ASYMPTOTICS OF THE ETA INVARIANT
NIKHIL SAVALE

ABSTRACT. We prove an asymptotic bound on the eta invariant of a family of
coupled Dirac operators on an odd dimensional manifold. In the case when the
manifold is the unit circle bundle of a positive line bundle over a complex manifold,
we obtain precise formulas for the eta invariant.

1. INTRODUCTION

The eta invariant was introduced by Atiyah, Patodi and Singer in [1] as a correction
term to an index theorem for manifolds with boundary. Consider a first order, elliptic
and self-adjoint operator A on a compact manifold. Formally, the eta invariant n(A)
of this operator can be interpreted as its signature, or the difference between the
number of positive and the number of negative eigenvalues of A. In reality, since A
has infinitely many eigenvalues of each sign this needs to be defined via regularization
(see Section 2).

A key feature of the invariant 7(A), much like the signature of a matrix, is that
it is mot in general a continuous function of the operator A. In particular consider a
smooth one-parameter family of operators A;. The corresponding eta invariant n(A;)
is then in general a discontinuous function of the parameter ¢, making it difficult to
understand how it behaves as t varies. In this paper we shall investigate how the eta
invariant of such a one parameter family behaves asymptotically as the parameter
gets large.

More precisely, consider a compact, oriented Riemannian manifold (Y, g7¥) of odd
dimension n = 2m + 1, equipped with a spin structure. Let S be the corresponding
spin bundle on Y. Let L be a Hermitian line bundle on Y. Let Aj be a fixed unitary
connection on L and let a € Q'(Y;4R) be an imaginary one form on Y. This gives a
family A, = Ag+ra of unitary connections on L, with » € R being a real parameter .
Each connection in this family gives a coupled Dirac operator D, acting on sections
of S ® L. Our first result, regarding the asymptotics of the reduced eta invariant
7" =n(Da,), is the following.
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2013)/ ERC grant agreement No. 291060.
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Theorem 1.1. As r — o0, the reduced eta invariant satisfies the asymptotics
(1.1) 7 = o(rz).

It is an interesting question as to what extent the little o(r2) estimate of Theorem
1.1 can be improved.

In order to investigate this question we consider the eta invariant of such a family
in the case where Y is the total space of a circle bundle. In particular, we shall let
Y be the space of unit elements of a positive line bundle £ — X over a complex
manifold X. We shall further equip Y with an adiabatic family of metrics gZ¥ (see
Section 5). Under an appropriate choice of the family of connections, this gives the
corresponding eta invariant 77"°, with now an additional dependence on the adiabatic
parameter €. Letting A(X) denote the fl—genus of X, we now prove the following
more precise formula for the eta invariant (see theorem Theorem 5.3)

Theorem 1.2. The eta invariant n™° satisfies the asymptotics

m a+1 VjL%] a m—a
T =8 e 2 | e [Ac] T o,

as r — OQ.

From this formula we observe that "¢, in this case, exhibits jump discontinuities
at integer values of r + £*. Furthermore, the size of the jumps is growing at the rate
r"% as r — oo . Hence this calculation demonstrates that Theorem 1.1 cannot be
improved beyond an O(r%) estimate on the eta invariant.

The eta invariant is a non-local quantity. That is, it cannot be written as an
integral over the manifold of a canonical differential from obtained from the symbol
of the operator. This makes it difficult to compute the eta invariant explicitly. In the
final section of this paper we give an exact formula for the eta invariant ™, assuming
the value of the adiabatic parameter € to be small, using the adiabatic limit technique
of Bismut-Cheeger, Dai and Zhang [5, 9, 16]. We refer to Theorem 5.7 for the exact
formula arising from the computation. A striking feature of this formula is that
it expresses the eta invariant 7™° in purely topological terms on the base X. This
generalizes a similar known computation in dimension three of Nicolaescu [11].

An asymptotic result of the form Theorem 1.1 was used by Taubes in [13, 14|
in order to prove the Weinstein conjecture on the existence of Reeb orbits on three
dimensional contact manifolds. Our results improve the estimates obtained therein
and could lead to further information regarding Reeb orbits. The three dimensional
case has been further explored, under certain hypotheses, by Tsai in [15].

In another direction, the asymptotics considered in this paper are closely related to
the asymptotic results of Bismut-Vasserot from [4, 7]. In [7] the authors considered
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the Dolbeault Laplacian Agk acting on p-forms, with values in a tensor power L&, of
the positive line bundle £ considered here earlier. They then derived an asymptotic
formula for the holomorphic torsion of A%k in the limit as £ — oo. The asymptotics
of the heat trace of Ag—k were used in [4] to prove Demailly’s asymptotic Morse
inequalities. This Laplacian will arise in our computations in Section 5 and it would
be interesting to explore this connection further.

The paper is organized as follows. In Section 2 we begin with preliminary notations
and facts used in the paper. In Section 3 we derive asymptotics of heat traces required
in the proof of Theorem 1.1. In Section 4 we derive the asymptotics of the spectral
measure of a rescaled Dirac operator and prove Theorem 1.1. In Section 5 we consider
the eta invariant of the circle bundle. There we prove Theorem 5.3 and give the exact
computation for the eta invariant of Theorem 5.7.

2. PRELIMINARIES

Consider a compact, oriented, Riemannian manifold (Y, ¢”Y) of odd dimension n
equipped with a spin structure. Let S be the corresponding spin bundle on Y. Let
VY denote the Levi-Civita connection on 7Y. This lifts to the spin connection
V< on the spin bundle S. We denote the Clifford multiplication endomorphism by
c:T*Y — S ® S* satisfying

c(a)®* = —|a|?, Va € T*Y.

Let L be a Hermitian line bundle on Y. Let Aj be a fixed unitary connection on L
and let @ € Q'(Y;4R) be an imaginary 1-form on Y. This gives a family A, = Ay+ra
of unitary connections on L. We denote by V' = V*® 1+ 1® A, the tensor product
connection on S ® L. Each such connection defines a coupled Dirac operator

Dy, =coV":C®(Y;S®L) = C®(Y;S®L).

Each Dirac operator D4, is elliptic and self-adjoint. It hence possesses a discrete
spectrum of eigenvalues. Define the eta function of D4, by the formula

1 fap
(2.1)  n(Da,,s) = sign(M)|A]™° = =55 te
,\; F(T) /o

AeSpec(Da,.)

"t (DA,,,e_tDz‘v) dt.

Here, and in the remainder of the paper, we use the convention that Spec(D4,)
denotes a multiset with each eigenvalue of D, being counted with its multiplicity.
The above series converges for Re(s) > n. It was shown in [1, 2| that the eta function
possesses a meromorphic continuation to the entire complex s-plane and has no
pole at zero. Its value at zero is defined to be the eta invariant of the operator
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n(Da,) = n(Da,,0). By including the zero eigenvalue in (2.1), with an appropriate
convention, we may define a variant known as the reduced eta invariant by

A(Da,) =5 {dim ker(Dy,) +9(Da)}

We shall henceforth denote the reduced eta invariant by the shorthand 7" = 77(Dy,.),
and would like to investigate its asymptotics for large r. Our results will apply
equally well to the unreduced version 7" = n(Da, ).

Let L} denote the Schwartz kernel of the operator DATe’tDir on the product Y xY.
Denote by tr (L] (z,xz)) the pointwise trace of L} along the diagonal. We may now
analogously define the function

(2.2) (D s, 7) :@ /0 T (L7 (2, 2) d.

In [6] theorem 2.6, the authors showed that for Re(s) > —2, the function n(Da,, s, x)
is holomorphic in s and smooth in z. From (2.2) it is clear that this is equivalent to

(2.3) tr(L7) =O(t2), ast — 0.

3. ASYMPTOTICS OF THE HEAT KERNEL

In order to control the eta invariant we shall need to find the asymptotics for the
heat traces of D,,. We begin with an estimate on its heat kernel. We denote by dy
the Riemannian volume form on (Y, g). All kernels will be calculated with respect to
dy in what follows. Let i, denote the injectivity radius of Y. Let p(x,y) denote the
geodesic distance function between two given points z,y € Y. Define a function on
Y xY by the following formula

_plzy)?
e it

(4mt)s

Let H'(z,y) denote the kernel of e "4 for ¢ > 0. We now have the following
estimate.

ht(xv y) =

Proposition 3.1. There exist positive constants ci,co independent of r such that
(3.1) [H (z,y)] < crhae(@, y)e™™
forallz,y € Yt >0 andr > 1.

Proof. Let V*° denote the spin connection on S and V' = V@1 +1® A, be
the tensor product connection on S ® L. First observe that for fixed y the section
si(.) = H{(.,y) satisfies the heat equation 0;s; = —D% s;. The Weitzenbock formula
gives
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D% =V"V" +c(Fa,) + re(da) + E

4
where Fy,, k denote the curvature of Ay and the scalar curvature of g respectively.
Using the Weitzenbock formula and the heat equation 0;s; = —Dirst, we now see

that the function f; = |s;| obeys the inequality

(3.2) O fi < —=d*df, + Cl(r + 1)ft

for some constant ¢; > 0 independent of r. Hence the function f9 = e~ 0+t
satisfies the inequality

(3.3) Of < —drdf).

Let ®,(x,y) denote the heat kernel e7*?"? for the Laplace operator acting on functions
on Y. Now since |H](z,y)| and ®;(z,y) have the same asymptotics as ¢ — 0, an
application of the maximum principle for the heat equation gives

(3-4) f? < (I)t(xvy)
for all time ¢t > 0. Next we use the estimate
(3.5) Dy(z,y) < cze'hor(x,y), VYt >0,

on the heat kernel. Equation (3.5) follows for large time since the heat kernel is
bounded

Oy(x,y) <c¢y for Vr,yeYand t>1.

For small time, (3.5) follows from the heat kernel estimate of [8]. The proposition
now follows from (3.4) and (3.5). O

Following this we shall prove a more refined estimate on the heat kernel comparing
it with Mehler’s kernel. We first recall the definition of the Mehler’s kernel. Define
an antisymmetric endomorphism A of TY via

(3.6) ida(X,Y) = g(X,AY), VX, Y € TY.

Let x,y be two points of Y such that p(z,y) < i, Let v € T,Y such that x = exp, v.
Define a function on a geodesic neighborhood of the diagonal in Y x Y by

r . 1 1 TtAy 1
(3.7)  mi(x,y) = (im0)? det 2 (m) exp {—4—tg(v, rtA, coth(rtAy)v)}

Now let m; and 7y denote the projections onto the two factors of Y x Y and define a
section e t4r of 7 (S® L) @ m3(S ® L)*, in a geodesic neighborhood of the diagonal.
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—tFa, 7tC(FAT

This restricts to e la=¢ ) at the diagonal A and is parallel along geodesics
(expy, (y),y). Consider a smooth cutoff function satisfying

0 if |z| >
3.8 = -9
(3:8) x(x) {1 if o] <l

Mehler’s kernel is now defined via

(3.9) M (z,y) = x(p(x,y))m; (z, y)e .

Proposition 3.2. There exist positive constants ¢; and co independent of r such that
1

(3.10) \H] (z,y) — M (x,y)| < crhg(x,y)tze™,

forall z,y € Yt >0 and r > 1.

Proof. First fix a point y and a set of geodesic coordinates centered at y. Now choose
a basis s, for S, and a basis [ for L,. Parallel transport this basis along geodesics
using the connections V¥, A, to obtain trivializations s,(z) and [(z) of S and L
respectively near y. Now define local orthonormal sections of (S ® L) ® (S ® L); via

(3.11) tap = Sa() ® () ® 5 @ 1"

The connection V" can be expressed in this frame and these coordinates as

(3.12) Vi=0;+ A} + T,

where each A7 is a Christoffel symbol of A, (or dim(S® L), copies of it) and each I';
is a Christoffel symbol of the spin connection on S. Since the section [(z) is obtained
via parallel transport along geodesics, the connection coefficient A} maybe written
in terms of the curvature F]; of A" via

(3.13) Axte) = [ dplpw P (o).

with the Finstein summation convention being used. The dependence of the cur-
vature coefficients I/, on the parameter r is seen to be linear Fj; = Fg + r(da)?j
despite the fact that they are expressed in the r dependent frame [. This is because
a gauge transformation from an r independent frame into [ changes the curvature
coefficient by conjugation. Since L is a line bundle this is conjugation by a func-
tion and hence does not change the coefficient. Next, using the Taylor expansion
(da)i; = (da)y;(0) + z¥a;jx, we see that the connection V" has the form
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Here A);, = fol dp(pFy(px)), Ak = [ dp(paiji(pzr)) and T; are all independent of r.
Now using Weitzenbock’s formula, we note that the operator DEL. has the form

(3.15)
D} =H+E, with
(3.16)
H = =07 — r(da);(0)270; — %Qx:v] (Z(da)ik(O)(da)jk(0)> +c(Fa,) and
(3.17) k

E = Pijklkalai@j + Qijkmcjxk&- + R;0; + Sijkr%ixjxk + Tira' + U.

Here P,Q, R, S, T and U are each smooth endomorphisms of S ® L independent of
r. Since (9, + D% )Hy = 0 we now have

(3.18) (8, + D3) (Hf — M]) = — (0, + H) M} — EM].

Note that the right hand side of (3.18) is zero for p(x,y) > i, since M] is supported
in a geodesic neighborhood of the diagonal, by (3.9). From the defining equations
(3.7) and (3.9), Mehler’s kernel is given in geodesic coordinates via

(3.19)

—tFa,

Mtr(x7 y) :X(p(l’, y))m:(sc, y)e
(3.20)

1 1 rtA 1
= — _det? [ ——Y — = {(z,7tA, coth(rtA ~te(Fay),
x(|x|) n0) e <Sinh7“tAy> exp{ m (x,rtA, coth(r y)x>} e

We now differentiate (3.20) using (3.15)-(3.17) to compute the right hand side of
(3.18). By Mehler’s formula, see section 4.2 in [3], we have (9,+H) {m] (z,y)e F4r } =

0 for d(z,y) < %" Differentiating the rest, we observe that the right hand side of
(3.18) has the form of a finite sum

(3.21) — (O +H)M;, — EM] = Z t*r?2! P g1 (2)grar(rt) M], where
(kyd, )

e cach (k,d,I) € Z x Ny x Nj and satisfies the inequality

1l 1
3.22 d<k+ — 4+ —
(3.22) <k+ 5+ 5



8 NIKHIL SAVALE

e cach Py 4 appearing in (3.21) denotes a smooth endomorphism of S ® L,
independent of r, and supported on p(z,y) < i,

e and gy 47 in (3.21) denote functions, coming from the matrix entries of rt A, coth(rtA,),
each satisfying an exponential bound

(3.23) |gr.a.1(x)| < c1e2”.

Now since the kernels H] and M both have the same asymptotics as t — 0,
Duhamel’s principle, using (3.18), gives

t
(3.24) HY - M = / =95, { (9, + H)MT — EM"} ds.

0
Now we substitute (3.21) into (3.24). Following this substitution, we use the heat
kernel bound (3.1), (3.23) and the bound

(325) |MtT($7 y)| < C36€47’tht(‘r7 y)

for constants c3 and ¢, independent of r. These bounds can be used to estimate the
right hand side of (3.24) by a sum of finitely many terms of the form

t
(3.26) 05606”/ ds </ ht_s(z,x)skrdp(x,y)IhS(x,y)dx) :
0 Y

with each multi-index (k,d, I) above satisfying (3.22). Finally, (3.22) and the in-
equalities

(3.27) pla,y) hu(w,y) < Ct2Mlhy(,y),
t
(3.28) / s 2ds (/ dxhz(t_s)(z,:v)hgs(x,y)) < Cthg(z,y),
0 Y
(see Section A for a proof of (3.28)) give (3.10). O

3.1. Bound on the trace of DAre_tDir. We now turn to bound the pointwise
tr(D4 e *P4-). To this end, first consider the expansion for the heat kernel H (z, )
given by

(329)  H(x,y) ~ x(p(x,y))h(z,y) (bh(z,y) + b5 (z, y)t + b(z, )t +...).

Here the coefficients b}, are smooth sections defined on the neighborhood p(z,y) < i,
of the diagonal in Y x Y. They are generated by solving a recursive system of
transport equations along geodesics as in chapter 7 of [12]. The kernel L (z,y) of

DAre_tDzlr is simply L} = Dy, H]. It hence has an expansion given by
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(3.30)

Lie) ~tulo) (o) + ¢ (<52 ) {tiGe) + ol + o) + )

+ he(z,y) {Da,by(z,y) + Da.bi(z,y)t + Da by(z,y)t* +...}.

By (3.8), ¢(dx) is an endomorphism of the spin bundle supported in the region
where %9 < p(x,y) < i, By (2.3) and (3.30), the pointwise trace tr(Dy e P4 ) along
the diagonal has an expansion starting with a leading term of order t2. Since the
restriction to the diagonal of the ¢(dx) + ¢ (—%) term in (3.30) is zero, this implies
that

1
(3.31) tr (Dy,bp(x,2)) =0, fork < n—21— :

at each point on the diagonal. To bound the trace of L] we will need a lemma giving
a schematic form for the coefficients b} (x,y). We again work in geodesic coordinates
centered at a point y € Y. Each heat kernel coefficient can be written in terms of the
frame (3.11) as

(3.32) b, = Z faprtas
ap

for some functions f7;,.

Lemma 3.3. Each function [z, appearing in (3.32) can be written as a finite sum

(3.33) 55719 = Z rdxlfdJ
(d,1)

for some functions fu 1, independent of r. Moreover, each multi-index (d,I) € Nox Ny
appearing in (3.33) satisfies the inequality

1
(3.34) d <kt S|l

Proof. The heat kernel coefficients b} (x,y) are given, as in chapter 7 of [12], by the
recursion

(335) by(z,y) = Y g " (@)tea,

1
(3.36) bp(zr,y) = — /pk_lgl/‘l(px)Dirbk_l(px)dp, for k>1,
0
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where g denotes the determinant of the metric on Y. Hence bf is clearly seen to be
of the form (3.33). Equations (3.15)-(3.17) and (3.36) imply that b}, has the form
(3.33) assuming it to be true for b, ;. The lemma now follows by induction on k. [

Following this we are ready to bound the pointwise trace tr(Da e *P4-). The
above lemma will play an important role in the proposition below.

Proposition 3.4. There exist constants ¢y, co, independent of r, such that the point-
2
wise trace tr(Da, e "Par) satisfies the estimate

(3.37) [tr(Da, e P4 )||co < crre™,
forallt >0,r > 1.

Proof. Consider the remainder obtained after subtracting the first ”T_l terms of the
kernel expansion (3.30)

n—1

(3.38) L2 = L7 — Dy (xhe(B3(2,y) + ... + t"T’lbt%l)).
From (3.30) and (3.31) we see that

n—1
(3.39) tr(L)) =tr(L; 7 ),

n—1 n—1 n—1
and it hence suffices to bound L; 2 . We clearly have Ly 2 = Dy H," ? with

n—1
H,” 7 being the analogous remainder in the kernel expansion for the heat trace

(3.40) H™F = H] = Xho(b(a,9) + -+ 17T B,
Let us denote
(3.41) ST = b)),
The result of applying the heat operator to (3.38) is then
(3.42)
0+ DAL ) =@ + R, where
(3.43)
Q7 = —X(0,+ D% )Da S and
(3.44)

r n—1

BT == D3 {e@0s)™ } = Da {e0Da, 507} = {eldpd 507}
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n—1

In other words, R; ? is the sum of the terms obtained when some derivative differ-
n—1

entiates the cutoff function y in (3.38). Now since L;” > — 0 as t — 0, Duhamel’s
principle applied to (3.42) gives

r n—1 r n—1 n—1

(3.45) L7 =E; % +F" 7 where

n—1 t n—1
(3.46) E;T(z,y) :/ ds (/ dz H[_S(z,:v)Qg’Q(x,y)> and
0 Y

n—1 t =l
(3.47) E" 7 (2,y) :/0 ds (/Y dx H (z,2)Rs * (x,y))

n—1
We first bound F," 2 , again working in geodesic coordinates and the frame (3.11).
Using (3.14) and the fact that Clifford multiplication is parallel, the Dirac operator
is seen to be of the form

where A;, B; and C' are endomorphisms of S® L independent of r. Using (3.32),(3.41),(3.44)
and (3.48) we may write

(3.49) R? —ht Z t* (Z o aBk aﬂ)

in the frame (3.11) for some coefficient functions f;’ﬁo. By (3.33) each f;g can be
written as a finite sum

(3.50) oy = Z rlal £

for some functions fc(l”] independent of r. Since dx = 0 in a neighborhood of the
diagonal, (3.44) implies each f;g vanishes to infinite order near the diagonal. Hence
by (3.34) we may assume that each multi-index (d, I) in (3.50) satisfies d < k+3|I|+1.
We now substitute (3.49) and (3.50) in (3.47). Using this substitution along with
the heat kernel bound (3.1), we may bound \Ftr’%(y, y)| by a sum of terms of the
form (3.26) each satisfying d < k + 3|I| 4+ 1. The inequalities (3.27)-(3.28) then give
the estimate

r, =L n
(3.51) |F, % (y,y)] < cirze®™,
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Next we estimate E . Following (3.41) and using the cancellations in the kernel
expansion, resulting from the transport equation, we see that
r n—1 TvL_l
(3.52) Q% = —x(0+ D3} )DaS, ?
n— d
(3.53) =t {—Df’;rb’;_l +e (2:) D2 b } .
2

Equation (3.46) now gives

(3.54) Ef’%l(y,y)Z/Otd8</ydwﬂf_s(y, )xhs(z,y)s” { D, Vs (2, y)

o(3) o)

We denote by U:’ * and V = the kernels obtained by replacing H] , in (3.54) by
(H]_, — M]_,) and M] _ respectively

(3.55)

n—1

0 e = [ tds< [ do () = ME () o )s” { D3 Vs (2,9)

vo(52) DA b y>}>
(3.56)

Vf’n;l(y,y)—/Otd5</ydeZ"_s(y, ) xhs(2,y)s” { Dy, Vs (7,y)

ve(52) Ao y>})

r n—1 — l

(3.57) BV =u +Vt

It is clear that

n—1
We first bound U, 2 , again working in geodesic coordinates and the frame (3.11).
In terms of the orthonormal frame we may write

(358) n 1 — Z fr 1t0¢/37 DA n 1= Z frﬁztaﬁ
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for some coefficient functions f;g and f;j Using (3.33) and (3.48) these can be
expressed as finite sums

(3.59) frag= > av'fi,.
(d,1)651

(3.60) fag=Y_ a'r'fi,,
(d,1)eS2

where fc}vl, fil are functions independent of r and S, S are finite subsets of Ny x Nj.
Moreover, (3.34) now gives

(3.61)

1
+ 51+ V(d,I) € S; and

3
2
1

1 1
(3.62) d < ”T + 5+ V(d,I) € S,.

Again we substitute (3.58)-(3.60) into (3.55). This substitution, the bound (3.10),
along with the inequalities (3.27)-(3.28) and (3.59)-(3.60) now give the estimate

(3.63) UM T (y, )| < cqrfec.

. r,2=1 . . .
Next we estimate V,” ? . First we use a Taylor expansion to write

(3.64) fc},l = gé,l + Iih}i,[,z‘ and fdQ,I = 92,1 + xihﬁ,z,i
where each of g}L ; and gfL ; is an even function in these coordinates. We now let
- n—1 1 3
(3.65) S1=4(d,I) € Si|d= + -+ <0,
2 2 2
_ n—1 1
(3.66) Sy =4(d, 1) € Syld = 5 +§|I\+1 :
and define
(3.67) ;é = Z SUIrdgclw ;51 = Z xjrdgclu + Z 'l xlhdlz)a
d 1)651 (d,[)eSl\Sl d 1)651
(368) a/g == Z xlrd93[7 ;,82 Z a’,’l’]"dgil —+ Z x T xihd7]7i) .
(d,I1)ES> (d,1)€S2\So (d,1)eS2

Clearly, by (3.59)-(3.60) and (3.64)-(3.68),
RS ad R R T
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Next we claim that the contribution of fr1 to V T is zero. To see this, first
observe that (d,I) € S implies |I| is odd by (3.65). Hence fzﬁl is an odd function,
using (3.67) and the fact that g ; is even. Hence the integral corresponding to fgﬁl in
(3.56) is zero, being the integral of an odd function in these coordinates. Similarly,
we claim that the contribution of fg; to Vf’%l is zero. This time, (d,I) € S, implies
1] is even by (3.66). Hence f7; is an even function using (3.68). However the
integral corresponding to ];rﬁz in (3.56) is still the integral of an odd function in these
coordinates, because of the ¢ (22) term in (3.56).

n—1
Following this the contribution of faﬁ to V"2 (y,y) can be bounded by a finite
sum of terms of the form

- —1 1
ci1€é 62”/ ds </ hg(t_5)<y,l’)5;po(x7y)lhs(x7y>dx) ) I — ! 2 + E‘I’ + 1
0 Y

Again using the inequalities (3.27)-(3.28), and estimating the contribution of 2 wp i
similar fashion, gives the estimate

(3.69) Ve T (y,9)| < csrze™,
Following (3.63), (3.69) and (3.57) we obtain the estimate

n=1 "
(3.70) 1E,? (y,y)] < errze™™,

for constants ¢; and cg independent of r. Equations (3.45), (3.51) and (3.70) then
give

(3.71) L7 (y,y)] < corze™,

for constants c¢g and c¢j¢ independent of . The proposition now follows from (3.39)
and (3.71). O

4. ASYMPTOTICS OF THE SPECTRAL MEASURE

We now consider the rescaled operator D, = \/L;DAT. Here we shall find the
asymptotics of its spectral measure using the heat trace estimates of the previous
section. We first consider the heat traces of D,.

Theorem 4.1. For anyt > 0,
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. _n —tD?2 1 A
(4.1) Tlggor 2tr(e”Pr) = m [y det 2 (taﬁh—;‘) dy  and
(4.2) lim " 2¢r (Dre_tD£> = 0,
r—00

where A is as defined by (3.6). The convergences above are uniform in compact
intervals of t € R.g, R>g respectively.

Proof. If H] denotes the kernel of e *P% it is clear that H] = H: after rescaling.
Hence proposition 3.2 gives the estimate

(4.3) |H, — M:| < cihstzr~ze%

for some constants ¢; ¢, independent of 7. Hence tr(e™*2%) —tr(M.) = O(r"z ), Vi >
0. It now remains to compute tr(M:) in order to prove (4.1). By (3.9), the highest
order part in 7 of tr(M¢) is given by

1 ! tA
- [ detz [ ——2— ) tr (el dy.
(47rt)2/y ¢ (sinhtAy> t(e )y

Since A is an antisymmetric endomorphism it maybe diagonalized to give an or-
thonormal basis e, ey, fi,...,en, frn of T,Y with eigenvalues 0, £A,..., £\, (A >
0) respectively. We hence have da =i (Ajey A fi + ...+ Apem A fin) and

(4.4) e~telda) — H (cosh(tAy) — dey fr sinh(tAy)) .
k=1
Now if I € {2,...,m}, we have the commutation

e1f1 (H%fk) = % [617f1 <H ekfk>] :
il icl

This shows that the only traceless terms in the expansion of (4.4) are the constants
and hence tr (e7")) = cosh(tA,). Equation (4.1) now follows. For the second part
of the theorem note that proposition 3.4 gives the estimate

(4.5) |tr(D,e~P7)

for uniform constants ¢, ¢, independent of . From this equation, (4.2) follows. The
uniformity of the limits (4.1),(4.2) is also an easy consequence of the estimates (4.3)
and (4.5). O

n—1
<cirz et

The above theorem also follows from the rescaling argument as described in section
c) of [7].
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Next we let N,.(o) denote the number of eigenvalues of D, in the interval [—o, 0.
We also use the notation (z) = /1 + |z|? for any z € R?. We shall need the following

estimates.

Proposition 4.2. Let ¢ € § be a Schwartz function. Then we have the estimates

(4.6) N,(0)
(4.7) tro(D,)

< clr%(l—i-aQ)%
< art [[()" ¢l g

for constants ¢y, co independent of r. In case the function ¢ is odd, we have

(4.8) lim r~2tro(D,) = 0.

r—00

Proof. We begin with
N,(0)e " < tr(eP?) = tr(He) < 1 (;—")fem

using proposition 3.1. ThlS gives N,(0) < ¢; (1) el2™D@ 4D from which(4.6) fol-

lows on substituting ¢ = UQH.
For the second part we estimate

tro(D,)] = | Y > p(N)

k=—o00 AeSpec(D,)N[k,k+1)

<)\>n+2
———z lp(V)]
k—zoo /\GSpeC(;ﬂ[k k+1) <k + 1> -

oo

n+2 NT’ k
< oll@ o). ( _Z ﬁ)

> 1
co (; (k+1>2> '

Finally to prove the third part note that (4.8) is true for the family of odd Schwartz
functions ¢; = e~ on account of (4.2). Since the convergence in (4.2) is uniform
it may be differentiated to obtain (4.8) for the odd functions ¢ = 22"'e=*" m € Ny.

Now (4.7) along with the fact that the span of {$2m+16_m2} is dense in the space of
odd Schwartz functions gives (4.8). O

(@) T+ g
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Now consider the rescaled spectral measure of D? given by

e =172 Z Oyz.

AeSpec(Dy)

Let CJ (R>q) denote the space of bounded, continuous functions on R vanishing
at oo. Consider the Banach space B = ()" >C9 (Rso). By a measure here we shall
mean an element of the dual space B'. By (4.7) p, is a family of uniformly bounded
measures in B’. We now derive a formula for the limit of the measures pu, as r — oc.
Expecting the Laplace transform of the limit measure to be given by the integral in
(4.1), we find the Laplace inverse of its integrand. Let 2n, 4+ 1 be the dimension of
the kernel of A, at any point y € Y and m,, = w Let u(s) be the Heaviside
step function and Z (k) denote the number of non-zero components of a multi-index
k € Ng". We then compute

L et (A tnyéH A
n e - n
(4rt)2 tanhtA (47)2 fvie? tanh(tAY)
1
t—'fly—*
= (ZlT); H )\g:(l + 26_2t)\i + 26_4t/\i 4 .. )
AY>0
_ t_ny_f H \Y Z 9Z(k) ,—2tk:\
(4r) AY>0 keNg'Y
(H}é’ o)‘2{/>
= Wﬁs—)t Sny_% * Z 2Z(k)5(8 — 2k - )\)
(M=o V)
= Wﬁm 3" 27Wu(s — 2k A)(s — 2k - N)™ 3

77Ly
keNg

Motivated by this pointwise calculation on Y we define the measure

[hoso A 1
T % Z 2720y (s — 2k - N)(s — 2k - \)™ 2
T) 2

keNg'Y
We now have the following proposition.

Proposition 4.3. Fach (Y, is a measure in B' satisfying ||p2| 5 < C for some

uniform constant C independent of y. Furthermore, the family of measures p¥, € B’
15 weakly continuous in y.
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Proof. For ¢ € B we estimate

()] = % S 27 (/“ ¢<s><s_zk.A>ny—éds)

keNg'Y FA

< —<H(§;;f> lells | 3 ([ 1782 6= 2 ayias)

keNg'Y i
= ——-~z ¥ S
(27T) 2 B 0 <S + 2]€ . A>ny+my+2+%

keNgY
(M=o ¥) | * 5}
< 22 ) L / s
(2m)2 ? ke% 2k - N2 \Jo (s)
0

1
Clells | TT A > P ——
AY>0 keNg'V (2k - A)

(4.9)

IN

Now if sup,cy [|A,]| = a then each A} < a. If Ni denotes the cardinality of the

set Sy = {k € NJ[2k - A < R} we have the bound Np < C(R+a)™ (HA%’>0 Ag)
for C' depending only n. This is obtained on observing that the union of the m,-

parallelotope’s based at points of Sk can be covered by the appropriately large ball.
Hence we may estimate (4.9) further by

1
Clels | TTAN ) | X ——
AY>0 keN;"y <2k')‘> vz
Ny
< Clels | [T N (Z m)
AV>0 e (072
[+a)™
< Cillells (Z %)
S\ <l> vz
(4.10) s Cllelg-

Now we prove the second part of the proposition. By (4.10) each p¥ lies in B’ and
we need to show that uY (¢) is a continuous function of y for every ¢ € B. First
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note that

1 1 tA
4]_1 Y —ts = — d t 2 _ Ty
(4.11) Hao(e) (47t)2 ¢ (sinh tAy>

by construction. Hence p¥ (e7°) is a continuous function of y. By differentiating
(4.11) further we obtain that Y (s™e™*) is a continuous function of y for each m € N.
The result now follows on knowing that ||% |5 is uniformly bounded in y and the
span of s™e™* is dense in B. O

Next we define the measure j., via

foo(p) = /Yufio(@dy-

By proposition 4.3, we have that j., is a well defined element of 5.
Proposition 4.4. We have the weak convergence p, — i in B'.

Proof. By (4.1) we have that u,.(e™*) — pus(e™™) and since this limit is uni-
form on compact intervals of time it may be differentiated to obtain p,.(s"e™%) —
Uoo(s™e),Vm € Ny. Weak convergence again follows on knowing that ||u,||s is
uniformly bounded in r and the span of s™e™% is dense in B. O

Finally, we shall need the following information about the limit measure.

Proposition 4.5. Let ¢ € B, 0 < ¢ < 1 be such that supp(¢) C [0,¢], 0 < e < 1.
Then we have

[NIES

(4.12) [oo(p) < Ce

for some constant C' independent of v, €.
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Proof. We estimate

(H)\y>0 z)

)l = o | 2 ([ el - 2k tds
(4m)2 - 2%\
keNy ¥

< ol TN > (/ ¢(u+2k-A)u”y%du>
A7>0 kengy N0

< eI X (/ U”y‘idu)>
AY>0 2k-A<e 0
o) e

S C2 )\z €
AY>0 ny—}-%

< 03e”y+%(e—l—a)my

S 646%.

For a constant ¢4 independent of y. The proposition now follows on integration over
Y. O

We are now ready to give the proof of Theorem 1.1 below.

Proof of Theorem 1.1. Since the eta invariant is unchanged under rescaling it suffices
to consider 77(D,). We then write

n(D,) = =< dim ker (D / _tD2> dt
1 / 1
_ - —tD?
(4.13) - 3 / —tr (DretP?) dt + v B(D,)
0

Here E(z) = sign(x)erfe(|z|) = sign(x f f:C' ~%"ds with the convention sign(0) =
1. The first summand of (4.13) is 0(7’2) on account of the uniform convergence in
(4.2). To bound the second term we fix 0 < ¢ < 1 and define Schwartz functions
©1, 2 € S satisfying.

) 1 odd, ¢y even
)—1<(p1<1 0< ¢, <1

) ¢1(x) = Ex) for z ¢ [5,]
) =1

(
supp(pz) C =€, €],pa(2)

(1
(2
(3
(4
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Since (s, is even we may also assume po(x) = @go(z?). We then have
EeE(D,) < 1 (wE(D,) — troy(D,)] + [trg (D))
8 (28, (5) + lraD))) by 3)
rTE (2tra(Dy) + ltron(D)])  (by 4)
= 2:(2) + 172 [trpu(Dy))|
2[r(#2) = oo (P2)] + 2 oo (@2)] + 77 [tr o (D)

1
CEL,

IN

IN

VARVAN

for r sufficiently large by (4.8), (4.12) and the weak convergence p, — fis.

5. ETA INVARIANT OF A CIRCLE BUNDLE

In this section we consider the eta invariant in a specialized case. In particular, we
let Y to be the total space of principal circle bundle S* — Y?"+1 5 X2™ gyer a base
of even dimension 2m = n — 1. We assume that X is oriented and equipped with a
metric g7% and a spin structure. Let T'S' = TVY C TY denote the subbundle of
TY consisting of the vertical tangent vectors. Let T77Y C TY be another subbundle
corresponding to a connection on the fibration and hence giving an invariant splitting

(5.1) TY =TVY & T"Y
of the tangent bundle. The projection 7 gives an identification THY = #*TX.

Consider the trivializing section of T'S* given by e, = 2(e".y)l;=o € T,S", the

infinitesimal generator of the S! action. Let g7 be the metric on T'S" such that
le]l ;rs1 = 1. We now consider the adiabatic family of metrics

(5.2) g =g @ nrg"™
on Y asin [5].

Let VIV VX denote the Levi-Civita connections of g7¥, g7% respectively. The
connection VTYE need not preserve the splitting (5.1). Let pTS" pH denote the
projections of TY onto T'S', T"Y respectively. Define a connection on T'S' via
VTSt = pT8'yTYe - As shown in section 4 of [5], the connection V75" is independent
of . In the case of circle bundles this is easily checked by showing that e is Vst

-parallel via
<VT51 > = <V5Y’Ee,e>

1
(5.3) = §U<e, e)=0, YUeTY.
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Define the second connection V on TY to be V = V5" @ 7*VTX. The connection
V does preserve the splitting of T'X but need not be torsion free. Let T denote the
torsion tensor of V and define the difference tensor

SR v
Since VT is torsion free, for tangent vectors U, V,W € T'Y we have
SEU)W — S5(VU = =T(U, V).
Since both V¢ V are compatible with ¢g7¥', we also have
(S* OV, W) +(V.S*(U)W) =0

where () = g2V The last two equations give
G4) SOV = S [(TV,W),0) ~ (T(W,0), V) ~ (T, V), W)].

Next we let 7Y = ¢gI'Y, VIV = VI¥! and S = VY — V be the metric, Levi-Civita
connection and the difference tensor respectively when the adiabatic parameter ¢ = 1
is set to one. It is clear from equations (5.2) and (5.4) that
(5.5) pllse = gpts,
(5.6) proiss = pis.
Let f; be a locally defined orthonormal frame of vector fields on the base X and fl
their lifts to Y. The torsion tensor 7" can be computed in the following cases to be
(1) T'(e,e) = 0 as T' is antisymmetric, ) )
(2) T(e, f) =Vef =Vje—le, fl=—[e, f]=0for f € T"Y, as fis S' invariant,
(3) T(f1, f2) = R(f1, f) the curvature of the S' connection, as V7¥ is torsion
free.

Following the above computation of the torsion tensor, (5.4) now clearly implies
(5.7) S(e)e = 0.

Define e* to be the one form which annihilates 7% M and e*(e) = 1. We then compute
de* <f1, fQ) =— < [fl, fz} ,e> = R(f1, f2) is the curvature of the S' connection.

5.1. Splitting of the Dirac operator. The spin structure on T X can be pulled
back to one on T#Y. Combined with the trivial spin structure on 7'S' this gives a
spin structure on TY. If ST%denote the bundles of positive and negative spinors on
X, we have the identification ST¥ = 7*(ST* @ ST¥). This in turn gives

0= (Y.5™) = C®(X: (ST @ §T¥) @ C=(Y,).
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We now decompose

(5.8) c=(v,) = P Ey
keZ

according to the eigenspaces of e. Each Ej corresponds to the eigenvalue —ik and
gives a line bundle over X. Let £ — X be the Hermitian line bundle over X
corresponding to the standard representation of S'. Note that we may reconstruct
Y as the space of unit elements in £. We now also have the identification E), = L&*.
For any point y, € Y, C L,, this identification maps y®* to {f(y.e?) = e=*%} and
we extend it by linearity. Hence we have the decomposition of the space of spinors
on Y into

(5.9) Ce(Y,S™) = P C=(X; (STX @ ST%) @ L),

keZ
Finally, we twist the spin bundle S7Y @ C = STY by the trivial Hermitian line bundle
but equipped with the family of unitary connections A, = d + ire*.

We now consider how the family of coupled Dirac operators D 4, . decomposes with
respect to (5.9). Let V5" eV denote the lifts of V1Y¢ ¥V to the spin bundle. Let ¢
stand for the Clifford multiplication associated to the metric g7 We let e; = £'/2f;,
where fl denote the locally defined horizontal lifts introduced earlier, and also adopt
the notation e = ey. Using (5.4) and the computation of the torsion tensor done in
the previous subsection, we now compute

2m

Dy, = Z c‘e(ei)VfiTY’8 +irc®(e)

=0

- e)V, +Z (e;)Ve, + Z (ei)ej, ex) ¢ (e;)c (e;)c (ex) +irc(e)

ijk
k—“2c(R)—r el2phFk
5.10) = 1 : :
10 @ { e2DYE —k+ fe(R) + v

Here D" denotes the coupled Dirac operators acting on sections of STX @ L% and
c(R) = >_;.; B(fi, fj)e(fi)e(f;) denotes the Clifford multiplication by the curvature
tensor R on the base X.

5.2. The Kahler case. We now specialize to the case when X is a complex mani-
fold, with complex structure J. We further assume L to be a positive, holomorphic,
Hermitian line bundle on X . The curvature R of the associated holomorphic con-
nection is now a (1,1) form. Positivity of £ here means that R = w is a Kahler form
on X (ie. w(.,J.) = g'™(.,.)is a metric). A spin structure on X corresponds to a
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holomorphic, Hermitian square root K of the canonical line bundle K®? = Kx (cf .
[10]). The corresponding bundles of positive and negative spinors are A" T%* @ K
and A°MTOM @ IC respectively while the spin Dirac operator is v/2(Jc + 95) with
Ok being the holomorphic derivative on A*T%"* @ IC. Similarly the twisted Dirac
operator acting on sections of A*T%"* @ I ® L%is given by v/2(Jcger + 5,*C®£®k).
Denote the holomorphic derivative Jxgrer on K @ L% by the shorthand 9, and
let Ay, = 0,0} + 0;0, denote the Hodge Laplacian. Clifford multiplication by the
Kahler form is ¢(w) = i(2N — m) where N is the number operator which acts as
multiplication by p on APT%™. Hence the formula (5.10) for the Dirac operator is
seen to specialize to

o m[Fre(N=2)—r  (20)2(0c + ;)
(5.11) Dy, . = @ [ (251/2(5k +05)  —k i e(N — %)k+r :

Denote by A%? (L&) the space of L#*-valued (0,p) forms. Let
A0p (£®k) _ @ Eg,k
>0

be the spectral decomposition of Az where Eﬁ’k denotes the eigenspace with eigen-
value %,uz. From (5.11) it is clear that [DAT, Agk} = 0 and hence the Dirac operator
preserves the eigenspaces (P, Eﬁ’k of Ay, for each p. Let dim Eﬁ’k = eﬁ’k and define
doh = bk — b=tk 4 (—1)Pedt,

Lemma 5.1. For each positive p > 0 we have dﬁ’k > 0. Furthermore there exists a

_ Pk pk gLk _
collection of O -closed p forms {wf}jil , such that {wf}jil U {éhcwf 1}3*11 is a basis
of EbF.

0,k
Proof. We proceed by induction on p. Clearly di* = e¥ > 0. We take {w?}jilto be

any basis of Egvk. Now assume that wﬁ’ have been defined. Since they are 9;-closed
we have

Kot = Nguh = ptw
Agkékwﬁ? = 5k5;5kwp = §u25kw§7

_ P,k
Hence the collection of forms {E)kw;’ }ji , is linearly independent inside EPTUE This
p+1,
1w

o ‘ bk .
implies dﬁ“’k = eﬁ’k - dﬁ”‘ > 0. We choose {wa}A to be any basis for the

J=1

— D,k
orthogonal complement of the span the space of {8kw§7 }ji | inside Eﬁ“’k. That each
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1.. 3
w§7+ is 0¢-closed follows from
o p+l p _ /., ptl 5 p —
<8kwj ,wj,> —<wj ,6kwj,> =0
a%, p+1 3 p—1\ _ /, p+l 72 p-1\ _

Finally, {5;4%2”’1}?:71 span Eﬁmvk since the Dirac operator v/2(0y + 0;) is an iso-
morphism between Efj’e"’k and Efflchk for p > 0. U

Following this lemma, we see using (5.11) that the Dirac operator preserves the
two dimensional subspaces of spanned by {wf,%igkwf}, for each 0 < j < dﬁ”“.
Furthermore its restriction to this two dimensional subspace is given by the matrix

(—=1)P(k +e(p—5)—1) pe'/?
pe'/? (=P k+e(p+1—2) — r)} '
The eigenvalues of the above matrix are computed to be
(=1)PHle £ /(2k +e(2p —m) — 2r + 1)2 + 4pe
2
From (5.11) we also see that each of E* is an eigenspace of the D, . with eigenvalue

A= (=1)P(k+e(p—"%)—r). From Hodge theory, we have EPF = HY (X, K @ L)
and we denote

A:

WPk —ePF — dim HP(X, K @ LF).
To sum up we have the following computation.
Proposition 5.2. The eigenvalues of the Dirac operator are given by the two types
(1) Type 1:
A= (—1)”(kz+5(p—%) 1), 0<p<mkeL

with multiplicity hPF = dim HP(X, K ® LZF).
(2) Type 2:
(—1)PHle £ /(2k +e(2p —m) — 2r + 1)2 + 4yl
2
and §u2 18 a positive ergenvalue of A%k. The multiplicity of X 1s diy" =

eﬁ’k — eﬁ_l’k +...+ (—1)1"62;’C where ef;k s the multiplicity of %/ﬂ.

A= ,0<p<m,keZ

The above proposition will allow us to compute an asymptotic formula for the eta
invariant 7™° = 7(Dgy, .) as r — oo, for each value of the adiabatic parameter . To
this end we first compute the spectral flow function sf{Dg,},.,.,. Note that the



26 NIKHIL SAVALE

eigenvalues of type 2 do not change sign when the corresponding positive eigenvalue
of the Hodge Laplacian satisfies

(5.12) N
Let K% be the anticanonical bundle of X and define Rlc@ﬁ FOR to be the curvature
of the connection on K ® LZ* ® K%. Let dz; be an orthonormal basis of 701" X, with
dz; the dual basis of T4 X, and define \(RK®L*"®Kx) = > RK®£® KX d2s A idz, -

Then the Bochner-Kodaira-Nakano formula (cf. [3] Propos1t10n 3.71) asserts the
existence of a positive operator Ag;o such that

__ADDO KRLOF QK%
Agk _Agk + AR x).

Now let o be a normalized eigenvector of Agkwith eigenvalue %,u2. We then com-
pute '

1 *
o’ = (Mg oa) = (Aot AREE S a,a)

(5.13) > k </\(R£)oz,oz> - </\(R’C®K§<)oz,oz> > %,

for p > 0 and k > 0 sufficiently large, via the positivity of £. In the case where

= 0, since « is an eigenvector of AO with positive eigenvalue and [0y, Ay ] =0, we
have that s is nonzero eigenvector of Al with the same eigenvalue. Hence (5.12)
holds for each positive eigenvalue of Ap for all p and k£ > 0 sufficiently positive.
Finally using duality we have that any posmve eigenvalue of Ap—k also obeys (5.12)
for all p and k < 0 sufficiently negative. Hence we see that there are at most finitely
many eigenvalues of D4 . of type 2 that change sign as s varies from 0 to r. The

contribution of the eigenvalues of type 1 to spectral flow is computed easily and we
have

SF{D 4, cboeser = Z (=1)PFL AP £ O(1).

0<k+e(p—2)<r

By the Kodaira vanishing theorem we have h?* = 0 for p > 0 and k > 0 sufficiently
large. We hence have

hOF = (X, K @ L) = / ch(K ® £L2)td(X)
X
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by the Hirzebruch-Riemann-Roch theorem. On using ch(K®L®*) = exp {kci (L)} exp {c1(K)}

we have
g

]
SH{Da,ctoeser = = D / exp {kei (L)} exp {e1(K)} td(X) + O(1).
k=0 7X
Finally using the Atiyah-Patodi-Singer index theorem we have

e =n°v€+2{sf{DAS,e}0§sgr+ /0 s /X exp{scl(C)}exp{cl(lC)}td(X)}.

Hence we have proved

Theorem 5.3. The eta invariant n™° satisfies the asymptotics

m a+1 [T+%] a
(5.14) =Y m— Z% /X c1(£)® [eh(K)td(X)]™ ™ 5 + O(1)

as r — OQ.

The above result shows that the eta invariant is discontinuous of O(r"z" ) in this
example.

5.3. Computation of the eta invariant. Although theorem Theorem 5.3 estab-
lishes an asymptotic formula for the eta invariant it does not provide an explicit
computation for the eta invariant because of the O(1) term in (5.14). In this subsec-
tion we give an explicit computation of the eta invariant "¢, assuming the value of
the adiabatic parameter € to be sufficiently small, using the adiabatic limit technique.
We shall first compute the 7-form of Bismut and Cheeger [5] for circle bundles. This
computation is similar to the one done by Zhang in [16| with the only difference
being the presence of an extra coupling.

5.3.1. The f-form. Let STS" denote the spin bundle of T'S* and V5™ be the lift of
VTS't0 STS'. Let V5™ r = V5™ @1+ 1w (d + ire*) denote the tensor product
connection on ST5" @ C. Consider the infinite dimensional bundles over X given by
H, = C*(Y,,575" @ C) and G, = C®(Y,,TY). The connection VST naturally
lifts to a connection @STSl”'on H. The torsion tensor 7' may be considered as an

element of T € Q*(X,G) and we may define Clifford multiplication by the torsion
tensor as an element of ¢(T') € Q?(End(H)). The fibrewise Dirac operator can also be

defined as an element of D5'" = c(e)VfTS1 " € End(H). The Bismut superconnection
on H is defined via

A, =V 4y 2DSYT — (4u) TV 2¢(T).
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The n-form is the even form on X defined by

~ 1 o even Sl,’f 1 _ A2 du
Let z be an auxiliary Grassman variable. Since the scalar curvature of the circle is
zero equations (5.3) and (5.7) simplify (4.68)-(4.70) of [5] to give

STSl,r E C(e)
(5.16) —u (Ve + 1 + YD

2
) +irR= A% — 2 (ul/ZDsl’T + (4u)—1/2c(T)> :

where both sides are considered as operators on Q*(X, H). If tr*(a+ 2b) = tr(b) then
the above curvature identity gives

treven [(DSI’T + (4u)_1c(T)> e‘Ai]

1 R 2
— uY2y? [exp {u (VeSTS "y - n Z2C?Ef/)2> }] exp {—irR}.

Next, the trivialization given by e for T'S* induces once for ST5". This allows us
to identify each fiber

H, = C®(Y,,5™ ©C)
= C*(V,) =P E

k

by (5.8). Using c(e) = —i, each E}, is seen to be an eigenspace of D5"" with eigenvalue
—k + 7. Hence DS is invertible for r ¢ Z. We then have

[ 2
(5.17) u”?tr* {exp { u vy f + 2z cle)
¢ du " 2ul?

- R iz \?
_ —1/2, .z : :
(5.18) = u Y2 E exp {u (zk +ir + i —2u1/2> }]

Lk=—00
> 3/2 2 2
(5.19) = 4 Z (f) Q2 4r) | L
u

where the last equality follows from a Poisson summation formula. Hence
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L[ p . grst, R c(e) \° du
(5.20) ﬁ/o u” e lexp {u (Ve t o T A 512

oo 20 ok 2.2
(5.21) = 7r/0 Zk-sin(i~§+2ﬂkr)6_ku —ZL

u 4 U

> kmsin(2wkr) + cos(2mkr) - £

(5.22) = > EE—T “

k=1 21
1 exp((le{r})%) 1 .
2 sinh(Z) - R/zl} if r ¢ 7
(623) = L | £—tann(£) ;
L ztenhia) if r € Z.
2 %tanh(%) 1 Hr e

Here {r} denotes the fractional part of r ¢ Z. Let us denote the expression on line
(5.23) by f (%, r). We note that this is a periodic function in r of period 1. Hence
we finally have that the eta form is given by

(5.24) Pt (g r) exp{—irR}.

5.3.2. Adiabatic limit of the eta invariant. Following the computation of the 7-form
from the previous section we now compute the adiabatic limit of the eta invariant.
First assume that the fibrewise Dirac operator DS'r s invertible, or r ¢ Z. The
adiabatic limit of the eta invariant is then given by proposition 4.95 of [5] to be

1 A
hm 777“,6 — / A(ZRTX>77
X

e—0 (27ri)m

= [ (M) ewtrao,

In the case where r = k € Z we have that ker DSl’T> = Fi, = L% forms a vector

bundle over the base X. Furthermore, it is clear from 5.2 that the dimension of the
kernel of Dy, ., for € small, is given by

m .
hz* ifm even

5.25 dim ker (D4 .) =
( ) im ker (Da, <) {0 if m odd.
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Hence by Theorem 0.1 of [9] the adiabatic limit of the eta invariant exists in this
case and is given by

1

26) limy® = ——
(5:26) ~ limy (2mi)m

/X AR ) + n(0y + ) + lim > sga(\).

A0,A1=0

Here the third term denotes a sum over the eigenvalues of Dy, ., which vanish to
O(e) as € — 0, with the convention sgn(0) = 0. To compute this term note that the
eigenvalues of type 2 in 5.2 do not vanish as ¢ — 0 for r € Z. The eigenvalues of
type 1 on the other hand vanish for £k = r and the third is seen to be

lim Y sgu(h) = Y0 (<1 A=Y (<1 ank

— m m
A0,A1=0 P> p<Z

Since the spectrum of /2(3J), + ;) is symmetric, we have 7(0y + 0;) = 0. Denoting
by ¢ = ¢1(£), we now sum up the calculation of the adiabatic limit of the reduced
eta invariant in all cases to be

)
A ex (1—2{7“})% .
%fx A(X) [ p(sinh(g) ) - C/Lg} exp {rc}, ifr¢Z,
~ 5—tanh( 5 m

%{fx A(X) [ ta h((g))} exp {kc} + h3 "
lir% N = + Zp>% (1) hrt Y opem (1) hp’k}, if r =k e€Z, meven,
e—

1 A 5 tanh(%)

2 fX A(X) exp {kc}

5.3.3. Spectral flow function. To proceed with the computation of the eta invariant
7" we attempt to compute the spectral flow function sf{Dy, s},.5-.. Let Spect(A)
denote the positive spectrum of an operator A and define

. Ly + (AP
M = 1}5};{5;; € Spec (Agk) :
By the arguments in subsection 5.2 we have M > 0. Furthermore, if we choose the
adiabatic parameter small enough so that § < M, the eigenvalues of type 2 in 5.2
do not contribute to spectral flow. The spectral flow from the eigenvalues of type 1
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is easily computed to give

[r]-1 )

sf{D 4, s}o<o<e = Z Z Wt — Z Z WP

p>Feven p—[p_g(p—m p>3,0dd p=|pr—g(p—22)|+1
2

[r—e(p—13)]- [r—<(r—1%)]

S SR S S S

p<’even k=[r] p<odd  k=[r]+1
Here |z, [z] stand for the floor and ceiling functions of z respectively.

5.3.4. The transgression form. Next let {v6}0<5<s be any family of connections on

TY such that VO = VY0 ve = VIV This family determines a connection V1%
on the tangent bundle TZ of Z =Y x [0, ls via
0

TZ:d Il 5.
\Y 5/\85+V

Let R"Z be the curvature of V7. By the Atiyah-Patodi-Singer index theorem we
have

e e 1 A ( pTZ
(5.27) 7" = lim 7] —2{Sf{DAT,6}og5gs+W/ZA(R )}-

Note that this in particular implies that the integral term above is independent of the
chosen family of connections. Here we shall compute the form A(RT%). We choose
the natural family of connections

V0=V =V 4 gpfS +p"' S
by (5.5),(5.6). Denoting pS = S pT5'S = SV by shorthands we have

d0
= d6ANST+R™ + VSV + 5V A5V
+6 (VSH 4+ ST ASY + 8V A SH) 4 6251 A ST
Next we compute using (5.4)
Sfe)e=0,  S(e)f =Jf,
SH(Ne=Jf,  ST(fi)f2=0,

2
RTZ = (d6A£+V+(5SH+SV>

as well as
SYV(e)e=0, SY(e)f =0,
SY(fle=0,  SY(fi)f2=—w(f1, fa)e.
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where fi,fo € THY = 7*TX. We may hence write S¥ = e* ® J + a1 where
e* ® J,ap € QN (Y;End(TY)) with the only nonzero combination of «; being

(5.28) a(fle=Jf.

Following this we may compute in symplectic geodesic coordinates to obtain V.SV =
0, while computing in holomorphic geodesic coordinates yields VS? = de* @ J =
20 ® J € Q*X;End(TX)). Computing further we find SV A S = 0. Another
computation gives S A SV =Q € Q*(X;End(TX)) C Q*(Y;End(TY)) is given by
(5.29) QUfv, L) f = wlf1, f) I fo —w(f2, ) fr.

Also SYASH = e* A, where ap € Q1(Y; End(TY)) whose only nonzero combination
is

(5.30) as(fi)f = g(fi, fle.

And STASH = e* Aag where az € QY(Y; End(TY)) whose only nonzero combination
is

(5.31) as(fi)e = —fi.
We hence have
(5.32) R™ =déne*®@J+dSAa;+ R™ +20w® J
+0Q + 5e* A ag + 6% A as
and we wish to compute

A(RT?) = exp {trp(R"7)}, where

pe) = goe ().

Since p(z) is an even function in z vanishing at zero, it has a power series
(5.33) p(2) =pe2® +puzt + ...
We shall begin our computation of trp(R?#) with the following lemma.

Lemma 5.4. We have the tensor identities

(1) .

(5.34) QAQ=0
(2) .
(5.35) QAR™ =RT™ AQ =0,

(3) .
(5.36) R™ A ap =0,
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(4) -

(5.37) tr [(QJW] = 2k,

Proof. Let f; denote an orthonormal basis of T X at a point. We also denote by Sy
the group of permutations of {1,2,...,k}.

1) We compute
( p

QAQfr, for fo. fa) f
1
=7 Z sgn (0) Q (fo), fo2)) @ (fo), fow) [

oESy

:i > sen(o) {w (foys I fo) @ (fo)s ) I for) = w (Fo)s I fow) @ (fo)s ) I for2)

oESy

(5.38)

— W (fo), L o) w (foz), [) I o2y + @ (foys I o) w (fo@), f) JfU(Z)}

since each of the four terms in (5.38) contains an expression of the type
w(fis Jf5) = g™ (fi, ;) = 0.
(2) We have RTX € Q2 (so (T X)) and [RTX, J] = 0 since the complex structure J
is parallel. This gives the identity w (f1, R™ (f3, f1) f1) = ¢*% (R™ (f3, fa) f1, I fa).
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We then compute

QAR (1. for fo. ) f
:411_ Z sgn (0) Q (fo), o) BT (fow), fow) f

gESy

:zll Z sgh (0) {w (fo‘(l); RTX (fo’(3)7 fa(4)) f) Jfa(?)

oESy

—w (fo), B™ (fo@) fow) f) Jfo(l)}

:le Z sgn (o) {QTX (RTX (fa'(?)); f0(4)) foq1)s Jf) J for2)

o€ESy

— 0" (R™ (for), fow) fo)s If) J fau)}
—0,

by Bianchi’s identity. The computation RT* A Q = 0 is similar.
(3) We compute

R™ Nay (fi, fa. f) e

:% sgn (0) BT (foy, fo) a1 (fom) €

1
=5 2 s8n (0) R™ (fot1)s fo2) I fo3)

:% {Z sgn (o) R™ (fo), fo2) fo(3)}

by Bianchi’s identity.
(4) For each 1 <[ < k, define the transposition 7, = (2l — 1 2l) € Sox. Given a
subset S C {1,...,k}, define the permutation

TS:HTl

leS
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in Soi. Using the definition (5.29) of €2, we now compute
tr [ (o fon)]

k
:2_116 Z sgn (o) tr H Q (fg(2171)7 fo(2l)) J]
I=1

oESsy
1 2k k
ok Z sgn (o) {ZQTX ( HQ (fo(?l—l);fcr@l)) J] fiafi) }
€Sk =1 =1
1 k—1
:ﬁ Z sgn (o) Z sgn (7Ts) [HW (fTsOU(Ql)7fTsoU(21+1))] w (fTsocr(2l)7 fTSoau))
0€Say, Sc{l,..k} =1
1 k—1
= Z {? Z sgn (TS o 0) [H w (fTsoU(Ql)7 fTSOU(2l+1))] w (fTsoa(2l)7 fTsoa(l)) }
SC{I ..... k‘} gESoy =1
= - Z w/\k<f17'~'7f2k)
Sc{1,....k}

= — okNk (f1,- 5 fon) -
U

We now perform further computations. Note that since the complex structure is
parallel, the complexification of the Levi-Civita connection VX preserves the holo-
morphic and anti-holomorphic tangent spaces TX10, TX%!. Let VIX" vTX"! pe
the restrictions of VZ¥X to TX%0 T X% and let RTX"", RTX™" denote their respective
curvatures. One then has

(5.39) %tr ((JR™)Y] = {(zRTXI’O)N} ,

where the right hand side is now the trace of a complex linear endomorphism.
Before stating the next computation, define the sequence {¢;};-, of integers via

1 if N=2,
EN =
0 if N> 2.

Proposition 5.5. Let N > 2 be an even integer. The following identities hold

(1) -

(5.40)  tr [(RTX + 26w ® J + 00) N] —2tr {(RTXI’O + 2i6w> N} +2(2i0w)Y .
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(2) -
(5.41)
TX N-1 . TX1,0 . N-1 oy N-1
tr [J (R™ 4 20w ® J + 0Q2) } =21r |1 (R + 2@5w> + 20 (200w)” " + 2enw.

(3) -
(5.42) tr [QJ (R™ 4+ 20w ® J + 692) N72] = — 2enw
Proof. (1). The expansion of (RT* + 20w ® J + 5Q)Nconsists of monomials in the

three tensors R7X, 26w @ J and 6Q. Using [R™Y,w ® J] = 0 and (5.35) we see that
a monomial containing both RTX as well as € is necessarily zero. Hence

(5.43) (R™ 4+ 26w @ J +69)" = (R™ + 26w @ J)"
+ (20w ® J +6Q)N — (20w @ J)V.

The trace of the first summand on the right hand side of (5.46) is easily computed
using (5.39) to be

tr [(RTX + 20w ® J) N} =2tr {(RTXLO + 2i5w> N] )

Next, for each a = (ay, ..., ap1) € NET1we denote |a| = 32! a;. Then the sum of

the last two terms in (5.46) is

(5.44) (20w ® J 4+ 0Q)" — (20w @ J)N =

4D (20w)™ Q.. 6Q (20w]) ™

k+1
k‘>0 QGNO
la|=N—k

Using identity (5.34), we see that the only non-zero terms in the sum (5.44) are ones
satisfying the parity constraint

(545) ap + Apy1,02,...,0; odd.

Furthermore, using (5.37), we may compute the trace of each summand in (5.44)
satisfying (5.45) to be

tr [(20w.])™ 092, .. 09 (20w.]) 1] = — (=1)F (2idw)" .
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The number of a € NE*! with |a| = N — k and satisfying (5.45) is easily computed
N
to be 2(%) We hence have

tr [(25w ® J+6Q)" — (20w ® J)N]

= — (2i6w)" {Z (1) 2(%) }
=2 (2i0w)" . o

(2). The proof is almost identical to part 1. Again we see that a monomial in the
expansion of J (R™* + 26w @ J + 6Q)N71 cannot contain both R7X and Q. Hence

J(R™ 420w @ J +60Q)" ' =J {(RTX + 20w )"

(5.46) + (20w ® J + Q)N — (20w ® J)N‘l} .

The trace of the first term on the right hand side above is again easily computed
using (5.39) to be

TX N—-1 . TX1,0 . N-1
tr [J (R™ + 20w ® J) ] =2tr |7 (R + 226w) .
The sum of the last two terms in (5.46) is now

(5.47) J (20w @ J+ Q)" — J (20w @ )N =

Y4 T(20w])M 6. 69 (20w.T)

k+1
k>0 aeNO
la|=N—-k—1

Using identity (5.34), we see that the only non-zero terms in the sum (5.49) are ones
satisfying the parity constraint

(5.48) aj + agyq even, as,...,a; odd.

Furthermore, using (5.37), we may compute the trace of each summand in (5.44)
satisfying (5.48) to be

tr [J (20w.J)™ 62 .. 09 (20w.]) 1] = —i (=1)% (2i6w)V " .
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The number of @ € NE™! with |a| = N —1—k and satisfying (5.48) is again computed
N N
to be (g) + (71;1). We hence have

tr [J (200 ® J + Q)N — T (200w ® J)N‘l}

i i) {gg(_nk [(%) n (%k— 1)]}

=2i (2i0w)N " 4 2enw.

(3). Since QJ (R™* + 20w ® J + 5Q)N72 already contains €2, the identity (5.34)
now implies
QJ (R™ + 26w @ J 4 69)" 2
=QJ (20w ® J 4 6Q)" 2

(549)  =QJ 20wV >0 D> QT (26w])™ 6Q.. . 60 (26w.])
k>0 aENg'H
la|=N—-k—2

Using identity (5.34), we see that the only non-zero terms in the sum (5.49) are ones
satisfying the parity constraint

(5.50) a; even, das,..., a1 odd.

Furthermore, using (5.37), we may compute the trace of each summand in (5.44)
satisfying (5.50) to be

tr [QJ (20w.J)™ 092, .. 6Q (20w )™ +1] = —2w (—1)" (2idw)™ 2.

The number of @ € NE™! with |a| = N —2—k and satisfying (5.50) is again computed
N
to be (7 ) We hence have

r [QJ (20w @ J + o)V — J (20w @ J)N—l}

= — 2w (2i6w)N 2 — 2 (2i6w)N 2 {Z (-1)"2 (?k_ 1) }

= — 2enw.
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Proposition 5.6. Let N > 2 be an even integer. The following identity holds

1,0 N
tr (RTZ)N =2tr {(RTX R 22’(5w> 1 +2(2i6w)"
1,0 N-1 _
(5.51) LS A e {Qtr {@N (RTX’ —i—i25w> ] + 2N (2i6w)N 1}.

Proof. Clearly (RTZ )N is a sum of monomials in the seven tensors appearing on the
right hand side of (5.32). Due to the dd and e* factors, a nonzero monomial appearing

in (RTZ)N is of atmost degree two in the four tensors dd A e* ® J,dd A oy, de* A an
and 6%¢* A a3. Let P; denote the sum of monomials of degree i in these four tensors
appearing in the expansion of (RTX)N. Hence

(5.52) (RTZ)N =P+ P + P,

and we now compute the traces of Fy, P, and P.
TRACE OF F,. It is clear that

trPy =tr | (R™ + 200 @ J +00) "]
(5.53) =2tr [(RTXI’O + zz'aw)N] + 2 (2i6w)~

by (5.40).

TRACE OF P;. A monomial in P, must contain exactly one occurrence of dd A
ay,de* Ay or §%e* A a3 and must not contain dd A e* ® J. From the formulas (5.28)-
(5.31) for oy, iy and @, it is clear that such a monomial switches the T#Y and TVY
summands. Hence we have

(5.54) tr P, = 0.

TRACE OF P,. A nonzero monomial in P, must contain a single appearance of
dd and e* each. It can hence be of following three types.

Type A. This type of monomial contains a single appearance of dd A e* ® J and no
appearances of dd A ay, de* A ay or §%e* A a. Let Py be the sum of all monomials of

this type appearing in (RTX )N. Using the cyclicity of the trace we easily see that
trPy =N dj A e* tr [J (R™ 4+ 20w ® J + 5Q)N71}
* . TX1.0 . N—1 . . N-1
(5.55) =dj N e* < 2tr [iN <R + 22(5w> +i2N (2idw)” " + deyw ¢,
by (5.41).

Type B. This type of monomial contains a single appearance each of dd Aay, de* Ay
and no appearances of dd Ae* ®J or §%e* Aas. Let P# be the sum of all monomials of
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this type appearing in (RTX)N. From the formulas (5.28) and (5.30), we note that
a; maps TVY into THY while ay maps THY into TVY. Hence in order to have a
nonzero trace, a monomial of this type must be of the form

oe* Nag NANdO Nay  or
BANdéNap ANde* Nag A\ C,

where A, B and C are some monomials in the tensors R’ 26w ® J and 69. Thus

we see that in a monomial of this type dd A aq, de* A ap appear consecutively after a
cyclic permutation. Using the cyclicity of the trace we now have

trPy =N tr |dd Aoy Ade* Aas A (R™ 420w @ J + 5Q)N’2} :
The identity
aq A\ g — — QJ

combined with (5.42) now gives
(5.56) trP? = — 4eydw.

Type C. The third type of monomial contains one appearance each of do A a; and
5%e* A\ a3 and no appearances of dd A e* @ J or de* A as. However since ajand og
both annihilate T#Y and map TVY into T7Y such a monomial must necessarily

have trace zero.

Adding (5.55) and (5.56) gives
N-1
(557)  trPy=ddAe’ {Qtr {ZN (R + 2i0) } + 2N (2i5w)N1} .

The proposition now follows from (5.52), (5.53), (5.54) and (5.57). O

Finally, substituting (5.51) into the power series (5.33), we now have
tr {p (RTZ)} =Qo+doNe* ANy, where
QO =2tr [p (RTXLO + 2i5w>] + 2p (2i6w)

Qy =2tr [ip' (RTXLO + i25w)} +12p’ (2idw) .
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We may now calculate

A(R™?) = //exp{Qo—i—dé/\e*/\QQ}
o Jy

= / /déAG*AQQGXp{Qo}
0 Y
~ (2m) / 4 / Qy exp {2}
0 X

In view of equation (5.27), we now summarize the calculation of the eta invariant.

Theorem 5.7. The eta invariant 77° for g < infy, {%Mz € Spect <A%k>} is given
by

7 im 77" 1 i pTZ

n € = }:liI(l)n &4+ Sf{DATv‘S}ngSgg + W/Z A(R )

where the three terms above are given by
(1) the adiabatic limit:

3 AX) {% -~ ﬂ exp{rc},  ifr¢Zz,

%{fx A(x) {&}1(2)} exp {kc} +h% "

%tanh(%)

limn™¢ = + Zpg (=1)P hP* — Zp<% (=P mP*R 5 ifr =k €Z, m even,

e—0

—tanh(

%{fx A(X) {%())} exp {kc}

wle
N[0

+Zp>% (—1)P hpk — Zp<% (—1)? hp’k}, if r =k €Z, m odd,

with ¢ = ¢1(L).
(2) the spectral flow function:

[r]—1 )

sf{Da,s}tocs< = Z Z PPk Z Z ppk

p>"even f— (r—s(p—%)—‘ p>'3,0dd p— Lr—s(p—%)J-l—l
[r==(r-%)]-1 [r—e(e-%)]
S SN SRIERD S S

p<’g,even k=[r] p<ig,odd  k=|r|+1
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(8) the transgression form:

/ A(R™?) = (27‘(‘)/ d6/ Qoexp{Qo}, where
z 0 X
Qo =2tr <RTX”) + 2@'&0)} +2p (2idw),

»
Qy =2tr [z’p’ (RTXLO + i26w>} +i2p’ (2i6w)

and p(z) = %log <—Sin;{j/2)>.

We observe that the formula above expresses the eta invariant in purely topological
terms on the base.

Finally, we show that our computation agrees with the one of Nicolaescu from [11]
in dimension three. Consider the case when X is a oriented Riemann surface. We
choose g7* a metric of volume 7l where [ is a positive integer. Choose the complex
structure J = —* on X, where x denotes the Hodge star. This gives a Kahler form w
satisfying [, w = —nl. Let £ — X be a Hermitian line bundle of degree ¢; (£) = L.
This allows us to pick a connection on £ with curvature R = 2w, which induces a
holomorphic structure on £. We may now choose Y to be the unit circle bundle in
L over X equipped with the adiabatic family of metrics (5.2). We now specialize our
formula for the eta invariant to compute 7%¢ in this case. Assuming the adiabatic
parameter € to be sufficiently small the spectral flow contribution in Theorem 5.7 is
seen to vanish. Setting r = 0 the other terms in the formula are easily computed to
give

. 1,0
ZRTX
2

2
—0e _ € Lo 0,0 erl |«
e = 2 (RYO L po L=
=g~y (0 )+12+12Xr

Using Serre duality and Gauss-Bonnet we get

c el ey
5.58 ple —— _p00 4 = - ZA
(5.58) T 1

where y is the Euler characteristic of the surface. However the adiabatic metrics in
[11] were chosen to be of the form 72975 & 7m*g"X. This amounts to a rescaling and
hence the substitution ¢ = r?[ in (5.58). Following this our formula is seen to agree
in this case with Theorem 2.4 proved, by two different methods, in [11].

APPENDIX A. ESTIMATES ON (GAUSSIAN INTEGRALS

Here we prove some estimates on Gaussian integrals used in section 3
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Lemma A.1. There exist constants Cy, Cy and Cs depending only on the Riemannian
manifold (Y, q), such that for any z,z € Y and t,t' > 0 we have the following
imequalities

(1) .

(A1) [ ey < €,
(2) .

(A2 | Hea et )y < Caburanfa. 2
(3) and

t
(A.3) / s zds (/ dyhag—s) (2, y)has(y, z)) < Cstzhg(x, 2).
0 Y

Proof. (1). Consider the ball B = {y|p(z,y) < i,} and split the integral A.1 into in-

tegrals over B and its complement B¢. Introducing geodesic coordinates, the integral
2

over B can be bounded from above by the Euclidean integral fan ¢ T ¢—rdr = 1. For

plz.y)?

4
(4mt)

< 2L 44 get ch he(x,y)dy <

— 71_71/2an

the integral over B¢, we use the inequality <

W2 vol(Y).

t
i
2

7r7L/2ln
(2 ) .Without loss of generality assume that ¢ < ¢’. The triangle inequality gives the
2
estimate p(l’;y) + p(yt’,z) > ggfft,) Using this we may bound
_pey)?  _pw.2)?
e 4t e at’ d
/y (4mt)z (4nt')z Y
(z,2) 2.)2
e_ fﬁ(t“rt/) / e_f’( 8’7?) 7p(y,z)2
S n n e St, dy .
(Art)2 \Jy (4mt)z
(.2) .
Then via tl, < tft, and e "8 < 1 we may further bound this from above by

2" hy(pqany (T, 2 (fY hot(, y)dy) . The estimate A.2 now follows from A.1.
(3). First use A.2 to estimate

/Ots : (/Y dyha—s) (2, y) haa(y, )) ds

t
SCQ/ s 2h8t(:v 2)ds = 202t2h8t($ z).
0
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