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Abstract

In this thesis, we study the problem of asymptotic spectral flow for a family of coupled
Dirac operators. We prove that the leading order term in the spectral flow on an n
dimensional manifold is of order r

n+1
2 followed by a remainder of O(r

n
2 ). We perform

computations of spectral flow on the sphere which show that O(r
n−1

2 ) is the best
possible estimate on the remainder.

To obtain the sharp remainder we study a semiclassical Dirac operator and show
that its odd functional trace exhibits cancellations in its first n+3

2
terms. A normal

form result for this Dirac operator and a bound on its counting function are also
obtained.

Thesis Supervisor: Tomasz Mrowka
Title: Singer Professor of Mathematics
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Chapter 1

Introduction

1.1 Motivation from the Weinstein conjecture

The motivation for the main problem of this thesis has come from the recent proof of

the Weinstein conjecture in dimension three by Taubes [40]. A contact three manifold

Y is one that is equipped with a one form a such that a∧da is nowhere vanishing. The

associated Reed vector field R to the one form a is defined by the equations iRda = 0

and a(R) = 1. The Weinstein conjecture says that the Reeb vector field R always

has a closed orbit. In [40] the following perturbed version of the three dimensional

Seiberg Witten equations is considered

cl(∗FA) = r(ΦΦ∗ − 1

2
|Φ|2 − a) (1.1)

DAΦ = 0. (1.2)

Here A denotes a connection on the determinant line bundle of a Spinc structure with

associated Dirac operator DA , Φ is a spinor and cl : T ∗Y → End(S) denotes Clifford

multiplication map. A Reeb orbit arises from solutions to (1.1)-(1.2) with a uniform

bound on their energy as r →∞. Solutions to (1.1)-(1.2) are given by a non-vanishing

theorem in Monopole Floer homology of Kronheimer and Mrowka [26]. The bound

on the energy follows if one considers solutions which represent a generator in Floer
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homology of a fixed grading. The relative grading in Floer homology is given by the

spectral flow function for the Hessian of the Chern-Simons-Dirac functional. It is

hence important to investigate the asmptotics of the spectral flow function for large

r.

1.2 The problem of spectral flow

The Seiberg Witten equations are the variational equations associated with the Chern

Simons Dirac functional. The Dirac operator appears as a component in the Hessian

of the Chern Simons Dirac functional. One then has to give an estimate on the

asymptotics of the spectral flow function sf{DA0+sa}, 0 ≤ s ≤ r, as r →∞. Here A0

is a fixed connection on the determinant line bundle and a is a purely imaginary one

form. The spectral flow function is defined to be the number of eigenvalues of DA0+sa

which go from being negative to positive as s goes from 0 to r. The following result

appears as proposition 5.5 in [40]

Theorem 1.2.1. The spectral flow function satisfies the asymptotics

sf{DA+sa} = − r2

32π2

∫
Y

a ∧ da+O(r
15
8 (lnr)

3
2 ) (1.3)

on a three manifold, as r →∞.

Another subsequent paper of Taubes [39] proves a similar result on higher dimen-

sional manifolds with a leading term of order r
n+1

2 and a remainder of O(rp) with

p = n
2

+ n−1
2(n+1)

+ ε, ∀ε > 0. The result above leads us to ask what the sharpest

asymptotics are for the second order term in the spectral flow estimate (1.3). This is

the main question of this thesis and we prove the following result in this regard.

Theorem 1.2.2. On a manifold of odd dimension n the spectral flow function for

the family of Dirac operators DA0+sa, 0 ≤ s ≤ r coupled to the connections A0 + sa

satisfies the asymptotics

sf{DA0+sa} = r
n+1

2

(
i

4π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +O(r
n
2 ) (1.4)

14



as r →∞.

To describe the main arguments in the proof of theorem (1.2.2), we first associate

to the family of Dirac operators DA0+sa the operator on Y × [0, r]s given by

D =
∂

∂s
+DA0+sa. (1.5)

One has from [1] that the spectral flow for the family DA0+sa, 0 ≤ s ≤ r is given by

the index of the operator D subject to the Atiyah-Patodi-Singer boundary condition

on the boundary Y × {0, r}. The index of D is now given by Atiyah-Patodi-Singer

index theorem as

sf{DA0+sa} = ind(D) (1.6)

= r
n+1

2

(
i

2π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +
1

2
(ηr − η0) +O(r

n−1
2 ). (1.7)

Here the integral term, and the O(r
n−1

2 ) term appear from the usual Atiyah-Singer

integral. The terms η0 and ηr denote the eta invariants of DA0 and DA0+ra respec-

tively, where the eta invariant ηA of an operator A is defined to be the value at zero

of the meromorphic continuation of the function

ηA(z) = dim ker(A) +
∑

λ 6=0
λ∈Spec(A)

sign(λ)|λ|−z. (1.8)

The problem now reduces to finding the optimal asymtotics for the eta invariant

ηr as r →∞. Letting A = A0+ra denote an r dependent connection, we next express

the eta invariant in terms of the traces

ηr =

(∫ T

0

1√
πt
tr(DAe

−tD2
A)dt

)
+ trf(

√
TDA). (1.9)

Here the second term denotes the functional trace corresponding to the function f =

sign(x)erfc(x) with erfc(x) = 2√
π

∫∞
x
e−y

2
dy being the complementary error function.

15



The main work involved in proving theorem (1.2.2) is in deriving the heat trace

estimates

|tr(e−tD2
A)| ≤ c1

tn/2
ec2rt, |tr(DAe

−tD2
A)| ≤ c3r

n+1
2 ec4rt, (1.10)

for uniform constants ci, 0 ≤ i ≤ 4. These are proved using the maximum principle

and small time expansions for the heat trace. Since erfc(x) < e−x
2
,∀x, the desired

estimate ηr = O(r
n
2 ) on the eta invariant follows using these trace estimates and

substituting T = 1
r

in (1.9), hence proving theorem (1.2.2).

The theorem (1.2.2) however does not say anything about the sharpness of the

estimate (1.4), and we do not believe this to be the case. To study the question of

sharpness we shall perform some computations for spectral flow. In particular we

shall compute the spectral flow function for the odd dimensional sphere S2m+1 with

its unique spin structure. The result we have is the following.

Theorem 1.2.3. Let S be the unique spin bundle on S2m+1. Consider the trivial

Hermitian line bundle C with connection d − ira where a is the standard contact

form. The eigenvalues with multiplicities for the coupled Dirac operator Dra acting

on sections of S ⊗ C are given by

i. λ = r − (a+m+ 1
2
), for a ∈ N0 with multiplicity

(
m+a
m

)
ii. λ = (−1)m(r + a+m+ 1

2
), for a ∈ N0 with multiplicity

(
m+a
m

)
iii.

λ =
(−1)j+1

2
±
√

(a1 − a2 + 2j −m+ r + 1)2 + 4(j + a1 + 1)(m− j + a2),

(1.11)

for a1, a2 ∈ N0, j = 0, . . . ,m− 1, each with multiplicity

(m+ a1)!(m+ a2)!(a1 + a2 + 1 +m)

m!j!(m− j − 1)!a1!a2!(a1 + j + 1)(a2 +m− j)
. (1.12)

Hence its spectral flow function is given by

16



sf(D,Dra) =

[r−m− 1
2 ]∑

a=0

(
m+ a

m

)
. (1.13)

This computation shows that the optimal possible asymptotic formula for the

spectral flow function is as given by the following conjecture.

Conjecture 1.2.1. On a manifold of odd dimension n the spectral flow function for

the family of Dirac operators DA+sa, 0 ≤ s ≤ r coupled to the connections A + sa

satisfies the asymptotics

sf{DA0+sa} = r
n+1

2

(
i

4π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +O(r
n−1

2 ) (1.14)

as r →∞.

The above result has been proved by C. J. Tsai for certain specific three manifolds

in [41].

The line of argument in the previous section can potentially be improved if one

uses the substitution T = 1
r2 in (1.9) instead. With this substitution one is reduced

to finding the sharpest asymptotics for the functional trace trE(1
r
DA0 + cl(a)), where

the function E = sign(x)erfc(x). If one thinks of 1
r

= h as a semiclassical parameter,

this problem appears to be one of semiclassical analysis as in [13], [21], [29] and [44].

These techniques provide a full trace expansion for trf(Dh), where Dh = hDA0 + a,

in powers of h under the assumption that f is smooth. Although a general expansion

begins with the power h−n, in the case of the semiclassical Dirac operator we are able

to show that this trace exhibits cancellations in its first n+3
2

terms when the function

f is odd.

Theorem 1.2.4. Let f ∈ S be an odd Schwartz function. There is a trace expansion

trf(Dh) ∼ h−
n−3

2 cn+3
2

+ h−
n−5

2 cn+5
2

+ . . . (1.15)

for some constants ci,
n+3

2
≤ i.
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In the semiclassical terminology, conjecture (1.2.1) is reduced to the statement

trE(Dh) = O(h−
n−1

2 ). Theorem (1.2.4) still does not prove this since the function E

has a discontinuity at the origin and is not Schwartz.

Spectral asymptotics for counting functions of eigenvalues have been well studied

in the literature. Namely, given a positive elliptic operator P of order m on a manifold

X, consider N(R) to be the number of eigenvalues of P less than R. The famous

Weyl asymptotic formula gives the following asymptotics for the counting function

N(R)

N(R) = R
n
mvol({(x, ξ) ∈ T ∗X|p(x, ξ) ≤ 1}) +O(R

n−1
m ), (1.16)

as R → ∞. Here p(x, ξ) denotes the symbol of the operator P . Weaker estimates

on the remainder had earlier been obtained using heat trace methods in [4] and [28].

The optimal estimate of O(R
n−1
m ) for the remainder was first proved by Hormander in

[23] using wave trace methods and Fourier integral operators. The counting function

N(R) can be expressed as the spectral flow function of the family P − s, 0 ≤ s ≤ R.

The problem of considering general asymptotics for the spectral flow function of a

family appears to be new.

In the semiclassical context one is interested in the asymptotics for the counting

function Nh(a, b). This equals the number of eigenvalues of a semiclassical operator

Ph in the interval [a, b]. Sharp asymptotics for these counting functions are known for

scalar operators or non-scalar operators with a smoothly diagonalizable symbol [13],

[25]. These formulas also require that a and b not be critical values of the symbol

of Ph. In the case of the Dirac operator D2
h we are able to estimate such a counting

function near the critical value 0 of its symbol.

Theorem 1.2.5. For c > 0 be any positive real, the counting function

Nh(−ch
1
2 , ch

1
2 ) = O(h−

n
2 ) (1.17)

near h = 0.
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1.3 Outline

In Chapters 2 and 3 we provide some technical background required to prove the

results of the thesis. In Chapter 2 we derive the asymttotic expansion for the heat

kernel and its trace. A proof of Weyl’s law for Dirac operators is included. In

Chapter 3 we prove the Atiyah-Patodi-Singer index theorem and certain results on

the eta invariants of Dirac operators. Here we also define spectral flow and give its

relation to the APS index.

In Chapter 4 we prove theorem (1.2.2) following some bounds on the heat trace.

In Chapter 5 we consider the semiclassical Dirac operator. Here we prove the

results (1.2.4) and (1.2.5).

In Chapter 6 we perform computations for spectral flow. We shall prove (1.2.3)

giving the spectrum of the Dirac operator on Sn and showing that the result (1.2.1)

is the best possible.

Finally, in appendices A and B we develop the necessary techniques from semi-

classical analysis required in Chapter 5.
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Chapter 2

The Heat kernel expansion

2.1 Dirac operators

We begin with the notion of a generalized Dirac operator. Such an operator exists

on any Clifford bundle. A Clifford bundle S is a complex vector bundle with a

connection∇, a hermitian inner product 〈, 〉 and a ’Clifford multiplication’ map which

is a morphism of vector bundles cl : T ∗M ⊗S → S. This morphism has the property

that cl(v)2s = −〈v, v〉s for every cotangent vector v and s ∈ S. In addition there are

compatibility conditions between any two of these structures given by:

1. (∇ and 〈, 〉) d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉 for any pair of sections s1 and s2.

2. (∇ and cl) ∇X(ω.s) = (∇L.C.
X ω).s + ω.(∇Xs), for any vector field X. Here

∇L.C denotes the Levi Civita connection on T ∗M and Clifford multiplication

is denoted by the shorthand ω.s = cl(ω ⊗ s).

3. (cl and 〈, 〉) 〈ω.s1, s2〉+ 〈s1, ω.s2〉 for any ω ∈ T ∗M and s1, s2 ∈ S.

Given such a Clifford bundle, we can define a corresponding first order operator

D : C∞(S)→ C∞(S). This is defined via D = cl ◦ ∇ and called the Dirac operator.

2.2 Asymptotic expansion of the kernel

Next we shall be concerned with finding the asymptotics of the trace of the evolution

operator e−tD
2
. It is well known that this operator is smoothing. This means that it
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has a smooth kernel kt(x, y) ∈ C∞(M×M ; π∗1S⊗π∗2S∗) for all time t > 0 and that the

trace is Tr(e−tD
2
) =

∫
M
tr(kt(x, x))dvol. This integral expression says that to find the

asymptotics of the trace it will suffice to find the asymptotics of the kernel. In fact it

is possible to get a complete asymptotic expansion for the kernel near t = 0. Before

we give the expansion of the kernel we define what is meant by a full asymptotic

expansion below.

Definition 2.2.1. Let f : R+ → B be a function on the positive real line with values

in a Banach space B. We say that f has the asymptotic expansion

f(t) ∼
∞∑
i=0

fi(t) (2.1)

near t = 0 if fi : R+ → B is a set of functions such that the remainders of RN(t) =

f(t) −
∑i=N

i=0 fi(t) are eventually of an arbitrarily small order. That is, for every r

there is an Nr such that N ≥ Nr =⇒ ||RN(t)|| = o(tr).

Knowing the heat kernel on Euclidean space to be 1
(4πt)n/2

e−
|x−y|2

4t we guess that

the kernel kt(x, y) ought to be related to

ht(x, y) =
1

(4πt)n/2
e−

ρ(x,y)2

4t (2.2)

where ρ(x, y) denotes the geodesic distance between points x and y. In practice we

would like h to be smooth. Hence, we will let ρ(x, y) be the geodesic distance when

x is within the injectivity radius of y and continue ρ smoothly outside as long as it

is bounded below ρ(x, y) > α > 0 in this region. The asymptotic expansion that we

look for will be of the type kt(x, y) ∼ ht(x, y)(s0(x, y) + ts1(x, y) + t2s2(x, y) + · · · ),

where si are smooth sections of π∗1S⊗ π∗2S∗. Before we prove this expansion and find

the coefficients si we will need a lemma to help us with our computations.

Lemma 2.2.2. 1. Let D be a Dirac operator on a Clifford bundle S. Then for

22



every section s of S and every smooth function f on M

D2(fs) = fD2s− 2∇∇fs+ (∆f)s (2.3)

2. Let ht(x, y) = 1
(4πt)n/2

e−
ρ2

4t where ρ = ρ(x, y) denotes the function defined ear-

lier. Let ig be the injectivity radius of (M, g) and let g = det(gij) be the

determinant of the metric. Then the identity

∂th+ ∆xh =
ρh

4gt

∂g

∂ρ
(2.4)

holds in a neighbourhood Uig of distance ig of the diagonal in M ×M .

Proof. 1. We compute in geodesic coordinates centered at a point. We use the

compatibility rules for a Clifford bundle to get

D2fs =
∑
i,j

∂2f

∂xj∂xi
ejeis+

∑
i,j

ejei

(
∂f

∂xj
∇eis+

∂f

∂xi
∇ejs

)
+ f

∑
i,j

ejei∇ej∇eis.

(2.5)

The first term only contributes when i = j and gives (∆f)s, the second also has

cancellations for i 6= j to give −2∇∇fs and the last equals fD2s.

2. We fix the point y and compute in geodesic coordinates centered at y. The

Laplacian in coordinates is given by ∆h = − 1√
g
∂i(
√
ggij∂jh) = − 1

2g
gij(∂ig)(∂jh) −

(∂ig
ij)(∂jh)− gij(∂i∂jh). Now we use ρ2 =

∑
i x

2
i in geodesic coordinates to get ∂ih =

−xih
2t

. This gives

∆h =
1

4gt
gijxjh(∂ig) +

1

2t
xjh(∂ig

ij) +
1

2t
giih− 1

4t2
gijxixjh (2.6)

=
1

4gt
gijxjh(∂ig) +

1

2t
h∂i(g

ijxj)−
1

4t2
gijxixjh (2.7)

where we have combined the middle two terms. Now it is a consequence of the

Gauss’s lemma that gijxj = xi and gijxixj = ρ2 in geodesic coordinates. Using this

23



we get ∆h = ρh
4gt

∂g
∂ρ

+ nh
2t
− ρ2h

4t2
. Here ∂

∂ρ
= 1

ρ
xi∂i is the radial vector field in geodesic

coordinates. The time derivative is easily calculated to be ∂th = −nh
2t

+ ρ2h
4t2

. Adding

the two gives us the result.

Having this lemma in hand we are now ready to derive the full asymptotic expan-

sion of the kernel.

Theorem 2.2.3. There is an asymptotic expansion for the kernel kt(x, y) of the type

kt(x, y) ∼ ht(x, y)

(
s0(x, y) + ts1(x, y) + t2s2(x, y) + · · ·

)
(2.8)

which is valid in the Banach space Ck(M × M) for every k. Here si are smooth

sections of π∗1S ⊗ π∗2S∗.

Proof. We first show that it is possible to find si such that for each partial sum

kNt = h(
∑N

i=0 t
isi) we have (∂t + D2)kNt = eNt , where eNt is a smooth section whose

Ck norm satisfies the bound

‖eNt ‖Ck ≤ CN t
N−k−n

2 (2.9)

for t < 1. To this end we apply the heat operator to the expansion term by term

while trying to get rid of lower order terms. Using the lemma we get (∂t+D2)htisi =

hti−1(ρ∇∂ρsi + isi + ρ
4g
∂g
∂ρ
si) + hti(D2si). Now comparing coefficients of ti−1 gives us

the equations

(ρ∇∂ρ + i+
ρ

4g

∂g

∂ρ
)si =

 0 if i = 0

−D2si−1 if i ≥ 1
(2.10)

These are a set of linear first order equations which can be solved with the help the

integrating factor ρi−1g1/4 to give

∇∂ρ(ρ
ig1/4si) =

 0 if i = 0

−ρi−1g1/4(D2si−1) if i ≥ 1.
(2.11)
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We can first solve for s0 uniquely given s0(y, y). We set s0(y, y) = 1. The reason for

this choice is because we will need the expansion to tend to δ(x − y) as t → 0 for it

to approximate the kernel. For i ≥ 1 the equation (2.11) gives si in terms of si−1 up

to a constant multiple of term which is of order r−i near r = 0. Smoothness near 0

requires this constant of integration to vanish and hence we have solved for all si’s.

Notice that since the formula (2.4) is only valid in Uig , the si’s are only determined in

this neighborhood. However since the heat kernel is concentrated near the diagonal

for small time we may set the si’s arbitrarily outside this neighbourhood. To prove

the bound (2.9) on eNt , we first prove it inside Uig . Here eNt = htN(D2sN) and it’s

Ck norm will involve terms of order atmost tN−k−
n
2 near t = 0. Outside Uig we have

that ρ(x, y) > α > 0 and the fact that e−α/t is of order t∞ near t = 0 gives us the

estimate in this region.

Elementary estimates show that kNt → δ(x− y) as t→ 0. Now if rNt is the unique

solution to the equation

(∂t +D2)rNt = −eNt (2.12)

with the initial condition r0 = 0, this initial condition clearly implies that

kNt + rNt → δ(x− y) as t→ 0. (2.13)

Also kNt + rNt satisfies

(∂t +D2)(kNt + rNt ) = 0. (2.14)

The heat kernel is the unique time-dependent section which satisfies (2.13) and (2.14).

Hence we have that kt = kNt +rNt and thus rNt is the remainder to the expansion whose

order we have to determine. To do this, apply Duhamel’s formula to (2.12) to write

rNt =
∫ t

0
e−(t−t′)D2

eNt dt
′. The fact that e−tD

2
is bounded on every Sobolev space gives

‖rNt ‖k ≤ t sup
0≤t′≤t

‖eNt′ ‖k ≤ K0t sup
0≤t′≤t

‖eNt′ ‖Ck ≤ K1t
N−k−n

2
+1. (2.15)
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Here the second inequality is from the fact that, on a compact manifold, the kth

Sobolev norm is bounded by a multiple of the Ck norm and the third inequality is

the bound given by (2.9). Finally Sobolev’s inequality gives ‖rNt ‖Cl ≤ K2‖rNt ‖k ≤

K3t
N−k−n

2
+1 for l + n

2
< k. Thus we have that the order of the remainder, in any

Banach space C l, becomes arbitrarily small as N →∞.

2.3 Weyl asymptotics

As a consequence of the asmptotic expansion for the heat kernel we now derive the

well known Weyl asmptotic formula. The operator D2 is an elliptic, positive, formally

self adjoint operator of second order. Standard elliptic theory for self adjoint elliptic

operators tells us that such operators have a discrete spectrum of eigenvalues

0 ≤ λ1 ≤ λ2 ≤ λ3 . . .

tending to infinity. The object of interest here is the counting function (with multi-

plicity) for the number of eigenvalues of D2 less than a certain magnitude N(R) =

max{i|λi ≤ R}. The following theorem gives the asymptotics for the function N(R)

for large R.

Theorem 2.3.1. (Weyl’s law) The counting function for the eigenvalues of D2 sat-

isfies

N(R) =
vol(M)

(4π)n/2Γ(n/2 + 1)
Rn/2 + o(Rn/2) (2.16)

near R =∞.

What allows us then to go from the asymptotics of the heat kernel to the asymp-

totics of the counting function N(R) is the so called ‘Tauberian theorem’ from real

analysis. Since this is motivating for the rest of the proof, we give this part of the

argument here.

Theorem 2.3.2. (Karamata) Let µ be a positive measure on R+ such that
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lim
t→0

tα
∫ ∞

0

e−tλdµ(λ) = C. (2.17)

Then

lim
x→∞

x−α
∫ x

0

dµ(λ) =
C

Γ(α + 1)
. (2.18)

Proof. First we show that for any continuous function f on the interval [0, 1]

lim
t→0

tα
∫ ∞

0

f(e−tλ)e−tλdµ(λ) =
C

Γ(α)

∫ ∞
0

f(e−t)tα−1e−tdt. (2.19)

To see this we approximate f by a Weirstrass polynomial p such that |f(x)−p(x)| < ε

for x ∈ [0, 1]. The positivity of the measure is used here to see that the difference of

the corresponding intergrals is small. Following this, it suffices to prove the claim for

polynomials and hence for monomials f(x) = xk. The claim is true for monomials

since

lim
t→0

tα
∫ ∞

0

e−(k+1)tλdµ(λ) = C(k + 1)−α =
C

Γ(α)

∫ ∞
0

e−kttα−1e−tdt, (2.20)

where the first equality follows by (2.17) and the second defines the Gamma function.

Now we apply the lemma of the previous paragraph to the function g which equals

0 on [0, 1/e) and x−1 on [1/e, 1]. This gives

lim
t→0

tα
∫ t−1

0

dµ(α) =
C

Γ(α)

∫ 1

0

tα−1dt =
C

Γ(α + 1)
(2.21)

as required. Although g isn’t continous we can still apply the lemma to it since g can

be approximated by continuous functions.

The general idea behind Tauberian theorems is to relate the behaviour near in-

finity of the function to behaviour near zero of its (Laplace) transform. Deriving the

behaviour of the transform from that of the function is usually easy and known as

an ’Abelian Theorem’. Conversely, deriving the behavior of the function from that of

27



its transform is more subtle and requires and additional Tauberian condition on the

function. In this context the fact that the counting function N(R) is non-decreasing

(or its derivative N ′(R), the spectral measure, is positive) is the Tauberian condition.

Now we are ready to finish the proof of Weyl’s law. Firstly, given a bounded linear

operator between two Banach spaces A : B → B′ we can compose an asymptotic

expansion with values in B with A to get an asymptotic expansion with values in B′.

The trace is a bounded linear operator from Ck(M ×M) to R. Thus applying the

trace gives us the asymptotic expansion of the trace from that of the kernel and we

get

Tr(e−tD
2

) ∼ 1

(4πt)n/2
(a0 + a1t+ · · · ) (2.22)

where

ai =

∫
M

tr(si(y, y))dvol (2.23)

Since we had s0(y, y) = 1, we have a0 = rank(S)vol(M). Finally applying the

Tauberian theorem to the spectral measure
∑

i δλi gives us

N(R) =
rank(S)vol(M)

(4π)n/2Γ(n/2 + 1)
Rn/2 + o(Rn/2). (2.24)
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Chapter 3

Spectral flow and the APS index

In this section we will recall the Atiyah-Patodi-Singer index theorem and its relation

with spectral flow. The results of this chapter will be important to prove the estimate

on spectral flow in chapter 4. We shall begin with the statement of the index theorem.

Let X be a compact manifold with boundary ∂X = Y . Let E and F be vector

bundles over X and let D : C∞(X,E)→ C∞(X,F ) be a first order elliptic operator.

Now assume that there exists a collar neighbourhood of the boundary Y × I i
↪→ X

and a vector bundle E0 on Y such that there are identifications iE : E
∼→ π∗E0 and

iF : F
∼→ π∗E0. Further assume that there exists a self-adjoint (with respect to density

dy), elliptic operator A : C∞(Y,E0) → C∞(Y,E0) such that in a neighbourhood of

the boundary D corresponds via the identifications to

D = i−1
F ◦

(
∂

∂u
+ A

)
◦ iE. (3.1)

Here u denotes the coordinate on the interval and the operator ∂
∂u

+ A needs to

be defined in these special coordinates on the product. We also assume that the

Hermitian inner products on E0, E and F agree under the identifications and the

density dx agrees with the density dydu on the collar. Consider now the operator

P ◦ r : Hs(X,E)→ Hs− 1
2 (Y,E0), (s > 1

2
) which is the composition of the restriction

map r : Hs(X,E) → Hs− 1
2 (Y,E0) with the projection P onto the nonnegative part

of the spectrum of A. Let Hs(X,E, P ) denote the kernel of this composition, which
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is itself a Hilbert space. The aim is to prove the following theorem

Theorem 3.0.3. (Atiyah-Patodi-Singer) Consider the operator D : Hs(X,E, P ) →

Hs−1(X,F ) for s ≥ 1.

a. D is Fredholm.

b. The index of D is given by

ind(D) =

∫
X

ch(σ(D))Td(X)−
(
h+ ηA(0)

2

)
(3.2)

where

(a)
∫
X
ch(σ(D))Td(X) is the usual Atiyah-Singer integral.

(b) h = dim ker(A).

(c) the eta invariant is formally defined via

ηA(s) =
∑
λ 6=0

signλ|λ|−s, s ∈ C (3.3)

where the sum runs over the eigenvalues of A. This formal series con-

verges for Re(s) large and has an analytic continuation to the whole

s-plane with a finite value at 0 which appears in (3.2).

The proof of the above theorem requires some preparation. First we do some

computations on an analogous situation on the cylinder in the next section.

3.1 Computations on the cylinder

Let Y be a compact manifold with a vector bundle E0 → Y . Let A : C∞(Y,E) →

C∞(Y,E) be a first order, self-adjoint, elliptic differential operator. Consider the

product Y ×R+ of Y with the nonnegative real line and let E = π∗E0 be the pullback

of E under the projection onto Y . Consider the differential operator

D =
∂

∂u
+ A : C∞(Y × R+;E)→ C∞(Y × R+;E) (3.4)
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The Sobolev space H̄s(Y × R+, E) denotes the space of restrictions to Y × R>0 of

elements in Hs(Y × R, E). Let r : C∞(X,E) → C∞(Y,E0) denote the restriction

map and let P : C∞(Y,E0) → C∞(Y,E0) be the projection onto the nonnegative

eigenspace of A. Define

C∞(X,E, P ) = {u ∈ C∞(X,E)|P ◦ r(u) = 0}. (3.5)

One can analogously define H̄s(X,E, P ) for s > 1
2
. We prove the following lemma

Lemma 3.1.1. There exists a linear operator Q : C∞c (X,E) → C∞(X,E, P ) such

that

i. DQg = g,∀g ∈ C∞c (X,E).

ii. QDf = f, ∀f ∈ C∞c (X,E, P ).

iii. The kernel of Q, KQ(y, u; z, v) is C∞ for u 6= v.

iv. Q extends to a map Q : H̄s−1(X,E)→ H̄s
loc(X,E, P ) for s ≥ 1.

Proof. First we prove iv. We need the following descriptions for the relevant Sobolev

spaces involved.

H̄s(X,E) = {f =
∑

fλ(u)φλ|fλ ∈ H̄s(R+),
∑
i+j≤s

〈λ〉2i‖fλ‖2
j <∞} (3.6)

H̄s
loc(X,E) = {f =

∑
fλ(u)φλ|∀φ ∈ C∞c (X), φf ∈ H̄s} (3.7)

Now to define Qg we must solve Df = g with boundary conditions. If f =
∑
fλφλ

this amounts to solving (∂u+λ)fλ = gλ with fλ(0) = 0 for λ ≥ 0. We do this in three

cases.

(a) First let λ > 0. Let geλ be an extension of gλ such that

∫
ĝeλ

λ+ iξ
= 0 (3.8)

and geλ ∈ H̄s. To show that such an extension exists first start with an arbitrary

extension g1
λ with

∫ ĝ1
λ

λ+iξ
= c. Now consider geλ = g1

λ + cα where α ∈ C∞c (R<0)
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such that
∫
eλuα = −1. Clearly geλ is still an extension. Now α = (∂u + λ)β where

β = e−λu
∫ u
−∞ e

λu′α(u′)du′. Hence α̂ = (iξ + λ)β̂ and we have c
∫

α̂
iξ+λ

= c
∫
β̂ =

cβ(0) = −c which implies (3.8). Now define

fλ = rF−1

(
ĝeλ

λ+ iξ

)
for λ > 0. (3.9)

This restriction can be shown to be independent of the extension geλ. This is because

for φ̂ ∈ C∞c (R>0) we have fλ(φ̂) = F−1
(

ĝeλ
λ+iψ

)
(φ̂) =

ĝeλ
λ+iψ

(φ) = ĝeλ

(
φ

λ+iψ

)
= geλ(ψ̂)

where (λ − ∂x)ψ̂ = φ̂. Hence ψ̂ = −eλu
∫ u

0
e−λu

′
φ̂du′ + (

∫
e−λu

′
φ̂du′)eλu and we

may further compute geλ(ψ̂) = g(χ+ψ̂) + geλ(χ−ψ̂) = g(χ+ψ̂) + geλ(e
λu) = g(χ+ψ̂) +

ĝeλ(
1

λ+iψ
) = g(χ+ψ̂) which proves the independence of the extension. Now

‖fλ‖s+1 ≤ ‖F−1

(
ĝeλ

λ+ iξ

)
‖s+1 (3.10)

=

(∫
〈ξ〉2s+2

|λ+ iξ|2
|ĝeλ|

2dξ

)
(3.11)

≤ C

(∫
〈ξ〉2s|geλ|2

)
(3.12)

= C‖geλ‖s. (3.13)

We may also estimate

‖geλ‖s ≤ ‖g1
λ‖s + c‖α‖s (3.14)

≤ C‖g1
λ‖s (3.15)

which finally gives

‖fλ‖s+1 ≤ C‖gλ‖s (3.16)

for some uniform constant C in λ. A similar argument gives
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‖λfλ‖s+1 ≤ C‖gλ‖s (3.17)

and fλ(0) = 0 clearly follows from (3.8).

(b) Now consider λ < 0. Here let geλ be an arbitrary extension of gλ and define

fλ = rF−1

(
ĝeλ

λ+ iξ

)
. (3.18)

Similar arguments to case (a) show that this restriction is independent of geλ and that

we have the estimates

‖fλ‖s+1 ≤ C‖gλ‖s (3.19)

‖λfλ‖s+1 ≤ C‖gλ‖s (3.20)

(c) Finally consider λ = 0. Let g0 ∈ H̄s for s ≥ 0. Let ge0 be a extension of g0 and

define

f0 = rF−1

(
ĝe0
iξ

)
. (3.21)

Here
ĝe0
iξ

is the distribution defined via

∫
ĝe0
iξ
φdξ =

∫
ĝe0ψdξ (3.22)

where ψ is the unique test function satisfying φ = φ(0) + iξψ. Here the convergence

of (3.22) follows as ψ ∼ φ(0)
iξ

as ξ →∞. Again the restriction is independent of ge0 as

if φ̂ ∈ C∞c (R>0) then we may compute
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F−1

(
ĝe0
iξ

)
=

ĝe0
iξ

(φ) (3.23)

=

∫
ĝe0ψ (3.24)

=

∫
ge0ψ̂ (3.25)

where ψ̂ =
∫ x
−∞ φ̂−(

∫
φ̂)H. Now we see sup(ψ̂) ⊂ R≥0 and hence (3.25) is indpendent

of the extension ge0. Now clearly ∂uf0 = g0 and hence f0 ∈ H̄s+1
loc by local elliptic

regularity. Also since s ≥ 0 we have f0 ∈ C0 and sup(f0) ⊂ R≥0 can be shown by

an argument similar to that showing the indepence of extension. Hence we have that

f0(0) = 0.

Now to show
∑
fλφλ ∈ H̄s+1

loc it suffices to show
∑

λ 6=0

∑
i+j≤s+1〈λ〉2i‖fλ‖2

j < ∞.

But this follows from (3.16), (3.17), (3.19) and (3.20).

Parts (i) and (ii) of the proposition are easily checked. For part (iii) let |A| =

AP − A(1− P ) and define

Kt = χ≥0e
−t|A|P − χ≤0e

t|A|(1− P ). (3.26)

It is clear that Kt is smoothing for t 6= 0 with smooth kernel K(y, z, t). The kernel

of Q is seen to be Q(y, u; z, v) = K(y, z, u− v) and is hence smooth for u 6= v.

Our next task is to construct kernels for the operators e−tD
∗D and e−tDD

∗
on the

cylinder Y × R+. Let φλ be the eigenfunctions for A on Y with eigenvalue λ. Let

π : (Y ×R+)×(Y ×R+)→ Y ×Y denote the projection given by π(y, u; z, v) = (y, z).

Define sλ = π∗(π∗1φλ⊗π∗2φλ) which is a smooth section of E�E∗ = π∗(π∗1E0⊗π∗2E0).

Now we define functions on R+ × R+ for each λ via
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fλ =
e−λ

2t

√
4πt

(
exp

(
−(u− v)2

4t

)
− exp

(
−(u+ v)2

4t

))
, (3.27)

gλ =
e−λ

2t

√
4πt

(
exp

(
−(u− v)2

4t

)
+ exp

(
−(u+ v)2

4t

))
+ λe−λ(u+v)erfc

(
u+ v

2
√
t
− λ
√
t

)
, (3.28)

where erfc is the complementary error function erfc(x) = 2√
π

∫∞
x
e−r

2
dr. Now we

define the kernels K1, K2 of e−tD
∗D, e−tDD

∗
respectively via

K1 =
∑
λ≥0

fλsλ +
∑
λ<0

gλsλ (3.29)

K2 =
∑
λ≥0

g−λsλ +
∑
λ<0

fλsλ. (3.30)

Here the series (3.29) and (3.30) converge in the C∞ topology on [δ,∞]t× (Y ×R+)×

(Y × R+) for any δ > 0. This can be seen from the fact the e−tA
2

is smoothing on

Y and the inequalities erfc(x) < e−x
2
< 1. The next proposition shows that our

construction does infact give the kernels of the fundamental solutions of the relevant

boundary value problems.

Proposition 3.1.2. The kernels K1, K2 defined in (3.29) and (3.30) satisfy

i. ∂tK1 + (D∗D)pK1 = 0 and ∂tK2 + (DD∗)pK2 = 0

ii. P ◦ rK1(., q) = 0, (1 − P ) ◦ r(DK1(., q)) = 0 and (1 − P ) ◦ rK2(., q) = 0,

P ◦ r(D∗K2(., q)) = 0

iii. If K = K1−K2 and K(t) =
∫∞

0

∫
Y

trK(y, u; y, u)dydu then we have an asymp-

totic expansion

K(t) ∼
∑
k≥−n

akt
1
2
kas : t→ 0. (3.31)

Moreover a0 = −
(
ηA(0)+h

2

)
where h = dimkerA and ηA(0) is a finite value at

zero for the analytic continuation of the eta function (3.3).

Proof. (i) Since the convergence in (3.29) and (3.30) is uniform one may check this
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by differentiating each term. This now follows from the fact that fλ and gλ are in the

kernel of ∂t − ∂2
u + λ2 for each λ.

(ii) This follows by checking fλ(0, v) = 0 if λ ≥ 0 and (∂ugλ + λgλ)(0, v) = 0 if λ < 0

for all v.

(iii) Absolute convergence of the integral K(t) =
∫∞

0

∫
Y

trK(y, u; y, u)dydu again

follows from the fact that e−tA
2

is smoothing on Y , erfc(x) < e−x
2

and that e−x
2

is

absolutely integrable on [0,∞). We may then compute

K(t) =

∫ ∞
0

∫
Y

trK(y, u; y, u)dydu (3.32)

=

∫ ∞
0

∑
λ

sign(λ)

(
−e
−λ2te−u

2t

√
πt

+ |λ|e2|λ|uerfc

(
u√
t

+ |λ|
√
t

))
du (3.33)

=

∫ ∞
0

∑
λ

sign(λ)
∂

∂u

(
1

2
e2|λ|uerfc

(
u√
t

+ |λ|
√
t

))
du (3.34)

= −
∑
λ

sign(λ)

2
erfc(|λ|

√
t) (3.35)

where we have adopted the convention that sign(0) = 1. Uniform convergence of

(3.35) in the C∞ topology on [δ,∞)t allows us to differentiate

K ′(t) =
1√
4πt

∑
λ

λe−λ
2t. (3.36)

NowK(t) may be identified with the trace of the trace class operatorB = − |A|
2A

erfc(|A|
√
t),

given by Bφλ = − sign(λ)
2

erfc(|λ|
√
t)φλ. We assume that such an operator has a trace

expansion

K(t) = trB ∼
∑
k≥−n

akt
1
2
k as t→ 0. (3.37)

Now K(t) + 1
2
h→ 0 exponentially as t→ 0 and |K(t)| ≤ Ct−

1
2
n as t→ 0. Hence

we see that
∫∞

0
(K(t) + 1

2
h)ts−1dt converges for Re(s) > n

2
. Integrating by parts and

using (3.36) gives
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∫ ∞
0

(K(t) +
1

2
h)ts−1dt =

1

s

∫ ∞
0

K ′(t)tsdt (3.38)

= −
Γ(s+ 1

2
)

2s
√
π

∑
λ 6=0

sign(λ)

|λ|2s
(3.39)

where the convergence of the series (3.39) follows from the uniform convergence of

(3.36) and absolute convergence of the respective integrals. Hence we see that the

η(2s) function is a well defined holomorphic function for Re(s) > n
2

given by

η(2s) = − 2s
√
π

Γ(s+ 1
2
)

∫ ∞
0

(K(t) +
1

2
h)ts−1dt. (3.40)

Now we may use the trace expansion (3.37) to define an analytic continuation for this

eta function via

η(2s) = − 2s
√
π

Γ(s+ 1
2
)

(
N∑

k=−n

āk
1
2
k + s

+ θN(s)

)
(3.41)

where āk = ak,∀k except ā0 = a0 + 1
2
h. Also the function θN(s) is defined via

θN(s) =

∫ ∞
0

(
K(t) +

1

2
h− χ(

N∑
k=−n

ākt
− k

2 )

)
ts−1dt (3.42)

where χ is the characteristic function on the interval [0, 1]. This integral (3.42) now

converges and defines a holomorphic function for Re(s) > −N+1
2

by the asymptotic

expansion (3.37). The fact that (3.41) analytically continues (3.40) follows simply

from
∫ 1

0
ākt

k
2

+s−1 = āk
1
2
k+s

. Finally substituting s = 0 in (3.41) gives

η(0) = −2ā0 = −(2a0 + h). (3.43)
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3.2 The index formula

Before we proceed to prove the index theorem it will be useful to prove a uniqueness

theorem for the heat kernels of the relevant boundary value problems. We assume

below that we are in the situation described in the introduction, which means that

X is now a compact manifold with boundary. The following proposition establishes

some unique properties satisfied by the relevant heat kernels.

Proposition 3.2.1. There exists a unique time dependent section Kt ∈ C1(R>0;C2(X×

X; π∗1E ⊗ π∗2E∗)) which satisfies

i. ∂tKt + (D∗D)pKt = 0

ii. Kts→
C2
s as t→ 0 for every s ∈ C∞(X,E)

iii. P ◦ r(Kt(., q)) = 0 and (1− P ) ◦ r(DKt(., q)) = 0 for every q ∈ X.

Proof. Let K1
t and K2

t be two such time dependent sections. Their difference Ht =

K1
t − K2

t then satisfies hypotheses i and iii as well as Hts →
C2

0 as t → 0. Hence

st = Hts satisfies ∂tst + (D∗D)st = 0, st →
L2

0 and P ◦ rs = 0 and (1− P ) ◦ rDs = 0.

We can then compute

∂t‖st‖2 =

∫
X

〈−D∗Dst, st〉dx (3.44)

= −
∫
X

〈Dst, Dst〉dx+

∫
Y

〈rDst, rstdy〉 (3.45)

= −‖Dst‖2 ≤ 0. (3.46)

Here the boundary term
∫
Y
〈rDst, rst〉 in (3.45) comes from Stokes theorem assuming

D has the special form (3.1) in the collar neighbourhood of Y and the fact that

the density dx on X agrees with the density dudy on the collar. This boundary

term vanishes as the restrictions rDst and rst are orthogonal under the assumptions

P ◦ rs = 0 and (1− P ) ◦ rDs = 0. Hence (3.46) gives ‖st‖ ≤ ‖sε‖ for ε < t. Taking

the limit ε → 0 gives ‖sε‖ → 0 and we see that st = 0 for t > 0. This means that

Hts = 0 for each s and we must have Ht = 0 and K1
t = K2

t .

We are now ready to prove the index theorem. We first prove part (a) of theorem
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(3.0.3) which claims that D is Fredholm with the relevent boundary condition.

Proof of theorem (3.0.3) (a). The proof that D is Fredholm employs the construction

of a parametrix for D as follows. Let ρ(a, b) denote a smooth function of the real

variable u which satisfies

ρ = 0 for u ≤ a and ρ = 1 for u ≥ b. (3.47)

Now define the four functions

φ2 = ρ

(
1

4
,
1

2

)
, ψ2 = ρ

(
1

2
,
3

4

)
(3.48)

φ1 = 1− ρ
(

3

4
, 1

)
, ψ1 = 1− ψ2. (3.49)

Now we define a paramatrix R for D via

R = φ1Q1ψ1 + φ2Q2ψ2. (3.50)

Here Q1 = i−1
E ◦Q ◦ iF is the operator defined in lemma (3.1.1) after identifications.

And Q2 is a parametrix for D on the double X̃ of X. We claim that R is a parametrix

for D in the sense that RD−I and DR−I are both compact operators. First consider

RD − I : H̄s(X,E, P )→ H̄s(X,E, P ) for s ≥ 1 and compute

RD − I = φ1Q1ψ1D + φ2Q2ψ2D − I (3.51)

= (φ1Q1Dψ1 + φ1Q1[ψ1, D]) + (φ2Q2Dψ2 + φ2Q2[ψ2, D])− I (3.52)

= (φ1ψ1 + φ1Q1[ψ1, D]) + (φ2ψ2 + φ2Sψ2 + φ2Q2[ψ2, D])− I (3.53)

= φ1Q1[ψ1, D] + φ2Q2[ψ2, D] + φ2Sψ2. (3.54)

Here (3.53) follows from the construction ofQ1 and the fact thatQ2 is a left parametrix

in the interior for D with smooth error S. Line (3.54) follows from φiψi = ψi and

ψ1 +ψ2 = 1. Finally observe that the commutators [ψ1, D], [ψ2, D] are of zeroth order

39



and φ2Sψ2 is smoothing. Hence RD − I : H̄s(X,E, P ) → H̄s+1(X,E, P ) increases

regularity by 1 and hence by Rellich lemma is a compact operator on H̄s(X,E, P ). A

similar argument shows that DR− I is compact and proves that D is Fredholm.

Before we prove the index formula we will need a proposition identifying the

cokernel of D with the kernel of its adjoint D∗. This is a non trivial matter on a

manifold with boundary and is proved next.

Proposition 3.2.2. Let D∗ be the formal L2 adjoint of D. The orthogonal comple-

ment of the range of D : H1(X,E, P ) → L2(X,E) is isomorphic to the kernel of

D∗ : H1(X,E, 1− P )→ L2(X,E)

Proof. Under the assumptions we must have that D∗ = − ∂
∂u

+A on the collar Y × I.

Let v ∈ L2(X,E) be such that

〈Du, v〉 ∀u ∈ H1(X,E, P ). (3.55)

First we show that the restriction of v to Ẋ = X\(Y × [0, 1
2
]) is smooth. To this end

consider φ2v and observe that we must have 〈Du, φ2v〉 = 0 ∀sup(u) ⊂ Ẋ. Hence

〈u,D∗(φ2v)〉(1,−1) ∀sup(u) ⊂ Ẋ where 〈〉(1,−1) denotes the L2 pairing between H1

and H−1. Hence D∗(φ2v)|Ẋ = 0 and we must have that v|Ẋ is smooth by elliptic

regularity for D∗ in the interior. Moreover (D∗v)|Ẋ = 0 as φ2 = 1 on Ẋ. Now we

show v is smooth on Y × [0, 3
4
] and (1− P ) ◦ r(u) = 0. By (3.55) we have that

〈Du, φ1v〉 = 0 ∀u ∈ H1(X,E, P ) with sup(u) ⊂ [0,
3

4
]. (3.56)

Let φ1v =
∑
fλφλ. Consider u = Q(φfλφλ) where sup(φ) ⊂ [0, 3

4
]. Now in the case

where λ < 0 we have sup(u) ⊂ [0, 3
4
] and we may apply (3.56) to get

0 = 〈Du, φ1v〉 = 〈DQ(φfλφλ), φ1v〉 (3.57)

= φ‖fλφλ‖2. (3.58)
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This implies that

fλ|(0, 3
4

) = 0 forλ < 0. (3.59)

Now consider v+ =
∑

λ≥0 fλφλ. By (3.55) and (3.59) we now have that

〈Du, v+〉 = 0 ∀u ∈ H1(X,E, P ) with sup(u) ⊂ [0,
3

4
]. (3.60)

Hence 〈u,D∗v+〉(1,−1) = 0 where there is no boundary term due to the fact that

P ◦r(u) = 0. Hence D∗v+|[0, 3
4

] = 0 and combining this with (3.59) gives D∗v|(0, 3
4

) = 0.

We may hence solve fλ(u) = eλ−λcfλ(c) for c ∈ (1
2
, 3

4
). This formula along with the

fact that v is smooth on Y × (1
2
, 3

4
) gives that v is smooth on Y × [0, 3

4
]. Hence v

is smooth on Y and in the kernel of D∗ : H1(X,E, 1 − P ) → L2(X,E). Conversely

elements in this kernel are easily seen to be in the orthogonal complement of the

range of D.

Having established the isomorphism of the cokernel of D and the kernel of D∗ we

can now finish the proof of the index formula.

Proof of theorem (3.0.3) (b). By proposition (3.2.2) we may write ind(D) = dimker(D)−

dimker(D∗). By an argument similar to part (a) we see that the operator D∗D :

H2(X,E; 1− P, P )→ L2(X,E) is Fredholm where

H2(X,E; 1− P, P ) = {u ∈ H2(X,E)|P ◦ ru = 0, (1− P ) ◦ rDu = 0} (3.61)

Its generalized inverse (D∗D)−1 is a self-adjoint compact operator on L2(X,E) and

hence has a complete orthonormal basis of eigenvectors {sλ}. These are also eigen-

vectors of D∗D with a discrete set of eigenvalues λ → ∞. A similar parametrix for

D∗D also shows that sλ ∈ C∞(X,E) for each λ. Now we define an operator e−tD
∗D

on L2(X,E) via e−tD
∗Dsλ = e−tλsλ. This operator maps L2(X,E) into
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H2n(X,E; 1− P, P, n) = {u ∈ H2n(X,E)|P ◦ (D∗D)iu = 0,

(1− P ) ◦ rD(D∗D)iu = 0 ∀i < n} (3.62)

Hence the operator e−tD
∗D is a smoothing operator with kernel Kt(p, q) ∈ C∞(X ×

X, π∗1E ⊗ π∗2E
∗). It is hence trace class with trace Tr(e−tD

∗D) =
∑

λ e
−tλ. Similar

statements hold for e−tDD
∗
. The nonzero eigenvalues of D∗D and DD∗ coincide as

sλ 7→ Dsλ defines an isomorphism between the λ-eigenspaces of D∗D and DD∗ with

inverse tλ 7→ 1
λ
D∗tλ. Also the nullspace of D∗D coincides with the nullspace of D

while the nullspace of DD∗ coincides with that of D∗. Hence we have that

ind(D) = Tre−tD
∗D − Tre−tDD

∗
. (3.63)

Now we define a time evolution operator to approximate e−tD
∗D via

et = φ1e1ψ1 + φ2e2ψ2 (3.64)

where e1 is the corresponding evolution operator on the cylinder whose kernel is (3.29)

and e2 is the evolution operator for (∂t+D∗D) on the double of X. If Et is the kernel

of et then elementary estimates show that Rt = (∂t +D∗D)Et is exponentially small,

as t→ 0, in Ck norm for any k. Now Duhamel’s principle shows that

H1
t = Et −

∫ t

0

e−(t−t′)D∗DRt′dt
′ (3.65)

satisfies (∂t + (D∗D)p)Ht = 0. Also proposition (3.1.2) shows that P ◦ rEt(., q) = 0

and (1 − P ) ◦ rDEt(., q) = 0 for each q. Further Ets →
C2

s as t → 0 is clear from

the definitions of e1 and e2. Hence by proposition (3.2.1) H1
t is the unique heat

kernel for e−tD
∗D. A similar construction relates the heat kernel H2

t for e−tDD
∗

to the

approximate kernel Ft constructed from evolution operators f1 and f2 for (∂t +DD∗)

on the cylinder and the double respectively. Now since Rt is exponentially small as

t → 0 and e−tD
∗D is bounded on any Sobolev space, (3.65) implies that H1

t and Et
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have the same asymptotics as t→ 0. Hence

ind(D) = Tre−tD
∗D − Tre−tDD

∗
(3.66)

= lim
t→0

(TrH1
t − TrH2

t ) (3.67)

= lim
t→0

(TrEt − TrFt) (3.68)

= lim
t→0

(∫ 1

0

∫
Y

ψ1(y)trKt(y, u; y, u)dydu+

∫
X

ψ2(x)trK̃t(x)dx

)
(3.69)

where Kt is defined as in proposition (3.1.2) and K̃t denotes the kernel of e−tD
∗D −

e−tDD
∗

on the double of X. The last equality follows from the definitions of Et and Ft

and the fact that φiψi = ψi. Now proposition (3.1.2) gives the asymptotic expansion

(∫ 1

0

∫
Y

ψ1(y)trKt(y, u; y, u)dydu

)
∼
∑
k≥−n

akt
1
2
k (3.70)

while we have an asymptotic expansion

∫
X̃

trK̃t(x)dx ∼
∑
k≥−n

(∫
X̃

αk(x)dx

)
t

1
2
k (3.71)

for the trace Tr(e−tD
∗D−e−tDD∗) on the double X̃ of X. Here αk(x) are local functions

of the operators D∗D and DD∗. Under the assumptions these two operators are

isomorphic on the collar Y × I and since ψ2 = 1 outside the collar we may replace

the expansion (3.71) with

∫
X

ψ2(x)trK̃t(x)dx ∼
∑
k≥−n

(∫
X

αk(x)dx

)
t

1
2
k. (3.72)

Now substituting (3.70) and (3.72) into (3.69) gives

ind(D) = lim
t→0

(∑
k≥−n

akt
1
2
k +

∑
k≥−n

(∫
X

αk(x)dx

)
t

1
2
k

)
. (3.73)

Since the limit exists we must have ak = −
∫
X
αk(x)dx for k < 0 and
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ind(D) =

∫
X

α0(x)dx+ a0 (3.74)

=

∫
X

ch(σ(D))Td(X)−
(
h+ ηA(0)

2

)
(3.75)

where the last line follows from proposition (3.1.2) and the local index theorem on

the double of X.

3.3 Eta invariants of Dirac operators

In this section we consider the eta invariants of Dirac operators. The main result

which appears below says that the eta function of a generalized Dirac operator is

holomorphic in the part of the complex plane where Re(s) > −1
2
. Following equations

(3.31), (3.36) and (3.41) this is equivalent to the fact that the trace Tr(De−tD
2
) ∈

t
1
2C∞([0,∞)) and exhibits cancellations. This fact will be used in deriving estimates

on the heat trace and spectral flow. The result appearing below was originally proved

in [1], [2] and using a different technique in [9]. The proof we give below follows

proposition 8.35 in [32].

Theorem 3.3.1. Let D : C∞(Y, S) → C∞(Y, S) be a generalized Dirac operator on

an n dimensional manifold Y . Then ηD(s) is a holomorphic function for Re(s) > −1
2
.

Proof. Define Ỹ 0 = Y×S1 with the product metric g̃0 = dθ2+g. Let (S, ρ,∇, h) be the

Clifford bundle on Y corresponding to D, and define a Clifford bundle (S̃0, ρ̃0, ∇̃0, h̃0)

on Ỹ 0 via S̃0 = π∗1S ⊕ π∗1S. Clifford multiplication ρ̃0 on S̃0 is defined by

ρ̃0(dθ) =

 −I

I

 , ρ̃0(αy) =

 ρ(αy)

ρ(αy)

 . (3.76)

and the connection ∇̃0 and metric h̃0 on S̃0 are simply pulled back from S. The Dirac
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operator D̃0 corresponding to this Clifford bundle on Ỹ 0 can be computed to be

D̃0 =

 −I

I

 ∂

∂θ
+

 I

I

D. (3.77)

Now we wish to consider the manifold Ỹ = Y × S1 with the warped metric

g̃ = dθ2 + e2φ(θ)g, (3.78)

where φ ∈ C∞(S1) is a smooth real valued function on S1. One can first calculate how

the Levi-Civita connection on Y × S1 changes under the warping. If ∇̃0 L.C. denotes

the Levi-Civita connection for the product metric and ∇̃L.C. denotes the Levi-Civita

connection for the warped metric (3.78) then we have that the two differ by a one

form ∇̃L.C. − ∇̃0 L.C. = ω where

ω(∂θ)dθ = 0, ω(∂θ)α = −∂φ
∂θ
α, (3.79)

ω(X)dθ =
∂φ

∂θ
e2φiXg, ω(X)α = −∂φ

∂θ
α(X)dθ (3.80)

for all α,X denote a one form and a vector field on Y respectively. Now we define

a Clifford bundle for the warped metric with S̃ = S̃0. One must change Clifford

multiplication appropriately so that unit elements square to −1. Hence we set

ρ̃(dθ) =

 −I

I

 , ρ̃(αy) = e−φ

 ρ(αy)

ρ(αy)

 . (3.81)

The connection must also be changed appropriately to keep it compatible with Clifford

multiplication. Hence we set ∇̃ = ∇̃0 + Ω where

Ω(∂θ)s = 0, Ω(X)s = −1

2

∂φ

∂θ
eφρ̃0(iXg)ρ̃0(dθ). (3.82)

The metric h̃ = h̃0 on the Clifford bundle is left unchanged. It is now an excercise

to show that (S̃, ρ̃, ∇̃, h̃) is a Clifford bundle on Ỹ for the warped metric g̃. The
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corresponding Dirac operator D̃ can be computed to be

D̃ =

 −I

I

( ∂

∂θ
+ F (θ)

)
+ e−φ

 I

I

D, (3.83)

where F (θ) is the function of θ given by

F (θ) =
n

2

∂φ

∂θ
eφ. (3.84)

The motivation for the above construction comes from the corresponding formulas in

the case where Y is an odd spin manifold. The spin structure on Y and the trivial

spin structure on S1 combine to give a spin structure on Y ×S1. Choosing the warped

metric on the product one can compute and verify the spin Dirac operator on the

product to be given by (3.83).

Now to prove that ηD(s) is holomorphic for Re(s) > −1
2

it is enough by (3.41) to

prove that ak = 0 for k < 0. Hence via (3.31) and (3.36) it is enough to prove that

the asymptotic expansion for the trace satisfies Tr(De−tD
2
) ∈ t

1
2C∞([0,∞)). Now

let kt denote the kernel of De−tD
2

on Y and let k̃0
t denote the kernel of De−t(D̃

0)2 on

Ỹ . We will infact prove that tr(kt) ∈ t
1
2C∞([0,∞) × Y ) where tr is the trace taken

pointwise on the diagonal in Y . First let iθ1,θ2 : Y × Y → Ỹ × Ỹ denote the inclusion

given by iθ1,θ2(y1, y2) = (y1, θ1; y2, θ2) for any pair (θ1, θ2) ∈ S1 × S1. Equation (3.77)

may be squared to give (D̃0)2 = D2
θ +D2 where Dθ = 1

i
∂
∂θ

. Since Dθ and D commute

it now follows that

i∗θ1,θ2 k̃
0
t = Θ(t; θ1 − θ2){kt ⊕ kt} (3.85)

where Θ(t; θ1 − θ2) denotes the heat kernel for e−tD
2
θ written in terms of the Jacobi

theta function

Θ(t; θ) =
1

2π

∑
n

e−n
2teinθ. (3.86)

Since dθ2 is a flat metric on S1 with no curvature by (3.85) one has the following
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asymptotic expansion in a neighbourhood of the diagonal

i∗θ1,θ2 k̃
0
t ∼

1√
4πt

e−
|θ1−θ2|

2

4t {kt ⊕ kt}. (3.87)

Hence we must have that

tr(kt) ∼
√
πt tr(i∗θ,θk̃

0
t ) (3.88)

for any θ ∈ S1.

Consider now the square of the warped Dirac operator (3.83) which is

D̃2 = −(∂θ + F )2 + e−2φD2 +

I
−I

 e−φ∂φ
∂θ
D. (3.89)

We now let the function φ depend on a smooth parameter s. The variation of (3.89)

with respect to s can then be computed to be

∂

∂s
D̃2 = −Ḟ (∂θ + F )− (∂θ + F )Ḟ − 2φ̇e−2φD2 + e−φ(φ̇′ − φ̇φ′)

I
−I

D, (3.90)

where we have used φ̇ and φ′ to denote derivatives with respect to s and θ respectively.

We further choose the family φs(θ) such that φ0(θ) = 0 for all θ. Using (3.84) this

reduces (3.90) to

∂

∂s
D̃2(0) = −n

2
(φ̇′∂θ + ∂θφ̇

′)− 2φ̇D2 + φ̇′

I
−I

D. (3.91)

Now Duhamel’s principle says that the derivative of the heat kernel may be written

as

∂

∂s
e−tD̃

2

= −
∫ t

0

e−(t−r)D̃2 ∂D̃2

∂s
e−rD̃

2

dr (3.92)

which on setting s = 0 gives
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∂

∂s
e−tD̃

2

(0) = −
∫ t

0

e−(t−r)(D̃0)2 ∂D̃2

∂s
(0) e−r(D̃

0)2

dr. (3.93)

Following (3.90) and (3.93) we may relate the trace trDe−tD
2

with the variation of

the supertrace ∂
∂s
e−tD̃

2
(0). The theorem now follows from the local index theorem.

3.4 Relation with spectral flow

Here we breifly recall the notion of spectral flow and its relation with the index. We

refer to [2] for the proofs of several assertions made here with [10] giving a more

detailed account. Consider a continuous one parameter family of elliptic self-adjoint

operators At, for 0 ≤ t ≤ 1, of order m acting on sections of a vector bundle E on a

manifold Y . Spectral flow counts the net number of eigenvalues which which change

sign from negative to positive as t varies. To elaborate, first replace the family by

Ft = (1 + A2
t )
− 1

2At to obtain a continuous family of self-adjoint Fredholm operators

on L2(Y,E). Let F̂ denote the space of Fredholm self-adjoint operators on a Hilbert

space. It consists of three connected components F̂ = F̂+ ∪ F̂∗ ∪ F̂−, with F̂±
consisting of the operators with essential spectrum contained in R±. Since the Dirac

operator has spectrum going to ±∞ we have {1,−1} ⊂ σess(Ft) for all t. Hence it

suffices to define spectral flow for a continuous path of operators in F̂∗. To this end

we note that the space F̂∗ weakly retracts onto the smaller space

F̂∞ = {B ∈ F̂∗| ‖B‖ = 1, σess(B) ⊂ {1,−1}, σ(B) is finite}. (3.94)

Now, given a continuous path of operators Bt in F̂∞ we have that the spectrum of the

family is given by a finite sequence of continuous functions σ(Bt) = {λ0(t), λ1(t), . . . , λm(t)}.

Set the number of positive and negative crossings crossings to be

n+ = {i|λi(0) < 0 ≤ λi(1)}, n− = {i|λi(1) < 0 ≤ λi(0)} (3.95)
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repectively. The spectral flow of the family is defined to be the integer sf{At} =

n+ − n−.

In the case that we have a family of first order differential operators At acting on

the space of sections C∞(Y ;E) the spectral flow function can be related to the index

of a Fredholm operator. First consider the product X = Y × [0, 1] with the bundle

E pulled back from Y (still denoted by E). Define a subspace of H1(X;E) via

H1(X;E, π≥) = {u ∈ H1(X;E)| π≥0u(., 0) = 0, π<0u(., 1) = 0} (3.96)

where π≥0 and π<0 denote the projections onto the eigenspaces of A0 and A1 spanned

by the nonnegative and negative eigenvalues repectively. Consider the operator D =

∂
∂t

+ At : H1(X;E, π≥) → L2(X;E). If one perturbs the family to assume that it is

constant near the ends of the cylinder then it is proved in [1] that this operator is

Fredholm. Furthermore the index of this operator is the spectral flow of this family

sf{At} = ind(D). (3.97)

The index of D is in turn given by the Atiyah-Patodi-Singer index theorem [1] as

ind(D) =

∫
X

ch(σ(D))Td(X) +
1

2
(η̄A1 − η̄A0). (3.98)

Here the first term is the usual Atiyah-Singer integral. The term η̄A = η̄A(0) is the

reduced eta invariant which is the value at zero of the reduced eta function η̄A(s)

formally defined via

η̄A(s) = dim kerA+
∑
λ

signλ|λ|−s, s ∈ C. (3.99)

The sum above runs over the eigenvalues of A. This formal series converges and

defines a holomorphic function for Re(s) > n. It has a meromorphic continuation to

the whole s-plane with a finite value at 0 which appears in (3.98).

In order to prove (3.97) one first proves it to be true in the case where At is a
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periodic family. In this case the family gives a continuous path Ft : S1 → F̂∗. In [3] it

is shown that the the space F̂∗ is a classifying space for K1. Hence the homotopy class

[Ft] ∈ K1(S1) = Z gives an element in K theory which is the index of the family. We

claim that this index equals the spectral flow of the family. This follows on showing

that both the index and spectral flow are invariant under homotopy and checking

them to be equal on the generator of π1(F̂∗) (the family with spectrum n+ t, n ∈ Z).

Finally it remains to show that the index of the family ind(At) coincides with ind(D).

Here ind(D) can be written using (3.98) where the two boundary contributions from

A0 and A1 now cancel. The integral term now equals ind(At) by an application of

the index theorem.

Finally having proved (3.97) for a periodic family it suffices to prove it for a single

path of operators connecting A0 and A1.
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Chapter 4

Spectral flow for the Dirac

operator

We now come to one of our main results. This is an estimate on spectral flow for a fam-

ily of coupled Dirac operators. To state the result, consider an oriented Riemannian

spin manifold Y of odd dimension n. Let S be the spin bundle on Y corresponding

to a given spin structure. Let L be another Hermitian line bundle on Y . Let A0 be a

fixed unitary connection on L and let a ∈ Ω1(Y ; iR) be an imaginary one form on Y .

Then we have a family A0 + sa of unitary connections on L. Each such connection

gives rise to a coupled Dirac operator DA0+sa : C∞(Y ;S ⊗ L) → C∞(Y ;S ⊗ L).

The Dirac operator being elliptic and self-adjoint has a discrete set of eigenvalues.

The object of interest in these notes is the spectral flow function sf{DA0+sa} , for

0 ≤ s ≤ r, and its asymptotics for large r. In particular we shall prove the following

Theorem 4.0.1. The spectral flow function for the family of Dirac operators DA0+sa

satisfies

sf{DA0+sa} = r
n+1

2

(
i

2π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +O(r
n
2 ) (4.1)

as r →∞.
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4.1 Estimating spectral flow

Now we return to the problem of estimating the spectral flow of the family DA0+sa,

for 0 ≤ s ≤ r. As noted in the previous section the spectral flow function sf{DA0+ra}

equals the index of the operator D = ∂
∂t

+DA0+ta : H1(X;E, π≥)→ L2(X;E) where

X = Y × [0, r]. The index is again given by index formula (3.2). The integral term

can now be simplified according to 4.3 in [1] to give

sf{DA0+sa} = ind(D) (4.2)

=

∫
X

ch(L)Â(X) +
1

2
(η̄r − η̄0). (4.3)

Here the terms appearing in the integral are the Chern character form of L, computed

using the connection A0 + sa, and Â genus of X. The terms η̄0 and η̄r denote the

reduced eta invariants of DA0 and DA0+ra respectively. The leading order term in s

in the integrand can now be computed from the definitions to be

ch(L)Â(X) =

(
i

2π

)n+1
2 1(

n+1
2

)
!

(
n+ 1

2

)
s
n−1

2 ds ∧ a ∧ (da)
n−1

2 +O(s
n−1

2 ). (4.4)

Which on integration simplifies (4.3) to

sf{DA0+sa} = r
n+1

2

(
i

2π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +
1

2
(η̄r − η̄0) +O(r

n−1
2 ). (4.5)

Hence to prove (4.1) it remains to prove that

η̄r = O(r
n
2 ) (4.6)

as r → ∞. In order to prove (4.6) we first note, following section 2 of [1], that the

eta invariant appears as the zeroth order term in a trace expansion
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1

2
η̄r = −ar0 (4.7)

where

Kr
t := trBr

t ∼
∑
k≥−n

arkt
1
2
k. (4.8)

The operator Br
t is given by functional calculus

Br
t φλ = −signλ

2
erfc(|λ|

√
t)φλ (4.9)

acting on the eigenvectors φλ of DA0+ra with eigenvalue λ and erfc denotes the com-

plementary error function

erfc(x) =
2√
π

∫ ∞
x

e−ξ
2

dξ. (4.10)

Next we use a theorem, see [9], asserting that on odd manifolds the reduced eta

function for Dirac operators is holomorphic in the region of the complex plane given

by Re(s) > −1
2
. The poles of the eta function are given by −1

2
k with corresponding

residues being the coefficients ak in the trace expansion (4.8). Hence this theorem

is equivalent to the fact that the trace Kt is a smooth function of t near zero. The

time derivative of this trace is the trace K ′t = 1√
4πt

Tr(DAe
−tD2

A), where A = A0 + ra.

Hence this theorem also follows from theorem 8.35 in [32]. In fact [32] proves that

the same is true for the pointwise trace tr(DAe
−tD2

A) along the diagonal.

Using the smoothness of Kt near zero we may now rewrite (4.7) and (4.8) as

1

2
η̄r = −ar0 = −Kr

0 . (4.11)

The fundamental theorem of calculus gives

−Kr
0 = −Kr

t +

∫ t

0

K ′
r
t′dt
′. (4.12)

Hence to bound η̄r it suffices to bound the right hand side of (4.12) and the traces
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Kr
t and K ′rt uniformly in r. Here the trace Kt may be estimated by

|Kt| ≤
1√
π

Tr(e−tD
2
A), (4.13)

which simply follows from the inequality erfc(x) < e−x
2
. Hence it now suffices to get

uniform bounds in r on the the heat trace tr(e−tD
2
A) and the trace tr(DAe

−tD2
A) which

we do next.

4.1.1 Bound on the heat trace

Let Ht(x, y) denote the kernel of the evolution operator e−tD
2
A . In this section we

derive a bound on this heat kernel following [40]. First consider the function ht(x, y)

defined by

ht(x, y) =
e−

ρ(x,y)2

4t

(4πt)n/2
(4.14)

where ρ(x, y) is the distance function on Y when x is within the injectivity radius of

y. Outside of this region ρ(x, y) is set arbitrarily as long as is uniformly bounded from

below there ρ(x, y) > ε > 0. The heat kernel bound is now given by the following

proposition

Proposition 4.1.1. The heat kernel Ht(x, y) satisfies

|Ht(x, y)| ≤ C1ht(x, y)eC2rt, (4.15)

where C1, C2 are some positive constants independent of r.

Proof. First observe that for fixed y the section st(.) = Ht(., y) satisfies the heat

equation ∂tst = −D2
Ast. The Weitzenbock formula

D2
A = ∇∗A∇A +

cl(FA)

2
+
κ

4
(4.16)

now gives that the function ft = |st| obeys the inequality
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∂tft ≤ −d∗dft + c1(r + 1)ft (4.17)

for some constant c1 independent of r. Hence the function f ′t = e−c1(r+1)tft satisfies

the inequality

∂tf
′
t ≤ −d∗df ′t . (4.18)

Now standard asymptotics for the heat kernel Ht as in chapter 7 of [37] give

f ′t ∼ |Ht(x, y)| ∼ ht(x, y) ∼ Φt(x, y) as t→ 0 (4.19)

where Φt(x, y) denotes the heat kernel e−td
∗d for the Laplace operator acting on func-

tions on Y . Now using (4.18) and (4.19) an application of the maximum principle for

the heat equation gives that

f ′t ≤ c2Φt(x, y) ≤ c3ht(x, y) (4.20)

holds for t ≤ 1 and some constants c2, c3. Hence

ft ≤ c3ht(x, y)e−c1(r+1)t (4.21)

for t ≤ 1 and the proposition follows.

We note that the above proposition immedietly gives the bound

Tr(e−tD
2
A) ≤ c1

tn/2
ec2rt (4.22)

on the heat trace for constants c1, c2 uniform in r.

In order to obtain a better estimate on spectral flow, we will need another bound

comparing the heat kernel to Mehler’s kernel. To recall the definition of Mehler’s

kernel first define the function

mt(expv(y), y) =
1

(4πt)
n
2

det
1
2

(
rtda

sinh rtda

)
exp

{
− 1

4t
g(v, rtda coth(rtda)v)

}
(4.23)
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in a geodesic neighborhood of the diagonal in Y × Y . Here v ∈ TyY and the two

from da is considered as an element of C∞(End(TyY )) using the metric. Next let π1

and π2 denote the projections onto the two factors of Y × Y and define the section

e−
tF
2 of π∗1S ⊗ π∗2S

∗ in a geodesic neighborhood of the diagonal. This restricts to

e−
tF
2 |∆ = e−

tcl(FA)

2 at the diagonal ∆ and is parallel along geodesics (exptv(y), y). If

ig denotes the injectivity radius of Y consider the cutoff

χ(x) =

 1 if x ≤ ig
2

;

0 if x > ig,

and define Mehler’s kernel as

Mt(x, y) = χ(ρ(x, y))mt(x, y)e−
tF
2 . (4.24)

Theorem 4.1.2. There exist positive constants C1 and C2 independent of r such that

|Ht(x, y)−Mt(x, y)| ≤ C1h2t(x, y)t
1
2 eC2rt. (4.25)

Proof. First fix a set of geodesic coordinates centered at y. Now choose a basis sα for

Sy and a basis l for Ly. Parallel transport this basis along geodesics to obtain trivial-

izations sα(x) and l(x) of S and L respectively near y. Now define local orthonormal

sections of (S ⊗ L)⊗ (S ⊗ L)∗y via

tαβ = sα(x)⊗ l(x)⊗ s∗β ⊗ l∗. (4.26)

The connection ∇A can be expressed in this frame and these coordinates via

∇A
i = ∂i + Ai + Γi (4.27)

where each Ai is a Christoffel symbol of A (or dim(S ⊗ L)y copies of it) and each Γi

is a Christoffel symbol of the Spin connection on S. Since the section l(x) is obtained

via parallel transport along geodesics the connection coefficient Ai maybe written in

terms of the curvature Fij of A via

56



Ai(x) =

∫ 1

0

dρ(ρxjFA
ij (ρx)). (4.28)

The dependence of the curvature coefficients Fij on the parameter r is seen to be linear

Fij = FA0
ij +r(da)0

ij despite the fact that they are expressed in the r dependent frame l.

This is because a change of frame into l is conjugation by a function which leaves the

coefficient unchanged. Further using the Taylor expansion (da)ij = (da)ij(0)+xkaij,k,

we see that the connection ∇A has the form

∇A
i = ∂i +

1

2
rxj(da)ij(0) + xjA0

ij + rxjxkAij,k + Γi, (4.29)

where A0
ij =

∫ 1

0
dρ(ρFA0

ij (ρx)), Aij,k =
∫ 1

0
dρ(ρaij,k(ρx)) and Γi are all independent of

r. Now it follows from the Weitzenbock formula that the operator D2
A may be written

as

D2
A = A+ E, with (4.30)

A = −∂2
i − r(da)ij(0)xj∂i −

r2

4
xixj

(∑
k

(da)ik(0)(da)jk(0)

)

+ cl

(
FA
2

)
and (4.31)

E = Pijklx
kxl∂i∂j +Qijkrx

jxk∂i +Ri∂i + Sijkr
2xixjxk + Tirx

i + U, (4.32)

and where P,Q,R, S, T and U are each smooth endomorphisms of S⊗L independent

of r. Since (∂t +D2)Ht = 0 we now have

(∂t +D2
A)(Ht −Mt) = −(∂t + A)Mt − EMt. (4.33)

By Mehler’s formula, see section 4.2 in [8], we have (∂t + A)Mt = 0 for ρ(x, y) < ig
2

.

Hence using (4.24) and (4.32) we may write the right hand side of (4.33) as a sum

−(∂t + A)Mt − EMt =
∑

(k,d,I)

tkrdxIfk,d,I(x)f(rt)Mt, (4.34)
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where each (k, d, I) ∈ Z× N0 × Nn
0 and satisfies the inequality

d ≤ k +
|I|
2

+
1

2
. (4.35)

Also the function f appearing in (4.34) satisfies an exponential bound |f(x)| < c1e
c2x.

Now since the kernels Ht and Mt both have the same asymptotics as t→ 0 Duhamel’s

principle gives via (4.33) that

Ht −Mt =

∫ t

0

e−(t−s)D2
A {−(∂s + A)Ms − EMs} ds. (4.36)

Now we substitute (4.34) into (4.36). Following this we use the bound (4.15) for the

heat kernel, the bound

|Mt(x, y)| ≤ c3e
c4rtht(x, y) (4.37)

for uniform constants c3 and c4 and the bound |f(x)| ≤ c1e
c2x. These bounds along

with the inequalities

xIht(x, 0) ≤ Ct
1
2
|I|h2t(x, 0), (4.38)∫ t

0

ds

(∫
Y

dyht−s(x, y)h2s(y, 0)

)
≤ Cth2t(x, 0) (4.39)

and (4.35) can be used to estimate the right hand side of (4.36) to give (4.25).

4.1.2 Bound on the trace of DAe
−tD2

A

We now turn to bound the pointwise tr(DAe
−tD2

A). To this end first consider the

expansion for the heat kernel Ht(x, y) given by

Ht(x, y) ∼ ht(x, y)
(
b0(x, y) + b1(x, y)t+ b2(x, y)t2 + . . .

)
. (4.40)
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Such a kernel expansion is not unique and only the restriction to the diagonal of the

coefficients bk are defined uniquely. In (4.40) we refer to the coefficients bk generated

by solving a recursive system of transport equations along geodesics as in chapter

7 of [37]. The kernel Lt(x, y) of DAe
−tD2

A is simply Lt = DAHt and hence has an

expansion given by

Lt(x, y) ∼ht(x, y)cl

(
−ρdρ

2t

)(
b0(x, y) + b1(x, y)t+ b2(x, y)t2 + . . .

)
+ ht(x, y)

(
DAb0(x, y) +DAb1(x, y)t+DAb2(x, y)t2 + . . .

)
.

(4.41)

As noted earlier the pointwise trace tr(DAe
−tD2

A) along the diagonal has an expansion

starting with a leading term of order t
1
2 . Since the restriction to the diagonal of the

term cl
(
−ρdρ

2t

)
in (4.41) is zero this implies that DAbk(x, x) = 0 for k < n+1

2
at each

point on the diagonal. To bound the trace of Lt we will need the following lemma

giving a schematic expression for the coefficients bk(x, y).

Lemma 4.1.3. For each k ≥ 0 and each y ∈ Y consider i∗ybk ∈ C∞(Y ; (S ⊗ L) ⊗

(S⊗L)∗y), the pullback of the heat kernel coefficient under the inclusion iy(x) = (x, y).

There exists a local orthonormal basis of sections tαβ ∈ C∞(Y ; (S ⊗ L) ⊗ (S ⊗ L)∗y)

in which the heat kernel coefficient maybe be written as i∗ybk =
∑
fαβtαβ. Moreover,

in geodesic coordinates centered at y, the functions fαβ have the form

fαβ =
∑
(d,I)

rdxIfd,I (4.42)

where each (d, I) ∈ N0 × Nn
0 and satisfies the inequality d ≤ k + 1

2
|I|. Moreover, the

functions fd,I appearing in (4.42) are indpendent of r.

Proof. We again work in the geodesic coordinate system centered at y and the trivi-

alizations of S and L used in the proof of (4.1.2). The heat kernel coefficients bk(x, y)

are given, see chapter 7 of [37], by the recursion
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b0(x, y) =
∑
α

g−1/4(x)tαα, (4.43)

bk(x, y) = − 1

g1/4(x)

∫ 1

0

ρk−1g1/4(ρx)D2
Abk−1(ρx)dρ, for k ≥ 1, (4.44)

where g denotes the determinant of the metric on Y . Hence b0 is clearly seen to be

of the form (4.42). Equations (4.30) and (4.44) imply that bk has the form (4.42)

assuming it to be true for bk−1 and hence the lemma follows by induction on k.

Following this we are ready to bound the pointwise trace tr(DAe
−tD2

A). The above

lemma will play an important role in the proposition below.

Proposition 4.1.4. The pointwise trace tr(DAe
−tD2

A) satisfies the estimate

‖tr(DAe
−tD2

A)‖C0 ≤ C1r
n
2 eC2rt (4.45)

for constants C1 and C2 independent of r.

Proof. Consider the remainder in the kernel expansion (4.41) given by

L
n−1

2
t = Lt −DA(ht(b0(x, y) + . . .+ t

n−1
2 bn−1

2
)). (4.46)

This is seen to equal L
n−1

2
t = DAH

n−1
2

t with H
n−1

2
t being the analogous remainder in

the kernel expansion for the heat trace

H
n−1

2
t = Ht − ht(b0(x, y) + . . .+ t

n−1
2 bn−1

2
). (4.47)

Hence applying the heat operator we see that

(∂t +D2
A)(L

n−1
2

t ) = (∂t +D2
A)(DAH

n−1
2

t ) (4.48)

= ht
n−1

2

{
−D3

Abn−1
2

+ cl

(
ρdρ

2t

)
D2
Abn−1

2

}
. (4.49)
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Now since L
n−1

2
t → 0 as t→ 0 we have by Duhamel’s principle that

L
n−1

2
t (y, y) =

∫ t
0
ds
(∫

Y
dxHt−s(y, x)hs(x, y)s

n−1
2

{
−D3

Abn−1
2

(x, y)

+cl
(
ρdρ
2s

)
D2
Abn−1

2
(x, y)

})
. (4.50)

We denote by U
n−1

2
t and V

n−1
2

t the kernels obtained by replacing Ht−s in (4.50) by

(Ht−s−Mt−s) and Mt−s respectively. It is clear that L
n−1

2
t = U

n−1
2

t +V
n−1

2
t . To bound

U
n−1

2
t , we work in geodesic coordinates and the frame introduced in theorem (4.1.2).

The Dirac operator, by (4.29), is seen to be of the form

DA = Ai∂i + rxiBi + C (4.51)

where Ai, Bi and C are endomorphisms of S ⊗L independent of r. Using (4.42) and

(4.51) we may write

D3
Abn−1

2
=
∑

f 1
αβtαβ, D2

Abn−1
2

=
∑

f 2
αβtαβ, (4.52)

where

f 1
αβ =

∑
(d,I)∈S1

xIrdf 1
d,I , with d ≤ n−1

2
+ 1

2
|I|+ 3

2
∀(d, I) ∈ S1 and(4.53)

f 2
αβ =

∑
(d,I)∈S2

xIrdf 2
d,I , with d ≤ n−1

2
+ 1

2
|I|+ 1 ∀(d, I) ∈ S2. (4.54)

Now a combination of (4.25), (4.38), (4.53) and (4.54) gives the estimate

|U
n−1

2
t (y, y)| ≤ c1r

n
2 ec2rt. (4.55)

Next to estimate V
n−1

2
t we first use a Taylor expansion to write

f 1
d,I = g1

d,I + xih
1
d,I,i and f 2

d,I = g2
d,I + xih

2
d,I,i (4.56)
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where each of g1
d,I and g2

d,I is an even function in these coordinates. Also we let

f̄ 1
αβ =

∑
(d,I)∈S1

xIrdg1
d,I , with d = n−1

2
+ 1

2
|I|+ 3

2
and (4.57)

f̄ 2
αβ =

∑
(d,I)∈S2

xIrdg2
d,I , with d = n−1

2
+ 1

2
|I|+ 1. (4.58)

Now the terms which correspond to f̄ 1
αβ and f̄ 2

αβ under (4.52) are seen to contribute

0 to V
n−1

2
t (y, y). This is because their contribution corresponds to the integral of an

odd function in these coordinates. The rest of the terms contributing to V
n−1

2
t (y, y)

can again be estimated using (4.37), (4.38), (4.53) and (4.54) to give

|V
n−1

2
t (y, y)| ≤ c3r

n
2 ec4rt. (4.59)

Following (4.55) and (4.59) we obtain the estimate

|L
n−1

2
t (y, y)| ≤ c5r

n
2 ec6rt, (4.60)

for constants c5 and c6 independent of r. Finally theorem 8.35 in [32] is equivalent

to the fact that the pointwise trace tr(DAe
−tD2

A) = tr(Lt) = tr(L
n−1

2
t ) and hence the

proposition follows from (4.60).

The above proposition is similar to lemma 2.6 in [39] although we have arrived at

it a little differently. We can now finish the proof of theorem (4.0.1). The relevant

observations were made in the beginning of this section and we summarize them

below.

Proof of theorem (4.0.1). The spectral flow function is given by (4.5) to be

sf{DA0+sa} = r
n+1

2

(
i

2π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +
1

2
(η̄r − η̄0) +O(r

n−1
2 ). (4.61)
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The reduced eta invariant

η̄r = −2ar0 (4.62)

is the zeroth order term in the trace expansion

Kr
t := trBr

t ∼
∑
k≥−n

arkt
1
2
k. (4.63)

Here Br
t is given by functional calculus

Br
t φλ = −signλ

2
erfc(|λ|

√
t)φλ (4.64)

acting on the eigenvectors φλ of DA0+ra with eigenvalue λ. By theorem 8.35 in [32]

Kr
t is a smooth function of t near 0 and we have

1

2
η̄r = −ar0 = −Kr

0 = −Kr
t +

∫ t

0

K ′
r
t′dt
′ (4.65)

Next we bound

|Kr
t | ≤

1√
π

Tr(e−tD
2
A) ≤ c1

tn/2
ec2rt (4.66)

which follows from the inequality erfc(x) < e−x
2

and (4.22). Also (4.45) implies

|K ′rt′| ≤ c3r
n
2 t′−

1
2 ec4rt

′
and hence

∣∣∣∣∫ t

0

K ′
r
t′dt
′
∣∣∣∣ ≤ c3r

n
2 t

1
2 ec4rt. (4.67)

Now (4.65), (4.66) and (4.67) give

|η̄r| ≤ c5e
c6rt

(
1

tn/2
+ r

n
2 t

1
2

)
. (4.68)

Substituting t = 1
r

gives η̄r = O(r
n
2 ) and hence the theorem follows from (4.61).

The main theorem (4.0.1) of this chapter does not say anything about the sharp-
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ness of the estimate (4.1), and it is not believed to be to be the optimal result. The

conjectured sharp result is as stated by the proposition below.

Conjecture 4.1.1. On a manifold of odd dimension n the spectral flow function for

the family of Dirac operators DA+sa, 0 ≤ s ≤ r coupled to the connections A + sa

satisfies the asymptotics

sf{DA0+sa} = r
n+1

2

(
i

4π

)n+1
2 1(

n+1
2

)
!

∫
Y

a ∧ (da)
n−1

2 +O(r
n−1

2 ) (4.69)

as r →∞.

Hence the conjectured optimal result is O(r
1
2 ) sharper than theorem (4.0.1). In

the next chapter we give some partial results towards proving (4.1.1). In chapter 6

we shall perform some explicit computations of spectral flow which show that this is

the best possible result.
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Chapter 5

A semiclassical Dirac operator

In this chapter we give some partial results towards proving (4.1.1) stated at the

end of the last chapter. To begin with, by (4.61) and (4.62) the estimate (4.69) is

equivalent to

η̄r = O(r
n−1

2 ). (5.1)

Following this equations (4.64) and (4.65) give

1

2
η̄r =

∫ t

0

K ′
r
t′dt
′ + trE(

√
tDA) (5.2)

with E(x) = − sign(x)
2

erfc(|x|
√
t). Following the bound (4.66) and the substitution

t = 1
r2 , it now suffices to prove trE(1

r
DA0 + cl(a)) = O(r

n−1
2 ). Substituting h = 1

r
to

be a semiclassical parameter conjecture (4.1.1) reduces to proving

trE(hDA0 + cl(a)) = O(h−
n−1

2 ). (5.3)

5.1 The odd functional trace

In an attempt to prove (5.3) we shall consider the traces trf(Dh) where Dh is the

semiclassical Dirac operator
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Dh = hDA0 + cl(a). (5.4)

The semiclassical symbol of this operator is

σsl(Dh) = cl(ξ + a) (5.5)

and it is hence elliptic and self adjoint. On fixing a nowhere vanishing 1
2
-density on

X we may also think of Dh as an operator on S⊗L valued 1
2
-densities. The methods

of [13] and [44], reviewed in the appendix, give a trace expansion for trf(Dh) when

f is a Schwartz function. Our main result is that this expansion shows cancellations

in its first n+3
2

terms when the function f is odd. This is the proposition below.

Proposition 5.1.1. Let f ∈ S be an odd Schwartz function. There is a trace expan-

sion

trf(Dh) ∼ h−
n−3

2 cn+3
2

+ h−
n−5

2 cn+5
2

+ . . . (5.6)

for some constants ci,
n+3

2
≤ i.

Proof. By proposition (A.5.5) we have a trace expansion

trf(Dh) ∼ c0(f)h−n + c1(f)h−n+1 + . . . (5.7)

for each function f ∈ S. Also setting r = 1
h

and t = τh2 in proposition (4.1.4) gives

the trace bound

|trDhe
−τD2

h| ≤ C1h
−n−2

2 eC2τh (5.8)

for some constants C1, C2 independent of h and τ . This implies that the coefficients

in (5.7) must satisfy ci(f) = 0, i ≤ n+1
2

for f = fτ = xe−τx
2
. This is a smooth

family of Schwartz functions fτ : R>0
τ → S. Hence using proposition (A.5.6) we

may differentiate the trace expansion (5.7) for fτ to obtain the expansion for ∂kfτ
∂τk

=

(−1)kx2k+1e−τx
2
. This gives that the coefficients in (5.7) must satisfy ci(f) = 0,
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i ≤ n+1
2

for f = x2k+1e−τx
2
. Now set τ = 1 and note that the span of the functions

x2k+1e−x
2

is dense in the space of odd Schwartz functions. Hence we must have

ci(f) = 0, i ≤ n+1
2

for any odd Schwartz function f .

5.2 A normal form result for D2
h

Proposition (5.1.1) still does not prove the estimate (5.3) since the function E(x)

has a discontinuity at the origin. In order to get an understanding of the functional

trace trE(Dh) an analysis of the kernel of the wave operator f(Dh)e
itDh
h appears

necessary. The wave kernel has been analyzed in [18] for operators whose symbols

are smoothly diagonalizable over the cotangent bundle. The symbol σ(Dh) however

is not smoothly diagonalizable on T ∗X since its eigevalues ±|ξ + a| ∈ C∞(T ∗X) are

not smooth along the locus Σ = {(x, ξ)|ξ = −a}. The kernel for f(Dh)e
itDh
h being

related to the solution operator of (h2∂2
t +D2

h), we attempt to find a normal form for

σ(D2
h) along Σ.

In order to obtain the normal form result of this section we first review some

facts about Hamiltonian linear transformations following [20]. Given a symplectic

vector space (V, ω) its space of Hamiltonian transformations is simply the Lie algebra

sp(V, ω) of its symplectic group

sp(V, ω) = {A : V → V |ω(v1, Av2) + ω(Av1, v2) = 0}. (5.9)

We now have the following lemma.

Lemma 5.2.1. Let A ∈ sp(V, ω) be a Hamiltonian transformation. If λ is an eigen-

value of A then so are −λ, λ̄ and −λ̄.

Proof. First we extend A and ω to VC = V ⊗ C by complex linearity and bilinearity

respectively. Now we show that −λ is an eigenvalue. Consider the map ρ : VC → V ∗C

given by ρ(v) = ivω. Since A ∈ sp(V, ω) we have ρ ◦ A = −A∗ ◦ ρ. Thus the λ

eigenspace of A is mapped to the −λ eigenspace of A∗. However if A has the Jordan

blocks
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
λ

1 λ
. . . . . .

1 λ

 (5.10)

with respect to some basis, then A∗ has the blocks


λ 1

λ
. . .

. . . 1

λ

 (5.11)

with respect to the dual basis. Hence the eigenvalues of A and A∗ are the same and

hence −λ is an eigenvalue of A. The fact that ±λ̄ are eigenvalues follows from the fact

that A is a real linear trasformation and its eigenvalues come in complex conjugate

pairs.

An easy consequence of the above proposition is that the generalized nullspace of

a Hamiltonian transformation is of even dimension. Next we show that on a 4 dime-

sional symplectic vector space a symmetric, positive semi-definite inner product and

the symplectic form maybe simultaneously put in standard form. The result follows

from the general canonical form result for Hamiltonian transformations appearing in

[27]. However we shall be content with the 4 dimensional case below.

Lemma 5.2.2. Let H be a symmetric, positive semi-definite inner product of rank

3 on a symplectic vector space (V, ω) of dimension 4. There exists a basis for V in

which we simultaneously have

H =


µ

µ

1

0

 and ω =


1

−1

1

−1

 (5.12)

for some µ > 0.
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Proof. Consider the linear transformation A : V → V defined via

H(v1, v2) = ω(v1, Av2), ∀v1, v2 ∈ V. (5.13)

Since H is symmetric and ω antisymmetric we have A ∈ sp(V, ω). Being of rank 3, H

and hence A have one dimensional kernels. The generalized nullspace of A is hence

of even dimension 2 or 4. In the latter case we have a basis for V in which A has the

Jordan block form

A =


0

1 0

1 0

1 0

 . (5.14)

The condition A ∈ sp(V, ω) gives that ω is of the form

ω =


0 −a 0 c

a 0 c 0

0 −c 0 0

c 0 0 0

 and hence H = ωA =


−a 0 −c 0

0 c 0 0

−c 0 0 0

0 0 0 0

 (5.15)

in this basis. If c = 0, H has rank less than 3 and if c 6= 0 H is seen not to be positive

semi-definite. Hence the generalized nullspace of A is of dimension 2. Following

Lemma (5.2.1) the remaining 2 dimensions are accounted for by a pair of eigenspaces

V±λ with λ real or purely imaginary. Since A ∈ sp(V, ω) it follows that the generalized

nullspace is ω-orthogonal to V±λ. If λ is real we have a basis for V in which
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A =


λ

−λ

0

1 0

 , ω =


1

−1

1

−1

 and hence H =


λ

λ

1

0


(5.16)

which is not positive semi-definite. Hence the eigenvalues are purely imaginary λ =

iµ, µ ∈ R. This gives a basis for V , as a real vector space, in which

A =


−µ

µ

0

1 0

 , ω =


1

−1

1

−1

 and hence H =


µ

µ

1

0


(5.17)

as required.

We now come to the normal form result for σ(D2
h). In the proposition below we

assume that the manifold X is of dimension 3.

Proposition 5.2.3. Let σ = σsl(D
2
h) be the semiclassical symbol of the square of

Dh = hDA0 + cl(a) with a being a contact one form. For every point p ∈ Σ =

{(x, ξ)|ξ = −a(x)}, one has a germ of a symplectomorphism χ : (T ∗R3, 0)→ (T ∗X, p)

near p such that

χ∗σ = µ(x2, x3, ξ3)(x2
1 + ξ2

1) + ξ2
2 + (x2

1 + ξ2
1)2f(x2

1 + ξ2
1 , x2, x3, ξ3) + r∞. (5.18)

Here µ is positive function on Σ0 = {x1 = ξ1 = ξ2 = 0} and r∞ is a function on T ∗R3

vanishing to infinite order along Σ0.

Proof. If π : Σ→ X denotes the projection onto the base one clearly has −π∗a = α|Σ
with α being the tautological one form. Hence α|Σ is contact and Darboux’s theorem
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gives coordinates (y1, y2, y3) on Σ such that

α|Σ = dy1 + y2dy3. (5.19)

Consider the map χ : Σ0 → Σ given by χ(x2, x3, ξ3) = (y1, y2, y3). One clearly

has χ∗(ω|Σ) = ω0|Σ0 where ω0 and ω are the symplectic forms on T ∗R3 and T ∗X

respectively. An application of Moser’s trick, Lemma 3.14 in [30], gives an extension

to a symplectomorphism germ χ : (T ∗R3, 0)→ (T ∗X, p). Since σ vanishes to second

order along Σ, the pullback σ0 = χ∗σ vanishes to second order along Σ0. The second

order term in the Taylor expansion of σ0 at p maybe thought of as a quadratic form

in the variables x1, x2, ξ1, ξ2 of rank 3. By lemma (5.2.2) we have a linear symplectic

change of these coordinates which diagonalizes this quadratic form to µ(x2
1 + ξ2

1) + ξ2
2

for some positive constant µ > 0. Since Σ0 is still the critical locus of the new

quadratic form it is mapped to itself under this change of coordinates. Hence we may

now assume that σ0 has a Taylor expansion in the x1, ξ1, ξ2 variables of the form

σ0 = µ1(x2
1 + ξ2

1) + µ2ξ
2
2 + µ3(ξ2

1 − x2
1) + µ4x1ξ1 + µ5x1ξ2 + µ6ξ1ξ2 (mod O3). (5.20)

Here µi are functions on Σ0 such that µ1(p) = µ > 0, µ2(p) = 1 and µi(p) = 0 for

3 ≤ i ≤ 6. Also ON denotes the space of functions vanishing to order N on Σ0. Next

we note

{OM , ON} ⊂ OM+N−2 (5.21)

and the commutation relations

{x1ξ1, x
2
1 + ξ2

1} = 2(ξ2
1 − x2

1), {x1ξ1, x1ξ2} = x1ξ2 (5.22)

{x1ξ1, ξ
2
1 − x2

1} = 2(x2
1 + ξ2

1), {x1ξ1, ξ1ξ2} = ξ1ξ2. (5.23)

Letting α denote a function on Σ0, let Xαx1ξ1 be the Hamiltonian vector field of αx1ξ1.
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We also define

σ̃t = (µ1 cosh(2αt) + µ3 sinh(2αt))(x2
1 + ξ2

1) + µ2ξ
2
2

+(µ1 sinh(2αt) + µ3 cosh(2αt))(ξ2
1 − x2

1) + µ4x1ξ1

+µ5e
−αtx1ξ2 + µ6e

αtξ1ξ2. (5.24)

The commutation relations (5.21), (5.22) and (5.23) now allow us to compute ∂tσ̃t =

{αx1ξ1, σ̃t} (mod O3). Since σ̃0 = σ0 (mod O3), Duhamel’s principle gives

σ̃t =
(
etXαx1ξ1

)∗
σ0 (mod O3), (5.25)

with the right hand side being defined by Hamiltonian flow. Hence the symplectomor-

phism eXαx1ξ1 with α chosen such that tanh(2α) = −µ3

µ1
is seen to cancel the (ξ2

1 −x2
1)

coefficient of the Taylor expansion. Hence we now assume µ3 = 0 in (5.20). Similarly

considering the symplectomorphism e
X
α(x2

1−ξ
2
1) with tanh(4α) = − µ4

2µ1
gets rid of the

x1ξ1 coefficient. Hence we may also set µ4 = 0 in (5.20). The symplectomorphism

eXαξ1ξ2 with α = µ5

2µ1
cancels the x1ξ2 coefficient and we may set µ5 = 0 in (5.20). And

the symplectomorphism eXαx1ξ2 with α = − µ6

2µ1
cancels the ξ1ξ2 coefficient and we may

also set µ6 = 0 in (5.20). Finally a change of coordinates in the variables x2, x3, ξ2, ξ3

sending
√
µ2ξ2 to a coordinate function allows us to set µ2 = 1. It is important to

carry out the computations in the order mentioned to ensure that terms once elimi-

nated do not reappear later. Hence we are now reduced to a Taylor expansion for σ0

of the form

σ0 = µ(x2
1 + ξ2

1) + ξ2
2 (mod O3). (5.26)

Next we wish to improve the above equation to mod O4. To this end, denoting

H0 = µ(x2
1 + ξ2

1) + ξ2
2 , we further Taylor expand

72



σ0 = H0 + g3 (mod O4), where (5.27)

g3 =
∑

a+b+c=3

rabcx
a
1ξ
b
1ξ
c
2 (5.28)

for some functions rabc on Σ0. We claim that there exists a function f ∈ O3 such that

{f,H0}+ g3 = r1(x2
1 + ξ2

1)ξ2 + r2ξ
3
2 (mod O4). (5.29)

Introducing the complex coordinates ζ1 = x1 + iξ1 and ζ̄1 = x1 − iξ1 we rewrite

g3 =
∑

a+b+c=3

r̄abcζ
a
1 ζ̄

b
1ξ
c
2 (5.30)

H0 = µζ1ζ̄1 + ξ2
2 . (5.31)

Observing the commutation relations {ζ1ζ̄1, ζ
a
1 ζ̄1

b} = 2i(a− b)ζa1 ζ̄1
b

and setting

f̄ =
∑
a6=b

r̄abc
2i(a− b)µ

ζa1 ζ̄
b
1ξ
c
2 gives (5.32)

{f̄ , H0}+ g3 = r̄111(x2
1 + ξ2

1)ξ2 + r̄003ξ
3
2 (mod O4). (5.33)

Hence f = Re(f̄) solves (5.29). Now considering the symplectomorphism χ1 = eXf

gives

χ∗1σ0 = eadf (H0 + g3) (mod O4) (5.34)

= H0 + g3 + {f,H} (mod O4) (5.35)

= H0 + r1(x2
1 + ξ2

1)ξ2 + r2ξ
3
2 (mod O4). (5.36)

In order to get rid of the remaining terms first consider the symplectomorphism e
X
αξ22

73



where α is a function on Σ0 satisfying 2∂x2α + r2 = 0. The pullback of σ0 under

this symplectomorphism cancels the r2ξ
3
2 term allowing us to set r2 = 0. Finally the

term r1(x2
1 + x2

1) is cancelled by the symplectomorphism e
X
α(x2

1+ξ21) with α satisfying

2∂x2α + r1 = 0. Hence we are now reduced to a Taylor expansion for σ0 of the form

σ0 = µ(x2
1 + ξ2

1) + ξ2
2 (mod O4). (5.37)

Following this we inductively prove that for each N there exists a symplectomorphism

χN such that

χ∗Nσ0 = H0 + fN(x2
1 + ξ2

1 , x2, x3, ξ3) (mod ON), (5.38)

for some function fN ∈ O4. The case N = 4 is equation (5.37) and we now construct

χN+1, assuming the existence of χN , for each N ≥ 4. Hence we assume that σ0 Taylor

expansion

σ0 = H0 + fN(x2
1 + ξ2

1 , x2, x3, ξ3) + gN (mod ON+1) (5.39)

with gN ∈ ON . Again we claim that we have a function hN ∈ ON such that

{hN , H0}+ gN =
∑

2a+b=N

rab(x
2
1 + ξ2

1)aξb2 (mod ON+1). (5.40)

As before if gN has the Taylor expansion

gN =
∑

a+b+c=N

r̄abcζ
a
1 ζ̄

b
1ξ
c
2 (5.41)

in complex coordinates, then hN = Re(h̄N) with

h̄N =
∑
a6=b

r̄abc
2i(a− b)µ

ζa1 ζ̄
b
1ξ
c
2 (5.42)

is seen to solve (5.40). The symplectomorphism eXhN now reduces the Taylor expan-

sion of σ0 to the form
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σ0 = H0 + fN +
∑

2a+b=N

rab(x
2
1 + ξ2

1)aξb2 (mod ON+1). (5.43)

Finally we get rid of the terms rab(x
2
1 + ξ2

1)aξb2 with b ≥ 1. This is done using

the symplectomorphism e
X
αab(x

2
1+ξ21)aξb−1

2 where 2∂x2αab + rab = 0. This completes

the induction step giving (5.38) for all N . The proposition now follows from an

application of Borel’s lemma.

The above normal form maybe extended to a slightly more general setting. Namely

let p(x, ξ) ∈ C∞(T ∗X) be a symbol, on a 3 manifold X, with a Morse Bott critical

locus of dimension 3. If additionally the symplectic form is maximally non-degenerate

of rank 2 along the critical locus then the normal form result (5.2.3) holds, with the

same proof, for such a symbol. Following this normal form result one hopes to be able

to apply a Hermite transform, as appearing in [31], in the x1, ξ1 variables to (5.18).

However we have not completed this line of argument at present.

5.3 A bound on the counting function

In this section we attempt to control the dimension of the nullspace dim ker(Dh)

of the Dirac operator as h → 0. To do this we analyze the number of eigenvalues

of Dh in an O(h
1
2 ) interval around 0. This is the same as finding the number of

eigenvalues of D2
h in an O(h) interval around 0. The usual semiclassical method gives

O(h) information for eigenvalues around c assuming c is not a critical value of the

symbol. However this is violated for the operator D2
h whose symbol does have 0 as a

critical value. Counting functions near critical values were analyzed in [11] for scalar

semiclassical operators. Here we modify their arguments to the non-scalar D2
h.

The estimate on the counting function follows from a trace expansion. This ex-

pansion is derived by applying a stationary phase expansion to an oscillatory integral

representation for the wave kernel. Below we give the required stationary phase for-

mula.
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Proposition 5.3.1. For a ∈ C∞c (Rt × Rn
x) there exists an asymptotic expansion for

the oscillatory integral

I(a) =

∫
ae

itx2

h dtdx (5.44)

∼ hn/2(
∑
j≥0

ajh
j) (5.45)

in powers of h.

Proof. Let â denote the partial Fourier transform of a in t

â(τ, x) =

∫
eitτa(t, x)dt. (5.46)

The oscillatory integral (5.44) can be written as

I(a) =

∫
â

(
x2

h
, x

)
dx (5.47)

= hn/2
∫
â(y2, y

√
h)dy. (5.48)

The Taylor expansion for â(τ, x) in x now gives the expansion I(a) ∼ hn/2(
∑
bjh

j/2)

with

bj =
∑
|α|=j

∫
yα

α!
(∂αx â)(y2, 0)dy. (5.49)

The coefficients bj, for j odd, correspond to odd integrals in (5.49) and must vanish,

giving (5.45) with aj = b2j.

The above proposition differs from the usual stationary phase formula since the

phase function tx2 is not Morse-Bott nondegenerate. Next we derive the required

trace expansion.

Proposition 5.3.2. There exists T > 0 sufficiently small such that for every Schwartz

function ψ with ψ̂ ∈ C∞c (−T, T ) one has the trace expansion

tr ψ

(
D2
h

h

)
f(D2

h) ∼ h−n/2(a0 + ha1 + · · · ). (5.50)
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Proof. Let Λ be the Lagrangian given by proposition (B.4.1) with

p = σsl(D
2
h) = −|ξ + a|2. (5.51)

Let x ∈ X and K ⊂ Rn
ξ be compact. Following proposition (B.4.3), one can find

a coordinate neighbourhood Ux of x, Tx > 0 sufficiently small and a function S ∈

C∞([−Tx, Tx]× Ux ×K) satisfying

∂tS + p(x, ∂xS) = 0 (5.52)

S|t=0 = x.ξ. (5.53)

Proposition (B.4.3) further implies that the corresponding phase functions

ϕ ∈ C∞([−Tx, Tx]× Ux × Uy ×K)

ϕ(x, y, t, ξ) = S(t, x, ξ)− y.ξ (5.54)

give a collection of generating functions for Λ near t = 0. Combining this with

proposition (B.4.2) we get that for T > 0 sufficiently small such that for every ψ ∈ S

with ψ̂ ∈ C∞c (−T, T )

ˆψ(t)kt(x, y) = h−n
N∑
j=1

∫
aje

iϕj
h dξ (5.55)

mod O(h∞). Here kt denotes the kernel of f(D2
h)e
− itD

2
h

h and each ϕj is of the form

(5.54). Now for any phase function of the form (5.54) the initial condition (5.53) gives

that

S(t, x, ξ)− x.ξ = tF (t, x, ξ) (5.56)

for some smooth function F . The Hamilton-Jacobi equation (5.52) also gives

F |t=0 = St|t=0 = −p(x, ξ) = |ξ + a|2. (5.57)
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Introduce the new coordinates (t, x, η) = (t, x, ξ + a). For η = 0, ξ = −a which gives

Hp = 0 and hence etHp(x, ξ) = (x, ξ) by (5.51). Thus (B.54) and (5.56) give

dF |η=0 = 0. (5.58)

Moreover the Hessian of F

d2
ηF |(η,t)=(0,0) = gij(x) (5.59)

equals the metric and is hence nondegenerate. Following (5.58) and (5.59), we may

apply the Morse lemma with parameters (Lemma 1.2.2 in [14]) to get a further change

of variables (t, x, ζ(t, x, η)) such that ζ(t, x, 0) = 0 and

F (t, x, η) = F (t, x, 0) + ζ2. (5.60)

Also the formula (B.56) for S implies F (t, x, 0) = 0. Now the trace

tr ψ

(
D2
h

h

)
f(D2

h) = (2π)−1

∫
ψ̂(t) tr

(
f(D2

h)e
− itD

2
h

h

)
dt (5.61)

= (2π)−1

∫
ψ̂(t)kt(x, x)dtdx. (5.62)

Following (5.54), (5.55) and (5.60) this integral is a finite sum of integrals of the kind

h−n
∫
ψ̂(t)aj(t, x, ζ)e

itζ2

h dtdζdx (5.63)

modulo O(h∞). Finally the stationary phase lemma in proposition (5.3.1) gives the

trace expansion (5.50).

The above trace expansion now allows us to estimate the counting function of the

Dirac operator in a small interval around 0. Namely for any R > 0 define Nh(R) to

be the maximum number of linearly independent eigenvectors of Dh with eigenvalues

in [−R,R]. The following proposition gives a bound on this number.
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Proposition 5.3.3. For c > 0 be any positive real, the counting function

Nh(ch
1
2 ) = O(h−

n
2 ) (5.64)

near h = 0.

Proof. Let T > 0 be suffiently small as given by proposition (5.3.2). Choose ψ ∈ S

such that ψ̂ ∈ C∞c (−T, T ) and ψ > 1 on [−c2, c2]. Let f be any Schwartz function

such that f > 1 near 0. Then one can estimate

Nh(ch
1
2 ) ≤

∑
λ∈Spec(Dh)

ψ

(
λ2

h

)
f(λ2) (5.65)

= O(h−
n
2 ) (5.66)

by the trace expansion (5.50).
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Chapter 6

Computations of Spectral flow

In this chapter we perform some computations of spectral flow for coupled Dirac op-

erators. The spectrum of spin Dirac operators has been computed in several cases, a

survery of known computations can be found in chapter 2 of [17]. We show how to

modify some of these computations in the presence of a coupling. In particular we

compute spectral flow for certain coupled Dirac operators on spheres and homoge-

neous Lens spaces. A consequence of these computations is the proof that conjecture

(1.2.1) is the best possible estimate on spectral flow.

6.1 Spectral flow on S3

Here we consider the spectral flow for a family of Dirac operators on S3. Since

S3 = SU(2) =


z1 −z̄2

z2 z̄1

 ||z1|2 + |z2|2 = 1

 is a Lie group it is parallelized by

elements of the Lie algebra ei = σi ∈ su(2) which we take to be the Pauli matrices

σ1 =

0 i

i 0

 , σ2 =

0 −1

1 0

 , σ3 =

i 0

0 −i

 . (6.1)

We think of e1, e2 and e3 as three left invariant vector fields and hence first order

differential operators on functions. They satisfy the standard commutation relations
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[ei, ej] = 2εijkek, (6.2)

where εijk is the Levi-Civita symbol which equals ±1 if (i, j, k) is an even/odd permu-

tation of (1, 2, 3) and zero otherwise. Since H2(S3) = 0, there exists only the trivial

Spinc structure on S3 (which comes from the only Spin structure). The corresponding

Spin bundle S in trivial with Clifford multiplication being given by the Pauli matrices

ρ(ei) = σi in some basis for S. The Christoffel symbols for the Levi-Civita connection

of the standard metric can be computed in the frame e1, e2, e3 to be Γkij = εijk. The

corresponding Dirac operator can be computed to be D = σ1e1 + σ2e2 + σ3e3 − 3
2
.

We now consider the Spinc Dirac operator coupled to a unitary connection on

det(S). Since the determinant line bundle is trivial such a connection is given by an

imaginary one form a ∈ Ω1(S3, iR). We shall choose a to be the contact one form

a = −ie∗3 and consider the one parameter family of Dirac operators Dra for r ∈ R. The

object of interest here is the spectrum of this family and its corresponding spectral

flow function sf(D0, Dra). The coupled Dirac operator can be written as

Dra = D − ir

2
σ3 = σ1e1 + σ2e2 + σ3e3 −

3

2
− ir

2
σ3. (6.3)

We can also compute de∗1(e2, e3) = e2(e∗1(e3)) − e3(e∗1(e2)) − e∗1([e2, e3]) = −2. And

hence we have de∗1 = −2e∗2 ∧ e∗3, de∗2 = −2e∗3 ∧ e∗1 and de∗3 = −2e∗1 ∧ e∗2. Using these we

also have the following expression for the Laplacian on functions

∆ = d∗d = −e2
1 − e2

2 − e2
3. (6.4)

The Laplacian can be considered to be acting componentwise on the sections of S =

C2 as if s =

f
g

 then ∆s =

∆f

∆g

. Using the expressions (6.3), (6.4) and the

commutation relations (6.2) we have that [Dra,∆] = 0 and hence the Dirac operator

preserves the eigenspaces of the Laplacian acting on spinors. The eigenfunctions of ∆

are the spherical harmonics and next we review their description in terms of harmonic

polynomials.
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6.1.1 Spherical harmonics

Here we describe the spectrum and the eigenfunctions of the Laplacian on the sphere

Sn−1 with the standard metric. First consider the fomula for the Laplacian on Rn in

polar coordinates given by

∆Rn = − ∂2

∂r2
− n− 1

r

∂

∂r
+

1

r2
∆Sn−1 (6.5)

where ∆Sn−1 is the Laplacian on the sphere. This formula implies that if p is a

homogeneous harmonic polynomial on Rn of degree k then its restriction to Sn−1 is

an eigenfunction of ∆Sn−1 with eigenvalue k(k + n − 2). Now we show that all the

eigenfunctions of ∆Sn−1 are obtained in this way.

Let H̃k denote the space of homogeneous harmonic polynomials of degree k on

Rn. Let P̃k denote the space of all homogeneous polynomials of degree k on Rn. We

prove the following

Theorem 6.1.1.

P̃k = H̃k ⊕ P̃k−2 (6.6)

Proof. Define a positive definite inner product on P̃k via 〈xk1
1 . . . xknn , x

l1
1 . . . x

ln
n 〉 =

k1! . . . kn!δk1l1 . . . δknln . Define M : P̃k−2 → P̃k via M(p) = (x2
1 + · · ·x2

n)p. Clearly

M is injective and an easy computation shows that M∗ = ∆ with the defined inner

products. Now (6.6) is simply the fact that P̃k = ImM ⊕KerM∗.

Now let Pk and Hk denote the restrictions of P̃k and H̃k to the sphere Sn−1.

Theorem 6.1.2. The Spectrum of the Laplacian on Sn−1 is given by

Spec(∆) = {k(n+ k − 2)|k = 0, 1, . . .} (6.7)

with the eigenvalue λ = k(n+ k − 1) ocurring with multiplicity
(
n−1+k
n−1

)
−
(
n−3+k
n−1

)
.

Proof. Let f be any eigenfunction of ∆ with eigenvalue λ. The set of all polynomials

is L2 dense in C∞(Sn−1) so we have a sequence of polynomials pi →
L2

f . If λ is not

of the form k(k + n − 2) then f is orthogonal to Hk for all k. Hence by (6.6) f
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is orthogonal to Pk for all k and pi ⊥ f which is a contradiction. If on the other

hand λ = k(n + k − 2) for some k and q1, . . . , qm is a basis for Hk then consider

f ′ = f −
∑

i〈f, qi〉qi. Now f ′ is orthogonal to each Hk and a similar argument applied

to f ′ gives that we cannot have a sequence of polynomials converging to f ′. Hence

f ′ = 0 and f ∈ Hk. Hence we have (6.7) and the multiplicity of each eigenvalue is

easily found using (6.6).

6.1.2 The Spectrum of Dra

Now we have the decompositions L2(S3) = ⊕Hk and L2(S) = ⊕H2
k into eigenspaces

of the Laplacian. Now since [Dra,∆] = 0 the Dirac operator preserves this de-

composition and it suffices to find the eigenvalues of the finite dimensional operator

Dra : H2
k → H2

k .

Now Hk is an su(2) module since each ei commutes with ∆. We wish to find the

decomposition of Hk into irreducible submodules. First we define

H = −ie3 (6.8)

X = −1

2
(e2 + ie1)and (6.9)

Y =
1

2
(e2 − ie1). (6.10)

Now if we use z1 = x1 + iy1 and z2 = x2 + iy2 then we have that

H = − ∂

∂r
+ 2(z1

∂

∂z1

+ z2
∂

∂z2

) (6.11)

X = z2
∂

∂z̄1

− z1
∂

∂z̄2

(6.12)

Y = −z̄2
∂

∂z1

+ z̄1
∂

∂z2

(6.13)

∆R4 = −4(
∂

∂z1

∂

∂z̄1

+
∂

∂z2

∂

∂z̄2

). (6.14)

This means that (6.8), (6.9) and (6.10) are the restrictions of (6.11), (6.12) and (6.13)
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to S3. Now consider the k + 1 homogeneous polynomials

pa = za1z
k−a
2 , a = 0, . . . , k. (6.15)

Each pa is clearly in Hk by (6.14). Also (6.11) and (6.12) can be used to compute

Hpa = kpa and Xpa = 0. Hence we have that the su(2) submodule generated by pa

is a copy of SymkC2 and is irreducible (see [15] chapter 11). These k+ 1 polynomials

give k + 1 irreducible su(2) submodules isomorphic to SymkC2 in Hk and since this

accounts for all the (k + 1)2 dimensions of Hk we have that the decomposition of Hk

into irreducible su(2) modules is given by

Hk = ⊕ka=0[pa]. (6.16)

Now the Dirac operator (6.3) can be written as

Dra =

 −H −2Y

−2X H

− 3

2
+

 r2
− r

2

 . (6.17)

Hence it is clear that it preserves the decomposition H2
k = ⊕[pa]

2. Now since each

Hk is a copy of SymkC2 it suffices to find the eigenvalues of Dra : (SymkC2)2 →

(SymkC2)2. Since SymkC2 is identified with the set of homogeneous polynomials of

degree k in two variables x, y it has an obvious basis ha = xayk−a with the action

Hha = (2a− k)ha (6.18)

Xha = (k − a)ha+1 (6.19)

Y ha = aha−1. (6.20)

The vectors

 0

h0

 and

hk
0

 (6.21)
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are eigenvectors of Dra with eigenvalue −k − 3
2
− r

2
and −k − 3

2
+ r

2
respectively. To

find the remaining eigenvalues we note that Dra leaves invariant the spaces

Va = C

ha
0

⊕ C

 0

ha+1

 , a = 0, . . . , k − 1. (6.22)

and its restriction to each Va is the matrix

k − 2a− 3
2

+ r
2

−2(a+ 1)

2a− 2k 2a− k + 2− 3
2
− r

2
.

 (6.23)

Hence it remains to find the eigenvalues of these 2 × 2 matrices which can be done

easily. Finally noting that each Hk consists of k + 1 copies of SymkC2 we have the

following conclusion.

Theorem 6.1.3. The eigenvalues and multiplicites of the Dirac operator Dra on S3

are

λ =

 −k − 3
2
± r

2
;

−1
2
±
√

(k − 2a− r
2
− 1)2 + 4(a+ 1)(k − a) for a = 0, . . . , k − 1.

where each occurs with multiplicity k + 1 and k = 0, 1, . . ..

From (6.1.3) it is possible to find the spectral flow for the family Dra. First note

that for a = 0, . . . , k − 1,

−1

2
+

√
(k − 2a− r

2
− 1)2 + 4(a+ 1)(k − a) ≥ 3

2
and (6.24)

−1

2
−
√

(k − 2a− r

2
− 1)2 + 4(a+ 1)(k − a) ≤ −5

2
. (6.25)

Hence for r > 0 only the eigenvalues of the type λ = −k − 3
2

+ r
2

contribute to

the spectral flow. Since each of these occurs with multiplicity k + 1 we see that the

spectral flow function is given by
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sf(D,Dra) =

[ r−1
2

]∑
k=1

k, (6.26)

where [] denotes the greatest integer function. The asymptotics of this function for

large r are hence seen to be

sf(D,Dra) =
1

8
r2 +O(r). (6.27)

The O(r) remainder term is seen to be optimal in this case since that it the size of

the jump discontinuity near r.

6.2 Spectral flow on S2m+1

The computation for the spectrum on the three sphere of last section uses the group

structure on S3 and does readily extend to higher dimensions. In this section we

compute the spectrum, and the corresponding spectral flow function, for a family of

coupled Dirac operators on the odd dimensional sphere. The computation is similar to

the computation in [6] for the spectrum of the spin Dirac operator on Berger spheres.

The only difference here is in the presence of a coupling. Since the odd dimensional

sphere will be written as a homogeneous space, we will first begin with studying the

Dirac operator on homogeneous spaces.

6.2.1 The Dirac operator on a homogeneous space

Consider an oriented Riemannian homogeneous space (M, g). This is an oriented

Riemannian manifold possessing a smooth transitive action of a Lie group G by

isometries. We shall assume G to be connected. Pick a point p ∈ M and let H =

Stab(p) be its stabilizer. This a closed subgroup of G and we may identify the M =

G/H with the coset space of H. Let π : G → M denote the natural projection map

given by π(g) = gp. Choose an AdH invariant complement p to the Lie subalgebra

h ⊂ g. Hence we have g = h ⊕ p and that π∗ : p → TpM is an isomorphism.
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The Riemannian metric gives an AdH invariant inner product 〈, 〉 on p. Since G

is connected its action is orientation preserving. Hence the image of the isotropy

representation

α : H → SO(TpM) (6.28)

is contained in the special orthogonal group. Choose a positively oriented basis

X1, . . . , Xn for p and denote the left invariant extensions of these to G by the same

letters Xi. Let X̄i = π∗Xi be the corresponding basis for TpM .

Proposition 6.2.1. The principal bundle of special orthogonal frames SO(TM) and

the tangent bundle TM maybe identified with

SO(TM) = G×α SO(TpM) (6.29)

TM = G×α TpM. (6.30)

Here (6.29) and (6.30) are the quotients of the respective products by the equivalence

relations [g, A] ∼ [gh, α(h−1)A] and [g, v] ∼ [gh, α(h−1)v] with g ∈ G, h ∈ H, v ∈

TpM and A ∈ SO(TpM).

Proof. The first identification is induced by the map

m : G× SO(TpM)→ SO(TM), m(g, A) = (Lg)∗(AX̄i) (6.31)

while the second is induced by

m : G× TpM → TM, m(g, v) = (Lg)∗v. (6.32)

Now let α′ : H → Spin(TpM) be a lift of the isotropy representation so that the

following diagram commutes
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Spin(TpM)

H
α
>

α′
>

SO(TpM)

θ

∨

where θ : Spin(TpM) → SO(TpM) is the usual double covering map. Define a spin

structure on M by Spinα′(M) = G×α′ Spin(TpM). The covering map Spinα′(M)→

SO(TM) is defined using the identification (6.29) and the usual double covering θ.

In the case where G is simply connected all spin structures on M arise via such a lift

of the isotropy representation (cf Lemma 3 in [5]).

Let Sα′ denote the spin bundle corresponding to the spin structure Spinα′(M).

Let cl : Spin(TpM)→ U(S) be the spin representation.

Proposition 6.2.2. The spin bundle Sα′ maybe identified with

Sα′ = G×cl◦α′ S. (6.33)

Under the identifications (6.30) and (6.33), Clifford multiplication is given by [g, v] ·

[g, s] = [g, v · s] with s ∈ S.

Proof. The spin bundle is defined as Sα′ = Spinα′(M)×clS. The identification (6.33)

is now induced by the map

m : G× S → Sα′ , m(g, s) = [[g, 1], s]. (6.34)

The formula for Clifford multiplication now follows from the definition.

Now for X, Y ∈ g, denote by [X, Y ]p the p component of the Lie bracket [X, Y ].

Define the constants

αijk =
1

4
(〈[Xi, Xj]p, Xk〉+ 〈[Xj, Xk]p, Xi〉+ 〈[Xk, Xi]p, Xj〉) (6.35)

βi =
1

2

n∑
j=1

〈[Xj, Xi]p, Xj〉. (6.36)

89



From the identification (6.33) it follows that sections of Sα′ correspond to cl ◦ α′

equivariant maps Ψ : G → S. The section ψ : M → Sα′ corresponding to Ψ is given

via ψ(gp) = [g,Ψ(g)]. The proposition below gives a formula for the Dirac operator.

Proposition 6.2.3. Let D be the spin Dirac operator on Sα′ and Ψ : G → S be

a cl ◦ α′ equivariant map corresponding to a section ψ of Sα′. The equivariant map

DΨ : G→ S corresponding to Dψ is given by

DΨ(g0) =
n∑
i=1

X̄i ·Xi(Ψ)|g0 +

(
n∑
i=1

βiX̄i +
∑
i<j<k

αijkX̄iX̄jX̄k

)
·Ψ(g0). (6.37)

Proof. Let p0 = g0p. Let σ : M → G be a local section of π near p0 such that

π ◦ σ = Id with

σ(p0) = g0 and (6.38)

Tg0σ = (Lg0)∗p. (6.39)

This gives a local trivialization of the principal bundle Spinα′(M) via λ(m) = [σ(m), 1].

The induced trivialization of the frame bundle SO(TM) is given by the local orthonor-

mal frame ei = [σ(m), X̄i]. The section ψ of Sα′ is now given in the induced local

trivialization via [σ(m), s(m)] where s(m) = Ψ(σ(m)). The Dirac operator in this

trivialization is given by

Dψ(p0) = [σ(p0),
∑
i

ei ·
ds

dei
(p0) +

1

2

∑
i

∑
j<k

Γkij(eiejek) · s(p0)] (6.40)

(see page 41 in [34]). Here Γkij denote the Christoffel symbols for the Levi-Civita

connection defined via ∇eiej = Γkijek. These can be computed to be

Γkij =
1

2
(aijk + akij − ajki) (6.41)

in terms of the Lie brackets in the orthonormal frame

90



aijk = 〈[ei, ej], ek〉. (6.42)

It follows from π∗(Xi|σ) = ei and (6.39) that

π∗([Xi, Xj]|g0) = [ei, ej]|p0 . (6.43)

Hence we have that

aijk(p0) = 〈[Xi, Xj]p, Xk〉. (6.44)

The formula (6.37) now follows from (6.40), (6.41) and (6.44).

The group G acts on the space of cl ◦ α′ equivariant maps Ψ : G→ S via

(gΨ)(g0) = Ψ(g−1g0). (6.45)

This defines a representation of the group G on the Hilbert space L2(M,Sα′) of

square integrable sections of Sα′ . We let Ĝ denote the set of all equivalence classes

of irreducible representations ρ : G→ U(Vρ). Given Vρ ∈ Ĝ, let HomH(Vρ, S) denote

the space of all H-module homomorphisms from Vρ to S. The space Vρ⊗HomH(Vρ, S)

admits a representation of G via g(v ⊗ A) = gv ⊗ A for g ∈ G,A ∈ HomH(Vρ, S).

This representation can be embedded into L2(M,Sα′) where v ⊗ A corresponds to

the cl ◦ α′ equivariant map sending g 7→ A(ρ(g−1)v). The next proposition gives the

decomposition of L2(M,Sα′) into irreducible components. This is theorem 5.3.6 in

[42].

Theorem 6.2.4. (Frobenius Reciprocity) The unitary representation L2(M,Sα′) of

G is the unitary direct sum

L2(M,Sα′) =
⊕
ρ∈Ĝ

Vρ ⊗HomH(Vρ, S) (6.46)

over all irreducible representations ρ ∈ Ĝ.
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It is straightforward to observe from proposition (6.2.3) the Dirac operator com-

mutes with the action of G. Hence the ρ-isotypical parts Vρ⊗HomH(Vρ, S) of (6.46)

are invariant under the action of G. Proposition (6.2.3) can now be used to determine

the restriction of D to each isotypical part below.

Proposition 6.2.5. The restriction of the Dirac operator D to each isotypical part

Vρ ⊗HomH(Vρ, S) is given by id⊗Dρ where

Dρ(A) = −
∑
i

X̄i · A(πρ)∗(Xi) +

(
n∑
i=1

βiX̄i +
∑
i<j<k

αijkX̄iX̄jX̄k

)
· A. (6.47)

Here (πρ)∗ is the derived action of g on Vρ.

Proof. Let Ψ(g) = A(ρ(g−1)v) denote the cl ◦ α′ equivariant map corresponding to

v ⊗ A ∈ Vρ ⊗HomH(Vρ, S). Following proposition (6.2.3) we have

DΨ(g0) =
n∑
i=1

X̄i ·Xi(Ψ)|g0 +

(
n∑
i=1

βiX̄i +
∑
i<j<k

αijkX̄iX̄jX̄k

)
·Ψ(g0). (6.48)

We may also compute

Xi(Ψ)|g0 =
d

dt
Ψ(g0e

tXi)|t=0 (6.49)

=
d

dt
A(ρ(e−tXig−1

0 )v)|t=0 (6.50)

= −A(πρ)∗(Xi)ρ(g−1
0 )v (6.51)

The proposition now follows from (6.48) and (6.51).

6.2.2 The group Ũ(m) and its representations

Our eventual goal is to compute the spectrum of the coupled Dirac operator on the

odd dimensional sphere
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S2m+1 = {(z0, . . . , zm) ∈ Cm+1||z0|2 + . . .+ |zm|2 = 1}. (6.52)

In order to do this we shall need to understand the double cover of the unitary group

and its representations in this section. The sphere maybe written as the homogeneous

space S2m+1 = U(m + 1)/U(m), with U(m) denoting the unitary group. However

the corresponding isotropy representation of U(m) does not admit any lift to the spin

group. For this reason we write S2m+1 = Ũ(m + 1)/Ũ(m). Here Ũ(m) denotes the

double cover of U(m) defined as

Ũ(m) = {(A,α) ∈ U(m)× U(1)|det(A) = α2}. (6.53)

It is clear that the natural projection of Ũ(m) onto U(m) is a double cover. This

projection also defines an action of Ũ(m + 1) on S2m+1 via the natural action of

U(m + 1) on Cm+1. Choosing p = (1, 0, . . . , 0) gives Stab(p) = Ũ(m). The tangent

space TpS
2m+1 is the span of ∂y0 , ∂xµ , ∂yµ with µ ≥ 1. The isotropy representation acts

trivially on ∂y0 and corresponds to the natural map ı : Ũ(m)→ SO(2m) in the basis

∂xµ , ∂yµ with µ ≥ 1. We now construct a lift of the isotropy representation below.

Proposition 6.2.6. There exists a unique group homomorphism  : Ũ(m)→ Spin(2m)

such that

Spin(2m)

Ũ(m)
ı
>


>

SO(2m)

θ

∨

is a commutative diagram.

Proof. The case m = 1 is easily verifiable. For m ≥ 2, π1(Ũ(m)) is an order 2

subgroup of π1(U(m)) = Z. Its generator is mapped under ı∗ to twice the generator

of π1(SO(2m)) = Z2 and is hence killed. Thus there must exist a unique lift of ı to

a group homomorphism  : Ũ(m) → Spin(2m). To give an explicit formula for , let

(A,α) ∈ Ũ(m). Choose a unitary basis of eigenvectors e1, . . . , em ∈ Cm for A such
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that Aek = eiθkek. Considering ek, Jek(= iek) as vectors in R2m we claim that

(A,α) =
m∏
k=1

(
cos(θ̃k) + sin(θ̃k)ekJek

)
∈ Spin(2m). (6.54)

Here θ̃k are chosen such that ei2θ̃k = eiθk ,∀k and
∏
eiθ̃k = α. It is easy to check that

the right hand side of (6.54) is well-defined and gives a continuous map sending the

identity in Ũ(m) to the identity in Spin(2m). A direct computation also shows that

this is a lift of the map ı and hence must equal to the unique group homomorphism

.

To find all the irreducible representations of Ũ(m) we first recall all the irreducible

representations of the unitary group U(m). In the case of U(m), its irreducible rep-

resentations are characterized by their highest weights which are m-tuples of integers

k = (k1, . . . , km) ∈ Zm satisfyig

k1 ≥ k2 ≥ . . . ≥ km (6.55)

(cf. Theorem 4 page 133 of [43]). We denote this representation by Vk. The standard

representation Λ1 of U(m) corresponds to the weight (1, 0, . . . , 0), while its exterior

powers Λj correspond to the the weight (1, . . . , 1︸ ︷︷ ︸
j times

, 0, . . . , 0). The dimension of the

representation Vk is given by Weyl’s dimension formula (cf. page 214 in [43])

dim Vk =

∏
1≤µ<ν≤m(kµ − kν + ν − µ)

1!2! . . . (m− 1)!
. (6.56)

It is clear that each Vk induces an irreducible representation of Ũ(m). From the

definition (6.53) we have another one dimensional representation of Ũ(m), which we

denote by Σ0, given by the projection onto U(1). Since −1 = (I,−1) ∈ Ũ(m) acts by

−Id on Σ0, it is not induced from a representation of U(m). It is also easy to note

that Σ0 ⊗ Σ0 = Λm. Now given any irreducible representation Vρ of Ũ(m), we have

ρ(−1)2 = I. Since −1 is in the center of Ũ(m), the ±1 eigenspaces of ρ(−1) are Ũ(m)

invariant and we must have that ρ(−1) = ±I on Vρ. In the case where ρ(−1) = I,
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Vρ is induced by a representation of U(m). While in the case where ρ(−1) = −I

we have that Vρ ⊗ Σ0 is induced from U(m). Hence in conclusion, the irreducible

representations of Ũ(m) are of two types. The first consists of the representations Vk

induced from U(m). While the second consists of those not induced from U(m) and

can be written in the form Vk ⊗ Σ0 or Vk ⊗ Σ∗0.

We shall also need to know how the irreducible representations Vk, Vk ⊗ Σ∗0 of

Ũ(m + 1) decompose when restricted to Ũ(m). The branching rules for U(m) (cf.

page 186 of [43]) state that we have the decomposition

Vk =
⊕
l

Vl (6.57)

where the direct sum is over the l = (l1, . . . , lm) satisfying

k1 ≥ l1 ≥ k2 ≥ l2 ≥ . . . ≥ lm ≥ km+1. (6.58)

Tensoring with Σ∗0 now gives the analogous braching rules for Vk ⊗ Σ∗0.

Let δµν denote the matrix containing a 1 in the µth row and νth column and 0’s

otherwise. The Lie algebra u(m) of Ũ(m) is spanned byHµ = 2iδµµ, Xµν = 2(δνµ−δµν)

for µ < ν and Yµν = 2i(δµν + δνµ). The Casimir element

C =
∑
µ

Hµ ◦Hµ +
1

2

∑
µ<ν

(Xµν ◦Xµν + Yµν ◦ Yµν) (6.59)

commutes with the action of the lie algebra and hence acts by a constant ck on any

irreducible Ũ(m) module Vk. Now if

Zµν = Xµν + iYµν = −4δµν (6.60)

Z̄µν = Xµν − iYµν = 4δνµ (6.61)

then [Zµν , Z̄µν ] = 8i(Hµ −Hν) and we may write
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C =
∑
µ

Hµ ◦Hµ +
1

4

∑
µ<ν

(
Zµν ◦ Z̄µν + Z̄µν ◦ Zµν

)
(6.62)

=
∑
µ

Hµ ◦Hµ +
∑
µ<ν

(
1

2
Z̄µν ◦ Zµν + 2i(Hµ −Hν)

)
. (6.63)

If v is the highest weight vector of Vk we have Hµv = 2ikµv while Zµνv = 0. Hence

the constant ck is computed to be

ck = −4

(∑
a

k2
µ +

∑
µ<ν

(kµ − kν)

)
. (6.64)

Similarly the action of the Casimir element on (v ⊗ 1) ∈ Vk ⊗ Σ∗0 and hence this

irreducible module is by the constant

c̃k = −4

(∑
a

(
kµ −

1

2

)2

+
∑
µ<u

(kµ − kν)

)
. (6.65)

The highest weight vector vl of the summand Vl in(6.57) is a weight vector of U(m+1)

with weight

(∑
kµ −

∑
lµ, l1, . . . , lm

)
(6.66)

(cf. page 187 in [43]). Hence the action of (πk)∗(H0) on vl ⊗ 1 is given by

(πk)∗(H0)(vl ⊗ 1) = 2i

(∑
kµ −

∑
lµ −

1

2

)
(vl ⊗ 1). (6.67)

The spin representation S is a representation of Ũ(m) via the composition with

. To construct the spin representation S let V be the 2m dimensional subspace

of TpS
2m+1 spanned by ∂xµ , ∂yµ for µ ≥ 1. Let V ⊗ C = V 1,0 ⊕ V 0,1 with the two

summands being the subspaces spanned by

∂zµ =
1√
2

(∂xµ − i∂yµ) and ∂z̄µ =
1√
2

(∂xµ + i∂yµ) (6.68)

respectively. Define an inner product on V ⊗ C which extends the metric on V by
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complex bilinearity. The spin module can be defined as

S =
m⊕
r=0

(ΛrV 1,0 ⊗ Σ∗0), (6.69)

with

cl(∂xµ)(ω ⊗ 1) = (∂zµ ∧ ω − ι∂z̄µω)⊗ 1, (6.70)

cl(∂yµ)(ω ⊗ 1) = i(∂zµ ∧ ω + ι∂z̄µω)⊗ 1 for µ ≥ 1,while (6.71)

cl(∂y0)(ω ⊗ 1) = i(−1)j(ω ⊗ 1) for ω ∈ Λj. (6.72)

There is a natural action of U(m), and hence of Ũ(m), on V 1,0 in the complex basis

∂zµ . This induces a representation of Ũ(m) on S = Λ∗V 1,0 ⊗ Σ∗0. It is a straight-

forward computation using (6.54) to check that this representation agrees with the

representation cl ◦  : Ũ(m) → U(S). Hence (6.69) gives the decomposition of the

spin representation into irreducible representations of Ũ(m).

6.2.3 The spectrum of the Dirac operator

Now we come to the computation of the Dirac spectrum on the sphere. Recall that

sphere was written as the homogeneous space S2m+1 = Ũ(m + 1)/Ũ(m). The lift 

of the isotropy representation gives rise to the unique spin structure on the sphere

and a corresponding Dirac operator on the spin bundle S. Now let R denote the

vector field which the infinitesimal generator for the diagonal S1 action on S2m+1 via

eiθ(z0, . . . , zm) = (eiθz0, . . . , e
iθzm). The dual to R is a contact one form on S2m+1

which we denote by a. We now twist the spin bundle by the trivial Hermitian line

bundle C equipped with the connection d − ira for a parameter r ≥ 0. We shall

compute the spectrum of the corresponding coupled Dirac operator Dra. The space

of sections of the spin bundle S can again be decomposed

L2(M,S) =
⊕
ρ

Vρ ⊗HomŨ(m)(Vρ, S) (6.73)
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with the direct sum being taken over the irreducible representations ρ of Ũ(m + 1).

Following the decomposition (6.69) of S into irreducible representations we see that

the ρ-isotypical part of (6.73) is nontrivial if and only if the restriction of Vρ to Ũ(m)

contains an irreducible representation of the form Λj ⊗Σ0. Using the branching rule

(6.57) we see that the Vρ must be of one of the following types

I. Vρ = Vk ⊗ Σ∗0 with k = (0, . . . , 0, b), b ≤ 0 which contains Λ0 ⊗ Σ∗0

II. Vρ = Vk ⊗ Σ∗0 with k = (a+ 1, 1, . . . , 1), a ≥ 0 which contains Λm ⊗ Σ∗0

III. Vρ = Vk⊗Σ∗0 with k = (a+ 1, 1, . . . , 1︸ ︷︷ ︸
j times

, 0, . . . , 0, b), a ≥ 0, b ≤ 0, 0 ≤ j ≤ m− 1,

which contains Λj ⊗ Σ∗0 and Λj+1 ⊗ Σ∗0.

Under the projection π : Ũ(m)→ S2m+1, π(A,α) = Ap we have

π∗

(
1

2
H0

)
= ∂y0 , π∗

(
1

2
X0µ

)
= ∂xµ , π∗

(
1

2
Y0µ

)
= ∂yµ . (6.74)

Since the diagonal S1 action commutes with the Ũ(m) action on the sphere, following

proposition (6.2.5) the coupled Dirac operator preserves the decomposition (6.73) and

its action on the ρ-isotypical part is by id ⊗ Dρ. In this case we may compute that

each βi = 0 while the only non-zero constants αijk are

1

4

(〈[
1

2
H0,

1

2
X0µ

]
p

,
1

2
Y0µ

〉
+

〈[
1

2
X0µ,

1

2
Y0µ

]
p

,
1

2
H0

〉
+

〈[
1

2
Y0µ,

1

2
H0

]
p

,
1

2
X0µ

〉)
= −1.

(6.75)

Under the observation that the vector field R corresponds to [g, ∂y0 ] in (6.30), Dρ is

given by the formula

Dρ(A) = −1

2
∂y0 · A(πρ)∗(H0)− 1

2

∑
µ

{
∂xµ · A(πρ)∗(X0µ) + ∂yµ · A(πρ)∗(Y0µ)

}
−
∑
µ

∂y0∂xµ∂yµ · A− ir∂y0 · A. (6.76)

It now suffices to compute the spectrum of Dρ under the three types I, II and III.
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Type I

In this case Dρ acts on the one dimensional space EndŨ(m)(Λ
0 ⊗ Σ∗0). Since Clifford

multiplication by ∂xµ and ∂yµ switch the Λodd/even ⊗ Σ∗0 parts we see that the middle

term in (6.76) acts trivially. Following (6.67), (6.70) and (6.72) we see that the first

term acts by b− 1
2

the third acts by −m and the last by r. Hence Dρ has the eigenvalue

λ = b−m− 1

2
+ r. (6.77)

The multiplicity of this eigenvalue is the dimension of the representation Vk and is

computed via (6.56) to be the binomial coefficient
(
m−b
m

)
.

Type II

In this case Dρ acts on the one dimensional space EndŨ(m)(Λ
m ⊗ Σ∗0). Again the

middle term in (6.76) acts trivially. The first term now acts by (−1)m(a + 1
2
) the

third acts via (−1)mm and the last by (−1)mr. Hence Dρ has the eigenvalue

λ = (−1)m(a+m+
1

2
+ r). (6.78)

whose multiplicity is again calculated via (6.56) to be
(
m+a
m

)
.

Type III

In this case Dρ acts on the two dimensional space EndŨ(m)(Λ
j⊗Σ∗0)⊕EndŨ(m)(Λ

j+1⊗

Σ∗0). Let A1, A2 denote the identity endomorphisms in the respective summands and

let Dρ =
(
x u
v y

)
in the basis given by the A′is. Again since cl(∂xµ) and cl(∂yµ) switch

the Λodd/even parts we have that the off diagonal terms u and v come from the second

term in (6.76). Similarly the diagonal terms x and y come from the first, third and

last summands in (6.76). The terms x and y can be easily computed after noting that

Clifford multiplication by ω =
∑
∂xµ∂yµ acts via i(2j −m) on Λj ⊗ Σ∗0. Hence using

(6.67) and (6.72) we may compute
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x = (−1)j
(
a+ b+ 2j −m+ r +

1

2

)
(6.79)

y = (−1)j+1

(
a+ b+ 2j −m+ r +

3

2

)
. (6.80)

Next we compute

(
Dρ +

1

2
∂y0ω + ir∂y0

)2

A = −1

4
A ◦

m∑
i=1

{(πρ)∗(X0µ) ◦ (πρ)∗(X0µ) + (πρ)∗(Y0µ) ◦ (πρ)∗(Y0µ)}

− 1

4
A ◦ (πρ)∗(H0) ◦ (πρ)∗(H0) +

1

2
ω · A ◦ (πρ)∗(H0)

+
3

4
ω2 · A+m(m+ 1)A. (6.81)

Here we have used the commutation relations

[X0µ, X0ν ] = [Y0µ, Y0ν ] = 2Xµν , [X0µ, Y0ν ] = 2Yµν (6.82)

[H0, X0µ] = −2Y0µ, [H0, Y0µ] = 2X0µ, [X0µ, Y0µ] = 4(Hµ −H0) (6.83)

as well as the formulas

(πcl◦)∗(Hµ) = ∂xµ∂yµ (6.84)

(πcl◦)∗(Xµν) = ∂xµ · ∂xν + ∂yµ · ∂yν (6.85)

(πcl◦)∗(Yµν) = ∂xµ · ∂yν − ∂yµ · ∂xν (6.86)

for the derived action on the spin representation. Now we simplify (6.81) to give
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(
Dρ +

1

2
∂y0ω + ir∂y0

)2

A =
1

2
A ◦ (πρ)∗(CŨ(m) − CŨ(m+1))

+
1

4
A ◦ (πρ)∗(H0) ◦ (πρ)∗(H0) +

1

2
ω · A ◦ (πρ)∗(H0)

+
3

4
ω2 · A+m(m+ 1)A, (6.87)

where CŨ(m) and CŨ(m+1) denote the Casimir elements corresponding to Ũ(m + 1)

and Ũ(m) respectively. Now following (6.65) the action of the Casimir element CŨ(m)

on Λj ⊗ Σ∗0 is given by the constant

c̃(1, . . . , 1, 0, . . . , 0) = −4
{m

4
+ j(m− j)

}
, (6.88)

while the action of CŨ(m+1) on Vρ is given by

c̃(a+1, 1, . . . , 1, 0, . . . , 0, b) = −4

{(
a+

1

2

)2

+

(
b− 1

2

)2

+
m− 1

4
+m(a− b) + (m− j)(j + 1)

}
.

(6.89)

Using (6.67) the action of (πρ)∗(H0) on the highest weight vectors vj, vj+1 of the

Λj ⊗ Σ∗0, Λj+1 ⊗ Σ∗0 parts of Vρ is given by

(πρ)∗(H0)vj = 2i(a+ b+
1

2
)vj and (πρ)∗(H0)vj+1 = 2i(a+ b− 1

2
)vj+1 (6.90)

respectively. Using these formulas we may compute

(
Dρ +

1

2
∂y0ω + ir∂y0

)2

A1 = αA1,

(
Dρ +

1

2
∂y0ω + ir∂y0

)2

A2 = αA2 (6.91)

with
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α = α(a, b, j,m) =

(
a+ b+ j +

1−m
2

)2

− 4(j + a+ 1)(b−m+ j) (6.92)

being the same constant for both A1 and A2. This now gives

x u

v y

+
(−1)j

2

m− 2j − 2r 0

0 2j + 2−m+ 2r

2

=

α 0

0 α

 (6.93)

which in turn is equivalent to the four equations

(
x+

(−1)j

2
(m− 2j − 2r)

)2

+ uv = α (6.94)(
y +

(−1)j

2
(2j + 2−m+ 2r)

)2

+ uv = α (6.95)

(x+ y + (−1)j)u = 0 (6.96)

(x+ y + (−1)j)v = 0. (6.97)

It hence gives

uv = −4(j + a+ 1)(b−m+ j). (6.98)

Now if λ1, λ2 denote the eigenvalues of Dρ we have

λ1 + λ2 = trDρ = x+ y = (−1)j+1, (6.99)

λ1λ2 = detDρ = xy − uv (6.100)

= −
(
a+ b+ 2j −m+ r +

1

2

)(
a+ b+ 2j −m+ r +

3

2

)
+ 4(j + a+ 1)(b−m+ j). (6.101)

Hence we may compute
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λ1,2 =
(−1)j+1

2
±
√

(a+ b+ 2j −m+ r + 1)2 + 4(j + a+ 1)(m− j − b). (6.102)

The multiplicity of each of these eigenvalues is the dimension of the representation

Vk and is again computed via (6.56) to be

(m+ a)!(m− b)!(a− b+ 1 +m)

m!j!(m− j − 1)!a!(−b)!(a+ j + 1)(m− j − b)
. (6.103)

We now summarize the computation of the spectrum in the theorem below.

Theorem 6.2.7. The eigenvalues with multiplicities for the coupled Dirac operator

Dra on the odd sphere S2m+1 are given by

i. λ = r − (a+m+ 1
2
), for a ∈ N0 with multiplicity

(
m+a
m

)
ii. λ = (−1)m(r + a+m+ 1

2
), for a ∈ N0 with multiplicity

(
m+a
m

)
iii.

λ =
(−1)j+1

2
±
√

(a1 − a2 + 2j −m+ r + 1)2 + 4(j + a1 + 1)(m− j + a2),

(6.104)

for a1, a2 ∈ N0, j = 0, . . . ,m− 1, each with multiplicity

(m+ a1)!(m+ a2)!(a1 + a2 + 1 +m)

m!j!(m− j − 1)!a1!a2!(a1 + j + 1)(a2 +m− j)
. (6.105)

We now compute the spectral flow function. It is easy to see that the eigenvalues

of type ii are never zero. It is also easy to verify that the square root in (6.104)

is atleast 2 and hence the eigenvalues of type iii are never zero. Hence the only

eigenvalues which contribute to the spectral flow function are those of type i. The

spectral flow function is now easily computed to be

sf(D,Dra) =

[r−m− 1
2 ]∑

a=0

(
m+ a

m

)
. (6.106)
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Using the binomial identity
∑k

a=0

(
m+a
m

)
=
(
m+k+1
m+1

)
the spectral flow function is seen

to satisfy

sf(D,Dra) =
rm+1

(m+ 1)!
+O(rm). (6.107)

This is seen to be the sharp remainder since O(rm) is the size of the jump discontinuity

in this example.

6.3 Spectral flow for L(p, 1)

In this section we compute the spectrum of coupled Dirac operators on homogeneous

three dimensional Lens spaces. Let SU(2) = S3 be the three sphere with the round

metric. The three dimensional Lens space L(p, 1) is the quotient of S3 under the

identification A ∼ A

ζ 0

0 ζ̄

 with A ∈ SU(2), ζ = e2πi/p. Left multiplication gives

a SU(2) action on L(p, 1). The stabilizer of [I] ∈ L(p, 1) is the subgroup generated

by

ζ 0

0 ζ̄

 which maybe identified with Zp ⊂ U(1) consisting of the pth roots of

unity. Let Xi = σi be the basis for the Lie algebra su(2) given by the Pauli matrices.

Let π∗(σi) = X̄i denote the corresponding pushforwards under the natural projection

π : S3 → L(p, 1). We may compute

Adeitσ1 =

eit 0

0 e−it

0 i

i 0

e−it 0

0 eit

 =

 0 ie2it

ie−2it 0

 (6.108)

= cos(2t)σ1 + sin(2t)σ2, (6.109)

Adeitσ2 =

eit 0

0 e−it

0 −1

1 0

e−it 0

0 eit

 =

 0 −e2it

e−2it 0

 (6.110)

= − sin(2t)σ1 + cos(2t)σ2 and (6.111)

Adeitσ3 = σ3. (6.112)

104



Hence we see that the isotropy representation α : Zp → SO(3) is the restriction to

Zp of the map α : U(1)→ SO(3)

α(eit) =


cos(2t) sin(2t) 0

− sin(2t) cos(2t) 0

0 0 1

 , (6.113)

in the basis given by the X̄i’s.

First consider the case where p is odd. In this case H1(L(p, 1),Z2) = 0 and there

is a unique spin structure. It corresponds to the lift of the isotropy representation

given by the restriction to Zp of the map

α′ : U(1)→ SU(2), α′(eit) =

e−it 0

0 eit

 . (6.114)

We twist the corresponding spin bundle by the trivial Hermitian line bundle C

equipped with the connection d− ira. Here a is the unique one form on L(p, q) whose

pullback π∗(a) = X∗3 on S3. We wish to compute the spectrum of the corresponding

coupled Dirac operator Dra.

The irreducible representations of Zp are parametrized by elements of Zp. The

representation Wl corresponding to l ∈ Zp is the one dimensional representation

given by πl : Zp → U(1) with πl(ζ) = ζ l. The irreducible representations of SU(2)

are Vk = Symk(C2) and are spanned by the k + 1 monomials va = xayk−a, 0 ≤ a ≤

k. The spin representation is the standard representation S = C2 of SU(2) with

Clifford multiplication by X̄i being given by the Pauli matrices σi in the standard

basis s1, s2 ∈ C2. The space of L2 sections of the spin bundle decomposes as

L2(S) =
⊕
k

Vk ⊗HomZp(Vk, S) (6.115)

and the restriction of the Dirac operator to the k-isotypical part is of the form id⊗Dk

by proposition (6.2.5). It is easy to compute β1 = β2 = β3 = 0 and α123 = 3
2
. Hence

Dk can be computed to be
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Dk(A) = −
∑
i

σi · A(πk)∗(Xi)−
3

2
A− irσ3 (6.116)

for A ∈ HomZp(Vk, S). Following (6.114) we compute the action of Zp on a monomial

πk ◦ α′(ζ)(va) = ζk−2ava. Hence the restriction to Zp of Vk decomposes as

Vk =
k⊕
a=0

Wk−2a. (6.117)

The restriction to Zp of the spin representation similarly decomposes as S = W−1⊕W1.

Using these decompositions we may write

HomZp(Vk, S) = HomZp(Wk,W−1)⊕HomZp(W−k,W1)⊕ (6.118)
k−1⊕
a=0

(
HomZp(Wk−2a,W1)⊕HomZp(Wk−2a−2,W−1)

)
.(6.119)

By Schur’s lemma the first two summands are nonzero when k ≡ −1 (mod p) while

index a part of the third summand is nonzero when k − 2a ≡ 1 (mod p). When

nonzero, these summands are preserved by the operator Dk using (6.116) and the

relations (6.18). The restriction of Dk to the first two is then given by the scalars

−k − 3
2

+ r and −k − 3
2
− r respectively. While its restriction to the index a part of

the third is the matrix

Dk =

k − 2a− 3
2

+ r 2(a+ 1)

2(k − a) 2a− k + 1
2
− r

 . (6.120)

The eigenvalues and multiplicities are now computed to be

λ =


−bp− 1

2
± r for b ∈ N

−1

2
±
√

(r + bp)2 + (k + 1)2 − (bp)2 for b, k + 1 ∈ N, k + bp odd,

−[k+1
p

] ≤ b ≤ [k−1
p

].
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Here the first eigenvalue has multiplicity bp while the second has multiplicity k + 1.

In the case where p = 2p0 is even H1(L(p, 1),Z2) = Z2 and there are two spin

structures. The first corresponds to the lift of the isotropy representation given by

(6.114) and gives the same spectrum as the odd p case. The second spin structure

comes from the lift given by the restriction to Zp of

α′ : U(1)→ SU(2), α′(eit) =

e−i(1+p0)t 0

0 ei(1+p0)t

 . (6.121)

The rest of the computation is now the same as the p odd case, the answer is as

summarized below.

Theorem 6.3.1. Let L(p, 1) be the Lens space. The spectrum of the coupled Dirac

operator Dra corresponding to the trivial spin structure is given by

λ =


−bp− 1

2
± r for b ∈ N

−1

2
±
√

(r + bp)2 + (k + 1)2 − (bp)2 for b, k + 1 ∈ N, k + bp odd,

−[k+1
p

] ≤ b ≤ [k−1
p

].

where the first eigenvalue has multiplicity bp while the second has multiplicity k + 1.

For p = 2p0 even the spectrum of the coupled Dirac operator Dra corresponding to

the non-trivial spin structure is given by

λ =


−(p0 + bp)− 1

2
± r for b ∈ N

−1

2
±
√

(r + p0 + bp)2 + (k + 1)2 − (p0 + bp)2 for b, k + 1 ∈ N, k + p0 odd,

−[k+p0+1
p

] ≤ b ≤ [k−p0−1
p

].

where the first eigenvalue has multiplicity p0 + bp while the second has multiplicity

k + 1.

The proposition again allows us to compute the spectral flow function in each case.

Considering the trivial spin structure it is clear that the only eigenvalues crossing the

origin are of the type −bp− 1
2

+ r. Hence the spectral flow function is
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sf(D,Dra) =

[ 2r−1
2p

]∑
b=1

bp. (6.122)

This is now seen to satisfy the asymptotics

sf(D,Dra) =
r2

2p
+O(r). (6.123)
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Appendix A

The semiclassical resolvent

expansion

In this section we collect some facts from semiclassical analysis. The primary goal is

proposition (A.5.5) where we prove the existence of a trace expansion for any function

of an elliptic semiclassical operator. To do so we will first review some fact about

the semiclassical pseudodifferential algebra. The main references here are [13] and

[44]. We use this section to supplement these references and to modify some of their

arguments to fit our purpose.

A.1 The Semiclassical Pseudodifferential Algebra

Here we shall recall the definition of a semiclassical pseudodifferential operator. We

shall assume familiarity with the usual pseudodifferential algebra as in chapter 18 of

[24] or chapter 2 of [33]. Although a semiclassical pseudodifferential operator is really

a family of pseudodifferential operators it is still referred to as ’an’ operator by abuse

of language. The precise definition appears below.

Definition A.1.1. A semiclassical pseudodifferential operator of order (m, 0) on Rn

is a 1-parameter family of psedodifferential operators Ah ∈ Ψm
sl ⊂ C∞((0, 1]h; Ψm(Rn;Rl))

of the form
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Ah = a(x, hD, h) = (2πh)−n
∫
ei(x−y).ξ/ha(x, ξ, h)dξdy, (A.1)

such that a ∈ C∞([0, 1]h;S
m(R2n;Rl)).

We recall that the space of symbols Sm(R2n;Rl) is defined to be the space of

smooth maps a : R2n →Matl(C) for which each seminorm

supx,ξ〈ξ〉−m+|β||∂αx∂
β
ξ a(x, ξ)| (A.2)

is finite. This space is a Frechet space with these semi-norms and the smoothness

in definition (A.1.1) means smoothness with respect to each of these seminorms.

Following this definition on Euclidean space we define semiclassical operators on a

compact manifold.

Definition A.1.2. Let E be a vector bundle of rank l a compact manifold X of dimen-

sion n. A semiclassical pseudodifferential operator of order (m, 0) is a 1-parameter

family of pseudodifferential operators Ah ∈ Ψm
sl (X;E) ⊂ C∞((0, 1]h; Ψm(X)) such

that

i. there exists an atlas {(Uα, α)} of coordinate charts α : Uα → Vα ⊂ Rn with

respect to which E is locally trivial. Furthermore for each φ, ψ ⊂ C∞c (Vα)

ψ(α−1)∗Ahα
∗φ = aα(x, hD) ∈ Ψm

sl (Rn;Rk) (A.3)

and

ii. for each φ1, φ2 ∈ C∞(X) satisfying supp(φ1) ∩ supp(φ2) = ∅ we have that the

kernel Kh of φ1Ahφ2 is in C∞(X ×X) and is O(h∞) in each Ck norm on the

product.

A semiclassical pseudodifferential operator of order (m, k) is a 1-parameter family

of pseudodifferential operators of the form h−kΨm
sl . The coordinate independence of

pseudodifferential operators proves that if an operator has the form (A.3) with respect

to one atlas it would have to the same with resect to any other (cf. theorem 9.10 in
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[44]). These also form an algebra with respect to composition h−k1Ψm1
sl ◦ h−k2Ψm2

sl ⊂

h−(k1+k2)Ψ
(m1+m2)
sl .

A.2 Symbol maps, quantization and ellipticity

Next we define the symbol of a semiclassical operator. First define the semiclassical

spaces of symbols on the cotangent bundle to be Smsl (T
∗X;E) = C∞([0, 1];Sm(T ∗X;E))

where again smoothness is understood to be with respect to the Frechet space norms

on Sm(T ∗X;E). In the semiclassical setting there are two versions of the symbol.

The first is the usual symbol of each operator in the family

σm(Ah) ∈ C∞([0, 1], Sm(T ∗X;E)/Sm−1(T ∗X;E)) = Smsl /S
m−1
sl . (A.4)

The next is the semiclassical symbol σsl(Ah) ∈ Smsl /hS
m
sl = Sm(T ∗X;E). For

a semiclassical operator a(x, hD, h) on Euclidean space this is simply defined as

a(x, ξ, 0) ∈ Sm. This definition is now extended to manifolds using an appropriate

partition of unity (cf. theorem 14.1 in [44]). The two symbols satisfy the compatibility

relation

σm|h=0 = [σsl] ∈ Sm/Sm−1. (A.5)

Both symbols are multiplicative in the sense σsl(AB) = σsl(A)σsl(B) and σm(AB) =

σm(A)σm(B) (cf. theorem 14.1 in [44]). They also fit into the short exact sequences

0→ h−kΨm−1
sl → h−kΨm

sl
σm−→ C∞([0, 1];Sm/Sm−1)→ 0 (A.6)

0→ h−k+1Ψm
sl → h−kΨm

sl

σsl−→ h−kSm → 0. (A.7)

The semiclassical notion of ellipticity is defined as
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Ah ∈ Ψm
sl is semi-classically elliptic ⇐⇒ (A.8)

∃ constants C1, C2 > 0 such that σsl(A)(x, ξ) > C1|ξ|m for |ξ| > C2.(A.9)

We comment here that unlike the classical symbol the semiclassical symbol is not a

homogeneous function on the cotangent bundle. There also exist a quatization map

Op : Smsl (T
∗X) → Ψm

sl (X) (cf. theorem 14.1 in [44]). This is a right inverse to the

symbols in the sense that

σm(Op(a)) = [a] ∈ Smsl /Sm−1
sl (A.10)

σsl(Op(a)) = a|h=0 ∈ Sm. (A.11)

It follows from the short exact sequences (A.6) and (A.7) and multiplicativity of the

symbols that if either A or B has a scalar symbol (i.e. the symbol has a scalar rep-

resentative in the case of σm) then their commutator has lower order. More precisely

let A ∈ h−k1Ψm1
sl and B ∈ h−k2Ψm2

sl then one has the following two implications

σm1(A) or σm2(A) is scalar =⇒ [A,B] ∈ h−k1−k2Ψm1+m2−1
sl (A.12)

σsl(A) or σsl(A) is scalar =⇒ [A,B] ∈ h−k1−k2+1Ψm1+m2
sl . (A.13)

A.3 Semiclassical Sobolev Spaces

The semiclassical Sobolev spaces Hk
sl(X;E) are the defined as spaces whose elements

are the same as the classical Sobolev spaces Hk. However their norms are rescaled

as follows. Choose a set of vector fields V1, · · · , VJ that span the tangent space TxM

at every point x ∈ M . Let ∇ be a fixed connection on E. Then u ∈ Hk
sl ⇐⇒

∇Vi1
· · · ∇Vil

u ∈ L2(X), ∀(i1, · · · , ik) ∈ {1, · · · , J}l with 0 ≤ l ≤ k. Moreover the
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norm is defined as

‖u‖Hk
sl

=
k∑
l=0

∑
α∈Nl

1≤αi≤J

h2l‖∇Vα1
· · · ∇Vαl

u‖L2 . (A.14)

A semiclassical differential operator Ah ∈ h−kΨm
sl is bounded on these Sobolev spaces

in the sense

‖Ah‖Hm+s
sl →Hm

sl
= O(h−k), as h→ 0. (A.15)

Using the fact that semiclassical operators form an algebra this reduces to the L2

boundedness of Ψ0
sl which is theorem 14.2 of [44]. Finally we mention that semi-

classical operators satisfy asymptotic summation. This means that for any set of

semiclassical operators Aj ∈ Ψm−j
sl , j ∈ N0 there exists A ∈ Ψm

sl such that

A ∼
∑
j≥0

Aj or A−
N∑
j=0

Aj ∈ Ψm−N−1
sl ∀N. (A.16)

A.4 Semiclassical Elliptic regularity

Here we prove a semiclassical analogue of Gardings inequality or elliptic regularity.

This will follow after the construction of a parametrix for an elliptic semiclassical

operator.

Proposition A.4.1. Let A ∈ Ψm
sl (X) be an elliptic semiclassical pseudodifferential

operator. Then there exists a semiclassical operator Bh ∈ Ψ−msl (X) such that

AB − I ∈ Ψ−∞sl (X) and BA− I ∈ Ψ−∞sl (X). (A.17)

Proof. Since A is elliptic there exist constants C1, C2 such that |σsl(A)(x, ξ)| ≥

C1|ξ|m for |ξ| ≥ C2. Using the compatibility of the symbols (A.5) we may assume

|σm(A)(x, ξ, h) ≥ C1|ξ|m for |ξ| ≥ C2 for uniform constants C1, C2 on some interval

h ∈ [0, h0]. Choose a function φ ∈ C∞(R) such that φ = 0 on [−2C, 2C] and φ = 1

outside [−3C, 3C]. Consider
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B−m = Op
(
φ(|ξ|)(σm(A))−1

)
. (A.18)

Using the multiplicativity of the symbol one has

σ0(AB−m − I) = 1− φ(|ξ|) = 0 ∈ S0
sl/S

−1
sl . (A.19)

Hence AB−m − I = R−1 ∈ Ψ−1
sl from the symbol exact sequence for σ0. Now choose

B−m−1 = −Op
(
φ(|ξ|)(σm(A))−1σ−1(R−1)

)
. (A.20)

We then have

σ−1(A(B−m+B−m−1)−I) = σ−1(AB−m−I)−σ−1(R−1)φ(|ξ|) = 0 ∈ S−1
sl /S

−2
sl . (A.21)

Continuing iteratively we obtain B−m−j ∈ Ψ−m−jsl , j ≥ 0 such that A(B−m + · · · +

B−m−N) − I ∈ Ψ−N − 1sl(X). Using the asymptotic summation property we now

pick B ∼
∑

j≥0Bj to be the required right parametrix for A. The construction of the

left parametrix is similar.

We now state the elliptic regularity lemma.

Proposition A.4.2. Let A ∈ Ψm
sl (X) be a semiclassical elliptic operator of order

m ≥ 0. Then one has the estimate

‖u‖Hs+m ≤ C(‖Au‖Hs + ‖u‖Hs) (A.22)

for some constant C uniform in h.

Proof. This follows easily from the parametrix construction, namely let B be the left

parametrix such that BA− I = S ∈ Ψ−∞sl . Then
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‖u‖Hs+m
sl

= ‖(BA+ S)u‖Hs+m
sl

(A.23)

≤ ‖BAu‖Hs+m
sl

+ ‖Su‖Hs+m
sl

(A.24)

≤ ‖B‖‖Au‖Hs
sl

+ ‖S‖‖u‖Hs
sl

(A.25)

≤ C(‖Au‖Hs + ‖u‖Hs) (A.26)

using the boundedness of semiclassical operators.

A.5 Semiclassical Beals lemma and Resolvent es-

timates

In this section we state a characterization for semiclassical pseudodifferential opera-

tors knwon as Beals’ lemma. This characterization will be useful in showing that the

resolvent of an self-adjoint elliptic pseudodifferential operator is pseudodifferential.

The proof we present below is a semiclassical modification of the one appearing in

Beals’ original paper [7].

Theorem A.5.1. (Semiclassical Beals’ Lemma) A family of operators Ah : C∞c (X)→

C−∞(X) is in Ψm
sl (X;E) if and only if

‖adA1 . . . adANadB1 . . . adBMA‖Hm+s
sl →Hs+N

sl
= O(hN+M) (A.27)

for all M,N, s and for all Ai ∈ Ψ0
sl, Bi ∈ Ψ1

sl with scalar symbols. Moreover if

‖adA1 . . . adANadB1 . . . adBMA‖Hm+s
sl →Hs+N

sl
= O(δ−N−MhN+M) (A.28)

for some δ > 0 then each amplitude aα of Ah in (A.3) can be taken to satisfy the

estimates

|∂αx∂
β
ξ a| ≤ Cαβδ

−|α|−|β|〈ξ〉m−|α|. (A.29)
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Proof. The only if part follows since the equations (A.12) and (A.13) imply that

‖adA1 . . . adANadB1 . . . adBMA‖Hm+s
sl →Hs+N

sl
∈ hM+NΨM+N

sl (A.30)

and we then apply the boundedness of pseudodifferential operators on Sobolev spaces.

Now we prove the if part. Since the definition (A.1.2) for a pseudodifferential

operator is local, we may reduce to the case where X = Rn is Euclidean space and we

have a smooth family of operators Ah : S → S ′. Choose g ∈ S(R) such that g(0) = 1,

ĝ ∈ C∞c ((−1, 1)) and g(x) = g(−x). Let gx(y) = g(y − x). We then have

u(x) = u(x)gx(x) = (2πh)−n
∫
ei(x−y)ξ/hgx(y)u(y)dydξ (A.31)

= (2πh)−n
∫
e−iyξ/heξ(x)gy(x)u(y)dydξ (A.32)

where eξ(x) = eixξ/h. Now assume that we have a smooth family of operators

A : S ′ → S (A.33)

so that each Ah has kernel in S(Rn × Rn). We may then compute

Au(x) = (2πh)−n
∫
e−iyξ/hA(eξ(x)gy(x))u(y)dydξ (A.34)

= (2πh)−n
∫
ei(x−y)ξ/ha0(x, y, ξ)u(y)dydξ (A.35)

where a0(x, y, ξ) = e−ξ(x)A(eξgy)(x) and the integral converges for u ∈ S as kernel

in A has kernel in S(Rn × Rn). We now estimate

‖a0(., y, ξ)‖L2 = ‖A(eξgy)‖L2 ≤ C‖eξgy‖Hm
sl

(A.36)

for some constant C uniform in y, ξ and h. We also compute
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Dxia0 = e−ξ[Dxi , A](eξgy) + e−ξA(eξDxigy) (A.37)

where Dxi = 1
i
∂xi . Hence we have

‖Dxia0‖L2 ≤ C(‖eξgy‖Hm
sl

+ ‖eξDxigy‖Hm
sl

) (A.38)

where C is again uniform in y, ξ and h. The identity Dξia0 = e−ξ
1
h
[A, xi](eξgy) gives

the estimate

‖Dξia0‖L2 ≤ C‖eξgy‖Hm−1
sl

. (A.39)

Continuing in this way we get the estimate

‖Dα
xD

β
yD

γ
ξ a0‖L2 ≤ Cαβγ

(∑
δ≤α

‖eξDδ
xgy‖Hm−|γ|

sl

)
(A.40)

for constants Cαβγ uniform in y, ξ and h. Next for any fixed g′ with ĝ′ compactly

supported in (−1, 1) we may estimate

‖eξg′‖2
Hs
sl

= (2πh)−n
∫
〈η〉2s|Fh(eξg′)(η)|2dη (A.41)

= (2πh)−n
∫
〈η〉2s|ĝ′

(
η − ξ
h

)
|2dη (A.42)

= (2π)−n
∫
〈ξ + αh〉2s|ĝ′(α)|2dα (A.43)

≤ Cm〈ξ〉2s, (A.44)

where Fhu(ξ) =
∫
e−ix.ξ/hu(x)dx stands for the semiclassical Fourier transform. Hence

(A.40) and (A.44) give

‖Dα
xD

β
yD

γ
ξ a0‖L2 ≤ C ′αβγ〈ξ〉m−|γ| (A.45)

for constants C ′αβγ uniform in y, ξ and h. Combining this with Sobolev’s inequality

gives
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|Dα
xD

β
yD

γ
ξ a0| ≤ C ′′αβγ〈ξ〉m−|γ| (A.46)

for constants C ′′αβγ uniform in y, ξ and h. Hence (A.35) and (A.46) show that Ah ∈ Ψm
sl

as required. Finally to do away with assumption (A.33) we approximate a more

general operator Ah by operators of this type. Namely we choose χ ∈ C∞c (R) such

that χ = 1 in a neighbourhood around 0, and define

pε(x, ξ) = χ(εx) , qε(x, ξ) = χ(εξ) (A.47)

P ε = pε(x, hD) , Qε = qε(x, hD) (A.48)

Aε = P εAQε. (A.49)

Each Aε maps S ′ to S and satisfies norm bounds (A.27) independent of ε. Thus we

have Aε = aε(x, hD) with bounds on the amplitudes aε. The amplitudes converge in

C∞(R × R) to an amplitude a ∈ Sm and Ah = a(x, hD). The second part of the

theorem, namely the bounds (A.29), follow after replacing the bounds (A.38)-(A.40),

(A.45) and (A.46) by their analogues involving δ.

The above theorem and the pseudodifferential calculus can be used to obtain a

resolvent expansion for an elliptic pseododifferential operator. This is the proposition

below.

Proposition A.5.2. Let Ah ∈ Ψm
sl be a self-adjoint elliptic pseudodifferential opera-

tor. Then for each z ∈ C with Imz 6= 0 we have (A − z)−1 ∈ Ψ−msl . This resolvent

has an expansion in the sense that there exists a sequence of symbols az0, a
z
1, . . . ∈ S−m

such that for each k

hk+1Bz
k = (A− z)−1 −Op(az0 + haz1 + . . .+ hkazk) ∈ hk+1Ψ−msl . (A.50)

Moreover each ai and the amplitudes of each Bi satisfy the estimates (A.29) with

δ = (Imz)ki for some ki > 0.
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Proof. First we note that the elliptic regularity estimate and self-adjointness of A

imply that

(Imz)‖u‖Hs
sl
≤ C‖(A− z)u‖Hs−m

sl
. (A.51)

Hence we have

‖(A− z)−1‖H−m+s
sl →Hs

sl
= O((Imz)−1). (A.52)

Next the computation adA1(A− z)−1 = −(A− z)−1adA1A(A− z)−1 gives

‖adA1(A− z)−1‖H−m+s
sl →Hs+1

sl
= O((Imz)−2h). (A.53)

Computing further in this fashion we obtain

‖adA1 . . . adANadB1 . . . adBM (A−z)−1‖H−m+s
sl →HN+s

sl
= O((Imz)−N−M−1hN+M) ∀M,N, s.

(A.54)

Hence we see that the resolvent satisfies the criterion of Beals’ lemma with δ =

Imz and we have (A − z)−1 ∈ Ψ−1
sl with the corresponding estimates (A.29) on its

amplitudes. To derive the resolvent expansion first set

az0 = (σsl(A)− z)−1. (A.55)

The self-adjointness of A, and hence its symbol, gaurantees that this inverse exists.

We then compute

σsl((A− z)Op(az0)− I) = 0 in S0. (A.56)

Hence from the symbol exact sequence for σsl we have (A− z)Op(az0) = I + hRz
0 for

some Rz
0 ∈ Ψ0

sl. We then set

az1 = −(σsl(A)− z)−1σsl(R0). (A.57)
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Again we compute

σsl((A− z)Op(az0 + haz1)− I) = 0 in hS0 (A.58)

and hence we must have (A − z)Op(az0 + haz1) = I + h2Rz
1 for some Rz

1 ∈ Ψ0
sl. This

inductive procedure constructs the sequence of symbols azi with the property that

(A− z)Op(az0 + haz1 + · · ·+ hkazk) = I + hk+1Rz
k for Rz

k ∈ Ψ0
sl. Hence we see that this

sequence of symbols ai along with Bz
i = (A− z)−1hi+1Rz

i ∈ hi+1Ψ−msl satisfies (A.50).

The claimed estimates on the amplitudes follow from local computations.

Next we show how this resolvent expansion implies an expansion for any function

of the operator. Namely we show that given any Schwartz function f ∈ S(R) we have

f(Ah) ∈ Ψ−∞sl and that there exists an expansion for its trace trf(Ah) ∼ a0h
−n +

a1h
−n+1 + . . . in powers of h. This will be done by expressing such a function of

the operator in terms of its resolvent. To do this we will first prove the existence of

almost analytic extensions of a Schwartz function in the proposition below.

Proposition A.5.3. If f ∈ S(R) then there exists a function on the complex plane

f̃ ∈ S(C) such that

i. f̃ |R = f

ii. supp(f̃) ⊂ {z||Imz| ≤ 1}

iii. For each M,N > 0 we have

|∂̄f̃(z)| ≤ CM,N(Rez)−M(Imz)N (A.59)

for some constant CM,N .

Proof. Pick a cutoff χ ∈ C∞c (−1, 1) such that χ = 1 on (−1
2
, 1

2
) and set

f̃(z) =
1

2π
χ(y)

∫
R
χ(yξ)f̂(ξ)eiξ(x+iy)dξ. (A.60)

The Fourier inversion formula checks property iwhile iifollows because of the χ(y)

term. We compute
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xMy−N ∂̄(f)| = xMy−N
iχ′(y)

2π

∫
R
χ(yξ)f̂(ξ)eiξ(x+iy)dξ

+xMy−N
χ(y)

2π

∫
R
iξχ′(yξ)f̂(ξ)eiξ(x+iy)dξ. (A.61)

Next we write xMeiξx = (−i∂ξ)Meiξx and integrate by parts in ξ. The first summand

on the right hand side of (A.61) now gives a sum of terms of the type

iy−kχ′(y)

2π

∫
R
χ(yξ)f̂(ξ)e−ξyeiξxdξ (A.62)

each of which can be bound in absolute value by a constant multiple of

‖y−kχ′(y)‖C0‖χ(y)e−y‖C0‖f̂‖L1 . The first summand gives a sum of terms of the type

χ(y)

2π

∫
R
y−kiξχ′(yξ)f̂(ξ)e−ξyeiξxdξ (A.63)

each of which can be bound in absolute value by ‖ξk+1f̂‖L1‖y−kχ′(y)e−y‖C0 .

Now we write the function of an operator in terms of its resolvent. The corre-

sponding formula (cf. theorem 14.8 in [44]) appears in the proposition below.

Proposition A.5.4. Given any function f ∈ S(R) we have

f(Ah) =
1

π

∫
C
∂̄f̃(z)(Ah − z)−1dxdy, (A.64)

where dxdy stands for the Lebesgue measure on C.

In the proposition above both sides are defined using functional calculus. The

right hand side makes sense because 1/z is locally integrable on C. Equation (A.64)

reduces to the fact that 1
πz

is the fundamental solution of ∂̄. We are now ready to prove

the existence of a functional trace expansion for an elliptic semiclassical operator.

Proposition A.5.5. Let Ah be an elliptic self-adjoint semiclassical operator on a

compact manifold X. For any function f ∈ S(R) one has that f(Ah) ∈ Ψ−∞sl (X).
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Moreover the trace of f(Ah) has a trace expansion

trf(Ah) ∼ c0h
−n + c1h

−n+1 + . . . (A.65)

for some constants ci.

Proof. By proposition (A.5.2) the resolvent (A − z)−1 ∈ Ψ−msl for Imz 6= 0. Using

this and the formula (A.64) we see that f(Ah) has the form (A.3) with amplitudes

given by

fα =
1

π

∫
C
∂̄f̃(z)azαdxdy. (A.66)

Here azα are the corresponding amplitudes of the resolvent. From proposition (A.5.2)

we know that the amplitudes azα satisfy the bounds (A.29) with δ = Imz. Combining

this with (A.59) we have that each amplitude fα satisfies uniform bounds |∂αx∂
β
ξ fα| ≤

Cαβ〈ξ〉m−|α| and hence f(Ah) ∈ Ψ−msl . To see that f(Ah) ∈ Ψ−∞sl note that f(Ah) =

(1+A2
h)
−kg(Ah) where g(x) = (1+x2)kf(x) and hence f(Ah) ∈ Ψ−∞sl from the algebra

property of pseudodifferential operators. To derive the trace expansion set

Fi =
1

π

∫
C
∂̄f̃(z)Op(azi )dxdy (A.67)

where azi are the coefficients in the resolvent expansion (A.5.2). Again we have that

Fi ∈ Ψ−∞sl and the trace expansion (A.65) now follows fron the resolvent expansion

(A.5.2) with ci = trFi.

The coefficients in the trace expansion (A.65) ci(f) all depend on the function f

and so do the remainders Ri(f) defined via

hi+1Ri+1(f) = trf(Ah)− (c0(f)h−n + . . .+ ci(f)h−n+i). (A.68)

We shall need the fact that each coefficient ci(f) defines a tempered distribution and

a similar statement about the remainders. This is done in the proposition below.
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Proposition A.5.6. For a fixed operator Ah the trace coefficients ci(f) in the expan-

sion (A.65) define tempered distributions. Further each remainder Ri(f) defined via

(A.68) satisfies the estimate

|Ri(f)| ≤ C
∑
α,β≤N

‖xα∂βxf‖C0 (A.69)

for some N and C independent of h.

Proof. Following proposition (A.5.5) we have that each ci(f) = trGi with

Gi =
1

π

∫
C
∂̄g̃(z)(1 + A2)−kOp(azi )dxdy, (A.70)

g = (1 + x2)kf and azi denote the coefficients of the resolvent expansion. Combining

this with proposition (A.5.3) we have that the amplitudes gα of Gi are bounded by

|gα| ≤ C〈ξ〉−m−k
(∑
α≤N

‖∂̂αx g‖L1

)
. (A.71)

Here the constant C is independent of g while N may depend on i and k. Letting k

be large we get a bound

|ci(f)| = |trGi| ≤ C

(∑
α≤N

‖∂̂αx g‖L1

)
(A.72)

for some N . The right hand side of (A.72) can now be bound by some multiple of a

Schwartz norm of f . The proof of the bounds (A.69) is similar.
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Appendix B

The semiclassical wave kernel

In this section we review some facts about the semiclassical wave equation. The main

goal is proposition (B.4.2) which shows that a certain wave evolution operator admits

a representation as an oscillatory integral. The main references here are [13] and [21].

We shall first define the required notion of an oscillatory density in the next section.

B.1 Oscillatory densities

Before defining oscillatory densities we shall need some relevent notions from symplec-

tic geometry. We first review some functorial properties of Lagrangian submanifolds.

Given a symplectic manifold (M,ω) denote by M− the symplectic manifold (M,−ω).

A Lagrangian Γ12 ⊂ M−
1 ×M2 is called a canonical relation between M1 and M2.

Given two canonical relations Γ12 ⊂M−
1 ×M2 and Γ23 ⊂M−

2 ×M3 the subset

Γ12 ◦ Γ23 = π13(Γ12 ? Γ23) ⊂M−
1 ×M3 (B.1)

with Γ12 ? Γ23 = (Γ12 × Γ23) ∩ (M1 ×∆M2 ×M3) (B.2)

is an immersed Lagrangian assuming the intersection in (B.2) to be transversal. Under

the additional assumption that π13 : Γ12 ? Γ23 → Γ12 ◦ Γ23 is proper with connected

and simply connected fibers, (B.1) gives a submanifold (cf. chapter 4 in [21]). In
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this case we say that Γ12 and Γ23 are composible and call Γ12 ◦Γ23 their composition.

An exact Lagrangian (Λ, ψ) ⊂ T ∗X of the cotangent bundle is one equipped with

a phase function ψ satisfying α|Λ = dψ, with α being the tautological one form on

T ∗X. An exact canonical relation (Γ, ψ) is an exact Lagrangian of (T ∗X)− × (T ∗Y ).

The composition of exact canonical relations (Γ12◦Γ23, ψ12◦ψ23) is defined as in (B.1)

with the phase function being defined via

π∗13(ψ12 ◦ ψ23) = π∗12ψ12 + π∗23ψ23. (B.3)

Given a smooth map f : X → Y define the canonical relation

Γf = (ς × id)(N∗(graphf)) ⊂ (T ∗X)− × (T ∗Y ), (B.4)

where N∗(graphf) is the conormal bundle to the graph of f and

ς : T ∗X → T ∗X, ς(x, ξ) = (x,−ξ). (B.5)

Using these constructions we may now define the pushforward of a Lagrangian Λ ⊂

T ∗X under a smooth map f : X → Y via

f∗Λ = Λ ◦ Γf . (B.6)

Here we think of Γ ⊂ pt × T ∗X as a canonical relation and again assume that

the composition in (B.6) is well defined. We shall be particularly interested in the

case when f = π : Z → X is a fibration and Λ = dϕ ⊂ T ∗Z is a horizontal

Lagrangian. In this case the trasversality hypothesis is the same as requiring that

dϕ and H∗Z = dπ∗(T ∗X) intersect transversally inside T ∗Z. Now we have an exact

sequence

0→ H∗Z → T ∗Z → V ∗Z → 0, where (B.7)

V ∗Z = T ∗z (π−1(x)), x = π(z) (B.8)
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denotes the cotangent space to the fiber through z. The section dϕ gives a section

dvϕ of V ∗Z via (B.7) and dϕ t H∗Z if an only if dvϕ intersects the zero section of

V ∗Z transversally. In this case

Cϕ = {z ∈ Z|dvϕ = 0} (B.9)

is a submanifold of Z. Moreover for each z ∈ Cϕ we have dϕ(z) = dπ∗η for a unique

η ∈ T ∗π(z)X and hence we have an embedding

λϕ : Cϕ ↪→ T ∗X, λϕ(z) = (π(z), η). (B.10)

We shall denote the image of this embedding λϕ by Λϕ ⊂ T ∗X. Each point z ∈ Cϕ is

a critical point of the restriction of ϕ to π−1(z). Let sgn](z) : Cϕ → Z be the function

where sgn](z) denotes the signature of the Hessian at z of ϕ|π−1(z). We may carry

over this function to Λϕ via

sgnϕ : Λϕ → Z, sgnϕ = sgn] ◦ λ−1
ϕ . (B.11)

To define oscillatory density we shall need the notion of a generating function for

an exact Lagrangian via the definition below.

Definition B.1.1. Let (Λ, ψ) be an exact Lagrangian submanifold of T ∗X. Let p =

(x, ξ) ⊂ T ∗X be a point on the Lagrangian and Ux an open neighbourhood of x. Let

Z
π→ Ux be a fibration whose fibers are identified with some open subset of Rd. We

say that the function ϕ : Z → R is a generating function for Λ with respect to the

fibration π if

i. dϕ t H∗Z and Λϕ gives an open neighbourhood of p in Λ

ii. ϕ = λ∗ϕψ on Cϕ.

Part (i) of the definition already implies that dϕ = d(λ∗ϕψ) and hence it is enough

to check (ii) at some point on Cϕ. Proposition 35 in [21] shows that one can find a gen-

erating function near any point of a given exact Lagrangian. Now given a generating

function ϕ : Z → R as in the above definition we define the class Ik(Ux,Λϕ, ϕ;Cl) of
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oscillatory densities to be the space of all Cl valued compactly supported 1
2
-densities

µ ∈ C∞c (Ux;Cl ⊗ |TUx|
1
2 ) which are of the form

µ = hk−d/2π∗(ae
iϕ
h τ). (B.12)

Here a = a(z, h) ∈ C∞c (Z × R;Cl), τ is a nowhere vanishing 1
2
-density on Z and π∗

denotes the pushforward of a 1
2
-density as defined in section 6.6 of [21]. The space of

oscillatory 1
2
-densities associated to a Lagrangian is now defined below.

Definition B.1.2. Let E → X be a complex vector bundle and (Λ, ψ) be an exact

Lagrangian in T ∗X. Let ϕi : Zi → R be a collection of generating functions for Λ,

with respect to fibrations πi : Zi → Ui, such that the Λϕi’s all cover Λ and each E|Ui
is trivial. The space Ik(X,Λ, ψ;E) consists of all smooth sections µ ∈ C∞(X;E ⊗

|TX| 12 ) such that for each ρ ∈ C∞c (X) we can write ρµ as a finite sum

ρµ =
N∑
i=1

µi with µi ∈ Ik(Ui,Λϕi , ϕi;Cl), (B.13)

modulo O(h∞).

In section 8.1 of [21] it is shown that the class of functions Ik(X,Λ, ψ;E) de-

fined above is independent of the choice of the generating functions ϕi. Oscillatory

densities form an algebra over the ring of semiclassical pseudodifferential operators

hk1Ψm
sl (X;E) ◦ Ik2(X,Λ, ψ;E) ⊂ Ik1+k2(X,Λ, ψ;E) (cf. chapter 8 in [21]). We shall

often drop parts of the notation Ik(X,Λ, ψ;E) when they are understood.

B.2 Maslov line bundle and the symbol map

Here we will define the symbol of an oscillatory density. First we shall need the

definition of the Maslov line bundle. Given an exact Lagrangian (Λ, ψ) we first cover

it with open sets of the form Λϕ corresponding to all generating functions ϕ for Λ.

The Maslov line bundle LMaslov → Λ over the Lagrangian is now defined via the

transition functions
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e
iπ
4

(sgnϕ−sgnϕ′ ) : Λϕ ∩ Λϕ′ → C. (B.14)

The intrinsic line bundle over Λ is defined as L = LMaslov ⊗ |TΛ| 12 . From section 8.3

of [21] we have a symbol map σk : Ik(X,Λ, ψ) → C∞(X;L). We may now extend

this symbol to a symbol map

σk : Ik(X,Λ, ψ;E)→ C∞(Λ;L⊗ π∗E), (B.15)

where π : T ∗X → X is the projection onto the cotangent fibers, via the isomorphism

Ik(X,Λ, ψ;E) = Ik(X,Λ, ψ) ⊗ C∞(X;E). This definition is now extended to all

oscillatory densities as in chapter 8 of [21]. This symbol is multiplicative in the sense

that

σk1+k2(Aµ) = σsl(A)|Λ.σk2(µ) for A ∈ hk1Ψm1
sl (X;E ⊗ |TX|

1
2 ), µ ∈ Ik2(X,Λ;E).

(B.16)

Here we have taken the operator A to act on E valued 1
2
-densities and we shall use

this convention for the rest of this appendix. The symbol fits into the short exact

sequence

0→ Ik+1(X,Λ)→ Ik(X,Λ)
σk→ C∞cf (Λ,L)→ 0, (B.17)

where we have now dropped E from the notation assuming it is understood. The

symbol also posesses a right inverse quantization Op : C∞cf (Λ,L)→ Ik(X,Λ, ψ) satis-

fying

σk(Op(s)) = s ∈ C∞cf (Λ,L) (B.18)

(cf. chapter 8 in [21]). Here the space C∞cf denotes the space of all smooth sections

compactly supported in the fibre directions
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C∞cf (Λ,L) = {s ∈ C∞(Λ,L)|supp(s) ∩ T ∗xX is compact for each x ∈ X}. (B.19)

B.3 Product with vanishing symbol

Here we describe another important part of the calculus that we shall need to con-

struct the wave expansion. Consider a operator A ∈ Ψm
sl with scalar semiclassical

symbol such that σsl(A)|Λ = 0. The multiplicativity of the symbol (B.16) gives that

for µ ∈ Ik(X,Λ) we have

σk(Aµ) = σsl(A)|Λ.σk(µ) = 0 (B.20)

and hence we have Aµ ∈ Ik+1(X,Λ). Now if µ′ is another element of Ik(X,Λ) with

σk(µ) = σk(µ
′), so that µ−µ′ ∈ Ik+1(X,Λ), then multiplicativity of the symbol again

implies A(µ−µ′) ∈ Ik+2(X,Λ). Hence σk+1(Aµ) = σk+1(Aµ′) depends only on σk(µ).

We have thus defined an operator

LA : C∞(Λ,L)→ C∞(Λ,L) (B.21)

satisfying

µ ∈ Ik(X,Λ), A ∈ Ψm
sl with σsl(A)|Λ = 0 =⇒ σk+1(Aµ) = LAσk(µ). (B.22)

We call LA the semiclassical transport operator and shall now describe it more closely.

Let f ∈ C∞(Λ) and σk(µ) = s. Pick B ∈ Ψ0
sl with scalar symbol such that σsl(B)|Λ =

f . We then have
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LA(fs) = LA(σk(Bµ)) (B.23)

= σk+1(ABµ) (B.24)

= σk+1(BAµ) + σk+1([A,B]µ) (B.25)

= fLAs+ σsl([A,B])|Λ.σk(µ) (B.26)

= fLAs+
1

i
{σsl(A), σsl(B)}|Λs. (B.27)

However since σ(A)|Λ = 0 we have that the Hamilton vector field Ha of σsl(A) is

tangent to Λ. Hence

LA(fs) = fLAs+
1

i
(Haf)s. (B.28)

Now if we fix a connection ∇ on L ⊗ π∗E, (B.28) along with the Leibniz rule for ∇

implies

(
LA −

1

i
∇Ha

)
(fs) = f

(
LA −

1

i
∇Ha

)
s. (B.29)

Hence
(
LA − 1

i
∇Ha

)
represents multiplication by a function

(
LA −

1

i
∇Ha

)
s = σsub(A,∇)s (B.30)

which we call the sub-principal symbol of A. Finally, we have that the transport

operator can be written as

LA =
1

i
∇Ha + σsub(A,∇). (B.31)

B.4 The wave kernel

We are now ready to describe the kernel of the wave operator and show that it is an

oscillatory density. We first construct the corresponding exact Lagrangian below.
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Proposition B.4.1. For each p ∈ C∞(T ∗X), the embedding iΛ : T ∗X×R ↪→ T ∗X×

T ∗X × T ∗R

iΛ(x, ξ, t) =
(
(x,−ξ), etHp(x, ξ), t,−p(x, ξ)

)
(B.32)

gives an exact Lagrangian with phase function ψ ∈ C∞(T ∗X × R) given by

ψ =

∫ t

0

(
esHp

)∗
(iHpα)ds− tp. (B.33)

Proof. The tautological one form on T ∗X × T ∗X × T ∗R is α̃ = π∗1α+ π∗2α+ τdt. We

can compute

i∗Λπ
∗
1α = −α, (B.34)

i∗Λπ
∗
2α =

(
etHp

)∗
α +

(
etHp

)∗
(iHpα)dt, (B.35)

i∗Λ(τdt) = −pdt (B.36)

and hence

i∗Λα̃ = −α +
(
etHp

)∗
α +

(
etHp

)∗
(iHpα)dt− pdt. (B.37)

Next we compute the differential of the phase function to be

dψ =

∫ t

0

(
esHp

)∗
(diHpα)ds+

(
etHp

)∗
(iHpα)dt− tdp− pdt (B.38)

= −
∫ t

0

(
esHp

)∗
(iHpdα)ds+

∫ t

0

(
esHp

)∗
(LHpα)ds+

(
etHp

)∗
(iHpα)dt

−tdp− pdt (B.39)

= tdp+

∫ t

0

(
esHp

)∗
(LHpα)ds+

(
etHp

)∗
(iHpα)dt− tdp− pdt (B.40)

=

∫ t

0

(
esHp

)∗
(LHpα)ds+

(
etHp

)∗
(iHpα)dt− pdt (B.41)

= −α +
(
etHp

)∗
α +

(
etHp

)∗
(iHpα)dt− pdt. (B.42)
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Hence (B.37) and (B.42) imply that i∗Λα̃ = dψ and thus Λ is an exact Lagrangian

with phase function ψ.

The next proposition now describes the wave kernel.

Proposition B.4.2. Let Ph ∈ Ψm
sl (X;E ⊗ |TX| 12 ) be elliptic and self-adjoint with

scalar semiclassical symbol p(x, ξ). Let f ∈ C∞c (R) be any compactly supported func-

tion. The kernel of the operator f(P )e−
itP
h lies in I−

n
2 (X ×X ×R,Λ, ψ; π∗1E ⊗ π∗2E)

where (Λ, ψ) is the exact Lagrangian given by proposition (B.4.1).

Proof. Begin with the expansion given by proposition (A.5.5)

f(Ph) ∼ h−nP0 + h−n+1P1 + . . . (B.43)

where each Pi = Op(pi). Let supp(f) ⊂ [−C,C] and K ⊂ T ∗X be a compact subset

of cotangent space such that the elliptic symbol

σsl(Ph)(x, ξ) > C for (x, ξ) ∈ T ∗X\K. (B.44)

Following the proof of proposition (A.5.5) we may assume supp(pi) ∈ K for each i.

Now we pick s0 ∈ C∞(Λ,L) such that

−1

i
∇∂ts0 +

1

i
∇Hps0 + σsub(P̃ )s0 = 0, s0|t=0 = p0. (B.45)

Here P̃ = −ih∂t + P and ∇ is a fixed connection on L⊗ π∗E with respect to which

the sub-principal symbol in (B.45) is computed. Since p0 is compactly supported,

s0 ∈ C∞cf and can be quantized to µ0 = Op(s0) ∈ I−n2 . By construction the symbol

σsl(P̃ ) = σsl(−ih∂t + P ) = τ + p vanishes on Λ. Hence by (B.22), (B.31) and (B.45)

we have

σ−n
2

+1(P̃ µ0) = 0 (B.46)

and P̃ µ0 ∈ I−
n
2

+2. Similarly we choose s1 ∈ C∞cf (Λ,L) such that
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−1

i
∇∂ts1 +

1

i
∇Hps1 + σsub(P̃ )s1 = −σ−n

2
+2(P̃ µ0), s1|t=0 = p1 (B.47)

and set µ1 = Op(s1) ∈ I−n2 +1. Again we may compute

σ−n
2

+2(P̃ (µ0 + µ1)) = 0 (B.48)

and hence P̃ (µ0 + µ1) ∈ I−n2 +3. By induction we construct si ∈ C∞cf (Λ,L) such that

si|t=0 = pi and µi = Op(si) ∈ I−
n
2

+2 satisfy P̃ (µ0 + . . . + µi) ∈ I−
n
2

+i+2, ∀i. Next we

choose, as in chapter 2 of [13], µ ∈ I−n2 such that

µ ∼
∑
j≥0

µj or µ−
N∑
j=0

µj ∈ IN+1−n
2 ∀N. (B.49)

If we let k(x, y, t) denote the kernel of f(P )e
itP
h , we then have

(−ih∂t + P )(µ− k) = P̃ µ = r ∈ I∞. (B.50)

The initial conditions si|t=0 = pi and (B.43) imply that

(µ− k)|t=0 = O(h∞). (B.51)

Finally (B.50) and (B.51) imply via Duhamel’s principle that µ − k = O(h∞) and

hence k ∈ I−n2 .

We shall use the result above to derive trace expansions. For this purpose we shall

require explicit generating functions for the Lagrangian in the above proposition near

time t = 0. The result below will be useful in this regard and appears as proposition

(IV-14) in [36].

Proposition B.4.3. Given p(x, ξ) ∈ Sm(Rn
x × Rn

ξ ), there exists T > 0 sufficiently

small such that the Hamilton-Jacobi equation
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∂tS + p(x, ∂xS) = 0 (B.52)

S|t=0 = x.ξ (B.53)

admits a unique solution S ∈ C∞([−T, T ]× Rn
x × Rn

ξ ). Moreover S satisfies

(x, ∂xS) = etHp(∂ξS, ξ). (B.54)

Proof. Define the Hamiltonian trajectory

(x(t), ξ(t)) = etHp(x0, ξ). (B.55)

Clearly x(0) is the identity and hence x(t) is a diffeomorphism for t < T sufficiently

small. Define S via

S(x(t), t) = x(0).ξ +

∫ t

0

{ẋ(τ)ξ(τ)− p(x(τ), ξ(τ))}dτ. (B.56)

Now let (xs(t), ξs(t)) be another Hamiltonian trajectory with initial condition (xs(0), ξ)

chosen such that xs(t) = x(t)+sα. We may then compute the variation ∂
∂s
S(xs(t))|s=0

in two ways to get

α.Sx(x(t), t) =
∂xs(0)

∂s
.ξ − ∂xs(0)

∂s
.ξ + α.ξ(t). (B.57)

Hence we get

Sx(x(t), t) = ξ(t) (B.58)

which proves (B.54). Next differentiate (B.56) with respect to t to get

∂tS + ẋSx = ẋξ(t)− p(x(t), ξ(t)), (B.59)

which combined with (B.58) gives (B.52).
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