KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND
THE MAGNETIC DIRAC OPERATOR

NIKHIL SAVALE

ABSTRACT. We consider the semi-classical Dirac operator coupled to
a magnetic potential on a large class of manifolds including all metric
contact manifolds. We prove a sharp local Weyl law and a bound on
its eta invariant. In the absence of a Fourier integral parametrix, the
method relies on the use of almost analytic continuations combined with
the Birkhoff normal form and local index theory.

1. INTRODUCTION

Semi-classical analysis concerns the study of the spectrum of semi-classical
(h-)pseudodifferential operators Ay : C* (X) — C*(X), h € (0,1], in the
limit h — 0 and is now the subject of several texts |10} [13] 17, 18], 2T], 23],
28]. Standard examples of such operators include the Schroedinger operator
A, = —h?Ax 4+ V on a compact n-dimensional Riemannian manifold X
with potential V' € C° (X). The clearest asymptotic result is given by the
celebrated local Weyl law (cf. eg. [10] Ch. 10): assuming 0 is not a critical
value of the symbol 0 (4) = a (z,£) € C* (T*X), the number of eigenvalues
N (—ch,ch) of Ay in the interval (—ch, ch) satisfies

(1.1) N (—ch,ch) = O (K1)

as h — 0, Ve > 0. Similar results also exist in the case where 0 is a Morse-
Bott critical level for the symbol (cf. [6]). In the critical case, the exponent in
the local Weyl law may drop depending on the co-dimension of zero energy
level 2§ = {a(z,£) = 0} and the signature of the normal Hessian. The
local Weyl laws thus obtained are sharp and are proved using a parametrix
construction for the evolution operator ehn as a Fourier integral operator.

In the context of non-scalar operators Ay, : C*° (X; E) — C* (X; E) act-
ing on sections of a vector bundle F, fewer result are known. The simplest
case is when the non-scalar symbol a (z,£) € C* (T*X; E) is smoothly di-
agonalizable near the zero energy level 3§ = {det (a(z,£)) = 0}. In this
case similar Fourier integral methods apply (cf. [11, 2I] or |12, 24] for an
exposition in the microlocal/classical setting). For non-scalar operators an-
other method is provided under the microhyperbolicity condition of Ivrii
(cf. [18] Ch. 2,3 or [I0] Ch. 12). In this paper, we study the particular
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case of the magnetic Dirac operator where neither diagonalizability nor the
microhyperbolicity condition is satisfied.

More precisely, let (X gt X ) be an oriented Riemannian manifold of odd
dimension n = 2m + 1 equipped with a spin structure. Let S be the corre-
sponding spin bundle and let L be an auxiliary Hermitian line bundle. Fix a
unitary connection Ag on L and let a € Q! (X;R) be a one form. This gives
a family of unitary connections on L via V* = Ay + %a and a corresponding
family of coupled magnetic Dirac operators

(1.2) Dy, == hDy, +ic(a)

for h € (0,1].

In order to derive sharp spectral asymptotics, we shall make a couple of
restrictive assumptions on the one form a and the metric ¢7*X. First, the
one form a will be assumed to be a contact one form (i.e. one satisfying
aA(da)™ > 0). This gives rise to the contact hyperplane H = ker (a) C TX
as well as the Reeb vector field R defined via igda = 0, iga = 1.

To state the assumption on the metric, consider the contracted endomor-
phism J : T, X — T, X defined at each point z € X via

da (vi,v2) = g7 (v1,Jva), Vo, v9 € TpX.

From the contact assumption, J has a one dimensional kernel spanned by
the Reeb vector field R. The endomorphism JJ is clearly anti-symmetric with
respect to the metric

g™ (v1,3v2) = =g (Jui, v2)

and hence its non-zero eigenvalues come in purely imaginary pairs +iy ;
u > 0. The assumption on the metric g7 Xis then as follows.

Definition 1.1. We say that the metric g’ is suitable to the contact form
a if there exist positive constants 0 < 1 < po < ... <y, (independent of
x € X) and a positive real function v (z) > 0 such that

(13)  Spec(3s) = {0, £ipmy (), £ipov (@) ..., Figmy ()}
Vo e X.

Before proceeding further, we give two examples of suitable metrics.

(1) The dimension of the manifold dim X = 3. In this case any metric
gTX is suitable as Spec (Jz) = {0,4i|da|} has only two non-zero
eigenvalues.

(2) There is a smooth endomorphism J : TX — TX, such that

(X2m+1, a, g™, J) is a metric contact manifold. That is, we have
Jv, = —vi+a (v1) R,
(1.4) g'x (v1,Jve) = da(vi,va), Yui,ve € TpX.

In this case the nonzero eigenvalues of J, = J, are +i (each with
multiplicity m). For any given contact form a there exists an infinite
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dimensional space of (gTX ,J ) satisfying 1) This case in particular
includes all strictly pseudo-convex CR manifolds.

In addition to the local Weyl law we shall also be interested in the asymp-
totics of the eta invariant n, = n (D) of the Dirac operator, formally its
signature (see[2.1]for a definition) . The main result is now stated as follows.

Theorem 1.2. Under the contact and suitability assumptions on a,g’™x,
the local Weyl counting function and eta invariant of Dy satisfy the sharp
asymptotics

(1.5) N (=ch,ch) = O(h™™)
(1.6) m = O(h™™)
as h — 0.

We note that the exponents above are significantly lower than (1.1)). This
is again partly attributed to the high co-dimension of 26) .

The proof of the asymptotic result Theorem above will be based on a
functional trace expansion. To state the trace expansion involved, set vy =
w1 [mingex v (x)] and choose f € C° (—\/W, \/%) Pick real numbers
0<T' <Tandlet e C®((—T,T);[0,1]) such that 6 () =1 on (=1",7").
Let

Fl) = @) =5 [0

o7
Flow) = 10(5) =5 [eaea

be its classical and semi-classical inverse Fourier transforms respectively. We
shall then prove.

Theorem 1.3. Let a, "X be a contact form and suitable metric respectively.
There exist smooth functions u; € C* (R) such that there is a trace expansion

(1.7)

tr {f <\l/)ﬁ> (F'0) (Wh - D): -
(1.8)

] N—-1
. [ (25 (Wh— D)_ =7 T 0 (1)

for T sufficiently small and for each N € N\ € R.

Again, the trace should be compared with the wave trace expansions
for scalar and microhyperbolic operators ([10] ch. 10, 12) although a different
scale of size v/h is being used. In the absence of a Fourier integral parametrix
or microhyperbolicity our strategy is to combine the use of almost analytic
continuations with local index theory expansions. We first show that the
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trace is O (h*°) in the region spt (§) C {T' > |z| > h}, € € (0, 3) (see Lemma
[3.1)). Here the the lack of microhyperbolicity for the symbol poses a difficulty
in the use of almost analytic continuations (cf. [10] ch. 12, see also [9]). We
however show that this can be overcome with a closer understanding of the
total symbol of D via its Birkhoff normal form. It is in deriving the Birkhoff
normal form then that Koszul complexes are used and the assumptions on
a, 97X required. The local index theory method (cf. [4, 20]) finally provides
the expansion in the region spt (6) C {|z| < h¢} (see Lemma [3.2)).

There is a large recent literature for semi-classical problems in the presence
of magnetic fields (see [15] for a survey). In particular the extensive book
of Ivrii [I7] specifically considers the case of the magnetic Dirac operator in
ch. 17. The Birkhoff normal form here generalizes proposition 17.2.1
therein. Our use of normal forms should also be compared to its use in scalar
cases from [8] [14] 22].

The asymptotic problem of the eta invariant was earlier considered
by the author in [25] where a non-sharp estimate was proved, under no as-
sumptions on a, g7, via the use of the heat trace. This asymptotic problem
was first considered and applied in [26] in the proof of the three-dimensional
Weinstein conjecture using Seiberg-Witten theory. The three-dimensional
case has been further explored in [27].

The paper is organized as follows. In Section 2] begin with preliminary
notions used throughout the paper including basic facts about Clifford rep-
resentations, Dirac operators and the semi-classical calculus. In we
we compute the spectrum of a model magnetic Dirac operator on R™ using
Clifford representations and the harmonic oscillator. In Section [3| we per-
form certain reductions towards proving Theorem including a time scale
breakup of the trace into Lemma [3.1] and Lemma [3.2] These reductions are
then used in Section ] to further reduce LemmaB.1lto the case of a Euclidean
magnetic Dirac operator on R". In Section [5| we obtain the Birkhoff normal
form for the Euclidean magnetic Dirac operator on R" from Section @] It
is here in that Koszul complexes are employed for the normal form. In
Section [0 we show how the normal form is used in proving Lemma [3.1] via
the use of almost analytic continuations. In Section [7] we prove Lemma
using the methods of local index theory. In Section [§| we show how to prove
the spectral estimates of Theorem via the trace expansion Theorem [I.3]
Finally, in Section [A] we prove some spectral estimates useful in Section
and Section [Bl

2. PRELIMINARIES

2.1. Spectral invariants of the Dirac operator. Here we review the ba-
sic facts about Dirac operators used throughout the paper with [3] providing
a standard reference. Consider a compact, oriented, Riemannian manifold
(X, gTX) of odd dimension n = 2m + 1. Let X be equipped with spin
structure, i.e. a principal Spin (n) bundle Spin (TX) — SO (T'X) with an
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equivariant double covering of the principal SO (n)-bundle of orthonormal
frames SO (T'X). The corresponding spin bundle S = Spin (T'X) Xgpin(n) S2m
is associated to the unique irreducible representation of Spin (n). Let VX
denote the Levi-Civita connection on T'X. This lifts to the spin connec-
tion V° on the spin bundle S. The Clifford multiplication endomorphism
c: T*X — S ® S* may be defined (see [2.2)) satisfying
c(a)? = —|a|?, Va e T*Y.

Let L be a Hermitian line bundle on Y. Let Ag be a fixed unitary connection
on L and let a € Q'(Y;R) be a I-form on Y. This gives a family V" =
Ag+ %a of unitary connections on L. We denote by V5L = V@1 +1® V"

the tensor product connection on S ® L. Each such connection defines a
coupled Dirac operator

Dy, = hDy, +ic(a) = heo (V%) : C®(Y;S®@ L) - C*(Y;S® L)
for h € (0,1]. Each Dirac operator Dy, is elliptic and self-adjoint. It hence

possesses a discrete spectrum of eigenvalues.
We define the eta function of Dy by the formula

(2.1)
: —s 1 o 51 —tD?
1 (Dy, s) = Z sign(A)[A 7 = =+ t 2 tr (Dhe h) dt.
A0 r (T) 0
A€Spec(Dy,)

Here, and in the remainder of the paper, we use the convention that Spec(Dp,)
denotes a multiset with each eigenvalue of Dy, being counted with its multi-
plicity. The above series converges for Re(s) > n. It was shown in [1 2] that
the eta function possesses a meromorphic continuation to the entire complex
s-plane and has no pole at zero. Its value at zero is defined to be the eta
invariant of the Dirac operator

nn =1 (Dp,0).
By including the zero eigenvalue in (2.1), with an appropriate convention,
we may define a variant known as the reduced eta invariant by

1
=5 {kn +1n} -
The eta invariant is unchanged under positive scaling
(2.2) 1 (Dp,0) =n(cDy,0); Ve > 0.

Let Ly, denote the Schwartz kernel of the operator DpetP " on the product
X x X. Throughout the paper all Schwartz kernels will be defined with
respect to the Riemannian volume density. Denote by tr (L (x,x)) the
point-wise trace of L;j along the diagonal. We may now analogously define
the function

(2.3) 10 (Dp, s, ) :F(L}H) /OOO T tr (Ltp (x,x))dt.
2
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In [5] theorem 2.6, it was shown that for Re(s) > —2, the function n (Dy, s, )
is holomorphic in s and smooth in z. From (2.3 it is clear that this is
equivalent to

(2.4) tr (Ly ) =0 (t%) . ast — 0.

The eta invariant is then given by the convergent integral

o o0 1 —tDZ
(2.5) N = /0 \/Htr (Dhe h) dt.

2.2. Clifford algebra and and its representations. Here we review the
construction of the spin representation of the Clifford algebra. The following
being standard, is merely used to setup our conventions and subsequently
compute the spectrum of the model magnetic Dirac operator on R™ in[2.2.1]

Consider a real vector space V of even dimension 2m with metric ().
Recall that its Clifford algebra C1 (V) is defined as the quotient of the tensor
algebra T (V) := @j’iOV®j by the ideal generated from the relations v ® v 4
|v\2 = 0. Fix a compatible almost complex structure J and split V @ C =
V10101 into the 44 eigenspaces of J. The complexification V®C carries an
induced C-bilinear inner product (, ) as well as an induced Hermitian inner
product h® (,). Next, define So,,, = A*V10, Clearly So,, is a complex vector

space of dimension 2™ on which the unique irreducible (spin)-representation
of the Clifford algebra C1 (V) ® C is defined by the rule

com (V)w = V2 (vl’o Aw— Lvo,m}) , veEV,we Sopy.

The contraction above is taken with respect to (, ). It is clear that cop, (v) :
Aeven/odd - podd/even gwitches the odd and even factors. For the Clifford
algebra C1 (W) ®C of an odd dimensional vector space W = V @R [eg] there
are exactly two irreducible representations. These two (spin)-representations

S;rmﬂ = Somi1 = A*V10 are defined via
Cétm+1 (v) = ), veV
(2'6) C;_m+1 (60) Weven/odd = _02_m+1 (60) Weven/odd = iiweven/odd'

Throughout the rest of the paper, we stick with the positive convention and
use the shorthands ¢ = copp, ¢ = c;m 11 when the index 2m, 2m+1 implicitly
understood.

Pick an orthonormal basis eq,es, ..., eq, for V in which the almost com-
plex structure is given by Jeg;_1 = €25, 1 < j <m. An hC-orthonormal basis

for V19 is now given by wj = % (e2j +iegj—1), 1 < j < m. A basis for Sy,

and S’;Emﬂ is given by wp = wfl Ao Awkmowith k = (ky, ko, ... k) €
{0,1}™. Ordering the above chosen bases lexicographically in k, we may
define the Clifford matrices, of rank 2" via

vt o= cley), 0<j<2m,
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for each m. Again, we often write 77" = ~; with the index m implicitly

understood. Giving representations of the Clifford algebra, these matrices
satisfy the relation

(2.7) Yivj + 5% = —204.

Next, one may further define the Clifford quantization map on the exterior
algebra

c:NW®C — End(Sm)

(2.8) c (elgo Ao A egf,;”) = c(eo)®...c(eam)™ .
An easy computation yields
clegN...Neap) = imtt

Furthermore, if eg A ... A ey, is designated to give a positive orientation for
W then for w € A*W we have

k(k+1)
(2.9) c(xw) = gmHl (=1)" =

k(k+1)
2

(2.10) cw)" = (-1) c(w)

¢(w)

under the Hodge star and hC-adjoint. The Clifford quantization map 1)

is a linear surjection with kernel spanned by elements of the form *w —
k(k+1)

imtl (=1)" 2 w. Thus, in particular one has linear isomorphisms

(2.11) ¢ A®Ve/°dd Y o € — End (Sam) -

Next, given (r1,...,7y) € R™\ 0, we define

(2.12) I, = {jlr; #0} C{1,2,...,m}
(2.13) Z, = |
(2.14) V. = @Clw]cv?
(2.15) and  w, = erwj e V.
j=1
Clearly, ||w,|| = |r|. Denoting by w; the h®-orthogonal complement of

wy C V;, one clearly has V, = C[w,] ® w;-. Hence

ASveny = (Aevenw#) @ % A (Aoddwi_>
(2.16) Acddy = (Aoddw,%) @ |w7| A (Aevener) .
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Next, we define

(2.17) i, : AV, — A"V, via
i, (w) Uronw
i, = —
7|

(fiine) =

for w € A*wt. Clearly, i2 = 1 with the decomposition Qb implying that

i, is a linear isomorphism between

S ABveny, AOddV
o Aoddw N AevenVT'

Next, the endomorphism

(2.18) c <w’“\}2w"> = (wy A +ig,) AV, = AV,

has the form

15 (mom) ]

with respect to the decomposition AV, = Acddy g Aeveny, - Thig finally
allows us to write the eigenspaces of (2.18)) as

(2.20) VE = (1+1,) (A®*V;)

with eigenvalue =+ |r| respectively.

2.2.1. Magnetic Dirac operator on R™. We now define the magnetic Dirac
operator on R™ via

m 1
(2.21) Dpm = Z (%) : [’)/2]‘ (h&m]) -+ i’YQj_ll'j] € \I/él (Rm; C? ) .
j=1

Its square is computed in terms of the harmonic oscillator

(2.22) D2, = Hy—ihRoyy1, with
m
(2.23) Hy =1 Zu][ (hds,)? 2}
m
Rom+1 :%

Zuj [V2j—1725] -
j=1

It is an easy exercise to show that

m
> 15 |

Jj=1

(224) R2m+1wk =

N | .
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Next, define the lowering and raising operators A; = h0,,;+x;, A; = —h0;+
z; for 1 < j < m, and the Hermite functions

Yrk (2) = Yr (2) © wy

@25) (@)= —— e [ (4)7] 5

(wh)* (2R) 2 V7!

for 7 = (7‘1,7'2,...,Tm) GNS”

It is well known that 1, () form an orthonormal basis for L? (R™; C*").
Furthermore we have the standard relations

[Aj, 45] = 2k
1 m
j=1

It is clear from (2.22)), (2.24) and (2.26) that each 1. (x) is an eigenvector

of D3,, with eigenvalue

m
ki—1Y Mg
Ak = hz (2rj + 14 (—1)M ) 5.
7j=1
Hence, clearly the kernel of Dgm is one dimensional and spanned by ¢ =
||

e~ 2n . We now find a decomposition of L? (]Rm;(sz) into eigenspaces of
Dgm . First, if we define

(2.27) 0= ;i <F;j)%c(wj)Aj,

(2:28) 9 = —% i (’;])2 ¢ (w;) Al
j=1

and

(2.29) Dgn =V2(9+38") .

For each 7 € Nj* \ 0, we define I, V; as in (2.12)), (2.14) and set

b,
c(wi)A; \ "’
Be= @ cC H<( 2)7) bro

be{0,1}1r JEIF
It is clear that we have an orthogonal decomposition

L? (R™;C*") =Cleool ® P E-
TENG\O
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Furthermore, we have the isomorphism
I NV, — B
b
b; c(wj) A,
(pet) = () o
J : ,
jel jer \ V27ih

Each E; hence has dimension 247 and is closed under ¢ (w;) 4;, ¢ (w;) A
for 1 < j < m. We again have

(2.30) E, = E¥ @B where
Egven/odd = 7 ( peven/oddy, ) :
thus giving the Landau decomposition
(2.31) L (R™C") =Clpool® @ (BT o EX).
TENT\0

The Dirac operator Drm by virtue of (2.27)), (2.28)), (2.29)) preserves and

acts on E; via
w T + U_jTT
e (M) = (ur, Ak, ).

under the isomorphism %, where r, := (\/ﬁulh, cen \/Tm,umh) and w,_ is
as in (2.15). Hence, if we define i, = i, #1: Eiven/Odd — Ede/eve“
we have that the restriction of Dgrm to E is of the form

’TTiT}

2.32 Dpm = .
( ) R |:|7’7—’17—

via 1' Also note that since ES/°% ¢ ¢, (C™(R™) ® Aeven/ 0ddy/1,0)
respectively, one has

(2.33) ¢ (eg) EOven/odd 4 peven/odd

using . The eigenspaces for Dgrm are now given by

(2.34) Ef = 7, (VF),

via with eigenvalue =+ |r,| = ++/u.7h respectively. We now summarize.

Proposition 2.1. An orthogonal decomposition of L* (]Rm; (CQm) consisting
of eigenspaces of the magnetic Dirac operator Dgm (2.21)) is given by

L (R™C*™) =Clwoole P (EF@E;).
TENT\0

Here Eﬁc, as in , have dimension 2%7~1 and correspond to the eigen-
values £/ u.Th respectively.
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2.3. The Semi-classical calculus. Finally, here we review the semi-classical
pseudodifferential calculus used throughout the paper with [13] 28] being the
detailed references. Let gl (l) denote the space of all [ x | complex matrices.
For A = (a;;) € gl(l) we denote |A| = max;; |a;;|. Denote by S (R";C')
the space of Schwartz maps f : R® — C!. We define the symbol space
S™ (R?™;C') as the space of maps a : (0,1], = C*° (Ri&;g[(l)) such that

each of the semi-norms

lallq s = supy () 020 (€ 1)

is finite Vo, 5 € Nj. Such a symbol is said to lie in the more refined class
ac Sy (}Rz”; (Cl) if there exists an h-independent sequence ax, £ = 0,1,...
of symbols such that

N
(2.35) a— (Z hkak> e pN+1gm (RQ";CZ> VN,
k=0

Symbols as above can be Weyl quantized to define one-parameter families
of operators a"V : S (R”; (Cl) - S (R”; Cl) with Schwartz kernels given by

1 o r+y
wo_ i(a—y) &/h .
@ (2wh)"™ /e “ < 2 a3 h> de

We denote by ¥} (R”;Cl) the class of operators thus obtained by quan-
tizing S (RQ”;(CI). This class of operators is closed under the standard
operations of composition and formal-adjoint. Indeed, the Weyl symbols of
the composition and adjoint satisfy

(2.36)

aV o bV = (axb)V

; W
= [67}1(8’"18"‘2_8@830 (a(s1,7m1;h) b(s2,7r2;h))

(aW)* — (a*)W )

Furthermore the class is invariant under changes of coordinates and basis
for C. This allows one to define an invariant class of operators ¥ (X; E) on
C™ (X; E) associated to any complex vector bundle on a smooth compact
manifold X. These define uniformly in h bounded operators between the
Sobolev spaces H® (X; E) — H*™™(X; E) with the h-dependent norm on
each Sobolev space defined via

r=51=52,{=r1="2

[ull s x) = H(l + h2VE*VE)S/2u‘ , SER,

L2

with respect to any metric g7 X, h¥ on X, F and unitary connection V¥.
For A € ¥ (X; FE), its principal symbol is well-defined as an element

cl

in o(A) € S (X;End(E)) C C*(X;End(F)). One has that 0 (A) =0
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if and only if A € hUJ (X;E). We remark that o (A) is the restric-
tion of standard symbol in [28] to the refined class ¥} (X; E) and is lo-
cally given by the first coefficient ag in the expansion of its Weyl symbol.
The principal symbol satisfies the basic relations o (AB) = o (A)o (B),
o (A*) = 0 (A)" with the formal adjoints being defined with respect to the
same Hermitian metric h¥. The principal symbol map has an inverse given
by the quantization map Op : S™(X;End(F)) — V] (X;E) satisfying
o(Op(a)) = a € S (X;End(FE)). We often use the alternate notation
Op (a) = a"'. TFor a scalar function b € S™ (X), it is clear from the mul-
tiplicative property of the symbol that [aW, bW] € hU} (X; E) and we de-
fine Hy (a) = %o ([a",0"]) € S™(X;End (E)). If a is self adjoint and
b real, then it is easy to see that Hj (a) is self-adjoint. We then define
|Hy (a)| = maXieSpec Hy(a) AL

The wavefront set of an operator A € U[} (X; ) can be defined invariantly
as a subset WF (A) C T*X of the fibrewise radial compatification of its
cotangent bundle. If the local Weyl symbol of A is given by a then (z¢,&p) ¢
WEF (A) if and only if there exists an open neighborhood (zg,§p;0) € U C
T*X % (0,1],, such that a € h* (£)"°° C* (U; C') for all k. The wavefront set
satisfies the basic properties WF (A+ B) C WF (A)NWF (B), WF (AB) C
WF (A)NWEF (B)and WF (A*) = WF (A). The wavefront set WF (A) = ()
is empty if and only if A € AU~ (X;E). We say that two operators
A = B microlocally on U C T*X if WF(A— B)NU = (. We also define
by ¥¢ (X; E) the class of pseudodifferential operators A with wavefront set
WF (A) € T"X compactly contained in the cotangent bundle. It is clear
that W5 (X; F) C ¥, (X E).

An operator A € U} (X; E) is said to be elliptic if ()" o (A)7! exists
and is uniformly bounded on T*X. If A € ¥} (X; E), m > 0, is formally
self-adjoint such that A + ¢ is elliptic then it is essentially self-adjoint (with
domain C° (X; F)) as an unbounded operator on L? (X; E). Tts resolvent
(A— z)_l eV " (X, E), z € C, Imz # 0, now exists and is pseudodifferen-
tial by an application of Beals’s lemma. The resolvent furthermore has an

expansion (A — z)7' ~ >0 h7Op <a§-> in U™ (X; E). Here each symbol

appearing in the expansion has the form

ai = (0(A)—2)"ai (0(A)—2)"" . (0(A) —2) " aly (0 (A)—2)"
€S (X;End (F)),

for polynomial in z symbols @ k=1,...,2]. Given a Schwartz function

f € §(R), the Helffer-Sjostrand formula now expresses the function f (A) of

such an operator in terms of its resolvent and an almost analytic continuation
f via

f(A) = i/céf(z) (A —2)"dzdz.
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Plugging the resolvent expansion into the above formula then shows that
the above lies in and has an expansion f (4) ~ > 72, thf in ¥ (X E).
Finally, one defines the classical A-energy level of A via

23 = {(2,€) € T"X]|det (0 (4) (v,€) — M) = 0}.

Now, the form for the coefficients of the resolvent expansion also shows
A . A

WEF(f(A)) C Ypt(f) = U)\espt(f) x4

2.3.1. The class ¥§" (X; E). In Section We shall need the more exotic class

of symbols S§* (R?";C) defined for each 0 < § < 1. A function a : (0,1], —

Cc* (Riﬁ%; (C) is said to be in this class if and only if

(2.37) lally 5 = supg e (&) AR 1N 5207 a(x, & h)

is finite Yo, 5 € N{. This class of operators is closed under the standard
operations of composition, adjoint and changes of coordinates allowing the
definition of the exotic pseudodifferential algebra U§* (X') on a compact man-
ifold. The class S§* (X) is a family of functions a : (0,1], — C*> (T*X;C)
satisfying the estimates in every coordinate chart and induced triv-
ialization. Such a family can be quantized to o'V € UT'(X) satisfying
VoW = (ab)"V + h1’25‘11g1+m/_1 (X) for another b € SI (X). The op-
erators in WY (X) are uniformly bounded on L? (X). Finally, the wavefront
an operator A € V" (X; E) is similarly defined and satisfies the same basic
properties as before.

2.3.2. Fourier integral operators. We shall also need the local theory of Fourier
integral operators. Let k : U — V be an exact symplectomorphism be-

tween two open subsets U C T*X, V C T*Y inside cotangent spaces of

manifolds of same dimension n. Assume that there exist local coordinates

(1, yxn) (Y1, ... yn) on w (U), 7w (V) respectively with induced canonical

coordinates (z,¢), (y,n) on U, V. A function S (z,n) € C* () on an open

subset 2 C R%’fn is said to be a generating function for the graph of & if the

Lagrangian submanifolds

(T°X) x (T*Y)” D Ae = {((z,8);r(2,8))|(z,§) € U}

= {(2,0:5;0,5,m) | (x,n) €
are equal. Such a generating function always exists locally near any point
on A,. Letting a : (0,1], = C° (Q x 7 (V) ;C), which admits an expansion
a(z,y,mh) ~ >0, h*ay (z,y,n), one may now define a Fourier integral
operator associated to k via
A:L*(Y) — L*(X)
(AN @) = g [ S i) £ (0) dyd,

(2mh)" JRen

The symbol of o (A4) € C (Ax;C) is defined using the generating func-
tion via o (A4) (z,n) = ag(x,0:5,n). The adjoint A*, is again a Fourier

%

=



14 NIKHIL SAVALE

integral operator associated to the symplectomorphism x~!'. The wave-

front set of A maybe defined as a subset WF (A) C T*X x T*Y. A point
(z,&y,m) ¢ WF (A) if and only if there exist pseudodifferential operators
Bev}(X),C¢e \Ilgf/ (Y) with (z,&y,n) € WEF(B) x WF (C) such that
HBAC|]HS(Y)_>HS/(X) = O (h*) for each s,s’ € R. It can be shown that the
wavefront set is in fact a compact subset WF (A) C A,. Given a pseudodif-
ferential operator B € W' (X), Egorov’s theorem says that the composite is
a pseudodifferential operator A*BA € W[} (Y). Moreover its principal sym-
bol is given via o (A*BA) = (v71)" |o (A)* o (B) € C° (V), where we have
again used the identification of V' with A, given by the generating function.
Finally one has the wavefront relation WF (A*BA) C WF (A) N WF (B)
again using the identifications of U,V and A,.

An important special case arises when xk = etHf is the time t flow of
a Hamiltonian f € S™ (T*X). The operator e%fw, defined as a unitary
operator via Stone’s theorem, is now a Fourier integral operator associated

. . . it (Wit W
to k. Egorov’s theorem now gives that the conjugation e/ Ae nf" €
U (X) is pseudodifferential for each A € U7 (X) with principal symbol

o <e%fWAef% W) = (etHf)*a(A).

3. FIRST REDUCTIONS

The trace expansion Theorem [1.3|will be proved in two steps based on the
following two lemmas. Below, 7,7, 7", f,6 and D are the same as before.

Lemma 3.1. Let ¢ € (0,3) and 9 € C° ((I'h¢,T);[-1,1]). Then
tr [f <5E> (Fito) (Wh - D)} -

tr[f(%) ﬁ(Wh_D)] = 0(h™)

We note that in the above lemma the function 9 is allowed to depend on
h, while its support and range are contained in h-independent intervals.

for allx € R.

Lemma 3.2. There exist smooth functions u; € C* (R) such that for each
A €R ande € (07 %) one has a trace expansion

tr [f (\%) (7100 (\Wh - D)] -

N-1
B (2] - v (ot

J=0

where O (z) =0 (;%).
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We note that the trace expansion Theorem follows from the above

two lemmas on simply splitting 0 () = 6. (x) + [0 () — 0, ()] and applying
()

Lemma [3.2] and Lemma to the first and second summands respectively.
Lemma Lemma is a relatively classical expansion proved via local index
theory and will be deferred to Section [/l Our main occupation until then is
in proving Lemma 3.1}

As a first step one chooses a microlocal partition of unity A, € ¥ (X),
0 < a < N, satisfying

a=0
WF(Ay)) ¢ Uyc T*X\ E(D_m)
(3.1) WF(Aa) € Us C 595, 1<a <N,

subordinate to an open cover {Ua}gzo of T*X. Clearly, it suffices to prove

1ot (5) 2 (2572)

for 1 <o, < N with WF (A,) NWF (Ag) #0 .
By the Helffer-Sjostrand formula we have the trace above is given by

1 -1
Aog | —=D — = A
. <¢E ) ’
We note that the resolvent, the above trace as well as the left hand side
of (3.2) are well defined for any essentially self-adjoint pseudodifferential
operator in place of D. The next reduction step attempts to modify D

without affecting the asymptotics of 7295 (D). To this end, choose open
subsets

(3.4) WF (Ay) UWF (Ag) C Vop € T X,
for each such pair «, 8 with WF (A,) N WF (Ag) # 0. With d = 0 (D) €
C™ (X;iu(S)), define the required exit time

1

3.5) Tyg:=————, where
(3:5) Tap mfgegaﬁ‘Hgd‘

gaﬂ = {g e C™ (T*X§ [07 1]) | g‘WF(Aa)ﬂWF(Aﬁ) =1, Q‘V;ﬁ = O} .

If one were to use a scalar symbol d € C* (X) instead in (3.5), the required
exit time 7,3 would have the following significance: any Hamiltonian trajec-
tory v (t) = e'Hd with v (0) € WF (Ao) NWF (Ag) /v (T) € Vg, would have
length T' > T, 3 atleast the required exit time. We now have the following.

(3.2) tr = 0 (h™)

(3.3) T3 (D)= i/{céf(z)é (A\/_{) tr dzdz.
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Lemma 3.3. Let D' € UL (X; E) be essentially self-adjoint such that D =
D' microlocally on Vog . Then for v € CF ((TéﬁhE,Taﬁ);[O, 1]), 0 <
Th5 < Tup, one has

Tl (D) =T (D) mod h™.

Proof. Let B € ¥Y (X) be amicrolocal cutoff such that B =0on WF (D — D’)
and B =1 on V,3. Then (1 — B) Ag = 0 microlocally implies

(2 - %D) B <z = \}ED’> B Ag = Ag — [\}ED,B} (- D) A

(3.6) B <1hD’ - %D) <z - %D/) Y
(mod h™)

-1
in trace norm. Next, multiplying through by A, (z — ﬁD) and using
Ao B = B microlocally gives

1 ! 1\t
3.7 Aol z-— D’) Ag — A, (z — D> Ag =
37 < Vh ’ Vi ’
1\t 1 1 1 !
Ao lz——=D B|—=D — D> (z - D’) A
< vh ) (\/E N vh ’
A < 1D>1[1DB}< 1D’)1A +0 (|mz )
— Ayl 2 — —= —D, z——= mz
ND N Vh ’
in trace norm. Now B =0 on WF (D — D’) gives that the first term on the

right hand side above is O <|Imz|72 hoo).
We now estimate the second term. Let S,5 < Sgﬁ < S5 < Tap and

Stz > T, be such that ¥ € C° <[S;ﬁh6,5a,3] ; 10, 1]) Let go € Gap with
[Hy (d)] < ghr- Set g = ago, where

S sImz

: 3

a, =min [ —— N
? <\/Elog}11

with the constant N > 0 to be specified later. We note that

G = (eglog%)weh—N\I:g(X)
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for each 0 < § < %
inverse by symbolic calculus G=! € KV WY (X). Moreover

(3.8) G <Z - \}EDh) Gl = <z - \}ED’J i (azx/ﬁlog ;) (Hy, ()"

(3.9) (

1 —1
Now, since ‘(azflog h) ‘ SO‘B ]Imz| < |Imz|, the inverse G< ﬁDh) Gt
of the above exists and is O (|Imz\

Since it has an elliptic symbol we may construct its

+RY, with

> log — > in S9 (X).

M\M

\_/EQ

in operator norm for Imz £ 0, and h

sufficiently small.
Next, G = €*°8% on WF (4,),G = G™' = I on WF(B) \ Vi3 and
[Dp, B] = 0 on Vg imply

-1

et (- > {1 ]

e nAq | 2 D Dy, B
( N N

1 - 1
— 4,G(2——=D;) G [D,B}+O<Imz1h°°)
" ( Vh h> Vi " .
in trace norm. The above is now O (]Imz\_l h*") in trace norm. Hence

1 —1 1 Sgﬂlmz
A, <z — Dh) [Dh B] =0 \Imzrl h " max | RN, e~ V&
\/E \/E ) )

in trace norm. This now estimates the second term of (3.7) and gives
1 -1 1 -1

3.10 A, z—D’) Ag — A, <z—D> A

(3.10) ( N 8 TnDn 8

Sgﬁlmz
=0 | [Imz| >h " max [ BN, e~ V&

in trace norm.
Next, we have the Paley-Wiener estimate

Saﬁ(lmz)
Ole vn ) i Imz>0
c(A—2z
(3.11) 19( > = 50,5 (1mz)
vh Ol|e nz—e ;o Imz < 0.

1, =<

Introduce ¢ € C* (R; [0, 1]) such that ¢ () = {0. ; ; Setting ¥ (2) =

P (]\/[\}rﬁnlirgl>’ for another constant M > 1 yet to be chosen, we have the
h
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estimate
(3.12)
<¢M \Imz|N + %1[1 2] <\/I£nzl)> ; Imz >0
(wa MvRlog L 7IL2\ My/Rlog L
<|Imz|N) ; Imz < 0.

Finally, (3.10), and (3.12) along with the observation ¢y [Imz|¥ =

<(Mf log 1) )1 ives

T (D') = Tas (D)
- L) ()

-1
A, <z — \}ED;L> Ag

1 —1
— A, ——D A
<Z Vh h) ?

dzdz

= O(h™)+

h—n N aﬂ(lmz) (Sgﬁ—saﬁ)lmz
/ ———max |he Vr e Vh
{MVhlog :<Imz<2M+v/hlog + } Vhlog 5

- 0 [max (hN—QJ\/[Saﬁ—n’ hM(ij’B—Saﬁ)fnﬂ '

0

Choosing M > W and furthermore N > 2MS,5 + n gives the
af =3

result. O

In the proof above we have closely followed [10] Lemma 12. 7 Again,

the proof above avoids the use of an unknown parametrix for enD which,
following the significance of the required exit time T,,5 noted before, maybe
used to give an alternate proof in the case when d is scalar.

4. REDUCTION TO R"

In this section we shall further reduce to the case of a Dirac operator on R"
. First we cover X by a finite set of Darboux charts {cps Qs — Q0 C R”}SGS
for the contact form a, centered at points {x,} . ¢ € X. By shrinking the par-
tition of unity we may assume that for each pair «, 3, with WF (A4,)N
WF (Ag) # 0, the open sets Vog C T*Q, in (3.4) are contained in some
Darboux chart. Now consider such a chart Qg with coordinates(zo, ..., Zam)
centered at xs € X and an orthonormal frame {ej = w}“@mk ,0< 7 < 2m

for the tangent bundle on €25. We hence have

(4.1) whgpw!. = 6y,
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where gp; is the metric in these coordinates and the Einstein summation
convention is being used. Let Fék be the Christoffel symbols for the Levi-
Civita connection in the orthonormal frame e; satisfying V. ep = Fékel.
This orthonormal frame induces an orthonormal frame u;, 1 < j < 2™, for
the spin bundle S. We further choose a local orthonormal section 1 (z) for
the Hermitian line bundle L and define via ijol =7T;(x)1,0<j < 2m
the Christoffel symbols of the unitary connection Ag on L. In terms of the
induced frame u; ® 1, 1 < j < 2™, for S ® L the Dirac operator has
the form (cf. [3] Section 3.3)

. 1 . ,
(4.2) D = fijka +h <4F§k'yjfyk’n + Tj73> ,  where
(4.3) P, = h@mk + tag,
and
m
(4.4) a(z) = apda® = dxg + Z (xjdxjim — Tjpmdxj)
j=1

is the standard contact one form in these coordinates.

The expression in is formally self-adjoint with respect to the Rie-
mannian density e! A...Ae" = Vgdx = \/§dx1 A...Ndz"™ with g = det (gi5).
To get an operator self-adjoint with respect to the Euclidean density da one
expresses the Dirac operator in the framing giuj ®1,1 <j < 2™ Inthisnew
frame the expression for the Dirac operator needs to be conjugated by

gi and hence the term h’ij;?g_i (&%gi) added. Hence, the Dirac operator
in the new frame has the form

. W m
D= [aﬂwf (& + ak)] +hE € WY (002",

with o7 = i77, for some self-adjoint endomorphism E (z) € C* (QY;4u (C

The one form a is extended to all of R by the same formula (4.4). The

functions w;? are extended such that

™))

, LR | 4 ,
s J:1
(and hence g goy e = dx + Do 1y (alarrj2 + dmszrm)) outside a compact
neighborhood Q0 € K?. These extensions may further be chosen such that
the suitability assumption holds globally on R™ and for an extended
positive function v € C2° (R") satisfying

(4.5) vo < i1 (hgnf 1/) :
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The endomorphism E (z) € C (R™;iu (C*")) is extended to an arbitrary
self-adjoint endomorphism of compact support. This now gives

ik w 1 2m
(4.6) Doy = [aﬂwj (€5 + ak)} +hE € Y (R C2")
as a well defined formally self adjoint operator on R™. Furthermore, the
symbol of Dy + i is elliptic in the class S° (m) for the order function m =
\/1 + 30, (& + ag)? and hence Dy is essentially self adjoint (see [10] Ch.
8). Below ¥ € C° ((T(;Bhe,Ta/B) ; [0, 1]), 0 < T4 < Top, as before and we
set VO?B = (dps)* Vo C T*Q0.

Proposition 4.1. There exist A2, A% € ¥ (R"), with WF (AQ)UW F <A%)

V(Sﬂ C T*Qy, such that
Do\ - (MWh—D
0 0 0 0
Aol <m> v <h> 4

::7:;95 (Do)

mod h°°.

7295 (D) =tr

Proof. Let K 5, K5 and V5, Vs be compact and open subsets respectively
satisfying Vo C K5 C V35 C K3 C Vs C T"Qs. Choose D' € \Ilgl (X;9)
self-adjoint such that D = D’ microlocally on K/ 5 and

(4.7) = C Vas

(—00,27]
and set E = D' — 37 € \Ifgl (X;9). Pick a cutoff function x (x;y,n) €
Cx (77 (Vé’ﬂ) x (dps)* Vs [0, 1]) such that y = lon7 (Kgﬂ> x(dps)" Ky
Now define the operator
U:L*(R%C*) — L*(X;9),
1 i

(Uf)(z) = W/eh(ws(z)—y)-nx (z3y,m) f(y)dydn, =z € X.

The above is a semi-classical Fourier integral operator associated to sym-

plectomorphism x = (dg@s_l)* given by the canonical coordinates. Its adjoint
U* : L*(X;S5) — L?(R"C?") is again a semi-classical Fourier integral

operator associated to the symplectomorphism x~! = (dys)*. A simple
computation gives the following compositions are pseudodifferential with
(4.8) UU* = I microlocally on K5 and

(4.9) U'U = 1 microlocally on  (K[g) .

The composition

E' = Ey:=U*EU € ¥ (R*C*")
is now a pseudodifferential operator by Egorov’s theorem with symbol
(4.10) o (Eo) = (dps)" x*.0 (E).
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Similarly, E, := UE \U* € \I/gl (X;S) and

(4.11) o (E}) = (des)* x*.0 (Ep).

From 1; 4.10) and (1.11) we have S C & (V’ﬁ) and %%
Va5 Hence by propositionME E', Ey and Eo all have discrete spectrum in

(—o0, —7]. We now select g € C° (=57, —7) such that ¢ =1 on [—47, —27].
We have

} C

(007-

WF(g(E)) C S5y

Combined with (4.9) this gives (U*U —I) g (E) € h*°¥ ;> (X;S) and hence
(U*U —I) g (E)| = O (h*) as an operator on L? (X;S). This in turn now
gives

(4.12) |(U U = DIE[ (B[ U] +1) = O (h™)

Cf 0 n CVap

with IT% = H{i sr—27]" Similarly, we get

(4.13) [(UU* = 1) 11| (| Eo | IU™]| + 1) = O (h*°) .

Another easy computation gives E = E{; microlocally on K gﬁ and we may
similarly estimate similarly have

(4.14) H (E— By 15| = 0 (n) .

Next we define AY = U*A,U, AY := U*AgU € ¥ (R") and again note

UALAQU* = AuAg microlocally on K[l
U*A AU = AgA% microlocally on « (Kig) .
This again gives
(4.15) [[UAQASU* — Ao Ag) TTP|| = O (h™)
(4.16) [|[U*AadgU — AQAZ) TIP0|| = O(h™).

Now using (4.12), (4.13)), (4.14), (4.15), (4.16) and using the cyclicity of the
trace we may apply [A.5[ of Section H with p(z) = f <x+3T) ) (A\/E_h?”_x>

vh
[ur (5o (52 ] ol (2)s (25 5)
=0 (h*)

for D} := Ey + 37. Finally observing D = D' on V3, Do = D{, on V! s and
using Lemma completes the proof. O

to get

— tr
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5. BIRKHOFF NORMAL FORM FOR THE DIRAC OPERATOR

In this section we derive a Birkhoff normal form for the Dirac operator
(4.6) on R™. First consider the function

41‘0

fo = + ) (@am + §m) -

T
i=1

If Hy, and e/ denote the Hamilton vector field and time ¢ flow of fo
respectively then it is easy to compute

eiflio (xg,&) = (wo,& +1)

Ty i+ &m —Tjem + & Tjpm +&§ —xj + €j+m)
ed o (i, & TivmEirm) = ) ; ) .
( j fg J+ §J+ ) < \/5 \/i \/5 \/§

We abbreviate (2/,&') = (x1,...,2m; &1, - &m)s
(:1:”7 é_”) = ($m+17 ey I2ms €m+17 .. 752771) and (];7 é.) - (.’EQ, .T,, JZ’H; §07 6,7 fﬂ)'

Further, let oy C Scll (]RQ”;(CI) denote the subspace of self-adjoint symbols

a: (0,1, = C* (Ri@;iu (2m)> such that each of the coefficients ay, k =

0,1,2,...in its symbolic expansion ([2.35) vanishes to order N in (zg,2’,&’).
We also denote by on the space of Weyl quantizations of such symbols.
Using Egorov’s theorem, the operator (4.6)) is conjugated to

(5.1) /s Dye /0" =4V, with

(5.2) do = V2 (o’jwﬁfoé’o + Jjwfjfogk + ajw;.i;?om:zrk) + hog
(5.3) where wﬁfo = (e_%Hfoy wé?

A Taylor expansion of dj now gives 7“? € 09, 0 < 5 < 2m, such that

dy = V207 <ﬁ)?§o + wffk: + ®f+mxk) + O'j’l“? + hog

and where wf (xo,2",&") = wf (wo, —%, "’5—;) On squaring using 1 we
obtain

2 .
(@) = QY +hoi + o3+ h%0g, with
GEmEm) (g, 07, €7) G4mO (g, o, ) g (g, 27, )] [
QO = [.’E’ 50 5/] gO(l-{-m) (l‘o, .%'//, 5//) gOO (:B()? 33”7 5”) gOl (.%'(], xllv 6”) 50
gk(l-i-m) (5307 x”, 5//) gko (fEO, x”, 5//) gkl (x07 a:", 5//) {/
Here gF (zq, 2", &") = 29 (xg,—%,%) and ¢* the components of the

inverse metric on T*R™.
Next we consider another function f; of the form

x/

1 1" 1 1"
2! ! Amxm (1’0,1’ 7€ ) TYmxm+1 (1'071: 75 )
[ 50 g :| |:7'fn+1 Xm (3}0, xlla £II> Bm+1><m+1 (.f(), .f//, 5//) 2(/)

fi=

| =
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where a, 8 and v are matrix valued functions of the given orders, with «, 3
being symmetric. An easy computation now shows

/ /

X x
*
(erl ) 50 B eA fo + 09 with
'3 3
O _ 1 1 a (330 fl:” 5//) ,y 1(1,0 ﬂf” E/l)
A T ’,7}”7 " — m—+1xXm—+ mxm ’ ) mXm-—+ ) )
( 0 5 ) Ime 0 ’an+1><m (330)35”75”) Bm+1><m+1 (x05$//7£”)

From the suitability assumption (1.3}, we have that there exists a smooth
matrix valued functions «, 8 and ~ such that

| [ (g, a7, ) gm0 (g, 0, €7) GO (g, o, €] T
@ @ &N | P @) P g g @) | e |
P (0" €) g (o) glanane) | L€

m
= &40 Z,uj(wjz+§]2-) + 03
j=1

where

(5.4) U (azo,x”,ﬁ") =v <a:07 —f/i, %) .

Letting
1 m
Hy =35> my(f+€),
j=1

Egorov’s theorem now gives

w

2m
(5.5) enfl" Ve il = (S ojb; | +hoy with
5=0
2m
Zb? = (§g+2ﬁH2)W+03.
§=0

Another Taylor expansion in the variables (2, &o,¢’) gives A = (aji (zo,2",&")) €
c>® (R?x()7$,,75,,);50 (n)) and r; € 02, j =0,...,2m, such that

_ & 1 _
. (25M1)§1 z1
_ 2 T
o (20p1)2 & 0
b2m B 1 2m
(20410)2 @
_(277,Um)5 ‘Sm_
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We may now set cq = %ajkajak € C>® (RZTOJ”@//);Z‘U (2m)> and compute

W4 e W _itw ;W
(5.6) eaenlt @V e/l ¢4 =4}V, where

(5.7) dy = Hy + o?rj + hog, and
IR
(5.8) Hy = 5000 + (217)2 Z,uj (wjagj_l + §j02j) .
j=1

5.1. Weyl product and Koszul complexes. We now derive a formal
Birkhoff normal form for the symbol d; in (5.7). First denote by R =
O (zg, 2", &") the ring of real valued functions in the given 2m+1 variables.
Further define

S=R [[l'/, 507 5/7 h]]
the ring of formal power series in the further given 2m + 2 variables with
coefficients in R. The ring S ® C is now equipped with the Weyl product

axbi= |2 (0 —0r0n) (a(s1,71;h) b (52,725 h))} ;
r=s1=582,£=r1=T2

corresponding to the composition formula (2.36]) for pseudodifferential oper-
ators, with

[a,b] = axb—bxa

being the corresponding Weyl bracket. It is an easy exercise to show that
for a,b € S real valued, the commutator i [a,b] € S is real valued.

Next, we define a filtration on S. Each monomial h*&y (z/)* (¢')° in S is
given the weight 2k + a+ |a| + |3]. The ring S is equipped with a decreasing
filtration

S=0y D O1D2...20ND ...,
(o~ = {0},
N
where On consists of those power series with monomials of weight N or

more. It is an exercise to show that

On*Oy C Ontm
[ON,OM] C ihON+M_2.

The associated grading is given by

S=@P S
N=0

where Sy consists of those power series with monomials of weight exactly
N . We also define the quotient ring Dy := S/Opn41 whose elements may
be identified with the set of homogeneous polynomials with monomials of
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weight at most N. The ring Dy is also similarly graded and filtered. In
similar vein, we may also define the ring

S(m) =5®gle (2™)
of R® gl (2™) valued formal power series in (2, &p,&’; h). The ring S (m)
is equipped with an induced product * and decreasing filtration

Op(m) D O1(m)>D...00N(m)D ...,

(O~ (m) = {0},
N

where Oy (m) = On®glc (2). It is again a straightforward exercise to show
that for a,b € S®iuc (2™) self-adjoint, the commutator i [a, b] € S®iuc (2™)
is self-adjoint.

5.1.1. Koszul compleres. Let us now again consider the 2m and 2m + 1
dimensional real inner product spaces V =R ey, ..., eay] and W = R [eg] BV
from Considering the chain groups Dy @ A¥V, k= 0,1,...,n, one may
define four differentials

Mmoo

w) = Yk (wjeaj 1 A+EieaN)
j=1
Mmoo

Zaoc = Z:U’JQ (mjie2j—l +§ji62j)
j=1
LY

wg = Zuf (azj€2j—1 A —&-8@.62]'/\)
j=1
mooq

.0 5 . .

iy = Zu; (8mj162j71 + 85].2%) .
j=1

We equip Dy with the R [h]-valued inner products where the distinct mono-
mials \/ﬁéff (/) (5’)5 are orthonormal. With these inner products w?, i%
and wg,ig are respectively adjoints. The combinatorial Laplacians A? =
w2 + 9wl = wlil + i%w), are computed to be equal and act on basis ele-
N renp Vi . R .
ments & (') (&) (/\ e ) via multiplication by u. (2 (o + 8) + ). It now
follows that these have (co-)homology only in degree zero given by R [h].
Similarly, we may consider the chain groups Dy @ A*W, k=0,1,...,n,
one may define four differentials

wy = &eg A+ (25)% w?
1
iy = 50’5.60 + (217)2 Zg
wy = 35060 N+ (29)% wg

1
g = 8§0i60 + (277)5 Zg
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Again these complexes have cohomology only in degree zero given by R [h].
Next, we define twisted Koszul differentials on Dy ® AFV via

- i 1 mooy

wg = 7 ]Z; /1]-2 (adxjegj_l N +ad§j62j/\) = Jz; N]? (8%.62]- AN —85].62j_1/\)

. i~ 1 . . L .

iy = h Z 1y (adaic,; , +adgic,;) = Z 17 (Oujier; = Ogjlics; ) -
j=1 j=1

We note that the above are symplectic adjoints to their untwisted counter-
parts with respect to the symplectic pairing Z;n:l e2j—1 Negjon V.
Similar twisted Koszul differentials on Dy @ A¥W are defined via

7

@y = padgeo A+ (20)2 @3 = —Byye0 A+ (20)2 @)
~ T . N . N
9 = Eleoadfo + (20)2 19 = —Oyyicy + (20)2 0.

These twisted differentials correspond to the untwisted ones by a mere change
of basis in V', W and hence also have (co-)homology only in degree zero given
by R[h].
We now compute the twisted combinatorial Laplacian to be
AV = @y +igby
= — (whip + igul)

m

= Zﬂj [fjaxj — j0g; + ejley;_y — 62j—1i62j] .
j=1

One may similarly define A. Next, we define the space of twisted A°-
harmonic, &- independent elements

k= {w € Dy @ AFW| A% = 0, 9w = 0}
HE = {w € S®ANW|IA =0, 850w:O}.
We now prove a twisted version of the Hodge decomposition theorem.

Lemma 5.1. The k-th chain group is spanned by the three subspaces
Dy @ AFW =R [Im (iwt09) , Im (Tpiz) ,H’;V} .

Proof. We first compute A in terms of A to be

1

A= —£0y, +20A0 — 2 (&coﬁ) eoi®

o
Next, since AP is skew-adjoint, we may decompose

Dy @ A*W = Fy @ @ [Eixn ® E_j)]
A>0
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into its eigenspaces. We may now invert A on the non-zero eigenspaces of
AY above using the Volterra series

At (20) 30 [ (2980) (0 42 (02 o))

The sum above is finite since £y0y, + 2 (85009%) eoig is nilpotent on Dy ®
A*W. Thus we have

P [En @ B_in] € Im (A) C R [Im (iyg) , Im (@piz)] -
A>0
Finally, we decompose
N .
Eo = D &M
j=0

and write each w € {67—[’“ ,j>1, as

w = wo—i-Awl

1 z07J
wy = |:—2 (010175) eoigfol/ :| w € IH?V

0

xo ]_1 1 o l
w = - <§0_1/ ) {—2 (8;,;0175) eoid 0_1/ } w

0 =0 0

to complete the proof. O

5.2. Formal Birkhoff normal form. The importance of the Koszul com-
plexes introduced in the previous subsection is in continuing the Birkhoff
normal form procedure for the symbol dy in . The remaining steps in
the procedure are formal.

First let us define the Clifford quantization of an element in a € S®@A*W,
using ([2.8)) as an element in

Vk(k+1)

co(a)=1i 2 c(a)€ S(m).

It is clear from (22.10) and (2.11) this gives an isomorphism

(5.9) o S @ A/ 6 @ juc (27)

of real elements of the even or odd exterior algebra with self-adjoint elements
in S (m). It is clear from (5.7) that

(5.10) dy = Hy +¢o (r) + hS @ duc (2™)

for r =37 rje; € O @ W.
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For a € AFW, we define [a] = [g] Now for f € Oy, N > 3 and
a € Oy @ A" W N > 1, we may compute the conjugations

(5.11)
enl Hye w! = Hy + co (Wof) + On ® iug (2™)
(5.12)
eico(@ iy e=ico(@) — fy 4 (=19 26 (i,a) + heg (Wpa) + Ongo @ fuc (27)

in terms of the Koszul differentials.
We now come to the formal Birkhoff normal form for the symbol d;.

Proposition 5.2. There exist f € O3, a € Oy @ A" W and w € H°N O,
such that

(5.13) el0@eit gy e~ nleio0(@) = ;4 co (w) .
Proof. We first prove that for each N > 1, there exist fy € Os, a?v €
01 ® A2W, w?v € H' N Oy and r?\, € On41 ® W such that
(5.14)
eico(“%)e%f’vdle*%ffve_ico(“?V) =H; + ¢ (w?v) + co (r?\;) + hS ®duc (2™M),
fN+1 — fn € Onsa,
a9v+1 —d% € Oy,
w?VH — Wl € Ony1.

The base case N = 1 is given by (5.10) with a = f; = w? = 0 and 7§ = 7.
To complete the induction step we decompose

(5.15) = T
ESN+1OW  €On120W

Next we use Lemma to find by,gn € On+1 ® W and U?V e H' N SN+1
such that

(5.16) uQ = R — i, W% — Waizg + Ono

Next, define fyi1 = fN—l—ixg?V € 0Os, a(])\,Jr1 = a?\,+%w@b9\, € 01 ®A?>W and
wWyq = wi + v} We now use (5.11)), (5.12), (5.15) and (5.16) to compute

eiCO(a?\IH)e%fNHdle_%fNHe_iCU(a(J)\Hl)
= io(3D00) o kgl f, o hino% g—ico (3000%)
+eo (W) + o (1Y) + hS ®iuc (2™)
= Hi+c (W?V-i-l) + ¢ (T5)V+1) + hS ® duc (2™)
completing the induction step. Now setting f = limy_ 00 fN, @0 = limy_ 0 a(])v
and wy = limpy_oo w?v and letting N — oo in gives the relation

(5.17) ei0(a0) it gy =1l e—ie0(a0) = 1, 4 ¢ (wo) + hS ® iuc (2™).
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Next we claim that for each N > 0, there exist ay € O7 ® AW,
wn € H* N O3y and such that

(5.18) eico(@n)oiif e~ nl e=icoan) = | 4 ¢, (wn) + hON @ duc (2™)
aN+1 — GN € ON+1 Q@ AW

WN+1 — WN € HOdd N Oy

The base case N = 0 is now provided by (5.17). To complete the induction
step, we use the isomorphism (5.9) to decompose the remainder term in

(5.18]) above as

Co (UN) + ihON_H X uc (2m)

for uy € Sy@A°YW . Next we use Lemmato find by, gn € Oy @AY
and vy € H°¥ N Sy such that

(5.19) UN = UN — Z'Iﬁ}ab]v — ’Jlaing + ON+1

b
Now define ay11 = an + iz9n + h(_l)Q[ v Wby € O1 and wyy1 = wy + V.

We now use (5.11)), (5.12), (5.15) and (5.19)) to compute

gicolan+1) o f g e~ 1t eico(an+1)

= Hi+co(wny1) +ihOni1 @uc (2™).

completing the induction step. Now setting ¢ = limy_,cay and w =
limpy 00 wy and letting N — oo in (5.18) gives the proposition. O

Finally, we show how the Birkhoff normal form maybe used to perform
a further reduction on the trace. First note that we may similarly use (2.8)
to define a self-adjoint Clifford-Weyl quantization map

e =0p®co:SY (]RQ"; C)® Acdd/evenyy 2 (R™; (CQm)

which maps real valued symbols S(?l (RQ”;R) ® Aedd/evenyy 4 self-adjoint
operators in \Ifgl (R”; CQm). Similarly we define a space of real-valued, twisted
A% harmonic, &- independent symbols
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Next, an application of Borel’s lemma by virtue of (5.1)), (5.6) and (5.13)
gives the existence of

a~Yy ha; e 8y (R*™;R) @ AW
7=0

o0
T b€ 8 (RPR) @ AW
j—O
f~ Zhﬂf] € S (R*™;R)
7=0
e .
@~ him; e HOMSH
j=0
such that
(5.20) e @enl™ glWe=nl™ e=i6" (@ = W 1 W (@) +cV (7)
—_——
=D
on Vg = e o (VO?B). Here {'Fj}jeNO .fo, wo vanish to infinite, second and
second order respectively along
s = 5p =)0 gy = =0).
Note that on account of (4.5) and (5.4]) one again has
_ . < o B
Y0 i gél)rfl v (x) =M R:Olﬁ”’g” Y
Furthermore, since &y vanishes to second order we may choose iy arbitrarily
small satisfying the estimate
(5.21) l@ollo: <e.
for any e > 0, while still satisfying (5.20)).

We note that D € \Ilél (]R"; (Cgm), with D + ¢ having an elliptic symbol in
the class SY ({£0,¢')), and is hence essentially self-adjoint as an unbounded
operator on L? (R”; (CQm). The domain of its unique self-adjoint extension
is H' (Ry) @ L? (R2 1, C2") (cf. Ch. 8 in [T0]). We now set

A _ ezco (a)ehf AOG v We—z'cgv(z_z)

101 (7)) (Afh D)““*

(5.23) /af ( )tr A, QED_Z)_IAB

We next have the following proposition.

(5.22)
7;95 (D) = tr

dzdz.
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Proposition 5.3. We have

Proof. Since the conjugations in (5.1)) and (5.20)) are unitary and
WF (A ) WF (AB) C Vup3, we have

_ 1 -1 _
0 tr |Aq (| —= (D + < (F —z) A
/ fe < > : (ﬁ (Dt 5™ (1) ’
It now remains to do away with the ¢} () above. Since this term vanishes
_ N W (=
to infinite order along X2 = EOD+CO (T), we may use symbolic calculus to find
Py,Qn € \Ifgl (R”;(CQm), VN > 1 such that

dzdz.

(5.24) &) = Py(D+c ()"

_ —\ N
(5.25) & (F) = Qn (D)
Modifying D outside a neighborhood of Vap using Lemma and we
may assume that D, D + ¢}/ () have discrete spectrum in (—v/2v, v/214)

and hence
o) = | () (A\Fh D) Ay
T2 (Dy) = tr|Aaf <D+\CF§LV(T)> p (A\/E—Dh_ o (F)) i,
Next, with 117 = 117 i m] and TI0+e ) — Hfj/%) ] denoting

the spectral projections, and - give
o] - o
h

H HD+CO (7)

for each N > 1. Finally applying [A.5{ with p(z) = f <%) ) (A@_w) and
@)

using the cyclicity of the trace gives ’7;’95 (Do) — 7;% (D) =
VN > 1, completing the proof. ([l

6. EXTENSION OF A RESOLVENT

In this section we complete the proof of Lemma [3.1] On account of the
reductions in [.T]and [5.3]in the prev1ous sections, 1t sufﬁces to now consider
the trace T ( ) . First let A, = a¥ Ag = aﬁ for aq,ap € SO (Rzn)

w
a,t

computed in terms of the one-parameter family of symbols aq ¢ (§o,...) =
aa (S0 +t,...), ap = ag (& +t,...) € 8§ (R?™), t € R, obtained by trans-
lating in the &g direction. One now 1ntroduces almost analytic continuations

it T it .
The conjugations er° Age” 2% = @/, and eh””oABe weo = aﬁt are eagily
b
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of the symbols an ¢, ag; € SCO1 (RQ”), defined for ¢t € C, such that all the
Frechet semi-norms of da, ¢, dag, are O (|Imt|*). These maybe further cho-
sen to have the property that their wavefront sets have uniform compact
support when t is restricted to compact subsets of C. Again one clearly has

(6.1) agft — e Titao (aa7i1mt)w e_Lfft"”O, and
(6.2) ag’/t — it (a@ﬂmt)w e~ Tt

In similar vein we may define

(6.3)

= Lty = it _
Dy =e h”ODehxf’:H{g—{—ch(w)

NG

1
D w2 (wjoai1 + &ogy) € Sy (R*),

Jj=1

(6.4) Hl,t = (fo + t) oo + (25)

for t € R, on account of the {p-independence of w. An almost analytic con-
tinuation of Dy is easily introduced by simply allowing ¢ € C to be complex
in above. The resolvent (D; — z)fl : L? (R™;C?") — L? (R C%7) is
well-defined and holomorphic in the region Imz > |Imt|.

In the lemma below we set ¢ = iy (M, §) == i2Mhd log%, foro =1—€c¢€
(%, 1) with € as in Lemma and M > 1. We now have the following.

Lemma 6.1. For h sufficiently small and Veq > 0, the resolvent

-1
<\}ED@-7 — z> : L? (R™C*") — L (R™;C*)

extends holomorphically, and is uniformly O (}f%), i the region Imz >
—Mh5~3 log 3, |Rez| < /2vg — o.

Proof. We begin with the orthogonal Landau decomposition

(6.5)

L2 (Rn;cgm) _ L2 (R;ﬁ;l//) @ |C W)0,0] @ @ [Eiven @ E?ldd] where
Aep.(Ng\0)

=L2(R™;C2™)

Eiven — @ Egven

TENG\0
A=p.1

E?ldd — @ Egdd
TENFT\0

A=p.T
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according to the eigenspaces of the squared magnetic Dirac operator DHQw

([2.21) on R™. Tt is clear from (6.4)) that
w W
Y, = (€ + 1) a0+ |(20)?] @ Dgn

in terms of the above decomposition. Furthermore one has the commutation
relations

[O‘o,DH%m] =0
WV (@), D3] = ihdV (A%) =0
[0 ( )a R ] 0

since @ is A%-harmonic. The above and (D show that the (ﬁl_)t — z)
preserves the eigenspaces in the decomposition (6.5) V¢ € C. It hence suffices
to consider the restriction of ﬁDiv — z ) to each eigenspace.

Let Ey == Cl¢oo], Ex = EY" & E?ldd and Py, P4 denote the projection
onto the corresponding summands of (6.5)). Define the restrictions

Q0 =Pocl (@)Py : L2 (Rm“) 2 (Rm“,,)

xo,r T0,T

21 =Pacl @)Ps ¢ L*(RIEL ES™ @ B3) - 1 (RIHL B @ E3), 4> 0.

T0,T T0,T

Now @ ~ Z;oo b, € HOddSO with £p-independent &y vanishing to second
order along EDO =P = {& = 2’ = ¢ = 0}. Hence we may Taylor expand

Wy = Z [aijzizj +ai;ZiZ; + bijzizj + Bijziij] ,

1<j
in terms of the complex coordinates z; = x; + i§;, z; = x; —§; ,1 <
j < m, with a;;,b;; € S (R*™;R) @ A°W. The self-adjoint Clifford-Weyl
quantization now yields
W /- * A% w * * W (1

o @) = > [c (i) Aidj + ATATe) (@) + ¢ (big) AT A; + A5 Al (bij)]

1<j

+hTY (R C*)

in terms of the raising and lowering operators in (2.26)). Since each lowering
operator A; annihilates 10, this leads to the estimate

(6.6) 1£20]| = O (h).
Next, on account of (5.21) one may also expand wo = > 7", [a;2; + a;%;],

with a; € S (R?;R) ® A°dW, satisfying [aj||o0 < & < 1. On self-adjoint
quantlzatlon this now gives

a =Z (aj) Aj + Ascy (a;)] + hOY (R C")
7j=1
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where

||Cg/(“j)HL2—>L2’Hcgv(aj)HL2—>L2 = |lajllco + O (h)
< e40(h).

Knowing the action of the lowering and raising operators A;, A7 on each
eigenstate 1) of D2,, gives the estimate

(6.7) 124]] < eV AR+ O (h)

with the O (h) term above being uniform in A.

Next we compute the restriction of <LDM — z) to the Fy eigenspace in

vh
(6.5) using (2.6]) to be
1 _

(6.8) Do (2) =Py <\/EDZ-7 - z> Po = \}E [—50 —iy— 2V + {20} .

The above is again understood as a closed unbounded operator on L? (R;’Z}J;l,,)

with domain H' (Ry,) ® L? (R™). Set Riy o (2) = [Fir0 (2)]", with

Tivo (2) = Vh
T g iy — 2V

which is well defined for Imz > —ﬁ = —Mh 3 log #, and compute

Rivo (2) D 0 (2) = I+0 (hlﬂs)
Divo (2) Rino () = T+0 (077

using . This shows that the inverse Dy, o (2) " exists and is O (Riy 0 (2)) =

O (n577).

Next, we compute the restriction of (ﬁDiv — z) to the E4, A > 0,

eigenspace in (6.5). Using (2.32), (2.33)) this has the form
1 _
Di'y,/l (Z) = Py (\/EDW — Z) Pa

1 |G -iv-=vh (\/2aAh)W T
VR (m)w fo+iv—=vh| Vh !

with respect to the Zs- grading Fy = E}" @ Eﬁdd. Here we leave the iden-
tification i, in (2.32)) between the odd and even parts as being understood.
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Set Riy4 (2) = [riy,a (2)]"
—&o—iv—2vVh (\/217/1h)
(\/217/111) €0 +iv—2vVh
22h — (& +iv)* — 20Ah

which is well defined for |Rez| < /21y — ¢ < infgn V20 A, and h sufficiently
small. We now compute

[ Rin.a (2) Diy,a (2) = I Ce+0O(h)

[1Diy,4 (2) Riy,a (2) = I Ce+0(h)
using with the constants above being uniform in A. Choosing € suf-
ficiently small in 1’ shows that the inverse Dj, 1 (z)f1 exists and is
O (Riya(2) =0 (ff% uniformly. O

Vh

Tiy A (2) =

<
<

We now finally finish the proof of Lemma (3.1}
Proof of Lemma[3.1l As noted in the beginning of the section, on account

of , 1) and the reductions and it suffices to show Ta’gﬁ (D) =

O (h*>). We now define the trace

1 . -1
(6.9) Tapt (2) = tr [az‘; (\/EDt - z) ag/t] ,  Imz > |[Imt|,
in terms of the almost analytic continuations. We clearly have
rape(2) = O (A7 |mz| ")

0 -n o0 -2
8—57'045715(,2) = O(h [Im¢|™ |Imz| )

Furthermore, by (6.1), (6.2) and (6.3) 7 (2) only depends on Ret and we

have

(6.10) Tagi it (2) = Tapo (2) + O (h_” IIm¢|* |Imz|_2) :

1;, <1

As before, we again introduce ¢ € C* (R; [0, 1]) such that ¢ (x) = {0 ; )
;T2

and set Y (z2) = ¢ (Aﬁ@) The estimates (3.11f), (3.12) along with

N
the observation ¢ |Imz|Y = O <<M\/ﬁlog %) > now give

B0 = L0 (5 ranca
- O(h™®) +
1

™ /{M\/Elog %SIszQM\/Elog %}
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Using 1} and v = 2Mh° log %, § € (%, 1)7 the above now equals
Tos (D) = O(h®)+

1 / N P )
p O(vmf)v <> Tapiy (2) dzdz.
T J{MVRlog L<Imz<2M VR log 1 } ( ) vh piv (%)

_ ~1
Since the resolvent (ﬁDiv - z) , and hence the trace 745, (2), extends

holomorphically to Imz > —Mh2 log 3, [Rez| < /21y — g9 by Lemma
we may replace the integral in the last line above

Tis (D) = O(h™®)+

1 A N[ Az
p 9 V| —= | Tap,ivy (2) dzdz
TF/{;Mh‘;%log;lb<lmz<}1Mh5%logi} (wa) ( NG > pin (2)

= o)+

S’QB(Imz)

1
h™""2 - _
e h2 dzdz

O /
{—%Mhé_%log%ﬁlng—%]\/lh‘s_%log}%} Vhlog +
M 1
- 0 [h?(sgﬁ)_n_i}

_ -1
using (3.11) and O <h_%> estimate on the resolvent (ﬁDiv — z) . Choos-

ing M sufhiciently large now gives the result. O

7. LOCAL TRACE EXPANSION

In this section we prove Lemma [3.2] This is a relatively classical trace
expansion. A parametrix construction for the operator enDh may potentially
be employed in its proof since the principal symbol of D,Ql is Morse-Bott
critical as in [6]. However Lemma [3.2) would require an understanding of the
large time behaviour of parametrix left open in [6] (see [7, 19]). Here we
prove the expansion using the alternate methods of local index theory. The
expansion is analogous to the heat trace expansions arising in the analysis
of the Bergman kernel [4] 20]. Here we adopt a modification of the approach
in [20] Ch. 1, 4.

First, fix a point p € X. On account of there is on orthonormal basis
eop = Rp.ejp, €jymp. 3 = 1,...,m of T, X consisting of eigenvectors of J,
with eigenvalues 0, +\;, (:= £ip;v (p)), j =1,...,m, such that

(7.1) da(p) => X (D)€ p A€l ymp
j=1

Using the parallel transport from this basis fix a geodesic coordinate sys-
tem (zo,...,o2m,) on an open neighborhood of p € Q. Let e; = wf(‘)xk,
0 < j < 2m, be the local orthonormal frame of T'X obtained by parallel
transport of e;, = O |p,0 < j < 2m, along geodesics. Hence we again have
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l

T

= 0jr; w;‘? = 55? with gi; being the components of the metric in
P

these coordinates. Choose an orthonormal basis {Sj,p}izlfor Sy in which
Clifford multiplication

(7.2) c(ej)l, =

is standard. Choose an orthonormal basis 1, for L,. Parallel transport the
2m
=1

k
Wy Grlw

bases {s;p} 1, along geodesics using the spin connection V¥ and unitary

family of connections V" = Ay + +£a to obtain trivializations {sj}zzl, 1 of
S, L on . Since Clifford multiplication is parallel, the relation now
holds on €. The connection V5L = VS @1 + 1 ® V" can be expressed in
this frame and these coordinates as

(7.3) VIOE = d 4 Alda? + Tjda?,

where each A;L is a Christoffel symbol of V" and each I'; is a Christoffel
symbol of the spin connection V°. Since the section [ is obtained via parallel
transport along geodesics, the connection coefficient A;-L maybe written in
terms of the curvature Fj}}gdxj A dz¥ of V" via

(7.4) Al(w) = /01 dp (pxkpjhk (pg,-)) .

The dependence of the curvature coefficients F]hk on the parameter h is seen

to be linear in % via

1
(7.5) Fly = Fj + 7, (da) ji

despite the fact that they are expressed in the h dependent frame 1. This is
because a gauge transformation from an h independent frame into 1 changes
the curvature coefficient by conjugation. Since L is a line bundle this is con-
jugation by a function and hence does not change the coefficient. Further-
more, the coefficients in the Taylor expansion of at 0 maybe expressed
in terms of the covariant derivatives (VAO)Z Fjok, (VAO)Z (da) j evaluated at
p. Next, using the Taylor expansion

(7.6) (da) jx = (da) j1, (0) + 2'aju,
we see that the connection V°®L has the form
7

h

(7.7) VS®L:d+[ 5

k .
("” (da) 1. (0) + :ckxlAjkl> + x’ng?k + rj] da?
where

1
AY = /0 dp (pF}y (p))

1
Ajp = /OdP(Pajkz(PfU))
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and I'; are all independent of h. Finally from (7.2)) and (7.7) may write down
the expression for the Dirac operator 1’ also given as D = hco (VS®L)
in terms of the chosen frame and coordinates to be

(7.8)

) k
D =~"w! [h@m]. + ’L% (da) j (0) + ixkxlAjkl +h (mkA?-k + Fj>]
(7.9)
. . . .:L'k 1 1 1
=" |k, + iw] - (da) j& (0) + 5hg 50, (g3w]) | +

4 , 1 , m
o {iwﬁxkxlAjkl + hw} (xkA?k + Fj) — ihgféaxj (géwfn)} €U (Q%hc?)

In the second expression above both square brackets are self-adjoint with
respect to the Riemannian density e! A...Ae" = V9dx = \/§da:1 Ao Adz?
with g = det (g;;). Again one may obtain an expression self-adjoint with

respect to the Euclidean density dz in the framing giuj ®1,1 <5 <2m,
with the result being an addition of the term h’ijfgfi (8xkg%>.

Let i, be the injectivity radius of gZ* . Define the cutoff y € C° (—1,1)

such that x =1 on (—%, %) We now modify the functions w;-“, outside the

ball B; /o (p), such that w? = (5;-“ (and hence g;, = d;;) are standard outside
the ball B;, (p) of radius i, centered at p. This again gives

(7.10)
k

, . 1 .
D=4" [wﬁh@zj + zwi% (da) jr (0) + ihg_%&cj (géwi)} +
, . 1 .
X (le] fig) " [iwixkxlz‘lm + i (a5 A% +T;) = Shy ™20, (g%wi)]

as a well defined operator on R"™ formally self adjoint with respect to ,/gdx.
Again D + i being elliptic in the class SY (m) for the order function

= \/ Lo (645 (@0, 0) (a4 (@, 0).

the operator D is essentially self adjoint.

Proposition 7.1. There exist tempered distributions u; € S’ (Ry), j =

0,1,2,..., such that one has a trace expansion
(7.11)

tr o <D> =h"? iuj (@) W72 | + hNH=R20 (i &) o) )
vh §=0 k=0 Lt

for each N € N, ¢ € S (Ry).
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Proof. We begin by writing ¢ = ¢g + ¢1, with
26V h
¢vh ) ”

bols) = - eifsé(é)x(

27 R 'ig
() = 5 [ €60 [1—x<2§iﬂ>]d§
g

via Fourier inversion.
First considering ¢1, integration by parts gives the estimate

5"y ()] < o (g:l Hqug(k)’ L1> ’
k=0

VN € N. Hence,
N n+1 A
= Onh"™ (ZHquj(k)’u)’
k=0

D
Dn-l—l—a () D
H W

VN € N, Va = 0,...,n + 1. Semi-classical elliptic estimate and Sobolev’s
inequality now give the estimate

D

o (77)

Vh/ leo(xxx) L

VN € N, on the Schwartz kernel.
Next, considering ¢g, we first use the change of variables ov = £v/h to write

Now since D = D on B/ (p), we may use the finite propagation speed of

the wave operators e@h D ¢ieh™'D (¢f 1 2.1 in [20]) to conclude

(7.13) b0 (\%) (p,") = ¢o (\;D%) (0,-).

The right hand side above is defined using functional calculus of self-adjoint

operators, with standard local elliptic regularity arguments implying the

smoothness of its Schwartz kernel. By virtue of (7.12), a similar estimate
for ¢ (%), and ([7.13]) it now suffices to consider ¢ %)
We now introduce the rescaling operator Z : C*° (R”; (CQm) — O (R”; (CZm);

(Zs) (x) = s (%) Conjugation by % amounts to the rescaling of co-

L2—12

(7.12)

< o™ (57 [levat
< Oyh's (ZH& o)
k=0

ordinates  — zv/h. A Taylor expansion in 1} now gives the exis-
tence of classical (h-independent) self-adjoint, first-order differential oper-
ators Dj = aé? () Oz, + bj (x), 7 = 0,1..., with polynomial coefficients (of
degree at most j + 1) as well as h-dependent self-adjoint, first-order differ-

ential operators Ej = 37|y 2 [Cﬁa (3 h) Oy, + djo (5 h)} ,j=0,1...,
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with uniformly C'°* bounded coefficients c}i o

dj o such that

(7.14) #D%~' = VhD with

N
(7.15) D = | W/, | +hNTDPEy,, YN
j=0

The coefficients of the polynomials a? (x), bj (z) again involve the covariant

derivatives of the curvatures FTX, F40 and da evaluated at p. Furthermore,
the leading term in (7.15)) is easily computed

. '(Ek
(1.10) Do =17 [0, +1%5 (@) .(0)
- i (p it A (p
(TA7) =405 + [azj + Jz( )W] +7* [%m - 2( )%‘]
=Doo

using (7.1), (7.6)). It is now clear from (7.14) that

D r
7.18 — ) (z,2") = h"?¢ (D ()
(7.18) ¢< ﬂ)( ) o0 ( 77

Next, let I; = {k = (ko,k1,...)|ka € N, > ko = j} denote the set of parti-
tions of the integer j and set

(7.19) ;=3 (z Dy [HaDka (2 — Do)_l} .
kel

Local elliptic regularity estimates again give (z —D) ™' = O;2

-1
loc_>L120€ (‘ImZ| )
and Cf = Op2 72 (|Imz]_j_1), j=0,1,.... A straightforward computa-

tion using ([7.15) then yields

Al 1 N+1
(720)  (z=D)7" = | X nC; =OL%OﬁL%oc<(|Imzl‘lhé) )

J=0

A similar expansion as 1) for the operator (1+ DQ)(HH)/2 (z —D) also
gives the bounds
(7.21)

2~ (n1)/2 FEST N
(1+D?) (2 =0) "= [ oG | = Oy e <(\1mz| lﬁ) )
jzo > oc

Vs € R, for classical (h-independent) Sobolev spaces Hy,.. Here each C3, | =

Ops _ gstnt1 (\Imz\_j_l> with the leading term
loc loc

CGopr = (14+02) "2 (2 —pg)~!
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Finally, plugging the expansion ([7.21]) into the Helffer-Sjostrand formula
1 - _
¢ () =—— [ d5(2) (1+02) "2 (2 — D) dadz,
T™Jc

with o (z) == ()" ¢ (2), gives

N n+1
7.22 D) (0,0) = W2u;, 1+ N2 N (k)
(7.22) ¢ (D) (0,0) ZO (9) <kZOH<5> é le>

using Sobolev’s inequality. Here each
1 [ = . _
(7.23) Ujp (6) = —— /(C 98 (2) €341 (0,0) dzdz € EndS] ¥

defines a smooth family (in p € X)) of distributions U; and the remainder

term in ((7.22)) comes from the estimate 9 = O (]Imz\NH Zié ’<§>N<{5(’“)‘ )
11
on the almost analytic continuation (cf. [28] Sec. 3.1). Integrating the trace

of ([7.22) over X and using (7.18) gives (7.11]). O

Next we would like to understand the structure of the distributions u;

appearing in (7.11)). Clearly,

u; = /Uj,p with
X
(7.24) uj, = trU;,cC®(X;S(Ry))

being the smooth family of tempered distributions parametrized by X de-
fined via the point-wise trace of (7.23). Letting H (s) € S’ (R;) denote
the Heaviside distribution, we now define the following elementary tempered
distributions

(7.25) vqp (s) =5" a €Ny
(7.26)
o na b2 c—3 2
Va,be,Aip () = O []s\ s" (s* = 2vpA)" 2 H (s° = 2upA) |
(a,b,c;A) € Ng x Z x Ng x p. (NG'\ 0).
We now have the following.

Proposition 7.2. For each j, the distribution (7.24) can be written in terms

of (7.25), (7.26)
(7.27) Uj,p (s) = Z Cjsa (p)s" + Z Cja,b,c,A (p) Va,b,c,A;p (s).

as2j+2 Aep.(N3\0).
a,|b],c<4j+4
Moreover, the coefficient functions cj.a, Cjapen € C®(X) above are eval-
uations at p of polynomials in the covariant derivatives (with respect to
VX @14+ 1® V49) of the curvatures FTX, FA0 of the Levi-Civita con-
nection VIX, VA and da.
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Proof. It suffices to consider the restriction of u; to the interval (—\/ 2vM 2VM>

for each 0 < M ¢ p. (Nj*\0). We begin by finding the spectrum of
the operator Dgg in ([7.17). To this end, define the unitary operator U :
c*> (R”;Cgm) — O™ (R”;(CQM)

_1 _1 _1 _1
(U)\S) (xo,21,22,...) = (Hgnzlkj) S (xo,)\l X1, A P2, Ay w3, Ay 224, .. )
and [ = Y (2j%j4m + Ejym) € C (RP™).
j=1

Next, as in (5.1)) we compute the conjugate
e%f(YVUADOOUf\e*%fUW =[2v (p)]% Dgm|,_4

of the operator in (7.17) in terms of the magnetic Dirac operator on R™
(2.21)) evaluated at h = 1. Hence the eigenspaces of Dgg are

Ui T (Byw 12 (R))

e T (Br o 2 (RIL)): A€ (Ng\0),

with eigenvalues 0, +v/2v A respectively, where

Ey = Cvool,_,]
E/il = @ Eﬂhﬂ?
TENFT\O
A=p.T

are as in . We again let Py, Pf denote the respective projections onto the
eigenspaces of Dgg and P4 = PXEBPZ. We also denote by Pxpr = @ 4>1Pa the
projection onto eigenspaces with eigenvalue greater than v2vM in absolute
value.

Now, since expansions in L120(: are unique it suffices to work with the re-
solvent expansion in the computation of u;. The jth term in the
expansion is of the form

(7.28) Ci =Y (2 =Do) " [Taby, (= —Dp)
kEIj

where each Dy, is a differential operator with polynomial coefficients involv-
ing the covariant derivatives of the curvatures F7X, F40 and da. Now using
(7.17) we decompose each resolvent term above according to the eigenspaces
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of Doo

1 1
—D = Pop|——=— P
(2 — Do) 0(2—708% 0®
(7.29) @ Pa 2402 — oA Pa
Aep.N0(0,M) zo

Z+ ’700330 + Doo p
22 + ago _ D(Q)O >M -

©SP> M (
Next, we plug (7.29) into (7.28). This gives an expansion for C; with some
of the terms given by
T% 114D, T7] ; where

2+ %95, + Doo
T = P 9 P
>M<Z2+83%0_D30> >

and being holomorphic for Rez € (—\/ 2vM, 21/M> . For the rest of the

terms in C%, we use the commutation relations

[°,Po] = [¥%Pa] =[°,Pom] =0
[029,P0] = [02g,PA] = [0z, P>m] =0
[0z0,D00] = 0
(2402 —2wn) ] = 6 (2402, - 2w)

(2402 —2w) " o,] = 0

as well as the Clifford relations . This now gives a finite sum of terms
of the form
(7.30)
1
22+ 02 —2vA

T [, SKTE] x

HAG,LL.NB"F‘I(O,M) ( )aA] (Z - 708$0)7a0 Zblxgzazga

ag+Xaa <25+ 2; by,bg, b3 < 7+ 1, where each Sy, is a differential operator

in (/2") (i.e. independent of () with polynomial coefficients and each

Pg or
Py, or
PADooP 4, or

P — P or
>M | 2 B%O D(2)0 >M

D
Ponr | 20— | P
>M 22—‘1-8%0 _Dgo >M
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with at least one occurrence of Pg, P4 or PyDgoP4 in ((7.30)). Now using partial
fractions, (7.30) may be written as a sum of terms of the form

TO [H 1Ska] ( _ ,YOC%CO) ao b1 b28b3

xo?

(7.32)
Ty [T SkT] = (22 + 02, — 2vA) ™ 2hral2als: A e pNg N (0, M),

ag,ax < 2j 4+ 2; by,ba, b3 < j + 1. Next, we plug (7.32) into the Helffer-

Sjostrand formula and use the holomorphicity of Psjs m Powm
zQ 00

and Ps (z2+<920> P. for Rez € < \/T \/T) This gives
/ D¢ (2) C% (0,0) dzdz,
for ¢ € C° (—\/W, \/W), as a sum of terms of the form
(Tg [TT5, S, TP x 22208 o (4 Oaxo)) 0,0),

(7.33)
(Tg (M5, S, T0] x 220P g4 (—02, + 2u/1)> (0,0), A € w.NT 1 (0, M)

where
Po, or
P, or
Tlgz P 4DooP 4, or
P>y m P>y, or
P>y 21,]/%01)(2)0 P>
and
(=™ ' b
b0(s) = (oo
1 ap—1 by
¢A(82) _ ( ) {[8“/‘ 1(7“ (15(7;)/1)]
(aa—1)! (r—s) r=—s

_ 8(1/171 Tbl ¢ (T) )
" (r+9)* ) 1l—s
At least one occurrence of Pg,P4 and P4DgoP4 in ([7.33)) gives the smoothness
of the kernel.
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Finally, an elementary computation involving Laplace transforms using

the knowledge of the heat kernel et%% (zo,y0) = \/iﬁe“‘”o_yoﬁ/‘“ gives

22 0% o (v°0s,) (0,0) =

1) O0by Vbs;p (¢0)

2 .
Aoty (<3, + 204) 0,0) = { w51t ay (94 (7)) o cven

0; bs odd,

completing the proof. ([l

As an immediate corollary of the above proposition we have that the
distributions u; are smooth near 0.

Corollary 7.3. For each j,
singspt (uj) C R\ (—v2w9,v210) .

Proof. This follows immediately from (7.24), (7.25), (7.26) and (7.27) on
noting that the distributions vg,, are smooth while vgpcap = 0 on R\

(—\/2y0, \/21/0) for each p € X. O

We next give the exact computation for the first coefficient ug of [7.1] In
the computation below , recall that Z, = || (2.13) denotes the number of
non-zero components of 7 € Nij* \ 0.

Proposition 7.4. The first coefficient ug of (7.11) is given by

(7.34) wp = o0+ D, 00004 (P) 0004y (s), where
Aep.(NgM\0)

V' (H?‘:luj)
co;,0 = W—m and
vy <Hm_ 0 )
p 7=1F) )
€0,0,0,0,4 (p) = ()™ dim (Ej)

: = ——— 7 27"

(7.35) |
TENT\0
w.r=A

Proof. First note that the square of (7.16)) gives the harmonic oscillator

A ) . 1 , i
Dg = —07%9,,0,,—i (da) 7, (0) :rkaxj+zxk:rl (da)?, (0) (da)® (o>+§mk (da) jx (0).
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The heat kernel e ™3 of the above is given by Mehler’s formula (cf. [3]
section 4.2)

(7.36)

e (z,y) =

1 dot & itda (0)
(4mt)™ sinh itda (0)

X exp {— ! {(x —y) ,itda (0) coth (itda (0)) (z — y))} ¢ —te(ida(0))

4t
Next, using ([7.1]) we compute
(7.37) o—te(ida(0)) _ 72, [cosh (tA;) — ic(e;) ¢ (€j+m) sinh (£A;)] .
For I C {2,...,m} and wr = A\;c; (€j A €j4m), the commutation

[e(e1), ¢ (emt1) ¢ (wr)]

DN | =

c(er)clemsr) c(wr) =

shows that the only traceless terms in (7.37) are the constants. Hence,
Mehler’s formula ([7.36)) gives

tr eith (0,0) — itda (0) )

L et
(4mt)™ ¢ tanhitda (0)

1
_ v o L
(4m)™ \ 7=l tanht);
t

= — [H}”:l/\j (1 +2e7 2N 4 9e7 N )}

= " (Hgn:y\j) Z 9Z7 =27\

TENT

j 1
— -3 2Z7— —2tT.\
(4m)™ Z €

TENT

(7.38) = ug, (e—tsz’)

with uop as in (7.34) and the last line above following from an easy computa-
tion of Laplace transforms (see [25] section 4). Furthermore, differentiating

Mehler’s formula using ((7.16|) gives
(7.39) trDoe 00 (0,0) =0 =1ug, (se_tSQ)

since the right hand side of is an even distribution. From and
(7.39) we have that the evaluations of both sides of on e~ ge~ts’
are equal. Differentiating with respect to ¢ and setting ¢t = 1 gives that the
two sides of evaluate equally on ske_sz, Vk € Ng. The proposition
now follows from the density of this collection in S (Rj). O

We now complete the proof of Lemma [3.2]
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Proof of Lemma[3.4. We begin by writing
ol (2 Ly AWh—D
\/H hl—e hl—e

(7.40) - h;/dttr [f (\%) eit(A_\%)] e(th%—e).

Next, the expansion with ¢ (z) = f(x)e* @) combined with the
smoothness of u; on spt (f) C (—v/2v0, v21) gives

D . D N —
tr [f (\/E) e”(Aﬁ)] = PR IR fu (1)
j=0

n+1
(7.41) +RNH=M/2 0 (Z H<§>N ¢ (¢ - t)(
k=0

)

Finally, plugging (|7.41)) into (7.40) and using 0 (th%*‘j =14 O (h™) gives

via Fourier inversion

h; / ditr {f (\%) e“(k—%)} 0 (th%-e)

N
= pml (Z WI2f (N u (A)) +0 (pevemm1)
j=0

~o(")

as required. O

8. ASYMPTOTICS OF SPECTRAL INVARIANTS
In this section we prove theorem Theorem on the asymptotics of the

spectral invariants.

Proof of Theorem[1.3, To prove the local Weyl law , we choose

0 € O ((—T,T);[0,1]) such that 0 (z) =1 on (=T, T"), T' < T, 0 (£) >0
and 6 (¢) > 1 for |¢] < ¢ in Theorem [1.3] Choosing f (z) > 0 with f (0) = 1,
the trace expansion (1.7) with A = 0 now gives

%N (~ch,ch) (140 (VR)) < {f (\%) %9 (_}LDH =0 ()

proving ([1.5).



48 NIKHIL SAVALE

To prove the estimate ((1.6) on the eta invariant, we first use its invariance
under positive scaling (2.2)) and the formula (2.5) to write

er() - [ ool

(8.1) = / t— tr [e—hDQ] / t— r [De iD2].

Next, the equation 4.5 pg. 859 of [25] with r = % translates to the estimate

D .2

8.2 tr 6hD:| -0 h,mect ‘
7 [JE (h7me)
Plugging, (8.2)) into the first integral of (8.1) gives

D
8.3 =0l ") +tr E(—
o (d)
where

R e

E(x) = sign(x)erfc(|z]) = sign(x) - — o ds
VT Jja)

with the convention sign(0) = 0. The function F (x) above is rapidly decay-
ing with all derivatives, odd and smooth on R, \ 0. We may hence choose
functions f € C° (—v/2v,v210) , g € C2° (R<o) such that

f@x)+g(x) = E(z) forz <0.

Define the spectral measure My (N) = ZAespec(%) F)IA=XN). Tt is
h

clear that the expansion (|1.7)) to its first term may be written as
—_ _m_1
My (F101) ) =73 (£ N uo () +0 (172))

T

where 9% (x) = 0 (ﬁ) as before. Both sides above involving Schwartz

hl/2

functions in A, the remainder maybe replaced by O ( e

) One may then
integrate the equation to obtain

(8.4) / d)\/d)\’ 191 ()\—)\’) My ()

—h~m3 (/_ood)\f( )u (/\)+O(h1/2>>.

Next we observe

/O A (F0,) (A= N) = /0 dtf (t

—0o0 —00

(8.5) = 1 oq(XN)+O
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While the local Weyl law yields

N\
8.6 aNoms (\) O <> =0 (h™).
(5. [ axom, (x) ( = (h)
Substituting and into (8.4)) gives

0
FO)=h"m"2 A f (N ug(A) ) +0 (h™™).
p> ([ o) +omm)
AGSpec(\%)

This combined with

ir g (fﬁ) — b (g) + O ()

then gives

Kzoj E(\) =h"""3 </_(; dAE (\) ug ()\)> +0 (h™™)

AGSpec(%)

where the integral makes sense from the formula ([7.34]) for up. A similar
formula for

now gives

tr B <\%) =h ™2 (/_Z ANE () uo (A)) +0O (h™™).

Since E is odd and ug is even from ([7.34), the integral above is zero and

hence n, =tr E (%) = O (h™™) from 1} as required. O

8.1. Sharpness of the result. Here, we finally show that the result Theo-
rem |1.2|is sharp. The worst case example was already noted in [25] Section 5
for ny. To recall, we let Y be a complex manifold of dimension 2m with com-
plex structure J and a Riemannian metric g7 . Fix a positive, holomorphic,
Hermitian line bundle £ — Y. The curvature F© of the Chern connection is
thus a positive (1,1) form. Let X be the total space of the unit circle bundle
S1 - X 5 Y of £. The Chern connection gives a splitting of the tangent
bundle

(8.7) TX =TS'®r*TY

where T'S! is the vertical tangent space spanned by the generator e of the
S1 action. Define a metric g75" on TS! via He”gTSl = 1. A metric on X
can now be given using the splitting (8.7)) via

TX

1
gTX = gTS" @ e+ gty
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for any € > 0. A spin structure on Y corresponds to a holomorphic, Hermit-
ian square root K of the canonical line bundle Ky = K®2. Fixing such a spin
structure as well as the trivial spin structure on T'S! gives a spin structure
on X. Finally the one form a = e* € Q! (X) while the auxiliary is chosen
to be trivial L = C with the family of connections V" = d + %a. We now
have the required family of Dirac operators Dy, (1.2). One may check that
(X2m+1, a, g™, J) here gives a metric contact structure and hence the
assumption [1.1] is satisfied.

Denote by Agk D Q0P (XK ® L8%) — Q0P (X;K @ L) the Hodge
Laplacian acting on (0,p) forms on X. Its null-space is given by the co-
homology HP? (X;IC ® L'®k) of the tensor product via Hodge theory. Let
eﬁ’k denote the dimension of a each positive eigenspace with eigenvalue
%/ﬂ € Spect (Agk). The spectrum of Dy was now computed in Propo-

sition 5.2 of [25].

Proposition 8.1. The spectrum of Dy, is given by
(1) Type 1:

(8.8) A= (—1)ph(k+ (-2 —]11>

0 < p < m,k € Z, with multiplicity dimH? (X; K @ L5%).
(2) Type 2:

(—1)PHle £ \/(Qk +e(p—m)— 2 +1)2+4p%
2 b

(8.9) A=h

0<p<mkeZ Ly* € Spect (A’1> with multiplicity dﬁ’k =

O
bk LE o (—1)ped”,

p

As observed in [25] on choosing

. Ly + (AP
€< 1kn£ {2u € Spec (Aa—k>}

the eigenvalues of Type 2 are either positive or negative depending on the
sign appearing in (8.9). Hence the dimension of the kernel kj, of Dy, is now
given by the type 1 eigenvalues

(8.10)

fim i o pots e
ky, = ‘
0 otherwise.
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Now by a combination of Kodaira vanishing and Hirzebruch-Riemann-Roch
dim H* (XK@ L) = dim 1 (X;K @ £5F)
= X(X,K® L)
(8.11) = /X ch(K ® L2%)td(X)

for k > 0, where x(X, K ® L), ch(K ® LZ*) and td(X) denote Euler char-
acteristic, Chern character and Todd genus respectively. Hence
show that the kernel and hence the counting function are discontinuous of
order O (h™™) = kp, < N (—ch, ch) in this example. A similar discontinuity
of the eta invariant of O (h~"™) was proved in Theorem 5.3 of [25].

APPENDIX A. SOME SPECTRAL ESTIMATES

In this appendix we prove some important spectral estimates used in Sec-
tion [4] and Section [Bl

Let H be a separable Hilbert space. Let A : H — H be a bounded self-
adjoint operator. The resolvent set and the spectrum of A are defined to
be

R(A) = {Xe€CJA— )\ is invertible}
Spec(4A) = C\R(4).

Since A is self-adjoint, Spec(A) C R. We may now define the following
subsets of the spectrum

EssSpec (A) = {X € C|A — Al is not Fredholm}

DiscSpec (A) = Spec (A) \ EssSpec (A4).
We shall consider DiscSpec (A) above as a multiset with the multiplicity func-
tion m” : DiscSpec (A) — Ny defined by m4 (\) = dim ker (4). We may
then find a countable set of orthonormal eigenvectors vf,vé“,v?, ..., with
eigenvalues A\ < A2 < A{' < ... such that DiscSpec (A) = {A{, A8, ...} as
multisets. Now let [a, b] C R be a finite closed interval such that EssSpec (A)N
[a,b] =0 (i.e. A has discrete spectrum in [a,b]). Then

H[é,b] = @ ker (A — \)
AeSpec(A)N[a,bd]

is a finite dimensional vector subspace of H. We let Hfl K H—- H [‘2 5 C
H denote the orthogonal projection onto H[é b We denote by N[’;‘ b] the
dimension of H[‘2 o The operator p(A) : H — H may now be defined for

any function p € C? ([a,b]) by functional calculus.
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Lemma A.1. Letv € H and X € [a,b]. Assume there exists ¢ > 0 such that
A has discrete spectrum in [a — \/g,b+ \/e] and ||(A = N)v| < elv||. Then

(A1) Hnﬁz—\/é,bﬁ/é]v —UH < Vel and

(A.2) 1(p(A) = p (M) vl < 3Vellplloa (vl

for any Holder continuous function p € CO' ([a,b]).

Proof. We abbreviate I1 = Hf[‘;_ Veviye] Let Ho = H[f;_ Vriye] = HH

which by assumption is a finite dimensional vector space. Let HOL be the or-

thogonal complement of Hy. By assumption, Spec ((A — )\)2 Hl> N[—e,e] =
0

(). Hence by the mini-max principle for self-adjoint operators bounded from

below (cf. Lemma 4.21 in [I0]), we have e < (A — \)? L Hence
0
o —vf?e < (A= X) (v —o)|?
< A=) (o —0)[* + (A = X) Iof|* = [|(A = A) o]|* < 2 o]

since (A — \) (Ilv — v) and (A — A) IIv are orthogonal. This gives
(A.3) [Mv — o] < Vel

To prove (A.2)) first note that ||IT'v — v|| < /2 ||v||, for TI' = Hﬁ—ﬁ,A+ﬁ] -

by the same argument. We now have
1o (A) = p (M) vl < [[(p(A) = p (V) (T = v) || + [|(p (A) = p (M) IT'v
< 2velplicor ol + VElpllgor vl
O

Before stating the next lemma we need the following definition.

Definition A.2. Given 0 < € < 1, a set of vectors wy,ws,...,wy € H is
called an e-almost orthonormal set of eigenvectors (e-AOSE for short) of A
if

(1) |[fowy|f? - 1] < ¢ for all j

(2) [(wj,wg)| < e forall j#k

(3) (A — pj)w;|| < e for some pj € R, for all j.

Now we have another lemma.

Lemma A.3. Assume Hy C H has finite dimension M and is mapped
onto itself by A. Let wy,wo,...,wy € Hy be an e-AOSE of A for some

€< m Then there exist orthonormal wi,wh, ..., w)y,_n € Hy such that
‘ (A - M;) w;‘ < 4Me for some u;- € R, forall j. Furthermore (w;, w;§> =0

for each j, k.
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Proof. Tt follows from e < 2(M+1) that wi,ws, ..., wy are linearly indepen-

dent. Let W denote their span and W+ C Hj its orthogonal complement.
Let II,II+ be the orthogonal projections onto W, W+ and consider the op-
erator Ag = ITAITT : Wt — Wi, Let w),wh,...,w),_y € W be an
orthogonal basis of eigenvectors of Ag. Hence

HLAw; = u;w}
for some p; € R, for all j. Also
| (A, wie)| = [(wf, (A — ) wi )| <e.

vV < 4Me giving the result. ]

It then follows that ’

Now we prove another lemma.
Lemma A.4. Given N € N, let0 < & < (prpripmns
H be ane-AOSE for A. Assume that A has discrete spectrum in {a - b+ e’:“é] .
Then there exist orthonormal vectors wy,ws, ..., wy € H, which span the
same subspace of H as wy,wa,...,wy. Moreover ||wj —w;|| < /¢ and
(p (A) = p(15)) w5 < 3es lpllcon for 1 < j < N, and any Holder continu-
ous function p € C2* ([a, b]).

4
) . Letwi,wo,...,wN €

Proof. Again it follows easily that the vectors w;,1 < j < N, are linearly
independent. Let W C H be their span and choose an orthonormal basis e;,
1<j <N, for W. We write

N
w; = E m;g€x.
k=1

If we consider the matrix M = [myy], then assumptions 1 and 2 of Definition
are equivalent to |[M*M — I| < . Consider the polar decomposition
M = UP where U is unitary and P is a positive semi-definite Hermitian
matrix. We have |P*P —I| < ¢ and hence |P*P —I|| < Ne. Thus any
eigenvalue AP of P, being nonnegative, satisfies ‘)\P — 1’ < ¢ and we have
|P—1|] < Ne. Thus |M —U| = |[UP —-U| < Ne. If we now let U =

[ujr] and W, = SO, u;e, then the @, are clearly orthonormal and satisfy
|w; —w;|| < +/e. This last inequality along with assumption 3 of Definition

easily gives
_ 1
(A = py) w|| < ex.

Now Lemma gives
(A.4) 11w — |

(A.5) (o (A) = p (1)) wj]|

€ and

ool
-

<
< 365 pllcon -
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Next, let H' be another separable Hilbert space. Let U : H — H’ be
a bounded operator. Let B,D : H — H' and C : H — H be bounded
self-adjoint operators. Define A’ = UAU*: H — H', B =U*BU : H -+ H
,C'"=UCU*:H - H and D' =U*DU : H — H. In the next proposition
we assume that there exists 6 > 0 such that A, A’, B and B’ have discrete

spectrum in [a — 6,b+ 6]. We also abbreviate N4 = N[Z‘_é pro) a0 M4 =

Hﬁ‘k sp4s) and similarly define N4 NB NB 04 18 mb

Proposition A.5. Suppose there exists 0 < e < L™2048 with
L= 25{\\AH + A+ 1Bl + || B']| +IC|l + 1D

+NA+NA’+NB+NB’+ya|+\b\+6‘1+1},

such that

(1) [[(U*U = D)TA|| (JA| [|U]| + 1) < € and

(U= DB (IB][|U*]| +1) <&

(2) H(A’ B) HA’H <e and H(A—B’) HB’H <e

(3) [|(C"=D)II*| <& and ||(C — D) 1P| <.

Then we have

tr[Cp (A)] = tr[Dp (B)]] < e |||
for any p € C} ([a,b]).
Proof. Let (DiscSpec (A),m?) N = {NLAd, AL ), with N =
( >+2\p( D and p- (2) = 2@e@ e

_ 0,1 . _
then have p+,p~ € €& ([a,8]) with [p*llcos < lollen s I~ loos < lollor.
We further decompose C = CT +C~, D = DT 4+ D~ into their positive and
non-positive parts. Clearly

N[‘;‘b}, as multisets. Let p* (z) =

N

tr [C‘erJr Z pJr va7 ,C va]> .
=1

Next we consider w; = Uvg; € H ’. From assumption 1 we have
(4" = Aa,) | = [|(UAU* = Ao)) U || < ||@*U = D11 | 141 101 < e

Similar estimates give ’ijH2 - 1‘ < ¢, and |(wj,wy)| < € for j # k. Now

by Lemma |A.1l we have ||Ilw; —wj| < (25)2 with II = H[

a—V/2e,b+V/2e]’

Following this and using assumption 3 we have

(B = Aa)) wil| < | A'—Aaj)ijJrH (B — A') M| + [|(B — 4') (Tw; — ;)|
< e+evite+(20)% (|4 + 1Bl
< el < e [lwyll.
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Next define w? =118

{afsl%‘ ,b+sT16]

w;. By Lemma |A.1

1

(A.6) Jwh —w;| < €76 [yl
From here it follows immediately that w{,wS, .. w(}v form an £51-ASOE of
B. If welet Hy= HB | then by Lemma A 4] there exist orthonor-

[ —e16 b+te 16]
mal wy,ws, ..., wy € Hy which span the same subspace of Hy as the w?’s.
Furthermore
(A7) Jw) —w;|| < e

and (0% (B) = p* (%,)) W] < 8llpllor<72._From (A.6) and (A7) we

also have Hw] —wj|| < 3. From Lemma [A.3| there exist orthonormal
wh, wh, ..., wh, y with M = NB | , 7 such that (w},w;) = 0 and

a—e16 b+516]
(5=s)

5. Hence LemmalA.1 H (p+ (B) —p*t (,ué)) W

3||pllcr €756. We now have
N M—N
tr [D¥pT(B)] = Z:<ﬁj,D+p+ (B)w;) + Z (w}, DT p™ (B) w})
j=1 j=1
N M—N
> ZP+ a;) (Wj, D¥w;) + Z T (u5) (wj, DT w))
j=1
—3252 M || D] [[pl| ¢
N
> Z/ﬁ o)) (W;, D¥;) — 3e32 M || D|[|pll e
N
> Zf o;) (wj, DT w;) — 6512 M || D[ ||l

N
> 30 () (e va,) — 6510 (|| D]| + 1) ol cn

>t [CFpt (A)] - e [|p]la -
Reversing the roles of H and H' gives
tr [DFp* (B)] — tr [CFp* (A)]| < &% |pl]

Similar estimates with Ctp~ (A),C~p* (A) and C~p~ (A) give the result.
U

Finally, we now give a criterion implying the discreteness of spectrum for
pseudodifferential operators required by the preceding propositions in this
appendix.

<
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Proposition A.6. Let A € ¥ (R”; Cl) and I = [a,b] C R a closed interval
such that the I energy band
2‘14 = U Ef

el
1s bounded. Then for h < hg sufficiently small

FEssSpec (A) NI = (.

Proof. Let 0 (A) = a(z,§) € C* (R*) and ¥j(a) C Bg some open ball
of finite radius R around the origin. For A € I and (z,§) ¢ Bpg, we hence
have that a_1 := (a (x,€) — X\) "' exists. Let x € C° (—4R,4R) such that
X (x) =1 for x < 2R. Set ¢ (x) =1 — x (=) and define

A =Bl ) a (2,6 € vl (RC) .
Then since it has vanishing symbol, we have
(A=X A = (I=x(@O)") =hR e nw) (R C).

Next, we clearly have I 4+ hR is invertible for h < hg sufficiently small.
Also, x (|(z, &))" is trace class by [I6] Lemma 19.3.2. Hence if S :=
A_y(I+hR)™", then (A—\)S —1I is trace class. By a similar argument,
S (A — X)) — I is trace class. Hence by Proposition 19.1.14 of [16], A — X is
Fredholm. U
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