

as k →∞.

All of our results above are well known in the case when the line bundle L is positive. In the
positive case, the leading term of the Bergman kernel expansion Theorem 1.1 was first shown
in [37] and thereafter improved to a full expansion in [14, 38] as a consequence of the Boutet de
Monvel-Sjöstrand parametrix [13] for the Szegő kernel of a strongly pseudoconvex CR manifold.
Subsequently a different geometric method for the expansion was developed in [16, 29] inspired
by the analytic localization method of [7]. The application of the Bergman kernel to induced
Fubini-Study metrics Theorem 1.2 is also found in [37] in the positive case. The construction
of the full Toeplitz algebra, along with the properties of Toeplitz operators , was first done
in [11] as an application of the the Boutet de Monvel-Guillemin calculus of Toeplitz operators
[12]. The equidistribution result for random sections in the positive case was first done in [36],
and [18, 19] also gave the speed of convergence of the zero-divisors. Finally, the asymptotics of
holomorphic torsion for positive line bundles is due to Bismut-Vasserot [8].

In the semi-positive case our results are mostly new. The Bergman kernel expansion Theorem
1.1 was shown by the authors in their earlier work [32]. The corresponding problem for the
Szegő kernel of a weakly pseudoconvex CR manifold in dimension three was solved by the second
author in [24]. The expansion proved in [32, Theorem 3] is however only pointwise along the
diagonal. In order to obtain the approximation for Fubini-Study metrics Theorem 1.2 one needs
to prove uniform estimates on the Bergman kernel and its derivatives. The composition for
Toeplitz operators supported on the subset where the curvature is positive in Theorem 1.3 was
shown earlier by the first author in [23, Theorem 1.4] under the assumption of a small spectral
gap for the Kodaira Laplacian. A more general result, than the equidistribution for zeroes of
a random holomorphic section of a semipositive line bundle, was obtained in [18, Sec. 4] using
L2 estimates for the ∂̄-equation of a modified positive metric.

The paper is organized as follows. In Section 2 we begin with some standard preliminaries.
These include the relevant spectral gap properties for the Bochner and Kodaira Laplacians
in subsections 2.1 and 2.2 respectively. In subsection 3 we recall the proof of the pointwise
Bergman kernel expansion from [32]. In subsection 3.1 we further derive uniform estimates
on semipositive Bergman kernels that are necessary for the applications in this article. In
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subsection 4 we use the uniform Bergman kernel estimates to prove the semipositive version
of Tian’s theorem Theorem 1.2. In Section 5 we prove the analogous expansion for the kernel
of a Toeplitz operator and the corresponding theorem Theorem 1.3 on Toeplitz quantization.
In subsection 6 we prove the equidistribution result Theorem 1.4 for random sections. In the
final Section 7 we prove the asymptotic result for holomorphic torsion Theorem 1.5. The final
appendix Section A describes facts on model Laplacians and Bergman kernels that are used
throughout the article.

2. Preliminaries

Here we begin with some preliminary notions. Let Y be a compact Riemann surface. It is
equipped with an integrable complex structure J and Hermitian metric hTY on its complex
tangent space. Also denote by gTY the associated Riemannian metric on TY . Next let (L, hL),
(F, hF ) be an auxiliary pair of Hermitian, holomorphic bundles where L is of rank one. We
denote by ∇L, ∇F the corresponding Chern connections and RL, RF their corresponding cur-
vatures. The order of vanishing ry of the curvature RL at a point y ∈ Y is now defined as in
(1.1). And we assume that the curvature RL vanishes at finite order at any point of Y i.e.

(2.1) r := max
y∈Y

ry <∞.

The curvature RL of ∇L is a (1, 1) form which is further assumed to be semi-positive

iRL (v, Jv) ≥ 0, ∀v ∈ TY or equivalently

RL (w, w̄) ≥ 0, ∀w ∈ T 1,0Y.(2.2)

We note that semipositivity implies that the order of vanishing ry − 2 ∈ 2N0 of the curvature
RL at any point y is even. Semipositivity and finite order of vanishing imply that there are
points where the curvature is positive (the set where the curvature is positive is in fact an open
dense set). Hence

degL =

∫
Y

c1(L) =

∫
Y

i

2π
RL > 0,

so that L is ample.

2.1. sR and Bochner Laplacians. Associated to the above data one has the Bochner
Laplacian on tensor powers defined by

(2.3) ∆k :=
(
∇F⊗Lk

)∗
∇F⊗Lk : C∞

(
Y ;F ⊗ Lk

)
→ C∞

(
Y ;F ⊗ Lk

)
,

for each k ∈ N, with the adjoint above being taken with respect to the corresponding metrics
and the Riemannian volume form.

Each Bochner Laplacian (2.3) above is the Fourier mode of a sub-Riemannian (sR) Laplacian
on the unit circle bundle of L. To elaborate, denote by X = S1L→ Y the unit circle bundle of
the line bundle L. Further let E := HX ⊂ TX be the horizontal distribution induced by ∇L.
The distribution carries the metric gE = π∗gTY pulled back from the base. We also denote by
the same notation the pullback of

(
F, hF ,∇F

)
from Y to X. The finite order of vanishing for

the curvature RL in (1.2) is equivalent to the bracket generating condition for the distribution
E: the Lie brackets in C∞ (E) generates all vector fields C∞ (TX) [32, Prop. 6]. As such the
triple

(
X,E ⊂ TX, gE

)
is a sub-Riemannian (sR) manifold. Furthermore the maximum order

of vanishing for the curvature r (1.2) is then the degree of non-holonomy of the distribution E,
i.e. the number of brackets required to generate the missing vertical direction. A volume form
on X is defined via µX := µgTY ∧ e∗ with µgTY denoting the Riemannian volume form on Y and
e∗ being the dual one form to the generating e ∈ C∞ (TX) of the circle action on X.
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The subRiemannian Laplacian on X

∆gE ,µX : C∞ (X;F )→ C∞ (X;F )

∆gE ,µX
:=
(
∇gE ,F

)∗
µX
◦ ∇gE ,F(2.4)

being the composition of the sR gradient defined via

∇gE ,F : C∞ (X;E)→ C∞ (X;E ⊗ F ) ,

hE,F
(
∇gE ,F s, v ⊗ s′

)
:= hF

(
∇F
v s, s

′) ,(2.5)

for all v ∈ C∞ (X;E) , s′ ∈ C∞ (X;F ) , where hE,F := gE ⊗ hF , with its adjoint taken with
respect to µX . Under the bracket generating condition, the sR Laplacian satisfies the sharp
subelliptic estimate of Rothschild and Stein with a gain of 1

r
derivatives

(2.6) ‖ψs‖2
H1/r ≤ C

[〈
∆gE ,F,µϕs, ϕs

〉
+ ‖ϕs‖2

L2

]
, ∀s ∈ C∞ (X;F )

for all ϕ, ψ ∈ C∞c (X), with ϕ = 1 on the support spt (ψ), and where r is again given by (1.2)
and corresponds to the maximum step size of the distribution E.

Next, the unit circle bundle of L beingX, the pullback C ∼= π∗L→ X is canonically trivial via
the identification π∗L 3 (x, l) 7→ x−1l ∈ C. Pulling back sections then gives the identification

(2.7) C∞ (X;F ) = ⊕k∈ZC∞
(
Y ;F ⊗ Lk

)
.

Each summand on the right hand side above corresponds to an eigenspace of∇F
e with eigenvalue

−ik. While horizontal differentiation dH on the left corresponds to differentiation with respect
to the tensor product connection∇Lk on the right hand side above. Pick an invariant density
µX on X inducing a density µY on Y . This now defines the sR Laplacian ∆gE ,F,µX acting on
sections of F . By invariance the sR Laplacian commutes

[
∆gE ,F,µX , e

]
= 0 with the generator

of the circle action and hence preserves the decomposition (2.7). It acts via

(2.8) ∆gE ,F,µX = ⊕k∈Z∆k

on each component where ∆k is the Bochner Laplacian (2.3) on the tensor powers F ⊗Lk, with
adjoint being taken with respect to µgTY .

Using the description of the Bochner Laplacian as the Fourier mode of the sR Laplacian
(2.8), in [32, Thm. 1] a general leading asymptotic result for the first positive eigenvalues was
proved. Here we recall a simple argument for its lower bound.

Proposition 2.1. There exist constants c1, c2 > 0, such that one has Spec (∆k) ⊂
[
c1k

2/r − c2,∞
)

for each k.

Proof. The subelliptic estimate (2.6) on the circle bundle is∥∥∥∂1/r
θ s

∥∥∥2

≤ ‖s‖2
H1/r ≤ C

[〈
∆gE ,F,µXs, s

〉
+ ‖s‖2

L2

]
, ∀s ∈ C∞ (X;F ) .

Letting s = π∗s′ be the pullback of an orthonormal eigenfunction s′ of ∆k with eigenvalue λ on
the base gives k2/r ≤ C (λ+ 1) as required. �
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2.2. Kodaira Laplacian and its spectral gap. Related to the Bochner Laplacian (2.3)
is the Kodaira Laplacian on tensor powers. Namely, with

(
Ω0,∗ (X;F ⊗ Lk

)
; ∂̄k
)
denoting the

Dolbeault complex the Kodaira Laplace and Dirac operators acting on Ω0,∗ (X;F ⊗ Lk
)
are

defined

�k :=
1

2
(Dk)

2 = ∂̄k∂̄
∗
k + ∂̄∗k ∂̄k(2.9)

Dk :=
√

2
(
∂̄k + ∂̄∗k

)
.(2.10)

Clearly, Dk interchanges while �k preserves Ω0,0/1. We denote D±k = Dk|Ω0,0/1 and �0/1
k =

�k|Ω0,0/1 . The Clifford multiplication endomorphism c : TY → End (Λ0,∗) is defined via c (v) :=√
2 (v1,0 ∧ −iv0,1), v ∈ TY , and extended to the entire exterior algebra Λ∗TY via c (1) =

1, c (v1 ∧ v2) := c (v1) c (v2), for orthonormal v1, v2 ∈ TY .
Denote by ∇TY ,∇T 1,0Y the Levi-Civita and Chern connections on the real and holomorphic

tangent spaces as well as by ∇T 0,1Y the induced connection on the anti-holomorphic tangent
space. Denote by Θ the real (1, 1) form defined by contraction of the complex structure with
the metric Θ (., .) = gTY (J., .). This is clearly closed dΘ = 0 (or Y is Kähler) and the complex
structure is parallel ∇TY J = 0 or ∇TY = ∇T 1,0Y ⊕∇T 1,0Y .

With the induced tensor product connection on Λ0,∗⊗F ⊗Lk being denoted via ∇Λ0,∗⊗F⊗Lk ,
the Kodaira Dirac operator (2.10) is now given by the formula

Dk = c ◦ ∇Λ0,∗⊗F⊗Lk .

Next we denote by RF the curvature of ∇F and by κ the scalar curvature of gTY . Define the
following endomorphisms of Λ0,∗

ω
(
RF
)

:= RF (w, w̄) w̄iw̄

ω
(
RL
)

:= RL (w, w̄) w̄iw̄

ω (κ) := κw̄iw̄

τF := RF (w, w̄)

τL := RL (w, w̄)(2.11)

in terms of an orthonormal section w of T 1,0Y . The Lichnerowicz formula for the above Dirac
operator ([29] Thm 1.4.7) simplifies for a Riemann surface and is given by

2�k = D2
k =

(
∇Λ0,∗⊗F⊗Lk

)∗
∇Λ0,∗⊗F⊗Lk + k

[
2ω
(
RL
)
− τL

]
+
[
2ω
(
RF
)
− τF

]
+

1

2
ω (κ) .

(2.12)

We now have the following.

Proposition 2.2. Let Y be a compact Riemann surface, (L, hL)→ Y a semi-positive line bun-
dle whose curvature RL vanishes to finite order at any point. Let (F, hF )→ Y be a Hermitian
holomorphic vector bundle. Then there exist constants c1, c2 > 0, such that

‖Dks‖2 ≥
(
c1k

2/r − c2

)
‖s‖2

for all s ∈ Ω0,1
(
Y ;F ⊗ Lk

)
.

Proof. Writing s = |s| w̄ ∈ Ω0,1
(
Y ;F ⊗ Lk

)
in terms of a local orthonormal section w̄ gives

(2.13)
〈[

2ω
(
RL
)
− τL

]
s, s
〉

= RL (w, w̄) |s|2 ≥ 0
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from (2.2), (2.11). This gives

‖Dks‖2 =
〈
D2
ks, s

〉
=
〈[(
∇Λ0,∗⊗F⊗Lk

)∗
∇Λ0,∗⊗F⊗Lk + k

[
2ω
(
RL
)
− τL

]
+
[
2ω
(
RF
)
− τF

]
+

1

2
ω (κ)

]
s, s

〉
≥
〈(
∇Λ0,∗⊗F⊗Lk

)∗
∇Λ0,∗⊗F⊗Lks, s

〉
− c0 ‖s‖2

≥
(
c1k

2/r − c2

)
‖s‖2

from Proposition 2.1, (2.12) and (2.13). �

We now derive as a corollary a spectral gap property for Kodaira Dirac/Laplace operators
Dk, �k corresponding to Proposition 2.1.

Corollary 2.3. Under the hypotheses of Proposition 2.2 there exist constants c1, c2 > 0, such
that Spec (�k) ⊂ {0}∪

[
c1k

2/r − c2,∞
)
for each k. Moreover, kerD−k = 0 and H1

(
Y ;F ⊗ Lk

)
=

0 for k sufficiently large.

Proof. From Proposition 2.2, it is clear that

(2.14) Spec
(
�1
k

)
⊂
[
c1k

2/r − c2,∞
)

for some c1, c2 > 0 giving the second part of the corollary. Moreover, the eigenspaces of D2
k|Ω0,0/1

with non-zero eigenvalue being isomorphic by Mckean-Singer, the first part also follows. �

Since L is ample, we know also by the Kodaira-Serre vanishing theorem that H1
(
Y ;F ⊗ Lk

)
vanishes for k sufficiently large. If F is also a line bundle this follows from the well known fact
that for a line bundle E on Y we have H1 (Y ;E) = 0 whenever degE > 2g − 2. It is however
interesting to have a direct analytic proof. Of course, the vanishing theorem for a semi-positive
line bundle works only in dimension one, see Remark 2.4 below.

The vanishing H1
(
Y ;F ⊗ Lk

)
= 0 for k sufficiently large gives

dim H0
(
Y ;F ⊗ Lk

)
= χ

(
Y ;F ⊗ Lk

)
=

∫
Y

ch
(
F ⊗ Lk

)
Td (Y )

= k

[
rk (F )

∫
Y

c1 (L)

]
+

∫
Y

c1 (F ) + 1− g,(2.15)

by Riemann-Roch, with χ
(
Y ;F ⊗ Lk

)
, ch

(
F ⊗ Lk

)
, Td (Y ), g denoting the holomorphic Euler

characteristic, Chern character, Todd genus and genus of Y respectively.

Remark 2.4. The argument for Proposition 2.2 breaks down in higher dimensions since there are
more components to

[
2ω
(
RL
)
− τL

]
in the Lichnerowicz formula (2.12) which semi-positivity

is insufficient to control. Indeed, there is a known counterexample to the existence of a spectral
gap for semi-positive line bundles in higher dimensions due to Donnelly [20].

3. Bergman kernel expansion

In this section we now first recall the expansion for the Bergman kernel proved in [32, Sec
4.1]. First recall that the Bergman kernel is the Schwartz kernel Πk (y1, y2) of the projector
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onto the nullspace of �k

(3.1) Πk : C∞
(
Y ;F ⊗ Lk

)
→ ker

(
�k|C∞(Y ;F⊗Lk)

)
,

with respect to the L2 inner product given by the metrics gTY , hF and hL. Alternately, if
s1, s2, . . . , sNk denotes an orthonormal basis of eigensections of H0

(
X;F ⊗ Lk

)
then

(3.2) Πk (y1, y2) =

Nk∑
j=1

sj (y1)⊗ sj (y2)∗ .

We wish to describe the asymptotics of Πk along the diagonal in Y × Y .
Consider p ∈ Y , and fix orthonormal bases {e1, e2 (= Je1)}, {l}, {fj}rk(F )

j=1 for TpY , Lp , F
respectively and let

{
w := 1√

2
(e1 − ie2)

}
be the corresponding orthonormal frame for T 1,0

y Y .
Using the exponential map from this basis obtain a geodesic coordinate system on a geodesic
ball B2% (p). Further parallel transport these bases along geodesic rays using the connections
∇T 1,0Y , ∇L, ∇F to obtain orthonormal frames for T 1,0Y , L, F on B2% (p). In this frame and
coordinate system, the connection on the tensor product again has the expression

∇Λ0,∗⊗F⊗Lk = d+ aΛ0,∗
+ aF + kaL

aΛ0,∗

j =

∫ 1

0

dρ
(
ρykRΛ0,∗

jk (ρy)
)

aFj =

∫ 1

0

dρ
(
ρykRF

jk (ρy)
)

aLj =

∫ 1

0

dρ
(
ρykRL

jk (ρy)
)

(3.3)

in terms of the curvatures of the respective connections. We now define a modified frame
{ẽ1, ẽ2} on R2 which agrees with {e1, e2} on B% (p) and with {∂x1 , ∂x2} outside B2% (p). Also
define the modified metric g̃TY and almost complex structure J̃ on R2 to be standard in this
frame and hence agreeing with gTY , J on B% (p). The Christoffel symbol of the corresponding
modified induced connection on Λ0,∗now satisfies

ãΛ0,∗
= 0 outside B2% (p) .

With ry−2 ∈ 2N0 being the order of vanishing of the curvature RL as before, we may Taylor
expand the curvature as

RL =
∑
|α|=r−2

Rpq,αy
αdypdyq︸ ︷︷ ︸

=RL0

+O
(
yr−1

)
with(3.4)

iRL
0 (e1, e2) ≥ 0.(3.5)
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Further we may define the modified connections ∇̃F , ∇̃L via

∇̃F = d+ χ

(
|y|
2%

)
aF

∇̃L = d+


∫ 1

0

dρ ρyk
(
R̃L
)
jk

(ρy)︸ ︷︷ ︸
=ãLj

 dyj, where

R̃L = χ

(
|y|
2%

)
RL +

[
1− χ

(
|y|
2%

)]
RL

0 .(3.6)

as well as the corresponding tensor product connection ∇̃Λ0,∗⊗F⊗Lk which agrees with∇Λ0,∗⊗F⊗Lk

on B% (p). Clearly the curvature of the modified connection ∇̃L is given by R̃L(3.6) and is semi-
positive by (3.5). Equation (3.6) also gives R̃L = RL

0 + O (%ry−1) and that the (ry − 2)-th
derivative/jet of R̃L is non-vanishing at all points on R2 for

(3.7) 0 < % < c
∣∣jry−2RL (y)

∣∣ .
Here c is a uniform constant depending on the Cr−2 norm of RL. We now define the modified
Kodaira Dirac operator on R2 by the similar formula

(3.8) D̃k = c ◦ ∇̃Λ0,∗⊗F⊗Lk ,

agreeing with Dk on B% (p) . This has a similar Lichnerowicz formula

D̃2
k = 2�̃k :=

(
∇̃Λ0,∗⊗F⊗Lk

)∗
∇̃Λ0,∗⊗F⊗Lk + k

[
2ω
(
R̃L
)
− τ̃L

]
(3.9)

+
[
2ω
(
R̃F
)
− τ̃F

]
+

1

2
ω (κ̃)(3.10)

the adjoint being taken with respect to the metric g̃TY and corresponding volume form. Also
the endomorphisms R̃F , τ̃F , τ̃L and ω (κ̃) are the obvious modifications of (2.11) defined using
the curvatures of ∇̃F , ∇̃L and g̃TY respectively. The above (3.9) again agrees with �k on B% (p)

while the endomorphisms R̃F , τ̃F , ω (κ̃) all vanish outside B% (p). Being semi-bounded below
(3.9) is essentially self-adjoint. A similar argument as Corollary 2.3 gives a spectral gap

(3.11) Spec
(
�̃k
)
⊂ {0} ∪

[
c1k

2/ry − c2,∞
)
.

Thus for k � 0, the resolvent
(
�̃k − z

)−1
is well-defined in a neighborhood of the origin

in the complex plane. On account on the local elliptic estimate, the projector Π̃k from
L2
(
R2; Λ0,∗

y ⊗ Fy ⊗ L⊗ky
)
onto ker

(
�̃k
)
then has a smooth Schwartz kernel with respect to

the Riemannian volume of g̃TY .
We are now ready to prove the Bergman kernel expansion Theorem 1.1, the procedure is

similar to [16].

Proof of Theorem 1.1. First choose ϕ ∈ S (Rs) even satisfying ϕ̂ ∈ Cc
(
−%

2
, %

2

)
and ϕ (0) = 1.

For c > 0, set ϕ1 (s) = 1[c,∞) (s)ϕ (s). On account of the spectral gap Corollary 2.3, and as ϕ1

decays at infinity, we have

ϕ (Dk)− Πk = ϕ1 (Dk) with

‖Da
kϕ1 (Dk)‖L2→L2 = O

(
k−∞

)
(3.12)
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for a ∈ N. Combining the above with semiclassical Sobolev and elliptic estimates gives

(3.13) |ϕ (Dk)− Πk|Cl(Y×Y ) = O
(
k−∞

)
,

for all l ∈ N0. Next we may write ϕ (Dk) = 1
2π

∫
R e

iξDkϕ̂ (ξ) dξ via Fourier inversion. Since
Dk = D̃k on B% (p) and ϕ̂ ∈ Cc

(
−%

2
, %

2

)
, we may use a finite propagation argument to conclude

ϕ (Dk) (., y) = ϕ
(
D̃k

)
(., 0) .

By similar estimates as (3.12) for D̃k we now have a localization of the Bergman kernel

Πk (., y) = O
(
k−∞

)
, on B% (p)c

Πk (., y)− Π̃k (., 0) = O
(
k−∞

)
, on B% (p) .(3.14)

It thus suffices to consider the Bergman kernel of the model Kodaira Laplacian (3.9) on R2.
Next with the rescaling/dilation δk−1/ry =

(
k−1/ry1, . . . , k

−1/ryn−1

)
, the rescaled Kodaira

Laplacian

(3.15) � := k−2/ry (δk−1/r)∗ �̃k

satisfies

ϕ

(
�̃k
k2/ry

)
(y, y′) = k2/ryϕ (�)

(
yk1/ry , y′k1/ry

)
(3.16)

for ϕ ∈ S (R). Using a Taylor expansion via (3.6), (3.8) the rescaled Dirac operator has an
expansion

� =

(
N∑
j=0

k−j/ry�j

)
+ k−2(N+1)/ryEN+1, ∀N.(3.17)

Here each

�j = aj;pq (y) ∂yp∂yq + bj;p (y) ∂yp + cj (y)(3.18)

is a (k-independent) self-adjoint, second-order differential operator while each

(3.19) Ej =
∑

|α|=N+1

yα
[
aαj;pq (y; k) ∂yp∂yq + bαj;p (y; k) ∂yp + cαj (y; k)

]
is a k-dependent self-adjoint, second-order differential operator on R2 . Furthermore the func-
tions appearing in (3.18) are polynomials with degrees satisfying

deg aj = j, deg bj ≤ j + ry − 1,deg cj ≤ j + 2ry − 2

deg bj − (j − 1) = deg cj − j = 0 (mod 2)

and whose coefficients involve

aj : ≤ j − 2 derivatives of RTY

bj : ≤ j − 2 derivatives of RF , RΛ0,∗

≤ j + r − 2 derivatives of RL

cj : ≤ j − 2 derivatives of RF , RΛ0,∗

≤ j + r − 2 derivatives of RL
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while the coefficients aαj;pq (y; k) , bαj;p (y; k) , cαj (y; k) of (3.19) are uniformly (in k) C∞ bounded.
Using (3.3), (A.4), (A.8) and (A.9) the leading term of (3.17) is computed
(3.20) �0 = �

gTY ,j
ry−2
y RL,JTY

in terms of the the model Kodaira Laplacian on the tangent space TY (A.8).
In light of the spectral gap (3.11), the equation (3.16) specializes to

(3.21) Π̃k (y′, y) = k2/ryΠ�
(
y′k1/ry , yk1/ry

)
as a relation between the Bergman kernels of �̃k, �. Next, the expansion (3.17) along with
local elliptic estimates gives

(�− z)−1 − (�0 − z)−1 = OHs
loc→H

s+2
loc

(
k−1/ry |Imz|−2)

for each s ∈ R. More generally, we let Ij := {p = (p0, p1, . . .) |pα ∈ N,
∑
pα = j}denote the set

of partitions of the integer j and define

(3.22) Czj =
∑
p∈Ij

(z −�0)−1 [Πα

[
�pα (z −�0)−1]] .

Then by repeated applications of the local elliptic estimate using (3.17) we have

(3.23) (z −�)−1 −

(
N∑
j=0

k−j/ryCzj

)
= OHs

loc→H
s+2
loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
,

for each N ∈ N, s ∈ R. A similar expansion as (3.17) for the operator (�+ 1)M (�− z),
M ∈ N, also gives

(3.24) (�+ 1)−M (�− z)−1 −
N∑
j=0

k−j/ryCzj,M = OHs
loc→H

s+2+2M
loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
for operators Czj,M = OHs

loc→H
s+2+2M
loc

(
k−(N+1)/ry |Imz|−2Nry−2

)
, j = 0, . . . , N , with

Cz0,M =
(

∆̂
(0)

gE ,F,µ
+ 1
)−M (

∆̂
(0)

gE ,F,µ
− z
)−1

.

For M � 0 sufficiently large, Sobolev’s inequality gives an expansion for the corresponding
Schwartz kernels in (3.24) in C l (K), for all l ∈ N0 and compact subset K ⊂ R2 × R2. Next,
plugging the above resolvent expansion into the Helffer-Sjöstrand formula [17, eq. 8.3] as before
gives ∣∣∣∣∣ϕ (�)−

N∑
j=0

k−j/ryCϕj

∣∣∣∣∣
Cl(K)

= O
(
k−(N+1)/ry

)
for all l, N ∈ N0 and for some (k-independent) Cϕj ∈ C∞ (K), j = 0, 1, . . ., with leading term

C
ϕ
0 = ϕ (�0) = ϕ

(
�
gTY ,j

ry−2
y RL,JTY

)
. As ϕ was chosen supported near 0, the spectral gap

property (3.11) gives

(3.25)

∣∣∣∣∣Π� −
N∑
j=0

k−j/ryCj

∣∣∣∣∣
Cl(K)

= O
(
k−(N+1)/ry

)
for some Cj ∈ C∞ (K), j = 0, 1, . . ., with leading term C0 = Π

�
gTY ,j

ry−2
y RL,JTY . The expansion

is now a consequence of (3.13), (3.14) and (3.21). Finally, in order to show that there are
no odd powers of k−j/ry , one again notes that the operators �j (3.18) change sign by (−1)j
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under δ−1x := −x. Thus the integral expression (3.22) corresponding to Czj (0, 0) changes sign
by (−1)j under this change of variables and must vanish for j odd. �

Next we show that a pointwise expansion on the diagonal also exists for derivatives of the
Bergman kernel. In what follows we denote by jls/jl−1s ∈ SlT ∗Y ⊗ E the component of the
l-th jet of a section s ∈ C∞ (E) of a Hermitian vector bundle E that lies in the kernel of the
natural surjection J l (E)→ J l−1 (E).

Theorem 3.1. For each l ∈ N0, the l-th jet of the on-diagonal Bergman kernel has a pointwise
expansion

(3.26) jl [Πk (y, y)] /jl−1 [Πk (y, y)] = k(2+l)/ry

[
N∑
j=0

cj (y) k−2j/ry

]
+O

(
k−(2N−l−1)/ry

)
,

for all N ∈ N, in jlEnd (F ) /jl−1End (F ) = SlT ∗Y ⊗ End (F ), with the leading term

c0 (y) = jl
[
ΠgTYy ,j

ry−2
y RL,JTYy (0, 0)

]
/jl−1

[
ΠgTYy ,j

ry−2
y RL,JTYy (0, 0)

]
being given in terms of the l-th jet of the Bergman kernel of the Kodaira Laplacian (A.8) on
the tangent space at y.

Proof. The proof is a modification of the previous. First note that a similar localization

(3.27) Πk (y, y)− Π̃k (y, y) = O
(
k−∞

)
,

to (3.14) is valid in C l, for all l ∈ N0, and for y in a uniform neighborhood of y. Next
differentiating (3.21) with y = y′ gives

(3.28) ∂αy Π̃k (y, y) = k(2+|α|)/ry∂αy Π�
(
yk1/ry , yk1/ry

)
,

for all α ∈ N2
0. Finally, the expansion (3.25) being valid in C l, for all l ∈ N0, may be differen-

tiated and plugged into the above with y = 0 to give the theorem. �

Remark 3.2. The expansion (1.3) is the same as the positive case on Y2 (points where ry = 2)
and furthermore uniform in any C l-topology on compact subsets of Y2 cf. [29, Theorem 4.1.1].
In particular the first two coefficients for y ∈ Y2 are given by

c0 (y) = ΠgTYy ,j0yR
L,JTYy (0, 0) =

1

2π
τL

c1 (y) =
1

16π
τL
[
κ−∆ ln τL + 4τF

]
.

The derivative expansion on Y2 is also known to satisfy c0 = c1 = . . . = c[ l−1
2 ] = 0 (i.e. begins

at the same leading order k [29, Theorem 4.1.1]) with the leading term given by

c[ l+1
2 ] (y) =

1

2π
jlτL/

1

2π
jl−1τL.

3.1. Uniform estimates on the Bergman kernel. The expansions for the Bergman kernel
Theorem 1.1 and its derivatives Theorem 3.1 are not uniform in the point on the diagonal. For
applications in the later sections we need to give uniform estimates on the Bergman kernel.
Below we set Cr1 := inf |RV |=1 ΠgV ,RV ,JV (0, 0) for each 0 6= RV ∈ Sr1−2V ∗ ⊗ Λ2V ∗, r1 ≥ 2.
Furthermore, the Bergman kernel ΠgTYy ,j0yR

L,JTYy (0, 0) of the model operator (A.8) is extended
(continuously) by zero from Y2 to Y .
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Lemma 3.3. The Bergman kernel satisfies
(3.29)[

inf
y∈Yr

ΠgTYy ,jr−2
y RL,JTYy (0, 0)

]
[1 + o (1)] k2/r ≤ Πk (y, y) ≤

[
sup
y∈Y

ΠgTYy ,j0yR
L,JTYy (0, 0)

]
[1 + o (1)] k,

with the o (1) terms being uniform in y ∈ Y .

Proof. Note that Theorem 1.1 already shows that there exists constants C0, C1, C2 . . . such that

(3.30) Πk (y, y) ≥ Cry−2

(∣∣jry−2RL
∣∣ k)2/ry − cy,

for all y ∈ Y , with

(3.31) cy = c
(∣∣jry−2RL (y)

∣∣−1
)

= O|jry−2RL(y)|−1 (1) ,

being a (y-dependent) constant given in terms of the norm of the first non-vanishing jet. The
norm of this jet affects the choice of % needed for (3.7); which in turn affects the C∞-norms
of the coefficients of (3.19) via (3.6). We first show that this estimate extends to a small
(
∣∣jry−2RL (y)

∣∣- dependent) size neighborhood of y. To this end, for any ε > 0 there exists a
uniform constant cε depending only on ε and

∥∥RL
∥∥
Cr

such that

(3.32)
∣∣jry−2RL (y)

∣∣ ≥ (1− ε)
∣∣jry−2RL (y)

∣∣ ,
for all y ∈ Bcε|jry−2RL| (y) .

We begin by rewriting the model Kodaira Laplacian �̃k (3.9) near y in terms of geodesic
coordinates centered at y. In the region

(3.33) y ∈ Bcε|jry−2RL| (y) ∩
{
C0

(∣∣j0RL (y)
∣∣ k) ≥ k2/ryΠgTYy ,j

ry−2
y RL,JTYy (0, 0)

}
a rescaling of �̃k by δk−1/2 , now centered at y, shows

Πk (y, y) = kΠgTYy ,j0yR
L,JTYy (0, 0) +O|jry−2RL(y)|−1 (1)

= k
∣∣j0RL (y)

∣∣ΠgTYy ,
j0yR

L

|j0RL(y)| ,J
TY
y

(0, 0) +O|jry−2RL(y)|−1 (1)

≥ k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) +O|jry−2RL(y)|−1 (1)(3.34)

as in (3.30). The first line above follows as in the Bergman kernel expansion Theorem 1.1,
along with its leading coefficient. The last line follows from (3.33) together with (3.32). Now,
in the region

y ∈ Bcε|jry−2RL| (y) ∩
{
C1

(∣∣j1RL (y) /j0RL (y)
∣∣ k)2/3

≥ k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) ≥ C0

(∣∣j0RL (y)
∣∣ k)}
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a rescaling of �̃k by δk−1/3 centered at y similarly shows

Πk (y, y) = k2/3
[
1 +O

(
k2/r−2/3

)]
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)

+O|jry−2RL(y)|−1 (1)

= k2/3
[
1 +O

(
k2/r−2/3

)] ∣∣j1
yR

L/j0
yR

L
∣∣2/3 Π

gTYy ,
j1yR

L/j0yR
L

|j1yRL/j0yRL|
,JTYy

(0, 0)

+O|jry−2RL(y)|−1 (1)(3.35)

≥ (1− ε) k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) +O|jry−2RL(y)|−1 (1)(3.36)

Next, in the region

y ∈ Bcε|jry−2RL| (y) ∩
{
C2

(∣∣j2RL (y) /j1RL (y)
∣∣ k)1/2

≥ k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) ≥ max

[
C0

(∣∣j0RL (y)
∣∣ k) , C1

(∣∣j1RL (y) /j0RL (y)
∣∣ k)2/3

]}
a rescaling of �̃k by δk−1/4 centered at y shows

Πk (y, y) = k1/2
[
1 +O

(
k2/r−1/2

)]
ΠgTYy ,j2yR

L/j1yR
L,JTYy (0, 0) +O|jry−2RL(y)|−1 (1)

= k1/2
[
1 +O

(
k2/r−1/2

)] ∣∣j2
yR

L/j1
yR

L
∣∣1/2 Π

gTYy ,
j2yR

L/j1yR
L

|j2yRL/j1yRL|
,JTYy

(0, 0) +O|jry−2RL(y)|−1 (1)

≥ (1− ε) k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) +O|jry−2RL(y)|−1 (1)(3.37)

Continuing in this fashion, we are finally left with the region

y ∈ Bcε|jry−2RL| (y) ∩
{
k2/ryΠgTYy ,j

ry−2
y RL,JTYy (0, 0)

≥ max
[
C0

(∣∣j0RL (y)
∣∣ k) , . . . , Cry−3

(∣∣jry−3RL (y) /jry−4RL (y)
∣∣ k)2/(ry−1)

]}
.

In this region we have∣∣jry−2RL (y) /jry−3RL (y)
∣∣ ≥ (1− ε)

∣∣jry−2RL (y)
∣∣+O

(
k2/ry−2/(ry−1)

)
following (3.32) with the remainder being uniform. A rescaling by δk−1/ry then giving a similar
estimate in this region, we have finally arrived at

Πk (y, y) ≥ (1− ε) k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) +O|jry−2RL(y)|−1 (1)

for all y ∈ Bcε|jry−2RL| (y).

Finally a compactness argument finds a finite set of points {yj}Nj=1 such that the correspond-
ing B

cε

∣∣∣jryj−2
RL
∣∣∣ (yj)’s cover Y . This gives a uniform constant c1,ε > 0 such that

Πk (y, y) ≥ (1− ε)
[

inf
y∈Yr

ΠgTYy ,jr−2
y RL,JTYy (0, 0)

]
k2/r − c1,ε

for all y ∈ Y , ε > 0 proving the lower bound (3.29). The argument for the upper bound is
similar. �
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We now prove a second lemma giving a uniform estimate on the derivatives of the Bergman
kernel. Again below, the model Bergman kernel ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0) and its relevant ratio∣∣∣[jlΠgTYy ,j1yR

L/j0yR
L,JTYy

]
(0, 0)

∣∣∣
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)

are extended (continuously) by zero from
{
y|j1

yR
L/j0

yR
L 6= 0

}
to Y .

Lemma 3.4. The l-th jet of the Bergman kernel satisfies

∣∣jl [Πk (y, y)]
∣∣ ≤ kl/3 [1 + o (1)]

sup
y∈Y

∣∣∣[jlΠgTYy ,j1yR
L/j0yR

L,JTYy

]
(0, 0)

∣∣∣
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)

Πk (y, y)

with the o (1) term being uniform in y ∈ Y .

Proof. The proof follows a similar argument as the previous lemma. Given ε > 0 we find a
uniform cε such that (3.32) holds for each y ∈ Y and y ∈ Bcε|jry−2RL| (y). Then rewrite the

model Kodaira Laplacian �̃k (3.9) near y in terms of geodesic coordinates centered at y. Again,
let the constants C0, C1, C2 . . . be such that (3.30) holds. In the region

y ∈ Bcε|jry−2RL| (y) ∩
{
C0

(∣∣j0RL (y)
∣∣ k) ≥ k2/ryΠgTYy ,j

ry−2
y RL,JTYy (0, 0)

}
a rescaling of �̃k by δk−1/2 , now centered at y, shows

∂αΠk (y, y) =
k

2π

(
∂ατL (y)

)
+O|jry−2RL(y)|−1 (1)

following remark 3.2 as ry = 2. Dividing the above by (3.34) gives

|∂αΠk (y, y)|
Πk (y, y)

≤
∣∣∂ατL (y)

∣∣
τL (y)

+O|jry−2RL(y)|−1

(
k−1
)

≤ k|α|/3

sup
y∈Y

∣∣∣[j|α|ΠgTYy ,j1yR
L/j0yR

L,JTYy

]
(0, 0)

∣∣∣
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)

Πk (y, y)

+O|jry−2RL(y)|−1

(
k−1
)

Next, in the region

y ∈ Bcε|jry−2RL| (y) ∩
{
C1

(∣∣j1RL (y) /j0RL (y)
∣∣ k)2/3

≥ k2/ryΠgTYy ,j
ry−2
y RL,JTYy (0, 0) ≥ C0

(∣∣j0RL (y)
∣∣ k)}

a rescaling of �̃k by δk−1/3 centered at y similarly shows

∂αΠk (y, y) = k(2+|α|)/3 [1 +O
(
k2/r−2/3

)] [
∂αΠgTYy ,j1yR

L/j0yR
L,JTYy

]
(0, 0)

+O|jry−2RL(y)|−1

(
k(1+|α|)/3)
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as in Theorem 3.1. Dividing this by (3.36) gives

|∂αΠk (y, y)|
Πk (y, y)

≤ k|α|/3 (1 + ε)

∣∣∣[∂αΠgTYy ,j1yR
L/j0yR

L,JTYy

]
(0, 0)

∣∣∣[
ΠgTYy ,j1yR

L/j0yR
L,JTYy

]
(0, 0)

+O|jry−2RL(y)|−1

(
k(|α|−1)/3

)
≤ k|α|/3 (1 + ε)

sup
y∈Y

∣∣∣[j|α|ΠgTYy ,j1yR
L/j0yR

L,JTYy

]
(0, 0)

∣∣∣
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)


+O|jry−2RL(y)|−1

(
k(|α|−1)/3

)
.

Continuing in this fashion as before eventually gives

|∂αΠk (y, y)|
Πk (y, y)

≤ k|α|/3 (1 + ε)

sup
y∈Y

∣∣∣[j|α|ΠgTYy ,j1yR
L/j0yR

L,JTYy

]
(0, 0)

∣∣∣
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)


+O|jry−2RL(y)|−1

(
k(|α|−1)/3

)
for all y ∈ Y , y ∈ Bcε|jry−2RL| (y), for all α ∈ N2

0. By compactness one again finds a uniform
c1,ε such that

|∂αΠk (y, y)|
Πk (y, y)

≤ k|α|/3 (1 + ε)

sup
y∈Y

∣∣∣[j|α|ΠgTYy ,j1yR
L/j0yR

L,JTYy

]
(0, 0)

∣∣∣
ΠgTYy ,j1yR

L/j0yR
L,JTYy (0, 0)

+ c1,ε

for all y ∈ Y , proving the lemma. �

4. Induced Fubini-Study metrics

A theorem of Tian [37], with improvements in [14, 38] (see also [29, S 5.1.2, S 5.1.4]), asserts
that the induced Fubini-Study metrics by Kodaira embeddings given by kth tensor powers of a
positive line bundle converge to the curvature of the bundle as k goes to infinity. In this Section
we will give a generalization for semi-positive line bundles on compact Riemann surfaces.

Let us review first Tian’s theorem. Let (Y, J, gTY ) be a compact Hermitian manifold,
(L, hL), (F, hF ) be holomorphic Hermitian line bundles such that (L, hL) is positive. We endow
H0(Y ;F ⊗ Lk) with the L2 product induced by gTY , hL and hF . This induces a Fubini-Study
metric ωFS on the projective space P

[
H0
(
Y ;F ⊗ Lk

)∗] and a Fubini-Study metric hFS on
O(1)→ P

[
H0
(
Y ;F ⊗ Lk

)∗] (see [29, S 5.1]). Since (L, hL) is positive the Kodaira embedding
theorem shows that the Kodaira maps Φk : Y → P

[
H0
(
Y ;F ⊗ Lk

)∗] (see (4.7)) are embeddings
for k � 0. Moreover, the Kodaira map induces a canonical isomorphism Θk : F⊗Lk → Φ∗kO(1)
and we have (see e.g. [29, (5.1.15)])

(4.1) (Θ∗khFS)(y) = Πk(y, y)−1hF⊗L
k

(y), y ∈ Y.

This implies immediately (see e.g. [29, (5.1.50)])

(4.2)
1

k
Φ∗kωFS −

i

2π
RL =

i

2πk
RF − i

2πk
∂̄∂ ln Πk (y, y) .
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Applying now the Bergman kernel expansion in the positive case one obtains Tian’s theorem,
which asserts that we have

(4.3)
1

k
Φ∗kωFS −

i

2π
RL = O

(
k−1
)
, k →∞, in any C`-topology.

Let us also consider the convergence of the induced Fubini-Study metric Θ∗khFS to the initial
metric hL. For this purpose we fix a metric hL0 on L with positive curvature. We can then
express hL = e−ϕhL0 , Θ∗khFS = e−ϕk(hL0 )k ⊗ hF , where ϕ, ϕk ∈ C∞(Y ) are the global potentials
of the metrics h and Θ∗khFS with respect to hL0 and (hL0 )k ⊗ hF . Note that

R(L,hL) = R(L,hL0 ) + ∂∂ϕ, R(Lk,Θ∗khFS) = kR(L,hL0 ) +R(F,hF ) + ∂∂ϕk,

and i
2π
R(L,Θ∗khFS) = Φ∗kωFS. Then (4.1) can be written as

(4.4)
1

k
ϕk(y)− ϕ(y) =

1

k
ln Πk(y, y), y ∈ Y.

We obtain by (1.3) that

(4.5)
∣∣∣1
k
ϕk − ϕ

∣∣∣
C0(Y )

= O
(
k−1 ln k

)
, k →∞,

that is, the normalized potentials of the Fubini-Study metric converge uniformly on Y to the
potential of the initial metric hL with speed k−1 ln k. Moreover,

(4.6)
∣∣∣1
k
∂ϕk − ∂ϕ

∣∣∣
C0(Y )

= O
(
k−1
)
,
∣∣∣1
k
∂∂ϕk − ∂∂ϕ

∣∣∣
C0(Y )

= O
(
k−1
)
, k →∞,

and we get the same bound O
(
k−1
)
for higher derivatives, obtaining again (4.3). Note that if

gTY is the metric associated to ω = i
2π
RL, then we have a bound O(k−2) in (4.3) and (4.6).

We return now to our situation and consider that Y is a compact Riemann surface and
(L, hL), (F, hF ) be holomorphic Hermitian line bundles on Y such that (L, hL) is semi-positive
and its curvature vanishes at finite order. An immediate consequence of Lemma 3.3 is that the
base locus

Bl
(
F ⊗ Lk

)
:=
{
y ∈ Y |s (y) = 0, s ∈ H0

(
Y ;F ⊗ Lk

)}
= ∅

is empty for k � 0. This shows that the subspace

Φk,y :=
{
s ∈ H0

(
Y ;F ⊗ Lk

)
|s (y) = 0

}
⊂ H0

(
Y ;F ⊗ Lk

)
,

is a hyperplane for each y ∈ Y . One may identify the Grassmanian G
(
dk − 1;H0

(
Y ;F ⊗ Lk

))
,

dk := dimH0
(
Y ;F ⊗ Lk

)
, with the projective space P

[
H0
(
Y ;F ⊗ Lk

)∗] by sending a non-zero
dual element in H0

(
Y ;F ⊗ Lk

)∗ to its kernel. This now gives a well-defined Kodaira map

Φk : Y → P
[
H0
(
Y ;F ⊗ Lk

)∗]
,

Φk (y) :=
{
s ∈ H0

(
Y ;F ⊗ Lk

)
|s (y) = 0

}
.(4.7)

It is well known that the map is holomorphic.

Theorem 4.1. Let Y be a compact Riemann surface and (L, hL), (F, hF ) be holomorphic
Hermitian line bundles on Y such that (L, hL) is semi-positive and its curvature vanishes at most
at finite order. Then the normalized potentials of the Fubini-Study metric converge uniformly
on Y to the potential of the initial metric hL with speed k−1 ln k as in (4.5). Moreover,

(4.8)
∣∣∣1
k
∂ϕk − ∂ϕ

∣∣∣
C0(Y )

,
∣∣∣1
k
∂ϕk − ∂ϕ

∣∣∣
C0(Y )

= O
(
k−2/3

)
, k →∞,
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and

(4.9)
∣∣∣1
k
∂∂ϕk − ∂∂ϕ

∣∣∣
C0(Y )

= O
(
k−1/3

)
, k →∞,

especially

(4.10)
1

k
Φ∗kωFS −

i

2π
RL = O

(
k−1/3

)
, k →∞,

uniformly on Y . On compact sets of Y2 the estimates (4.3) and (4.6) hold.

Proof. The proof follows from (4.2), (4.4) and the uniform estimate of Lemma 3.4 on the
derivatives of the Bergman kernel. �

As we noted before, the bundle L satisfying the hypotheses of Theorem 4.1 is ample, so
for k � 0 the Kodaira map is an embedding and the induced Fubini-Study forms 1

k
Φ∗kωFS

are indeed metrics on Y . Due to the possible degeneration of the curvature RL the rate of
convergence in (4.10) is slower than in the positive case (4.3).

One can easily prove a generalization of Theorem 4.1 for vector bundles (F, hF ) of arbitrary
rank (see [29, S 5.1.4] for the case of a positive bundle (L, hL)). We have then Kodaira maps
Φk : Y → G

(
rk (F ) ;H0

(
Y ;F ⊗ Lk

)∗) into the Grassmanian of rk (F )-dimensional linear spaces
of H0

(
Y ;F ⊗ Lk

)∗ and we introduce the Fubini-Study metric on the Grassmannian as the
curvature of the determinant bundle of the dual of the tautological bundle (cf. [29, (5.1.6)]).
Then by following the proof of [29, Theorem 5.1.17] and using Lemma 3.4 we obtain

(4.11)
1

k
Φ∗kωFS − rk (F )

i

2π
RL = O

(
k−1/3

)
, k →∞,

uniformly on Y .

5. Toeplitz operators

A generalization of the projector (3.1) and Bergman kernel (3.2) is given by the notion
of a Toeplitz operator. The Toeplitz operator Tf,k operator corresponding to a section f ∈
C∞ (Y ;End (F )) is defined via

(5.1) Tf,k : C∞
(
Y ;F ⊗ Lk

)
→ C∞

(
Y ;F ⊗ Lk

)
, Tf,k := ΠkfΠk,

where f denotes the operator of pointwise composition by f . Each Toeplitz operator above
further maps H0

(
Y ;F ⊗ Lk

)
to itself.

We now prove the expansion for the kernel of a Toeplitz operator generalizing Theorem 1.1.
For positive line bundles the analogous result was proved in [15, Theorem 2] for compact Kähler
manifolds and F = C and in [29, Lemma 7.2.4 and (7.4.6)], [31, Lemma 4.6], in the symplectic
case.

Theorem 5.1. Let Y be a compact Riemann surface, (L, hL)→ Y a semi-positive line bundle
whose curvature RL vanishes to finite order at any point. Let (F, hF ) → Y be a Hermitian
holomorphic vector bundle. Then the kernel of the Toeplitz operator (5.1) has an on diagonal
asymptotic expansion

Tf,k (y, y) = k2/ry

[
N∑
j=0

cj (f, y) k−2j/ry

]
+O

(
k−2N/ry

)
, ∀N ∈ N

where the coefficients cj(f, ·) are sections of End(F ) with leading term

c0 (f, y) = ΠgTYy ,RTYy ,JTYy (0, 0) f (y) .
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Proof. Firstly from the definition (5.1) and the localization/rescaling properties (3.14), (3.21)
one has

Tf,k (y, y) =

∫
Y

dy′Πk (y, y′) f (y′) Πk (y′, y)

=

∫
Bε(y)

dy′ Π̃k (0, y′) f (y′) Π̃k (y′, 0) +O
(
k−∞

)
=

∫
Bε(y)

dy′ k4/ryΠ�
(
0, y′k1/ry

)
f (y′) Π�

(
y′k1/ry , 0

)
+O

(
k−∞

)
=

∫
k1/ryBε(y)

dy′ k2/ryΠ� (0, y′) f
(
y′k−1/ry

)
Π� (y′, 0) +O

(
k−∞

)
.(5.2)

Next as in Section A, ϕ (�) (., 0) ∈ S (V ) for ϕ ∈ S (R) in the Schwartz class via a finite
propagation argument. Thus plugging (3.25) and a Taylor expansion

f
(
y′k−1/ry

)
=

∑
|α|≤N+1

1

α!
(y′)

α
k−α/ryf (α) (0) +O

(
k−(N+1)/ry

)
into (5.2) above gives the result with the leading term again coming from (3.20). Finally and as
in the proof of Theorem 1.1, there are no odd powers of k−j/ry as the corresponding coefficients
are given by odd integrals (the integrands change sign by (−1)j under δ−1x := −x) which are
zero. �

We now show that the Toeplitz operators (5.1) can be composed up to highest order gen-
eralizing the results of [11] in the Kähler case and F = C and [29, Theorems 7.4.1–2], [31,
Theorems 1.1 and 4.19] in the symplectic case.

Theorem 5.2. Given f, g ∈ C∞ (Y ;End (F )), the Toeplitz operators (5.1) satisfy

lim
k→∞
‖Tf,k‖ = ‖f‖∞ := sup

y∈Y
u∈Fy\0

|f(y)u|hF
|u|hF

,(5.3)

Tf,kTg,k = Tfg,k +OL2→L2

(
k−1/r

)
.(5.4)

Proof. The first part of (5.3) is similar to the positive case. Firstly, ‖Tf,k‖ ≤ ‖f‖∞ is clear
from the definition (5.1). For the lower bound, let us consider y ∈ Y2 where the curvature is
non-vanishing and u ∈ Fy, |u|hF = 1. It follows from the proof of [29, Theorem 7.4.2] (see also
[2, Proposition 5.2, (5.40), Remark 5.7]) that

(5.5) |f (y) (u)|hF +Oy,u

(
k−1/2

)
≤ ‖Tf,k‖ .

If ‖f‖∞ = |f (y0) (u0)|hF is attained at a point y0 ∈ Y2, it follows immediately from (5.5) that

‖f‖∞ +O
(
k−1/2

)
≤ ‖Tf,k‖ ,

so one obtains the lower bound. Next let ‖f‖∞ = |f (y0) (u0)|hF be attained at y0 ∈ Y \ Y2, a
vanishing point of the curvature. As Y \ Y2 ⊂ Y is open and dense one may find for any ε > 0
a point yε ∈ Y \ Y2 and uε ∈ Fyε , |uε|hF = 1, with ‖f‖∞ − ε ≤ |f (yε) (uε)|hF . Combined with
(5.5) this gives

‖f‖∞ − ε+Oε

(
k−1/2

)
≤ ‖Tf,k‖ , and

‖f‖∞ − ε ≤ lim inf
k→∞

‖Tf,k‖ .

Since ε > 0 is arbitrary, this implies ‖f‖∞ ≤ lim infk→∞ ‖Tf,k‖ proving the lower bound.
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Next, to prove the composition expansion (5.4) it suffices to prove a uniform kernel estimate

‖[Tf,kTg,k − Tfg,k] (., y)‖L2 = O
(
k−1/r

)
, ∀y ∈ Y.

To this end we again compute in geodesic chart centered at y

Tf,kTg,k (., 0) =

∫
Y×Y

dy1dy2 Πk (., y1) f (y1) Πk (y1, y2) g (y2) Πk (y2, 0)

= OL2

(
k−∞

)
+

∫
Bε(y2)

dy1

∫
Bε(y)

dy2 Π̃k (., y1) f (y1) Π̃k (y1, y2) g (y2) Π̃k (y2, 0)

= OL2

(
k−∞

)
+

∫
Bε(y2)

dy1

∫
Bε(y)

dy2k
6/ry

{
Π�
(
k1/ry ., k1/ryy1

)
f (y1) Π�

(
k1/ryy1, k

1/ryy2

)
g (y2) Π�

(
k1/ryy2, 0

)}
= OL2

(
k−∞

)
+

∫
k1/ryBε(y2)

dy1

∫
k1/ryBε(y)

dy2k
2/ry

{
Π�
(
k1/ry ., y1

)
f
(
y1k
−1/ry

)
Π� (y1, y2) g

(
y2k
−1/ry

)
Π� (y2, 0)

}
= OL2

(
k−1/ry

)
+

∫
k1/ryBε(y2)

dy1

∫
k1/ryBε(y)

dy2k
2/ry

{
Π�
(
k1/ry ., y1

)
Π� (y1, y2) fg

(
y2k
−1/ry

)
Π� (y2, 0)

}
= OL2

(
k−1/ry

)
+

∫
Bε(y2)

dy1

∫
Bε(y)

dy2 Π̃k (., y1) Π̃k (y1, y2) fg (y2) Π̃k (y2, 0)

= OL2

(
k−1/ry

)
+ Tfg,k

with all remainders being uniform in y ∈ Y . Above we have again used the localization/rescaling
properties (3.14), (3.21). As well as the first order Taylor expansion f

(
y1k
−1/ry

)
= f

(
y2k
−1/ry

)
+

O‖f‖C1

(
|y1 − y2| k−1/ry

)
and the off-diagonal decay of Π� (., y2) ∈ S (R2). �

Remark 5.3. Similar to the previous remark 3.2, we can recover the usual algebra properties
of Toeplitz operators when f, g are compactly supported on the set Y2 where the curvature
RL is positive. In particular we define a generalized Toeplitz operator to be a sequence of
operators Tk : L2(Y, F ⊗ Lk) −→ L2(Y, F ⊗ Lk), k ∈ N, such that there exist K b Y2,
hj ∈ C∞c (K;End (F )), Cj > 0, j = 0, 1, 2, . . . satisfying

(5.6)
∥∥∥Tk − N∑

j=0

k−jThj ,k

∥∥∥ 6 CN k
−N−1, ∀N ∈ N.

Then this class is closed under composition and one may define a formal star product on
C∞c (Y2) [[k−1]] , via

f ∗k−1 g =
∞∑
j=0

Cj (f, g) k−j ∈ C∞c (Y2)
[[
k−1
]]

where

Tf,k ◦ Tg,k ∼
∞∑
j=0

TCj(f,g)k
−j,
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(cf. [11, 15, 31]). Furthermore

Tf,k ◦ Tg,k = Tfg,k +OL2→L2

(
k−1
)

[Tf,k , Tg,k] =
i

k
T{f,g},k +OL2→L2(k−2)

for all f, g ∈ C∞c (Y2;End (F )), with {·, ·} being the Poisson bracket on the Kähler manifold
(Y2, iR

L).

Finally we address the asymptotics of the spectral measure of the Toeplitz operator (5.1),
called Szegő-type limit formulas [12, 21]. The spectral measure of Tf,k is defined via

(5.7) uf,k (s) :=
∑

λ∈Spec(Tf,k)

δ (s− λ) ∈ S ′ (Rs) .

We now have the following asymptotic formula.

Theorem 5.4. The spectral measure (5.7) satisfies

(5.8) uf,k ∼
k

2π
f∗R

L

in the distributional sense as k →∞.

Proof. Since Spec (Tf,k) ⊂
[
− ‖f‖∞ , ‖f‖∞

]
by (5.3), the equation (5.8) is equivalent to

tr ϕ (Tf,k) =
∑

λ∈Spec(Tf,k)

ϕ (λ) ∼ k

2π

∫
Y

[ϕ ◦ f ]RL,

for all ϕ ∈ C∞c
(
− ‖f‖∞ − 1, ‖f‖∞ + 1

)
. We first prove that the trace of a Toeplitz operator

(5.1) satisfies the asymptotics

(5.9) tr Tf,k ∼
k

2π

∫
Y

fRL.

To this end first note that the expansion of Theorem 5.1 is uniform on compact subsets K ⊂ Y2

while |Tf,k (y, y)| = O (k) uniformly in y ∈ Y as in Lemma 3.3. Furthermore, as in [32,
Proposition 7], Y≥3 is a closed subset of a hypersurface and has measure zero. Let Kj ⊂ Y2,
j = 1, 2, . . ., be a sequence of compact subsets satisfying Kj ⊂ Kj+1, ∩∞j=1K

c
j = Y≥3. One may

then breakup the trace integral
1

k
trTf,k =

1

k

∫
Kj

tr Tf,k (y, y) +
1

k

∫
Y \Kj

tr Tf,k (y, y)

=
1

2π

∫
Kj

fRL +Oj

(
1

k

)
+O (µ (Y \Kj))

from which (5.9) follows on knowing 1
2π

∫
Kj
fRL → 1

2π

∫
Y
fRL, µ (Y \Kj)→ 0 as j →∞.

Following this one has
tr T lf,k = tr Tf l,k +Of

(
k1−1/r

)
for all l ∈ N from (2.15), (5.4). A polynomial approximation of the compactly supported
function ϕ ∈ C∞c

(
− ‖f‖∞ − 1, ‖f‖∞ + 1

)
then gives

tr ϕ (Tf,k) = tr Tϕ◦f,k + o (k)

=
k

2π

∫
Y

[ϕ ◦ f ]RL + o (k)

by (5.9) as required. �
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The analogous result for projective manifolds endowed with the restriction of the hyperplane
bundle was originally proved in [12, Theorem 13.13], [21] and for arbitrary positive line bundles
in [6], see also [27]. In [23, Theorem 1.6] the asymptotics (5.9) are proved for a semi-classical
spectral function of the Kodaira Laplacian on an arbitrary manifold.

5.1. Branched coverings. We now consider Toeplitz operators and their composition in a
particular case of semipositive line bundles. Namely, those that arise from pullbacks along
branched coverings. Here f : Y → Y0 is a branched covering of a Riemann surface Y0 with
branch points {y1, . . . , yM} ⊂ Y . The Hermitian holomorphic line bundle on Y is pulled back(
L, hL

)
=
(
f ∗L0, f

∗hL0
)
from one on Y0. If

(
L0, h

L0
)
is assumed positive, then

(
L, hL

)
is

semi-positive with curvature vanishing at the branch points. In particular, near a branch point
y ∈ Y of local degree r

2
one may find holomorphic geodesic coordinate such that the curvature

is given by RL = r2

4
(zz̄)r/2−1RL0

f(y) +O (yr−1). We set in the following R0 =: RL0

f(y). The leading
term of (1.3) is given by the model Bergman kernel Π�0 (0, 0) of the operator

�0 = bb†, for(5.10)
b = −2∂z + ā(5.11)

b† = 2∂z̄ + a,

a =
r

4
z (zz̄)r/2−1R0.(5.12)

We first compute this model Bergman kernel.

Lemma 5.5. The model Bergman kernel corresponding to the model operator (5.10) at a branch
point is given by

Π�0 (z, z′) =
re−2[Φ(z)+Φ(z′)]R

2
r
0

2π
G
(
R

2
r
0 zz

′
)

where(5.13)

Φ (z) :=
1

4
(zz̄)r/2R0 and(5.14)

G (x) :=

r
2
−1∑

α=0

xα

Γ
(

2(α+1)
r

) + x
r
2
−1ex

r
2

 r
2
−2∑

α=0

Γ
(

2(α+1)
r

)
− Γ

(
2(α+1)

r
, x

r
2

)
Γ
(

2(α+1)
r

)
/
(

2(α+1)
r
− 1
)
(5.15)

is given in terms of the incomplete gamma function.

Proof. From the formulas (5.12), an orthonormal basis for ker (�0) is easily found to be

sα :=

 1

2π

r

Γ
(

2(α+1)
r

)R 2(α+1)
r

0

1/2

zαe−Φ, α ∈ N0,

with Φ :=
1

4
(zz̄)r/2R0.

From here the model Bergman kernel is computed

Π�0 (z, z′) =
∑
α∈N0

sα (z) sα (z′)

=
1

2π

∑
α∈N0

r

Γ
(

2(α+1)
r

)R 2(α+1)
r

0

(
zz′
)α
e−2Φ.(5.16)
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To compute the above in a closed form, consider the series

F (y) :=
∞∑
α=0

y
α+1
s
−1

Γ
(
α+1
s

)
=

s−1∑
α=0

y
α+1
s
−1

Γ
(
α+1
s

) +
∞∑
α=s

y
α+1
s
−1

Γ
(
α+1
s

)︸ ︷︷ ︸
F0(y):=

,

for s = r
2
. Differentiating the second term in the series gives F ′0 (y) = F0 (y)+

∑s−2
α=0

(
α+1
s
− 1
)
y
α+1
s −1

Γ(α+1
s )

.

Which is an ODE that can be solved with the initial condition F0 (0) = 0 to give

F0 (y) =
∞∑
α=s

y
α+1
s
−1

Γ
(
α+1
s

) = ey

[
s−2∑
α=0

Γ
(
α+1
s

)
− Γ

(
α+1
s
, y
)

Γ
(
α+1
s

)
/
(
α+1
s
− 1
) ]

in terms of Γ (a, z) :=

∫ ∞
z

ta−1e−tdt, Re (z) > 0,(5.17)

the incomplete gamma function. Thus in particular we have computed F (y) := y
1
s
−1G

(
y

1
s

)
(5.15). Finally noting from (5.16) that

Π�0 (z, z′) =
re−2ΦR

2
r
0

2π
xs−1F (xs) ,

for x = R
2
r
0 zz

′, completes the proof. �

This gives the first term of the expansion

c0 (y) = Π�0 (0, 0) =
1

2π

r

Γ
(

2
r

)R 2
r
0

at the vanishing/branch point y in this example.

6. Random sections

In this section we generalize the results of [36] to the semi-positive case considered here. Let
us consider Hermitian holomorphic line bundles (L, hL) and (F, hF ) on a compact Riemann
surface Y . To state the result first note that the natural metric on H0

(
Y ;F ⊗ Lk

)
arising from

gTY , hFand hL gives rise to a probability density µk on the sphere

SH0
(
Y ;F ⊗ Lk

)
:=
{
s ∈ H0

(
Y ;F ⊗ Lk

)
| ‖s‖ = 1

}
,

of finite dimension χ
(
Y ;F ⊗ Lk

)
− 1 (2.15). We now define the product probability space

(Ω, µ) :=
(
Π∞k=1SH

0
(
Y ;F ⊗ Lk

)
,Π∞k=1µk

)
. To a random sequence of sections s = (sk)k∈N ∈ Ω

given by this probability density, we then associate the random sequence of zero divisors Zsk =
{sk = 0} and view it as a random sequence of currents of integration in Ω′0,0 (Y ). We now have
the following.

Theorem 6.1. Let (L, hL) and (F, hF ) be Hermitian holomorphic line bundles on a compact
Riemann surface Y and assume that (L, hL) is semi-positive line bundle and its curvature RL

vanishes to finite order at any point. Then for µ-almost all s = (sk)k∈N ∈ Ω, the sequence of
currents

1

k
Zsk ⇀

i

2π
RL
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converges weakly to the semi-positive curvature form.

Proof. The proof follows [29, Theorem 5.3.3] with some modifications which we point out below.
With Φk denoting the Kodaira map (4.7), we first have

(6.1) E [Zsk ] = Φ∗k (ωFS)

as in [29, Theorem 5.3.3]. For a given ϕ ∈ Ω0,0 (Y ), one has〈
1

k
Zsk −

i

2π
RL, ϕ

〉
=

〈
1

k
Zsk −

1

k
Φ∗k (ωFS) , ϕ

〉
+O

(
k−1/3 ‖ϕ‖C0

)
following (4.10) and it thus suffices to show Y ϕ (sk)→ 0, µ-almost surely with

Y ϕ (sk) :=

〈
1

k
Zsk −

1

k
Φ∗k (ωFS) , ϕ

〉
being the given random variable. But (6.1) gives

E
[
|Y ϕ (sk)|2

]
=

1

k2
E
[
〈Zsk , ϕ〉

2]− 1

k2
E
[
〈Φ∗k (ωFS) , ϕ〉2

]
= O

(
k−2
)

as in [29, Theorem 5.3.3]. Thus
∫

Ω
dµ
[∑∞

k=1 |Y ϕ (sk)|2
]
<∞ proving the theorem. �

The above result may be alternatively obtained using L2 estimates for the ∂̄-equation of a
modified positive metric as in [18, S 4].

Example 6.2. (Random polynomials) The last theorem has an interesting specialization to
random polynomials. To this end, let Y = CP1 = C2

w \ {0} /C∗ with homogeneous coordinates
[w0 : w1]. A semi-positive curvature form for each even r ≥ 2, is given by

ωr :=
i

2π
∂∂̄ ln (|w0|r + |w1|r)

=
i

2π

r2

4

|z|r−2

(1 + |z|r)2dz ∧ dz̄, for z =
w0

w1

6= 0,
(6.2)

which can be seen to have two vanishing points at the north/south poles of order r − 2. This
is the curvature form on the hyperplane line bundle L = O (1) for the metric with potential
ϕ = ln (|w0|r + |w1|r). An orthogonal basis for H0

(
X,Lk

)
is given by sα := zα, 0 ≤ α ≤ k, in

terms of the affine coordinate z = w0/w1 on the chart {w1 6= 0} and a C∗ invariant trivialization
of L. The normalization is now given by

‖sα‖2 =
1

2π

r2

4

∫
C

|z|2α+r−2

(1 + |z|r)k+2

=
1

2
r

(k + 1)

(
k

2
r
α

)
with the binomial coefficient (

k
2
r
α

)
=

Γ (k + 1)

Γ
(

2
r
α + 1

)
Γ
(
k − 2

r
α
)

given in terms of the Gamma function. We have now arrived at the following.
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Corollary 6.3. For each even r ≥ 2, let

pk (z) =
k∑

α=0

cα

√(
k

2
r
α

)
zα

be a random polynomial of degree k with the coefficients cα being standard i.i.d. Gaussian
variables. The distribution of its roots converges in probability

1

k
Zpk ⇀

1

2π

r2

4

|z|r−2

(1 + |z|r)2 ·

The above theorem interpolates between the case of SU (2)/elliptic polynomials (r = 2) [10]
and the case of Kac polynomials (r =∞) [22, 26, 35]. For recent results on the distribution of
zeroes of more general classes of random polynomials we refer to [3, 9, 25].

7. Holomorphic torsion

In this section we give an asymptotic result for the holomorphic torsion of the semi-positive
line bundle L generalizing that of [8] (see also [29, S 5.5]). First recall that the holomorphic
torsion of L is defined in terms of the zeta function

(7.1) ζk (s) :=
1

Γ (s)

∫ ∞
0

dt ts−1tr
[
e−t�

1
k

]
, Re (s) > 1.

The above converges absolutely and defines a holomorphic function of s ∈ C in this region. It
possesses a meromorphic extension to C with no pole at zero and the holomorphic torsion is
defined to be Tk := exp

{
−1

2
ζ ′k (0)

}
.

Next, with τL, ω
(
RL
)
as in (2.11) and t > 0, set

(7.2) Rt (y) :=

 1
2π
τL
(

1− e−tτL
)−1

e−tω(RL); τL (y) > 0
1

2π
1
t
; τL (y) = 0.

Note that the above defines a smooth endomorphism Rt (y) ∈ C∞ (Y ;End (Λ0,∗)). Further, let
Aj ∈ C∞ (Y ;End (Λ0,∗)) be such that

(7.3) ρNt := Rt (y)−
N∑

j=−1

Aj (y) tj = O
(
tN+1

)
.

We now have the following uniform small time asymptotic expansion for the heat kernel [29,
Theorem 5.5.9].

Proposition 7.1. There exist Ak,j ∈ C∞ (Y ;End (Λ0,∗)), j = −1, 0, 1, . . ., satisfying Ak,j−Aj =
O (k−1), such that for each t > 0

(7.4)

∣∣∣∣∣k−1e−
t
2k
D2
k (y, y)−

N∑
j=−1

Ak,j (y) tj − ρNt

∣∣∣∣∣ = O
(
tN+1k−1

)
uniformly in y ∈ Y , k ∈ N.

We now prove the the asymptotic result for holomorphic torsion. Below we denote by x lnx
the continuous extension of this function from R>0 to R≥0 (i.e. taking the value zero at the
origin).
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Theorem 7.2. The holomorphic torsion satisfies the asymptotics

ln Tk := −1

2
ζ ′k (0) = −k ln k

∫
Y

[
τL

8π

]
− k

∫
Y

[
τL

8π
ln

(
τL

2π

)]
+ o (k)

as k →∞.

Proof. First define the rescaled zeta function ζ̃k (s) := k−1

Γ(s)

∫∞
0
dt ts−1tr

[
e−

t
k
�1
k

]
= k−1ksζk (s)

satisfying

(7.5) ζ ′k (0) = kζ̃ ′k (0)− (k ln k) ζ̃k (0) .

With ak,j :=
∫
Y
tr [Ak,j] dy, j = −1, 0, . . ., and the analytic continuation of the zeta function

being given in terms of the heat trace, one has

ζ̃k (0) = ak,0 →
∫
Y

dy tr [A0] ,(7.6)

ζ̃ ′k (0) =

∫ T

0

dt t−1
{
k−1tr

[
e−

t
k
�1
k

]
− ak,−1t

−1 − ak,0
}

︸ ︷︷ ︸
=
∫ T
0 dt t−1ρ0t+O(Tk )

+

∫ ∞
T

dt t−1k−1tr
[
e−

t
k
�1
k

]
− ak,−1T

−1 + Γ′ (1) ak,0(7.7)

following (7.4).
Choosing T = k1−2/r, gives

t−1k−1tr
[
e−

t
k
�1
k

]
≤ e−

(t−1)
k [c1k2/r−c2]t−1k−1tr

[
e−

1
k
�1
k

]
≤ Ct−1k−1e−

(t−1)
k [c1k2/r−c2], t ≥ T,

on account of (2.14), (7.4). The integral on [T,∞) of the last expression is uniformly bounded
in k. By dominated convergence we have as k →∞,

ζ̃ ′k (0) −→
∫
Y

dy α (y) , where

α (y) :=

∫ T

0

dt t−1
{
tr [Rt (y)]− tr [A−1] t−1 − tr [A0]

}
+

∫ ∞
T

dt t−1tr [Rt (y)]

− tr [A−1] t−1 + Γ′ (1) tr [A0] .(7.8)

Finally, using (7.2) one has

tr [A0] = −τ
L

4π

α (y) =
τL

4π
ln

(
τL

2π

)
(7.9)

with again the extension of the function x lnx to the origin being given by continuity to be
zero as before. The proposition now follows from putting together (7.5), (7.6), (7.7), (7.8) and
(7.9). �
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Appendix A. Model operators

Here we define certain model Bochner/Kodaira Laplacians and Dirac operators acting on a
vector space V . First the Bochner Laplacian is intrinsically associated to a triple

(
V, gV , RV

)
with metric gV and tensor 0 6= RV ∈ Sr−2V ∗ ⊗ Λ2V ∗, r ≥ 2. We say that tensor RV is
nondegenerate if

(A.1) Sr−s−2V ∗ ⊗ Λ2V ∗ 3 isv
(
RV
)

= 0, ∀s ≤ r − 2 =⇒ TyY 3 v = 0.

Above is denotes the s-fold contraction of the symmetric part of RV .
For v1 ∈ V , v2 ∈ Tv1V = V , contraction of the antisymmetric part (denoted by ι) of RV

gives ιv2RV ∈ Sr−2V ∗ ⊗ V ∗. The contraction may then be evaluated
(
ιv2R

V
)

(v1) at v1 ∈ V ,
i.e. viewed as a homogeneous degree r − 1 polynomial function on V . The tensor RV now
determines a one form aR

V ∈ Ω1 (V ) via

(A.2) aR
V

v1
(v2) := −

∫ 1

0

dρ
(
ιv2R

V
)

(ρv1) = −1

r

(
ιv2R

V
)

(v1) ,

which we may view as a unitary connection ∇RV = d + iaR
V on a trivial Hermitian vector

bundle E of arbitrary rank over V . The curvature of this connection is clearly RV now viewed
as a homogeneous degree r − 2 polynomial function on V valued in Λ2V ∗. This now gives the
model Bochner Laplacian

(A.3) ∆gV ,RV :=
(
∇RV

)∗
∇RV : C∞ (V ;E)→ C∞ (V ;E) .

An orthonormal basis {e1, e2, . . . , en}, determines components Rpq,α := RV (e�α; ep, eq) 6= 0,
α ∈ Nn−1

0 , |α| = r − 2, as well as linear coordinates (y1, . . . , yn) on V . The connection form in
these coordinates is given by aRVp = i

r
yqyαRpq,α. While the model Laplacian (A.3) is given

(A.4) ∆gV ,RV = −
n∑
q=1

(
∂yp +

i

r
yqyαRpq,α

)2

.

As in (2.8), the above may now be related to the (nilpotent) sR Laplacian on the the product
S1
θ × V given by

(A.5) ∆̂gV ,RV := −
n∑
q=1

(
∂yp +

i

r
yqyαRpq,α∂θ

)2

,

and corresponding to the sR structure
(
S1
θ × V, ker

(
dθ + aR

V
)
, π∗gV , dθvolgV

)
where the sR

metric corresponds to gV under the natural projection π : S1
θ × V → V . Note that the above

differs from the usual nilpotent approximation of the sR Laplacian since it acts on the product
with S1. The heat kernels of (A.3), (A.5) are now related

(A.6) e−t∆gV ,RV (y, y′) =

∫
e−iθe−t∆̂gV ,RV (y, 0; y′, θ) dθ.

Next, assume that the vector space V of even dimension and additionally equipped with an
orthogonal endomorphism JV ∈ O (V );

(
JV
)2

= −1. This gives rise to a (linear) integrable
almost complex structure on V , a decomposition V ⊗ C = V 1,0 ⊕ V 0,1 into ±i eigenspaces of
J and a Clifford multiplication endomorphism c : V → End (Λ∗V 0,1). We further assume that
RV is a (1, 1) form with respect to J (i.e. SkV ∗ 3 RV (w1, w2) = 0, for all w1, w2 ∈ V 1,0).
The (0, 1) part of the connection form (A.2) then gives a holomorphic structure on the trivial
Hermitian line bundle C with holomorphic derivative ∂̄C = ∂̄ +

(
iaV
)0,1. One may now define
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the Kodaira Dirac and Laplace operators, intrinsically associated to the tuple
(
V, gV , RV , JV

)
,

via

DgV ,RV ,JV :=
√

2
(
∂̄C + ∂̄∗C

)
(A.7)

�gV ,RV ,JV :=
1

2

(
DgV ,RV ,JV

)2(A.8)

acting on C∞ (V ; Λ∗V 0,1). The above (A.3), (A.8) are related by the Lichnerowicz formula

(A.9) �gV ,RV ,JV = ∆gV ,RV + c
(
iRV

)
where c

(
RV
)

=
∑

p<q R
i1...ir−2
pq yi1...yir−2c (ep) c (eq).

Being symmetric with respect to the standard Euclidean density and semi-bounded below,
both ∆gV ,RV and �V are essentially self-adjoint on L2. The domains of their unique self-adjoint
extensions are

Dom
(
∆gV ,RV

)
=
{
ψ ∈ L2|∆gV ,RV ψ ∈ L2

}
,

Dom
(
�gV ,RV ,JV

)
=
{
ψ ∈ L2|�gV ,RV ,JV ψ ∈ L2

}
,

respectively. We shall need the following information regarding their spectrum.

Proposition A.1. For some c > 0, one has Spec
(
∆gV ,RV

)
⊂ [c,∞). For RV satisfying the

non-degeneracy condition (A.1) one has EssSpec
(
∆gV ,RV

)
= ∅. Finally, for dimV = 2 with

RV (w, w̄) ≥ 0, for all w ∈ V 1,0 semi-positive one has Spec
(
�gV ,RV ,JV

)
⊂ {0} ∪ [c,∞) .

Proof. The proof is similar to those of Proposition 2.1 and Corollary 2.3. Introduce the de-
formed Laplacian ∆k := ∆gV ,kRV obtained by rescaling the tensor RV . From (A.4) ∆k =

k2/rR∆gV ,RV R−1 are conjugate under the rescaling R : C∞ (V ;E) → C∞ (V ;E), (Ru) (x) :=

u
(
yk1/r

)
implying

Spec (∆k) = k2/rSpec
(
∆gV ,RV

)
EssSpec (∆k) = k2/rEssSpec

(
∆gV ,RV

)
(A.10)

By an argument similar to Proposition 2.1, one has Spec (∆k) ⊂
[
c1k

2/r − c2,∞
)
for some

c1, c2 > 0 for RV 6= 0. From here Spec
(
∆gV ,RV

)
⊂ [c,∞) follows. Next, under the non-

degeneracy condition, the order of vanishing of the curvature homogeneous curvature RV (of
the homogeneous connection aRV (A.2)) is seen to be maximal at the origin: ordy

(
RV
)
< r− 2

for y 6= 0. Following a similar sub-elliptic estimate (2.6) on V × S1
θ as in Proposition 2.1, we

have
k2/(r−1) ‖u‖2 ≤ C

[
〈∆ku, u〉+ ‖u‖2

L2

]
, ∀u ∈ C∞c (V \B1 (0)) ,

holds on the complement of the unit ball centered at the origin. Combining the above with
Persson’s characterization of the essential spectrum (cf. [33, 1] Ch. 3)

EssSpec (∆k) = sup
R

inf
‖u‖=1

u∈C∞c (V \BR(0))

〈∆ku, u〉 ,

we have EssSpec (∆k) ⊂
[
c1k

2/(r−1) − c2,∞
)
. From here and using (A.10), EssSpec

(
∆gV ,RV

)
=

∅ follows.
The proof of the final part is similar following k2/rSpec

(
�gV ,RV ,JV

)
= Spec

(
�gV ,kRV ,JV

)
=

Spec (�k) ⊂ {0} ∪
[
c1k

2/r − c2,∞
)
, �k := �gV ,kRV ,JV , by an argument similar to Corollary

2.3. �
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Next, the heat e−t∆gV ,RV , e−t�gV ,RV ,JV and wave eit
√

∆
gV ,RV , eit

√
�
gV ,RV ,JV operators being

well-defined by functional calculus, a finite propagation type argument as in [32, eqs. 2.15,
2.16] gives ϕ

(
∆gV ,RV

)
(., 0) ∈ S (V ), ϕ

(
�gV ,RV ,JV

)
(., 0) ∈ S (V ) are in the Schwartz class for

ϕ ∈ S (R). Further, when EssSpec
(
∆gV ,RV

)
= ∅ any eigenfunction of ∆gV ,RV also lies in S (V ).

Finally, on choosing ϕ supported close to the origin, the Schwartz kernel ΠgV ,RV ,JV (., 0) ∈ S (V )
of the projector ΠgV ,RV ,JV onto the kernel of �gV ,RV ,JV is also of Schwartz class.

We now state another proposition regarding the heat kernel of ∆gV ,RV . Below we denote
λ0

(
∆gV ,RV

)
:= inf Spec

(
∆gV ,RV

)
.

Proposition A.2. For each ε > 0 there exist t, R > 0 such that the heat kernel∫
BR(0)

dx
[
∆gV ,RV e

−t∆
gV ,RV

]
(x, x)∫

BR(0)
dx e−t∆gV ,RV (x, x)

≤ λ0

(
∆gV ,RV

)
+ ε

Proof. Setting P := ∆gV ,RV − λ0

(
∆gV ,RV

)
it suffices to show∫

BR(0)
dx
[
Pe−tP

]
(x, x)∫

BR(0)
dx e−tP (x, x)

≤ ε

for some t, R > 0. With ΠP
[0,x] denoting the spectral projector onto [0, x], we split the numerator∫

BR(0)

dx
[
Pe−tP

]
(x, x) =

∫
BR(0)

dx
[
ΠP

[0,4ε]Pe
−tP ] (x, x) +

∫
BR(0)

dx
[(

1− ΠP
[0,4ε]

)
Pe−tP

]
(x, x) .

From P ≥ 0, ΠP
[0,4ε]Pe

−tP ≤ 4εe−tP and
(

1− ΠP
[0,4ε]

)
Pe−tP ≤ ce−3εt, for all t ≥ 1, we may

bound

(A.11)

∫
BR(0)

dx
[
Pe−tP

]
(x, x)∫

BR(0)
dx e−tP (x, x)

≤ 4ε+
ce−3εtRn−1∫

BR(0)
dx e−tP (x, x)

for all R, t ≥ 1. Next, as 0 ∈ Spec (P ) there exists ‖ψε‖L2 = 1, ‖Pψε‖L2 ≤ ε. It now follows
that

∥∥∥ψε − ΠP
[0,2ε]ψε

∥∥∥ ≤ 1
2
and hence

1

2
= −1

4
+

∫
BRε (0)

dx |ψε (x)|2 ≤
∫
BRε (0)

dx

∣∣∣∣∫ dyΠP
[0,2ε] (x, y)ψε (y)

∣∣∣∣2
≤
∫
BRε (0)

dx

(∫
dyΠP

[0,2ε] (x, y) ΠP
[0,2ε] (y, x)

)
=

∫
BRε (0)

dxΠP
[0,2ε] (x, x) ,

for some Rε > 0, using
(

ΠP
[0,2ε]

)2

= ΠP
[0,2ε] and Cauchy-Schwarz. This gives∫

BRε (0)

dx e−tP (x, x) ≥ e−2εt

2
, t > 1.

Plugging this last inequality into (A.11) gives∫
BRε (0)

dx
[
Pe−tP

]
(x, x)∫

BRε (0)
dx e−tP (x, x)

≤ 4ε+ ce−εtRn−1
ε

from which the theorem follows on choosing t large. �
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