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Abstract. We prove that a two dimensional pseudoconvex domain of
finite type with a Kähler-Einstein Bergman metric is biholomorphic to
the unit ball. This answers an old question of Yau for such domains. The
proof relies on asymptotics of derivatives of the Bergman kernel along
critically tangent paths approaching the boundary, where the order of
tangency equals the type of the boundary point being approached.

1. Introduction

Let D ⊂ Cn be a bounded pseudoconvex domain. There exist two natural
canonical metrics defined in its interior. The first is the Bergman metric [3]
defined using the Bergman kernel. The other is the complete Kähler-Einstein
metric in D, whose existence was established by the work of Cheng-Yau and
Mok-Yau [6, 24]. The importance of the metrics stems from their biholo-
morphic invariance property and intimate connections with the boundary
geometry.

It is hence a natural question to ask when the two canonical metrics coin-
cide; i.e. when the Bergman metric on the domain D is Kähler-Einstein. It
was asked, in some form by Yau [29, pg. 679], whether this happens if and
only if D is homogeneous. The reverse direction of Yau’s question (i.e. if D
is homogeneous, then the Bergman metric is Kähler-Einstein) follows from a
simple observation using the Bergman invariant function (cf. Fu-Wong [13]).
The challenging aspect of Yau’s question is the forward direction which is
still wide open in its full generality. It should be noted that homogeneous
domains have been classified in [27] and the only smoothly bounded homo-
geneous domain is the ball, as a consequence of Wong [28] and Rosay [26].

A more tractable case of Yau’s question is when D has strongly pseu-
doconvex smooth boundary. An explicit conjecture in this case was posed
earlier by Cheng [5]: if the Bergman metric of a smoothly bounded strongly
pseudoconvex domain is Kähler-Einstein, then the domain is biholomorphic
to the unit ball. Cheng’s conjecture was confirmed by the combined work of
Fu-Wong [13] and Nemirovski-Shafikov [25] in dimension two. In higher di-
mensions, it was proved more recently by Huang and the second author [19].
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Since then there has been further work on Cheng’s conjecture on Stein man-
ifolds, and more generally on possibly singular Stein spaces, with strongly
pseudoconvex boundary. See Huang-Li [18], Ebenfelt, Xu and the second
author [8], as well as Ganguly-Sinha [14] for results along this line. Other
variations of Cheng’s conjecture can also be found in Li [21, 22] and refer-
ences therein.

The proofs of Cheng’s conjecture in [13, 19] fundamentally use Fefferman’s
asymptotic result [11] for the Bergman kernel, together with its connections
to the CR invariant theory for the boundary geometry. In the broader con-
text of pseudoconvex finite type domains, both tools are either absent or
insufficiently understood. As a result, little progress was made towards un-
derstanding Yau’s question in this context. To the best knowledge of the
authors, the only known result was due to Fu-Wong [13]. They showed
that, on a smoothly bounded, complete Reinhardt, pseudoconvex domain
of finite type domain in C2, if the Bergman metric is Kähler-Einstein, then
the domain is biholomorphic to the unit ball. Their proof utilized the non-
tangential limit of the Bergman invariant function (see Fu [12]). Besides,
their proof used the aid of a computer, again reflecting the intricacy of the
problem in the more general finite type case.

Our main theorem below gives an affirmative answer to Yau’s question for
smoothly bounded pseudoconvex domains of finite type in dimension two.

Theorem 1. Let D ⊂ C2 be a smoothly bounded pseudoconvex domain of
finite type. If the Bergman metric of D is Kähler-Einstein, then D is biholo-
morphic to the unit ball in C2.

A key role is again played by the boundary asymptotics for the Bergman
kernel. For two dimensional pseudoconvex domains of finite type, Hsiao
and the first author [17] recently described the asymptotics of the Bergman
kernel along transversal paths approaching the boundary. For our proof we
shall need to extend this asymptotic result to tangential paths approaching
a non-strongly pseudoconvex point on the boundary. The paths shall further
be chosen to be critically tangent ; their order of tangency with the boundary
equals the type of the point on the boundary that is being approached (see
Remark 5 below for a further discussion of this choice).

As a consequence of our main theorem, we also positively answer Yau’s
question for two dimensional bounded domains with real analytic boundary
(such domains are always of finite type).

Corollary 2. Let D ⊂ C2 be a bounded pseudoconvex domain with real
analytic boundary. If the Bergman metric of D is Kähler-Einstein, then D
is biholomorphic to the unit ball in C2.

The article is organized as follows. We begin with some preliminaries on
the Bergman and Kähler-Einstein metrics in Section 2. In Section 3, we
establish the asymptotics for the Bergman kernel and its derivatives along
a critically tangent path. The leading term of the asymptotics is computed
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as well in terms of a model Bergman kernel on the complex plane. Then we
carry out the requisite analysis of the model in Section 4. Finally we prove
Theorem 1 in Section 5.

2. Preliminaries

In this section we begin with some requisite preliminaries on the Bergman
and Kähler-Einstein metrics.

Let D ⊂ Cn be a smoothly bounded domain. A boundary defining
function is a smooth function ρ ∈ C∞ (

D̄
)

satisfying D = {ρ (z) < 0} ⊂
C2 and dρ|∂D ̸= 0. The CR and Levi-distributions on the boundary X :=
∂D are defined via T 1,0X = T 1,0C2 ∩ TCX and HX := Re

[
T 1,0X ⊕ T 0,1X

]
respectively. The Levi form on the boundary is defined by

L ∈
(
T 1,0X

)∗ ⊗ (
T 0,1X

)∗
L

(
U, V̄

)
:= ∂∂̄ρ

(
U, V̄

)
= −∂ρ

([
U, V̄

])
(2.1)

for U, V ∈ T 1,0X. The domain is called strongly pseudoconvex if the Levi
form is positive definite; and weakly pseudoconvex (or simply pseudoconvex )
if the Levi form is semi-definite.

We now recall the notion of finite type. There are two standard notions
of finite type (D’Angelo and Kohn/Bloom-Graham) of a smooth real hy-
persurface M , and these happen to coincide in C2. (The reader is referred
to [1] for more details). The domain is called of finite type (in the sense
of Kohn/Bloom-Graham) if the Levi-distribution HX is bracket generating:
C∞ (HX) generates TX under the Lie bracket. In particular the type of a
point on the boundary x ∈ X = ∂D is the smallest integer r (x) such that
HxXr(x) = TxX, where the subspaces HXj ⊂ TX, j = 1, . . . are inductively
defined by

HX1 := HX

HXj+1 := HX + [HXj , HX] , ∀j ≥ 1.(2.2)

In general, the function x 7→ r (x) is only upper semi-continuous. The finite
type hypothesis is then equivalent to r := maxx∈X r (x) <∞. Note that the
type of a strongly pseudoconvex point x is r (x) = 2.

The Bergman projector of D is the orthogonal projector

(2.3) KD : L2 (D) → L2 (D) ∩ O (D)

from square integrable functions onto the closed subspace of square-integrable
holomorphic ones. Its Schwartz kernel, still denoted byKD (z, z′) ∈ L2 (D ×D) ,
is called the Bergman kernel of D. It is well-known to be smooth in the in-
terior and positive along the diagonal. The Bergman metric is the Kähler
metric in the interior defined by

gDαβ̄ := ∂α∂β̄ lnKD (z, z) .
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Denote by G = det
(
gD
αβ̄

)
the determinant of the above metric. The Ricci

tensor of gD is by definition Rαβ̄ = −∂α∂β̄ lnG. The Bergman metric is
always Kähler, and is further said to be Kähler-Einstein if Rαβ̄ = cgD

αβ̄

for some constant c. Since D is a bounded domain, the sign of c must
necessarily be negative (cf. [6, page 518]). The Bergman invariant function
is defined by B (z) := G(z)

KD(z,z) . It follows from the transformation formula of
the Bergman kernel that the Bergman invariant function is invariant under
biholomorphisms.

Next we briefly discuss the Kähler-Einstein metric. Recall the existence of
a complete Kähler-Einstein metric on D ⊂ Cn is governed by the following
Dirichlet problem:

J (u) := (−1)n det

(
u uβ̄
uα uαβ̄

)
= 1 in D

u = 0 on ∂D(2.4)

with u > 0 in D. Here uα denotes ∂zαu, and likewise for uβ̄ and uαβ̄ . The
problem was first studied by Fefferman [11], and J(·) is often referred as
Fefferman’s complex Monge-Ampère operator. Cheng and Yau [6] proved
the existence and uniqueness of an exact solution u ∈ C∞(D) to (2.4), on
a smoothly bounded strongly pseudoconvex domain D. The function u is
called the Cheng–Yau solution; and −∂∂ log u gives rise to a complete Kähler-
Einstein metric on D. Mok-Yau [24] further showed a bounded domain
admits a complete Kähler-Einstein metric if and only if it is a domain of
holomorphy.

We next make some observations on the Monge-Ampère operator for later
applications. The left hand side of the first equation in (2.4) can further
be invariantly written as J (u) = un+1 det

[
∂∂̄ (− lnu)

]
. It may thus be

computed in terms of any orthonormal frame {Zα}nα=1 of T 1,0Cn as

(2.5) J (u) = det

(
u Z̄βu

Zαu ZαZ̄βu−
[
Zα, Z̄β

]0,1
u

)
.

This can be proved using the identity

(2.6) ∂∂̄f
(
Zα, Z̄β

)
= ZαZ̄β (f)− ∂̄f

([
Zα, Z̄β

])
.

Here the normality of {Zα}nα=1 means each of them has the same Euclidean
norm as ∂z1 , · · · , ∂zn .

The following proposition gives an equivalent condition for the Bergman
metric being Kähler-Einstein, which is easier to work with. The proof is
similar to [13, Proposition 1.1] and [18, Proposition 3.3].

Proposition 3. Let D ⊂ Cn, n ≥ 2, be a smoothly bounded pseudocon-
vex domain. Then its Bergman metric gD is Kähler-Einstein if and only if
the Bergman invariant function is constant B (z) ≡ (n+ 1)n πn

n! . This is also
equivalent to the Bergman kernel KD satisfying J (KD) = (−1)n (n+1)nπn

n! Kn+2
D .
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Proof. We start with the proof of the first assertion. Since the reverse direc-
tion is trivial, we only need to prove the forward part. Assume the Bergman
metric of D is Kähler-Einstein.

Recall a smoothly bounded domain in Cn always has a strongly pseu-
doconvex boundary point. Therefore we can find a strongly pseudoconvex
open connected piece M of ∂D. Fix p ∈ M . Next pick a small smoothly
bounded strongly pseudoconvex domain D′ ⊆ D such that D′ ∩O = D ∩O
and ∂D′ ∩O = ∂D ∩O =:M0 ⊆M for some small ball O in Cn centered at
p.

Write KD′ for the Bergman kernel of D′. Then by the localization of
the Bergman kernel on pseudoconvex domains at a strongly pseudoconvex
boundary point (cf. Theorem 4.2 in Engliš [10]), there is a smooth function
Φ in a neighborhood of D′ ∪M0 such that

(2.7) KD = KD′ +Φ on D′.

Note that KD′ obeys Fefferman asymptotic expansion on D′ by [11]. Com-
bining this with (2.7), we see for any defining function ρ of D ∩ O with
D∩O = {z ∈ O : ρ(z) < 0}, the Bergman kernel KD also has the Fefferman
type expansion in D ∩O :

(2.8) KD =
ϕ

ρn+1
+ ψ log(−ρ) on D ∩O.

Here ϕ and ψ are smooth in a neighborhood of D′∪M0 with ϕ nowhere zero
on M0.

Then by (2.8) and (the proof of) Theorem 1 of Klembeck [20], the Bergman
metric of D is asymptotically of constant holomorphic sectional curvature
−2
n+1 as z ∈ D →M0. Consequently, the Bergman metric of D is asymptoti-
cally of constant Ricci curvature −1 as z ∈ D →M0 (To prove the latter fact,
alternatively one can apply a similar argument as page 510 of Cheng-Yau
[6]). Therefore by the Kähler-Einstein assumption, we must have Rij = −gij .
This yields ∂∂̄ logB ≡ 0 in D. That is, logB is pluriharmonic in D.

Furthermore, by (2.7) and a similar argument as in the proof of Lemma
3.2 in [18], we have B(z, z) → (n+1)nπn

n! as z →M0. Now write ∆ = {z ∈ C :
|z| < 1} for the unit disk. Let f : ∆ → O be an analytic disk attached to M0.
That is, f is holomorphic in ∆ and continuous in ∆ with f(∆) ⊂ O∩D and
f(∂∆) ⊂ M0. Then logB(f) is harmonic in ∆, continuous up to ∂∆, and
takes constant value log (n+1)nπn

n! on ∂∆. This implies B takes the constant
value (n+1)nπn

n! on f(∆). But since M0 is strongly pseudoconvex, we can find
a family F of analytic disks such that ∪f∈Ff(∆) fills up an open subset U
of O ∩D(cf. [1]). Thus B is constant on U . Since B is real analytic and D
is connected, we see B ≡ (n+1)nπn

n! .
Finally, a routine computation using the formula J(u) = un+1 det

(
∂∂(− lnu)

)
yields that, B (z) = c if and only if J (KD) = (−1)ncKn+2

D . Then the second
assertion of the proposition follows immediately. □
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3. The Bergman kernel and its derivatives

To prove Theorem 1, we shall fundamentally use the asymptotics of the
Bergman kernel on pseudoconvex domains of finite type. In this section, we
first briefly recall some classical and recent known work, and then prove new
results for asymptotics of the Bergman kernel.

In Section 2, we already made use of Fefferman’s Bergman kernel asymp-
totics in the strongly pseudoconvex case. Let D be a strongly pseudoconvex
domain with a defining function ρ ∈ C∞ (

D̄
)
. Fefferman [11] showed that

the Bergman kernel of the domain D has an asymptotic expansion

(3.1) KD (z, z) = a (z) ρ−n−1 + b (z) ln (−ρ)

for some functions a (z) , b (z) ∈ C∞ (
D̄
)
.

Recently, the asymptotics in (3.1) were extended to pseudoconvex domains
of finite type in C2 by Hsiao and the first author [17, Theorem 2]. They
established the full asymptotic expansion of the Bergman kernel described
along transversal paths approaching the boundary. This is not suitable for
our proof of Theorem 1. We shall need the asymptotic expansion of the
Bergman kernel, and its derivatives, along certain critically tangent paths
(see Section 1 and Remark 5) approaching the boundary. Besides, we also
need information of the leading coefficient in the asymptotics.

To state our result, now let D ⊂ C2 be a pseudoconvex domain of finite
type. Fix x∗ ∈ X = ∂D on the boundary of the domain of type r = r (x∗).
Let U1, U2 := JU1 ∈ C∞ (HX) be two local orthonormal sections of the Levi
distribution and U3 ∈ C∞ (TX), U3 ⊥ HX to be a unit normal to the Levi
distribution. One then extends U1 to a local unit length vector field in the
interior of D. Set U2 = JU1 to be an extension of U2 to the interior of D.
Choose an extension of U3 of unit length and that is orthogonal to U1, U2.
Set U0 = −JU3 (so that U3 = JU0). It is easy to see that U0 is of unit
length and normal to the boundary U0 ⊥ TX near x∗ ∈ X. Replacing U3

by −U3 if needed, we assume U0 is outward-pointing to D. This also gives
a local boundary defining function ρ via U0 (ρ) = 1, ρ|X = 0. Note that
the flow of the normal vector field U0 also gives a locally defined projection
π : D → X = ∂D onto the boundary. The pairs of vector fields define CR
vector fields Z = 1

2 (U1 − iU2) ,W = 1
2 (U0 − iU3) ∈ T 1,0C2.

Next, from a system of coordinates x = (x1, x2, x3) on the boundary
centered at x∗ ∈ X, we assign weights to local functions and vector fields.
To define these, first the weight of a monomial xα, α ∈ N3

0, is w.α := α1+α2+
rα3, with w(x) = w (x1, x2, x3) := (1, 1, r). The weight w (f) of a function
f ∈ C∞ (X) is then the minimum weight of the monomials appearing in its
Taylor series at x∗ = 0. Finally, the weight w (U) of a smooth vector field
U =

∑3
j=1 fj∂xj is w (U) := min {w (f1)− 1, w (f2)− 1, w (f3)− r}.
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In [7, Prop. 3.2] (see also [1]) it was shown that a coordinate system
x = (x1, x2, x3) on the boundary centered at x∗ may be chosen so that

Z|X =
1

2

∂x1 + (∂x2p) ∂x3 − i (∂x2 − (∂x1p) ∂x3)︸ ︷︷ ︸
=:Z0

+R

 ,(3.2)

where p (x1, x2) is a homogeneous, subharmonic (and non-harmonic) real
polynomial of degree and weight r. We note that r must be even. Besides, p
has no purely holomorphic or anti-holomorphic terms in z1 = x1 + ix2 in its
Taylor expansion at 0. Moreover, R =

∑3
j=1 rj (x) ∂xj is a real vector field

of weight w (R) ≥ 0.
The coordinate system (x1, x2, x3) on the boudary is next extended to the

interior of the domain by being constant in the normal direction U0 (xj) = 0,
j = 1, 2, 3. Then x′ := (ρ, x1, x2, x3) serve as coordinates on the interior of
the domain near x∗ in which U0 = ∂ρ. We also extend the notion of weights
to the new coordinate system. The weight of a monomial ρα0xα is defined as
w′ (ρα0xα) = w′.α′ := rα0+α1+α2+ rα3, with w′(x′) = w′ (ρ, x1, x2, x3) :=
(r; 1, 1, r) now denoting the augmented weight vector. We again define the
weight w(f) of a smooth function f ∈ C∞ (D) near x∗ as the minimum
weight of the monomials appearing in its Taylor series at x∗ in these coor-
dinates. Finally, the weight w (U) of a smooth vector field U = f0∂ρ +∑3

j=1 fj∂xj is w (U) := min {w (f0)− r, w (f1)− 1, w (f2)− 1, w (f3)− r}.
Note that one has w (U) ≥ −r, and w (U) > −r if f0(0) = f3(0) = 0.

Below O (k) denotes a vector field of weight k or higher. By a rescaling of
the x3 coordinate, and at the cost of scaling the polynomial p (x1, x2) , we
may also arrange U3|x∗=0 = ±∂x3 . By the fact that

[
Z, Z̄

]
= [−∆p (z1)

i
2∂x3 ]+

O (−1) and the pseudoconvexity condition (2.1), one can show that it must
be ∂x3 . But the sign is irrelevant to our proof, and thus we will not elaborate
it here. Therefore we have

(3.3) U3 = ∂x3 +O (−r + 1) .

Next let V ∈ C∞ (HX) denote another locally defined section of the Levi
distribution. This defines a local tangential path approaching x∗ via

z (ϵ) :=

 eϵV x∗︸ ︷︷ ︸
=π(z(ϵ))

, −ϵr︸︷︷︸
=ρ(z(ϵ))

 ∈ D, ϵ > 0.(3.4)

Note the above path is indeed tangential to the boundary; its tangent vector
at x∗ is in the Levi-distribution dz

dϵ

∣∣
ϵ=0

= Vx∗ ∈ Hx∗X. The order of tangency
the path makes with the boundary is the type of the point r (x∗). Writing
V =

∑3
j=1 gj∂xj , we associate the section V with a point

z1,V := (x1,V , x2,V ) = (g1 (0) , g2 (0)) ∈ R2.(3.5)

In the computation of the leading asymptotics of the Bergman kernel KD

(see (3.7) in Theorem 4), one will further see the appearance of the model
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Bergman kernel Bp corresponding to the subharmonic polynomial p in (3.2).
For the readers’ convenience, we briefly recall the notion of model Bergman
kernel. For that, we consider the L2 orthogonal projector from L2 (Cz1) to
H2

p . Here

H2
p :=

{
f ∈ L2 (Cz1) | ∂̄pf = 0

}
; and ∂̄p := ∂z̄1 + ∂z̄1p.

Then Bp is defined to be the Schwartz kernel of this projector. More discus-
sion and analysis of the model Bergman kernel follows in Section 4.

We now state the necessary asymptotics result for the Bergman kernel
and its derivatives. Below ∂α

′
=

(
1
2U0

)α0 Zα1Z̄α2
(
1
2U3

)α3 denotes a mixed
derivative along the respective vector fields for α′ = (α0, α1, α2, α3) ∈ N4

0.

Theorem 4. Let D ⊂ C2 be a smoothly bounded pseudoconvex domain of
finite type. For any point x∗ ∈ X = ∂D on the boundary, of type r = r (x∗),
the Bergman kernel and its derivatives satisfy the following asymptotics for
each N ∈ N:

∂α
′
KD (z, z)

(3.6)

=

N∑
j=0

1

(−2ρ) 2+
2+w′.α′

r
− 1

r
j
aj +

N∑
j=0

a′j (−ρ) j log (−ρ) +O

(
(−ρ)

1
r
(N+1)−2− 2+w′.α′

r

)
,

for some set of numbers aj , a′j as z → x∗ tangentially to the boundary along
the path (3.4).

Furthermore, the leading term can be computed in terms of the model
Bergman kernel of the subharmonic polynomial p as

(3.7) a0 = δ0α3 .

∂α1
z1 ∂

α2
z̄1

(
1

π

∫ ∞

0
e−ss1+

2
r
+α0Bp

(
s

1
r z1

)
ds

)
︸ ︷︷ ︸

=:B̃p,α0 (z1)


z1=z1,V

.

Proof. The proof is similar to [17, Thm. 2]. We shall only point out the
necessary modifications.

In [17, Sec. 4 ] the following space of symbols Ŝm
1
r

(
C2 × C2 × Rt

)
, m ∈ R,

in the variables (ρ, x, ρ′, y; t) ∈ C2
z × C2

w × Rt was defined. This is the space
of smooth functions satisfying the symbolic estimates

∣∣∣∂α0
ρ ∂

β0
ρ′ ∂

α
x ∂β

y ∂
γ
t a(ρ,x,ρ

′,y,t)
∣∣∣ ≤ CN,αβγ ⟨t⟩m−γ+

w′.(α′+β′)
r

(
1 +

∣∣∣t 1r x̂∣∣∣+ ∣∣∣t 1r ŷ∣∣∣)N(α′,β′,γ)

(
1 +

∣∣∣t 1r x̂− t
1
r ŷ

∣∣∣)−N
,

(3.8)

for each (x, y, ρ, ρ′, t, N) ∈ R6
x,y×R2

ρ,ρ′×Rt×N and (α′, β′, γ) ∈ N4
0×N4

0×N0

with α′ = (α0, α), β
′ = (β0, β). Here N (α′, β′, γ) ∈ N depends only on the
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given indices, ⟨t⟩ :=
√
1 + t2 denotes the Japanese bracket while the notation

x̂ = (x1, x2) denotes the first two coordinates of the tuple x = (x1, x2, x3).
Below Ŝ

(
R2
x̂ × R2

ŷ

)
further denotes the space of restrictions of functions in

Ŝm
1
r

to x3, y3, ρ, ρ′ = 0 and t = 1.
Next a generalization of this space is defined via

(3.9) Ŝm,k
1
r

:=
⊕

p+q+p′+q′≤k

(tx3)
p (tρ)q (ty3)

p′ (tρ′)q′ Ŝm
1
r

,

for each (m, k) ∈ R× N0. Finally, the subspace of classical symbols Ŝm
1
r
,cl

⊂

Ŝm
1
r

comprises of those symbols for which there exist ajpp′qq′ (x̂, ŷ) ∈ Ŝ
(
R2 × R2

)
,

j, p, p′, q, q′ ∈ N0, such that the following belongs to Ŝm−(N+1) 1
r
,N+1

1
r

for each
N ∈ N0:
(3.10)

a (x, y, t)−
N∑
j=0

∑
p+q+p′+q′≤j

tm− 1
r
j (tx3)

p (tρ)q (ty3)
p′ (tρ′)q′ ajpp′qq′ (t 1r x̂, t 1r ŷ) .

The space Ŝm,k
1
r
,cl

is now defined similarly to (3.9). The principal symbol of

such an element a ∈ Ŝm
1
r
,cl

is defined to be the function

σL (a) := a00000 ∈ Ŝ
(
R2 × R2

)
.

Now, following the proof of [15, Prop. 7.6], there exists a smooth phase
function Φ(z, w) defined locally on a neighbourhood U × U of (x∗, x∗) in
D̄ × D̄ ⊂ C2

z × C2
w such that

Φ(z, w)− x3 + y3

(3.11)

= −iρ
√
−σ△X

(x, (0, 0, 1))− iρ′
√
−σ△X

(y, (0, 0, 1)) +O(|ρ|2) +O(
∣∣ρ′∣∣2),

where q0(z, dzΦ) and q0(w,−dwΦ) vanish to infinite order on {ρ = 0} and
on {ρ′ = 0}, respectively. Here △X denotes the real Laplace operator on the
boundary X = ∂D of the domain, while q0 = σ (□f ) denotes the principal
symbol of the complex Laplace-Beltrami operator □f = ∂̄∗f ∂̄ + ∂̄∂̄∗f on the
domain. The proofs of [17, Lemma 17] and [17, Lemma 20] can be repeated to
obtain the following description for the Bergman kernel: for some a (z, w, t) ∈
Ŝ
1+ 2

r
1
r
,cl

(
C2 × C2 × Rt

)
one has

KD (z, w) =
1

π

∫ ∞

0
eiΦ(z,w)ta (z, w, t) dt

(
mod C∞ (

(U × U) ∩
(
D ×D

)))(3.12)
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with σL (a) = Bp being the model Bergman kernel defined prior to the
statement of this theorem.

We need to differentiate the last description (3.12). For that, we adopt
the notion of weights we defined before Theorem 4. By construction, the
chosen vector fields

(
U0, Z, Z, U3

)
have weights (−r,−1,−1,−r) respectively.

Furthermore, the leading parts in their weight expansions are given by(
U0, Z, Z, U3

)
=

(
∂ρ, Z0 +O (0) , Z̄0 +O (0) , ∂x3 +O (−r + 1)

)
,(3.13)

Here Z0 := 1
2 [∂x1 + (∂x2p) ∂x3 − i (∂x2 − (∂x1p) ∂x3)] is now understood as a

locally defined vector field in the interior of the domain. Next we observe
from definitions of the symbol spaces (3.8), (3.9) that a vector field U of
weight w (U) maps

(3.14) U : Ŝm
1
r
,cl

→ Ŝ
m− 1

r
w(U)

1
r
,cl

.

The equations (3.11), (3.13), (3.14) now allow us to differentiate (3.12) to

obtain: for some aα (z;w, t) ∈ Ŝ
1+ 2+w′.α

r
,α0+α3

1
r
,cl

(
C2 × C2 × Rt

)
one has

∂αKD (z, z) =
1

π

∫ ∞

0
eiΦ(z,z)taα (z, z, t) dt

(
mod C∞ (

(U × U) ∩
(
D ×D

)))

with aα =
(
Zα1
0 Z̄α2

0 Bp

)
t1+

2+w′.α
r + Ŝ

1+ 1+w′.α
r

,α0+α3

1
r
,cl

.

(3.15)

Recall the vector field V =
∑3

j=1 gj∂xj ∈ C∞ (HX) lies in the Levi dis-
tribution. By (3.2), its ∂x3-component function has weight w (g3) ≥ r − 1.
Thus along the flow of V , and consequently along the path z (ϵ) in (3.4), the
coordinate functions satisfy

(3.16) (x1, x2, x3, ρ) =
(
ϵg1 (0) +O

(
ϵ2
)
, ϵg2 (0) +O

(
ϵ2
)
, O (ϵr) ,−ϵr

)
.

The last two equations (3.15) and (3.16) now combine to give the theorem.
□

Remark 5. (Critical tangency) The path z (ϵ) in (3.4) is particularly chosen
to be critically tangent to the boundary. Namely its order of tangency with
the boundary is the type r (x∗) of the boundary point x∗ ∈ ∂D that is
being approached. This order of tangency is critical in the sense that it
is the maximum for which the expansion in (3.6) can be proved. As for
a higher order of tangency (i.e., ρ having vanishing order higher than r at

ϵ = 0), the terms in the symbolic expansion of aα ∈ Ŝ
1+ 2+w′.α

r
,α0+α3

1
r
,cl

in (3.15)
become increasing in order and not asymptotically summable. This means
in particular, the double summation in (3.10) would be asymptotically non-
summable along the path. A critically tangent path is necessary in our proof
below since for such a path the leading coefficient (3.7) picks up information
of the model Bergman kernel at the arbitrary tangent vector V . For a path
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tangent at a lesser order, the leading coefficient only depends on the value
of the model kernel Bp at the origin.

4. Analysis of the model kernel

In Section 3, we introduced the model Bergman kernel Bp, corresponding
to a subharmonic, homogeneous polynomial p (x1, x2). As we see from The-
orem 4, it plays an important role in the asymptotics of the Bergman kernel
KD of D. To prepare for the proof of Theorem 1, we need to further analyze
this model Bergman kernel Bp. For convenience, we will also write p (x1, x2)
as p (z1), where z1 = x1 + ix2.

4.1. Expansion of the model kernel and first few coefficients. First
we will work out the expansion of the model Bergman kernelBp, and compute
the values of the first few coefficients in the expansion. As usual, for a smooth
function f on Cz1 , we write fz1 = ∂z1f = ∂f

∂z1
, and likewise for fz̄1 and fz1z̄1 .

Proposition 6. For any z1 ∈ R2, with ∆p (z1) ̸= 0, the model Bergman
kernel on diagonal satisfies the asymptotics

[
∂α1
z1 ∂

α2
z̄1 Bp

] (
t
1
r z1

)
=
t1−

2+|α|
r

2π
∂α1
z1 ∂

α2
z̄1

 N∑
j=0

bjt
−j +O

(
t−N−1

)(4.1)

for each N ∈ N as t→ ∞. Moreover, the first four terms in the asymptotics
are given by

b0 = 4q; b1 = q−2Q; b2 =
1

6
∂z1∂z̄1

[
q−3Q

]
;

b3 =
q

48

{
[q−1∂z1∂z̄1 ]

2q−3Q− q−4Q [∂z1∂z̄1 ] q
−3Q− q−1[∂z̄1

(
q−3Q

)
][∂z1

(
q−3Q

)
]
}
;

(4.2)

where q := 1
4∆p = pz1z̄1 and Q := qqz1z̄1 − qz1qz̄1 are defined in terms of the

polynomial p.

Proof. The proof uses some rescaling arguments. Following [23, Sec. 4.1],
we introduce the rescaling operator δ

t−
1
r

: C → C given by δ
t−

1
r
(z1) :=

t−
1
r z1, t > 0. Recall when introducing Bp, we defined ∂̄p := ∂z̄1 + ∂z̄1p. The

corresponding Kodaira Laplacian on functions □p = ∂̄∗p ∂̄p then gets rescaled
to the operator (

δ
t−

1
r

)
∗
□p = t−

2
r□t

where □t := ∂̄∗t ∂̄t, and ∂̄t := ∂z̄1 + t (∂z̄1p).
We pause to introduce two more Bergman type kernel functions that are

defined similarly as Bp. Firstly denote by the shorthand Bt := Btp, t > 0, the
model Bergman kernel associated to the rescaled homogeneous polynomial
tp. Next define the weighted space L2

tp (Cz1) :=
{
f |e−tpf ∈ L2 (Cz1)

}
, and

denote by O (Cz1) the space of entire functions on Cz1 . The L2 orthogonal
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projector Bp
t from L2

tp (Cz1) to L2
tp (Cz1) ∩O (Cz1) is then seen to be related

to the kernel Bt by the relation

(4.3) Bt

(
z1, z

′
1

)
= e−tp(z1)−tp(z′1)Bp

t

(
z1, z

′
1

)
.

This follows on simply noting that multiplication by e−tp is a isomorphism
from L2

tp (Cz1) to L2 (Cz1) and L2
tp (Cz1) ∩ O (Cz1) to H2

tp respectively.
Moreover, Bt can be equivalently understood as the Bergman projector for

the trivial holomorphic line bundle on C with Hermitian metric ht = e−tp.
The curvature of this metric is t (2∂z1∂z̄1p)︸ ︷︷ ︸

= 1
2
∆p

dz1 ∧ dz̄1. Its eigenvalue is ∆p.

In [17, Thm. 14], the Bergman kernel of Bt was related to the model via

(4.4) Bp

(
t
1
r z1, t

1
r z′1

)
= t−

2
rBt

(
z1, z

′
1

)
.

Furthermore, in its proof the following spectral gap property for □t was
observed

Spec (□t) ⊂ {0} ∪
[
c1t

2/r − c2,∞
)

for some c1, c2 > 0.
At a point z1 ∈ C, where ∆p (z1) ̸= 0, the asymptotics of Bt (z1, z1) as

t→ ∞ are thus the standard asymptotics for the Bergman kernel on tensor
powers of a positive line bundle (cf. [16, Thm. 1.6]). There is an asymptotic
expansion

(4.5) ∂α1
z1 ∂

α2
z̄1 Bt (z1) =

t

2π
∂α1
z1 ∂

α2
z̄1

 N∑
j=0

bjt
−j +O

(
t−N−1

)
for each N ∈ N as t → ∞. The last two equations (4.4) and (4.5) combine
to prove (4.1).

It remains to compute the first four coefficients in (4.5). For that we will
make use of (4.3), by which it suffices to find the corresponding coefficients in
the expansion of Bp

t . The computations for the latter can be found in [9, (6.2)
and Theorem 9]. In order to see the specialization of the formulas therein
to the special case here, we note the Kähler metric g = ∂∂̄p with potential
p has component g11̄ = q = ∂z1∂z̄1p. The only non-zero Christoffel symbols
are Γ1

11 = Γ1̄
1̄1̄

= q−1∂z̄1q. Furthermore, the only non-zero components of
the Riemannian, Ricci and scalar curvatures respectively are given by the
following. Here we follow the convention of curvatures in [9, pp. 6], which
may differ from that of some other papers by a negative sign.

R11̄11̄ = ∂z1∂z̄1q − q−1 (∂z1q) (∂z̄1q) = q−1Q; Ric11̄ = q−2Q; R = q−3Q.

The corresponding Laplace operator L1 of [9, (2.10)] in our special context
is given by L1 = q−1∂z1∂z̄1 . We now bring these specializations into [9,
(6.2) and Theorem 9] to obtain the values of the coefficients b0, b1, b2 and
b3. For instance, we note that the tensors appearing the computation of b3
are those arising from σ8 = σ9 = σ10 = q−4Q [∂z1∂z̄1 ] q

−3Q, σ12 = σ13 =
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q−1
[
∂z̄1

(
q−3Q

)] [
∂z1

(
q−3Q

)]
and σ14 =

[
q−1∂z1∂z̄1

]2
q−3Q in the notation

of [9, Theorem 9]. □

Remark 7. Although we computed the values of b0, · · · , b3 in Proposition 6,
we will only use b3 in the proof of Theorem 1.

4.2. Models with vanishing expansion coefficients. Having shown that
the model kernel Bp

(
t
1
r z1

)
admits an asymptotic expansion at t → ∞, we

ask when the terms of the asymptotic expansion are eventually zero, or in
other words, bj = 0 for j sufficiently large. This is relevant to our theorem
below. We prove the following somewhat surprising result which shows the
vanishing of the third coefficient is already restrictive. As above, let p (x1, x2)
be a subharmonic and non-harmonic homogeneous polynomial of degree r.

Theorem 8. Suppose the third term b3 vanishes in the asymptotic expansion
(4.1) of the model kernel Bp corresponding to p. Then there exists some real
number c0 > 0 such that q = c0 (z1z̄1)

r
2
−1 . Here as before, q := 1

4∆p.

To prove the theorem, we carry out some Hermitian analysis. For that, we
start with a few definitions and lemmas. In the remainder of this subsection,
we will write z instead of z1 for simplicity.

Definition 9. Let f ∈ C[z, ζ] be a polynomial of two variables. Fix a ∈ C.
Let k ∈ N0 and λ ∈ C. We say f is divisible by (z + aζ)k with coefficient λ,
denoted by f ∼ Da(k, λ), if f(z, ζ) = (z + aζ)kf̂(z, ζ) for some f̂ ∈ C[z, ζ]
with f̂(−a, 1) = λ.

It is clear that if f ∼ Da(k, λ) with k ≥ 1, then we have f ∼ Da(k− 1, 0).
In the following, we say f ∈ C[z, ζ] is Hermitian if f(z, z̄) is real-valued for
every z ∈ C.

Lemma 10. Let f ∈ C[z, ζ] be a nonconstant Hermitian homogeneous poly-
nomial of two variables. Then there exist a ∈ C, k ≥ 1 and a nonzero λ ∈ C
such that f ∼ Da(k, λ). Moreover, if f ̸= czmζm for every real number c ̸= 0
and integer m ≥ 1, then we can further choose a ̸= 0.

Proof. Write d for the degree of f . Since f is homogeneous, we have

(4.6) f(z, ζ) = ζdf

(
z

ζ
, 1

)
.

By assumption, f(η, 1) ∈ C[η] is nonconstant, for otherwise f(z, ζ) is not
Hermitian. Using the fundamental theorem of algebra, we may write

(4.7) f(η, 1) = cηm
l∏

j=1

(η − aj)
kj .

Here c ∈ C is nonzero, and m, l ≥ 0 and kj ≥ 1 satisfy m +
∑l

j=1 kj ≤ d.

Moreover, a′js are distinct nonzero complex numbers. When l = 0, the above
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equation is understood as f(η, 1) = cηm. By (4.6) and (4.7), we have

(4.8) f(z, ζ) = czmζn
l∏

j=1

(z − ajζ)
kj , where n = d−m−

l∑
j=1

kj .

We first consider the case where l = 0. In this case, f(z, ζ) = czmζn. Since
f is nonconstant and Hermitian, we must have c ∈ R, c ̸= 0, and n = m ≥ 1.
The conclusion of the lemma follows if we choose a = 0, k = m ≥ 1, λ = c ̸=
0.

We next assume l ≥ 1. Then by (4.8), the conclusion of the lemma follows
if we choose a = −a1 ̸= 0, k = k1 ≥ 1, λ = cam1

∏l
j=2(a1 − aj)

kj ̸= 0. This
proves the first part of Lemma 10.

Note if f is not a multiple of zmζm for any integer m, then it can only be
the latter case, and this establishes the second part of Lemma 10. □

We next extend the above definition to rational functions.

Definition 11. Let g ∈ C(z, ζ) be a rational function. Write g = f1
f2
, where

f1, f2 ∈ C[z, ζ] and f2 ̸= 0. If fi ∼ Da(ki, λi), 1 ≤ i ≤ 2, with k1, k2 ≥ 0 and
λ2 ̸= 0, then we say g ∼ Da(k1−k2, λ1

λ2
). Note that k1−k2 could be negative.

Note if g ∈ C(z, ζ) and g ∼ Da(k, λ), then we have g ∼ Da(k − 1, 0). We
next make a few more observations.

Lemma 12. If g ∈ C(z, ζ) and g ∼ Da(k, λ) for some a ∈ C, then the
following hold:

(1) ∂zg ∼ Da(k − 1, kλ) and ∂ζg ∼ Da(k − 1, akλ);
(2) ∂z∂ζg ∼ Da(k − 2, ak(k − 1)λ).

Proof. Write g = f1
f2

with f1, f2 ∈ C[z, ζ], f2 ̸= 0. Write fi = (z + aζ)kihi for
1 ≤ i ≤ 2, where h1, h2 ∈ C[z, ζ], k1, k2 ≥ 0, k1 − k2 = k and h2(−a, 1) ̸=
0, h1(−a,1)

h2(−a,1) = λ. A routine computation yields

∂zg =
f2∂zf1 − f1∂zf2

f22

=
(k1 − k2)(z + aζ)k1+k2−1h1h2 + (z + aζ)k1+k2(h2∂zh1 − h1∂zh2)

(z + aζ)2k2h22
.

Then it is clear that ∂zg ∼ Da(k − 1, kλ). Similarly one can show ∂ζg ∼
Da(k − 1, akλ). This finishes the proof of part (1). The conclusion in part
(2) follows immediately from part (1). □

The statements in the next lemma follow from direct computations. We
omit the proof.

Lemma 13. Let g1, g2 ∈ C(z, ζ) and a ∈ C. Assume gi ∼ Da(ki, λi) for
1 ≤ i ≤ 2 where ki ∈ Z and λi ∈ C, then the following hold:

(1) g1g2 ∼ Da(k1 + k2, λ1λ2);
(2) cg1 ∼ Da(k1, cλ1) for any complex number c;
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(3) g1 + g2 ∼ Da(k1, λ1 + λ2) if k1 = k2; and g1 + g2 ∼ Da(k1, λ1) if
k1 < k2;

(4) In addition assume λ2 ̸= 0. Then g1
g2

∼ Da

(
k1 − k2,

λ1
λ2

)
.

We are now ready to prove Theorem 8.

Proof of Theorem 8. Recall q = ∂z∂z̄p andQ = q(∂z∂z̄p)−(∂zq)(∂z̄q) are real
polynomials in C[z, z̄]. Note we can assume q is nonconstant, for otherwise
the conclusion is trivial. We will identify p(z, z̄) ∈ C[z, z̄] with its complexi-
fication p(z, ζ) ∈ C[z, ζ] (where we replace z̄ by a new variable ζ). Moreover,
since p(z, z̄) is real-valued, p(z, ζ) is Hermitian. Likewise for q(z, z̄) and
Q(z, z̄). To establish Theorem 8, it suffices to show that q(z, ζ) = c0z

mζm

for some constant c0 and integer m ≥ 1. Seeking a contraction, suppose the
conclusion fails. Then by Lemma 10, we can find some complex numbers
a ̸= 0, λ ̸= 0, and some integer k ≥ 1 such that q ∼ Da(k, λ). That is, we
can write q(z, ζ) = (z + aζ)kh, where h ∈ C[z, ζ] and h(−a, 1) = λ. A direct
computation yields the following holds for some ĥ ∈ C[z, ζ].

Q(z, ζ) = −ak(z + aζ)2k−2h2 + (z + aζ)2k−1ĥ.

Thus we have Q ∼ Da

(
2k − 2,−akλ2

)
. By assumption b3 ≡ 0. We multiply

it by 48
q and use the standard complexification to get

(4.9)[
q−1∂z∂ζ

]2
q−3Q− q−4Q [∂z∂ζ ] q

−3Q− q−1
[
∂ζ

(
q−3Q

)] [
∂z

(
q−3Q

)]
= 0.

On the other hand, by Lemma 13, q3 ∼ Da

(
3k, λ3

)
and q−3Q ∼ Da

(
−k − 2,−ak

λ

)
.

Then by Lemma 12,

∂z
(
q−3Q

)
∼ Da

(
−k − 3,

ak(k + 2)

λ

)
; ∂ζ

(
q−3Q

)
∼ Da

(
−k − 3,

a2k(k + 2)

λ

)
.

Using the above and Lemma 13, we can compute the last term on the left
hand side of (4.9):

−q−1
[
∂ζ

(
q−3Q

)] [
∂z

(
q−3Q

)]
∼ Da

(
−3k − 6,−a

3k2(k + 2)2

λ3

)
.

Similarly, we compute the first two terms on the left hand side of (4.9):[
q−1∂z∂ζ

]2
q−3Q ∼ Da

(
−3k − 6,−a

3k(k + 2)(k + 3)(2k + 4)(2k + 5)

λ3

)
;

−q−4Q [∂z∂ζ ] q
−3Q ∼ Da

(
−3k − 6,−a

3k2(k + 2)(k + 3)

λ3

)
.

Consequently, the left hand side of (4.9) equals to Da(−3k − 6, T ), where

T = −a
3k(k + 2)

λ3
[k(k + 2) + (k + 3)(2k + 4)(2k + 5) + k(k + 3)] ̸= 0.

This means the left hand side of (4.9) is nonzero, a contradiction. The proof
is completed. □
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Remark 14. It would be interesting to compare our work with that of Bedford
and Pinchuk [2].

4.3. The case p = c
2 (z1z̄1)

r
2 . We next consider the particular case when

p = c
2 (z1z̄1)

r
2 for c > 0 (recall r must be even). Here it becomes possible to

compute the Bergman kernel Bp explicitly.

Theorem 15. The model Bergman kernel corresponding to the homogeneous
subhamonic polynomial p = c

2 (z1z̄1)
r
2 is given by

Bp

(
z1, z

′
1

)
=
re−[p(z1)+p(z′1)]c

2
r

2π
G
(
c
2
r z1z′1

)
, where

(4.10)

G (x) :=

r
2
−1∑

α=0

xα

Γ
(
2(α+1)

r

) + x
r
2
−1ex

r
2

 r
2
−1∑

α=0

Γ
(
2(α+1)

r

)
− Γ

(
2(α+1)

r , x
r
2

)
Γ
(
2(α+1)

r

)


(4.11)

is given in terms of the incomplete gamma function Γ (a, u) :=
∫∞
u ta−1e−tdt,

u > 0.

Proof. From the formulas □p = ∂̄∗p ∂̄p and ∂̄p := ∂z̄1 +∂z̄1p = ∂z̄1 +
cr
4 z

r
2
1 z̄

r
2
−1

1 ,
an orthonormal basis for ker (□p) is easily found to be

sα :=

 1

2π

r

Γ
(
2(α+1)

r

)c 2(α+1)
r

1/2

zα1 e
−p, α ∈ N0.

Since Bp =
∑
sαsα, we have

Bp

(
z1, z

′
1

)
=
re−[p(z1)+p(z′1)]

2π

∑
α∈N0

1

Γ
(
2(α+1)

r

)c 2(α+1)
r

(
z1z′1

)α
.(4.12)

To compute the above in a closed form, consider the series

F (y) :=

∞∑
α=0

y
α+1
s

−1

Γ
(
α+1
s

) =

s−1∑
α=0

y
α+1
s

−1

Γ
(
α+1
s

) +

∞∑
α=s

y
α+1
s

−1

Γ
(
α+1
s

)︸ ︷︷ ︸
F0(y):=

,

for s = r
2 . Differentiating the second term in the series and using Γ (z + 1) =

zΓ (z) yields F ′
0 (y) = F0 (y) +

∑s−1
α=0

y
α+1
s −1

Γ(α+1
s )

for y > 0. This ODE can be

solved (uniquely) with the boundary condition F0 (0) = 0 to give

F0 (y) = ey

[
s−1∑
α=0

Γ
(
α+1
s

)
− Γ

(
α+1
s , y

)
Γ
(
α+1
s

) ]
(4.13)
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in terms of the incomplete gamma function. Thus in particular we have
computed F (y) := y

1
s
−1G

(
y

1
s

)
, where G is as defined in (4.11). Finally we

note from (4.12) that

Bp

(
z, z′

)
=
re−[p(z1)+p(z′1)]c

2
r

2π
xs−1F (xs) ,

for x = c
2
r z1z′1, completing the proof. □

5. Proof of the main theorem

In this section we finally prove Theorem 1.

Proof of Theorem 1. It suffices to show that D is strongly pseudoconvex, or
the type r = 2 along the boundary, as thereafter one can apply Fu-Wong
[13] and Nemirovski-Shafikov [25]. To this end, suppose x∗ ∈ ∂D is a point
on the boundary of type r = r (x∗) ≥ 2. By (2.5) and Proposition 3, under
the assumption of Theorem 1, the Bergman kernel K = KD of the domain
satisfies the following Monge-Ampère equation inside D.

J (K) = det


K Z̄K W̄K

ZK
(
ZZ̄ −

[
Z, Z̄

]0,1)
K

(
ZW̄ −

[
Z, W̄

]0,1)
K

WK
(
WZ̄ −

[
W, Z̄

]0,1)
K

(
WW̄ −

[
W, W̄

]0,1)
K


(5.1)

=
9π2

2
K4.

Here we have used the orthonormal frame of T 1,0C2 given by Z = 1
2 (U1 − iU2),

W = 1
2 (U0 − iU3) defined prior to Theorem 4. Using (3.2) and (3.13), we

compute the (0, 1) components of the commutators above:[
Z, Z̄

]0,1
=

[
−∆p (z1)

i

2
∂x3

]0,1
+O (−1)

=
∆p (z1)

2

(
W − W̄

)0,1
+O (−1)

=− ∆p (z1)

2
W̄ +O (−1) ;[

Z, W̄
]0,1

= O (−r) ;
[
W, Z̄

]0,1
= O (−r) ;

[
W, W̄

]0,1
= O (−2r + 1) .

This allows us to compute the most singular term in the asymptotics of
both sides of (5.1) as z → x∗ along the tangential path z (ϵ) in (3.4). By
Theorem 4, one obtains along z (ϵ),

J(K)=
[
(−2ρ)−2− 2

r

]4
det


B̃p,0 ∂z̄1B̃p,0 B̃p,1

∂z1B̃p,0 ∂z1∂z̄1B̃p,0 +
[
∆p
2

]
B̃p,1 ∂z1B̃p,1

B̃p,1 ∂z̄1B̃p,1 B̃p,2

(z1,V )+oϵ(1)
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K4 =
[
(−2ρ)−2− 2

r

]4 [
B̃p,0 (z1,V )

4 + oϵ (1)
]
.

Here we say a function ϕ is oϵ (1) if ϕ(ϵ) goes to 0 as ϵ→ 0+. (Recall ρ = −ϵr
along the path). Thus comparing the leading coefficients in the asymptotics
gives the following equation
(5.2)

det

 B̃p,0 ∂z̄1B̃p,0 B̃p,1

∂z1B̃p,0 ∂z1∂z̄1B̃p,0 +
[
∆p
2

]
B̃p,1 ∂z1B̃p,1

B̃p,1 ∂z̄1B̃p,1 B̃p,2

 (z1) =
9π2

2
B̃p,0 (z1)

4 ,

at each z1 ∈ R2, for the model Bergman kernel. Here B̃p,α0 is as defined in
(3.7).

Finally, one chooses z1 such that ∆p (z1) ̸= 0 and substitutes z1 7→ t
1
r z1

in the last equation (5.2) above for the model. The terms involved in the
above equation are then of the following form from the definition (3.7).

B̃p,α0

(
t
1
r z1

)
=

1

π

∫ ∞

0
e−ss1+

2
r
+α0Bp

(
s

1
r t

1
r z1

)
ds

=
t−2− 2

r
−α0

π

∫ ∞

0
e−

τ
t τ1+

2
r
+α0Bp

(
τ

1
r z1

)
dτ

Next we use Proposition 6 to obtain an asymptotic expansion for the
above and its derivatives. Namely, the kernel τ1+

2
r
+α0Bp

(
τ

1
r z1

)
∈ S2+α0

τ,cl
is a classical symbol by 6 and thus standard asymptotics for its Laplace
transform (cf. [4, eqn. 1.6]) give

[
∂α1
z1 ∂

α2
z̄1 B̃p,α0

] (
t
1
r z1

)(5.3)

= t1−
2+α1+α2

r

N+2+α0∑
j=0

cjt
−j +

N∑
j=0

djt
−(3+α0+j) ln t+O

(
t−(3+α0+N)

) ,
∀N ∈ N, as t → ∞. The logarithmic terms above arise from integrating
terms of order τ j , j < 0, in the classical expansion of the given symbol. In
particular the leading logarithmic term is d0 = 1

2π2∂
α1
z1 ∂

α2
z̄1 b3+α0 .

The above allows us to compute the asymptotics of both sides of the
equation (5.2) as t → ∞. In particular the right hand side of (5.2) is seen
to contain the logarithmic term

9π2

2
b43

(
1

2π2
t−2− 2

r ln t

)4
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in its asymptotic expansion. Such a term involving the fourth power of a
logarithm is missing from the left hand side of (5.2). This particularly gives
b3 = 0.

Using Theorem 8, it now follows that q(z, z̄) = c0(z1z̄1)
r
2
−1 for some c0 >

0. Since p has no purely holomorphic or anti-holomorphic terms in z1, this
gives p = c

2 (z1z̄1)
r
2 for some c > 0.

However, the model kernel Bp for this potential p = c
2 (z1z̄1)

r
2 was com-

puted in Theorem 15. Suppose r > 2. By Theorem 15 and definition of
B̃p,α0 in (3.7),

B̃p,α0 (0) =
1

π
Γ

(
2 +

2

r
+ α0

)
Bp (0) =

1

2π2
Γ

(
2 +

2

r
+ α0

)
r

Γ
(
2
r

)c 2
r ;[

∂z1B̃p,α0

]
(0) =

[
∂z1B̃p,α0

]
(0) = 0;[

∂z1∂z̄1B̃p,α0

]
(0) =

1

π
Γ

(
2 +

4

r
+ α0

)
[∂z1∂z̄1Bp] (0)

=
1

2π2
Γ

(
2 +

4

r
+ α0

)
r

Γ
(
4
r

)c 4
r .

Plugging the above into (5.2) with z1 = 0, and noting ∆p(0) = 0 as r > 2,
we obtain( r

2π2

)3 Γ
(
2 + 4

r

)
Γ
(
4
r

) c
8
r

[
Γ
(
2 + 2

r

)
Γ
(
2
r

) Γ
(
4 + 2

r

)
Γ
(
2
r

) −
Γ
(
3 + 2

r

)
Γ
(
2
r

) Γ
(
3 + 2

r

)
Γ
(
2
r

) ]

=
9π2

2

[
r

2π2
Γ
(
2 + 2

r

)
Γ
(
2
r

) c
2
r

]4

.

Using Γ (z + 1) = zΓ (z), the above simplifies to the equation(
1 +

4

r

)(
2 +

2

r

)
=

9

4

(
1 +

2

r

)2

.

Solving this quadratic equation yields r = 2, a plain contradiction. This
finishes the proof. □

Remark 16. Note in our proof above, we compared the
(
t−2− 2

r ln t
)4

term
on both sides of (5.2). For that, we only used the information of b3, where b3
arises in the coefficient of the first ln t term in the asymptotics for the model
Bergman kernel (see (5.3)). The authors also compared the non-logarithmic

terms on two sides of (5.2): the
(
t−2− 2

r

)4
and

(
t−2− 2

r

)4
t−1 terms, whose

calculations then involve b0 and b1. Nevertheless, we only got tautologies
and thus derived no contradiction. It is interesting to compare this with the
proofs of Cheng’s conjecture. In dimension 2, Fu-Wong [13] used information
of the logarithmic term in the Fefferman expansion of the Bergman kernel
(3.1); while in higher dimension, Huang and the second author [19] utilized
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information of the non-logarithmic term (principal singular term) in the
expansion (3.1).
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