SPECTRUM AND ABNORMALS IN SUB-RIEMANNIAN GEOMETRY:
THE 4D QUASI-CONTACT CASE

NIKHIL SAVALE

ABSTRACT. We prove several relations between spectrum and dynamics including wave trace
expansion, sharp /improved Weyl laws, propagation of singularities and quantum ergodicity for
the sub-Riemannian (sR) Laplacian in the four dimensional quasi-contact case. A key role in all
results is played by the presence of abnormal geodesics and represents the first such appearance
of these in sub-Riemannian spectral geometry.
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1. INTRODUCTION

Sub-Riemannian (sR) geometry is the study of metric subbundles (£ C T'X, ¢”) inside the
tangent bundle of a manifold X that are bracket generating; we refer to [I], [4, [40] for some text-
book references on the subject. The geometric/dynamical significance of the bracket-generating
hypothesis is via the theorem of Chow-Rashevky on connectivity of points by horizontal curves.
With the metric assigning lengths to horizontal curves, the manifold acquires a natural met-
ric space structure. A geodesic is a horizontal length minimizing path. A peculiar feature of
sub-Riemannian geometry, unlike Riemannian geometry, is that there are geodesics which do
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SPECTRUM AND ABNORMALS 2

not satisfy any variational equation or equivalently are not projections of the corresponding
Hamiltonian flow [6, Ch. 1], [39]; these geodesics are abnormal.

The choice of an auxiliary density px allows for the definition of a sub-Riemannian Laplacian
on the manifold which in general is not an elliptic operator. The analytic significance of
the bracket-generating hypothesis is then via the classical theorem of Hérmander [24] saying
that the sub-Riemannian Laplacian is hypoelliptic and as such has a discrete spectrum of real
eigenvalues. Classical Riemannian results on spectral asymptotics where geodesic flow plays
a role such as Weyl’s law [3], 25, 82 B8], wave trace trace formulas [I1], 13| 19], propagation
of singularities [20] and quantum ergodicity [I4, 48| [49] remain largely unexplored in sub-
Riemannian geometry. It is in particular an interesting question whether abnormal geodesics
would play a role in sR spectral geometry. The purpose of this article is to positively answer
this question in one of the simplest cases where abnormals exist, namely the four dimensional
quasi-contact case.

Let us now state our results more precisely. Let X* be a smooth, compact oriented four
dimensional manifold. A nowhere vanishing one form a € Q! (X) is called quasi-contact if the
restriction rk da|, = 2 is of maximal rank, where £ := kera C T'X. The three dimensional
distribution E = kera C T'X can be shown to be bracket generating and we equip it with a
metric g¥. The characteristic line field is defined via L¥ = ker (a A da) C E and can be seen to
only depend on F = kera. It carries a natural orientation, induced from that of X, and hence
a positively oriented unit section Z € C*° (LE) The set of integral curves of L%, also called
characteristics, contains the abnormal geodesics in this case.

Given an auxiliary volume form p on X, the sR Laplacian acting on function is defined via

(1.1) N <VQE>: V9" 0% (X) = O™ (X)

where V9" : 0 (X) = C® (X E), <V9Ef,e> =e(f), Ve € E, is the sR gradient and the
adjoint (1.1)) above is taken with respect to the natural L*-inner products coming from p. The
Laplacian 1) is not elliptic with characteristic variety © C T X, = {0 (A,z,) =0} = R d]
being given by the graph of the one form a. However being self-adjoint of Hérmander type, there
is a complete orthonormal basis of {gpj};io for L? (X, i) consisting of (real-valued) eigenvectors
for " AgEvlLSOj = )\j(;pja 0 S )\0 S /\1 S

Our first result on spectral asymptotics is then the following sharp Weyl law for the counting
function IV (A) of the number of eigenvalues of the sR Laplacian Az , of size at most A. Below
HPopp, VPopp = ﬁupopp and aye denote the unnormalized, normalized Popp volume and

x HPopp

Popp one form respectively (see Section [2.1)).

Theorem 1. The Weyl counting function N (X) for the sR Laplacian A e,
contact case satisfies the sharp asymptotics

1
= /X fipopp + O (3?)

Assuming the union of closed integrals curves of L¥ to be of measure zero, one further has

1
= E)\5/2 /X K Popp +o ()\2) .

By a usual Tauberian argument, the sharp Weyl law (1.2]) above is proved using small time

asymptotics of the wave trace. Below we denote by T% ... the length of the shortest closed

integral curve of LZ. The (signed) lengths of normal closed geodesics are by definition the

u in the 4D quasi-

(1.2) N (\)

(1.3) N ()
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periods of closed integral curves for the Hamilton flow of o (AgE#)l/ ? away from Y. We denote
the set of such by £ ormal-

Theorem 2. The singular support of the wave trace satisfies
(1.4) sing spt (tr eV AQE»N) C {0} U (=00, =T normat] YU [T ismormats ) U Lrormal.

Furthermore, the singularity at zero is described by the small time asymptotics

N N
tr eV BoE = D cio (407 + ) e (t+i0) In (¢ +i0)
§=0 J=0
N
(15) + D et I (t+10) + O (V1)

§=0
VN €N, ast — 0, in the distributional sense with leading term cpop = % fX I Popp-

Note the presence of logarithmic terms in the wave trace expansion is unlike on a
Riemannian manifold. The singularities of the wave trace at (isolated) lengths of non-
degenerate normal geodesics in the interval (=75 - T# ' ) are described by the usual
Duistermaat-Guillemin trace formula. Beyond this interval there is a possible density of lengths
of Zorma inside (—oo, —Ta{%normal] U [T Zfmorml,oo) for albeit non-degenerate characteristics,
caused by closed Hamilton trajectories that approach the characteristic variety (see Prop. ,
making the description of these singularities less tractable.

The large time wave trace formula is in turn related to the propagation of singularities
for the corresponding wave equation. The classical theorem of [20] describes the propagation
of singularities for the half wave equation outside the characteristic variety . To describe the
propagation of singularities on ¥ we consider the blowup [T*X; Y] of the cotangent bundle
along the characteristic variety with corresponding blow-down map g : [T*X; Y] — T*X. This
is a manifold with boundary 0 [T*X;Y] = SNX being identified with the spherical normal
bundle of 3 which in turn carries an R action extending the one on its interior. The boundary
SNY is equipped with a natural homogeneous and f fiber preserving circle action, by rotation

of its symplectic directions, and corresponding generator Ry = d% (ew.p) ‘ g—o- 1N Section ﬂ we

shall define a homogeneous of degree zero section Z € C*° (T'SNY/R [Ro]) and a refined circle
invariant conic characteristic wave-front set WFEy (u) C SN associated to any distribution
u € C~°(X). These can be equivalently thought of as a homogeneous of degree zero vector
field on and conic subset of the quotient SNY/S! by the circle action. They project

(mof),ZelL”
B(WFs(u) =WF(u)NX

onto the characteristic line and intersection of the wavefront set of u with ¥ respectively. The
interval in (1.4) is furthermore related to the set of closed periods of the vector field Z (see

Prop. [13).

We now have the following propagation of singularities.

Theorem 3. For any u € C~°° (X)), the characteristic wavefront set satisfies
W Fy, <eit\/ AgE#‘u) = ¢? (W Fs, (u)].

Our final result is quantum ergodicity for the sR Laplacian. The line field L” is said to be
ergodic if any union of closed integral curves of L¥ is of zero or full measure. The ergodicity
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of the vector field Z is a stronger assumption implying the ergodicity of L¥. We now have the
following.

Theorem 4. Assume that 7 is ergodic or L¥ is ergodic and Lzppopy = 0. Then one has
quantum ergodicity for Aye ,: there exists a density one subsequence {ji},— o C No such that

(Bosei) = 5 [ Wy (2000 @) +5 (@~ @)

as ji, — oo, for each B € VY, (X)), with homogeneous principal symbol b = o (B) € C™ (T*X).
In particular, the eigenfunctions get uniformly distributed |g0jk|2u — Upgpp @S Ji — O0.

We note the role played by characteristics or integral curves of L% in all the results above.
Under the natural projection, these correspond to isotropic directions along 3 and thereafter
with abnormal geodesics via their microlocal characterization by Hsu [27]. Our results are
restricted to dimension four as they rely on a normal form that is less workable in higher
dimensions. Moreover, there is general lack of understanding of strictly abnormal geodesics in
sub-Riemannian geometry; it is for instance outstanding whether they are necessarily smooth
[40, Ch. 10|, |2 22] B1].

The leading term in the Weyl law Theorem [1| has been long known [35], 36l [37], the improve-
ment here is in the two remainders. The only previous work treating a sharp Weyl law based
on a wave trace expansion of a hypoelliptic operator is [34]. In the sub-Riemannian context
[34] however only specializes to the three dimensional contact case; therein the characteristic
variety » was assumed to be symplectic which is not the case here. There is one isotropic
direction along Y that projects onto L¥. A general result for propagation of singularities of
hypoelliptic operators exists in the literature [30]. Our result Theorem 3| based on the charac-
teristic wavefront set is a refinement of the aforementioned in the present context. Recently,
quantum ergodicity for the sub-Riemannian Laplacian was established in the three dimensional
contact case [I7] and as such was the first result on quantum ergodicity for a hypoelliptic oper-
ator. Our technique here while partly borrowing from [17] also overcomes significant additional
difficulties. In particular our proof of Theorem [4] requires the use of a more exotic second
microlocal pseudo-differential calculus near the characteristic variety. Finally unlike here there
are no abnormal geodesics in the three dimensional contact case.

The results here also tie in with the authors previous work [46] [47] wherein a trace formula was
proved for the semiclassical (magnetic) Dirac operator on a metric contact manifold involving
closed Reeb orbits; semiclassical analogs of quasi-contact characteristics of L. However there
are also significant differences; there firstly seems to be at present no general analog of the
Dirac operator, with good spectral properties, in sub-Riemannian geometry (see for example
[23, 28]). This forces us to work with the non-(pseudo)differential square root /A=, and
understand it in a more exotic pseudo-differential calculus. Secondly, the trace considered in
[47, 46] was microlocalized on an v/h scale near the characteristic variety, using the intrinsic
semiclassical parameter, cutting off the Hamilton trajectories away from it. This microlocalized
trace formula subsequently does not see the dense accumulation of the Hamilton periods ,
involves contributions only from the Reeb orbits and works in higher dimension.

The paper is organized as follows. In Section [2| we begin with some preliminaries on sub-
Riemannian geometry including certain specific features of the four dimensional quasi-contact
case in Section In Section [3| we develop the relevant second microlocal Hermite-Landau
calculus on Euclidean space necessary for the proofs. In Section Section |4 we derive normal
forms for the sR Laplacian. The normal form of is then used in Section Section 5] to
develop a global Hermite-Landau calculus on a quasi-contact manifold. The calculus is then
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used to prove the propagation theorem Theorem (3] in and construct a parametrix for the
wave operator in 5.4, The parametrix gives a proof of the Weyl laws in [I] via the wave trace
expansion Theorem [2] in Section Section [6] In the final Section [7] the calculus is used to prove
the quantum ergodicity Theorem [4]

2. SUB-RIEMANNIAN GEOMETRY

Sub-Riemannian (sR) geometry is the study of (metric-)distributions in smooth manifolds.
More precisely, a sub-Riemannian manifold is a triple (X "Bk CTX, gE) consisting of an n-
dimensional manifold X with and a metric subbundle (E,gE) of rank k inside its tangent
space. This sub-bundle is assumed to be bracket generating: sections of E generate all sections
of TX under the Lie bracket. The metric g” allows for the definition of a length function
[(y) = fol |7 dt on the space of horizontal paths of Sobolev regularity one

Qp (zo,21) = {y € H' ([0,1]; X) |7 (0) = o, v (1) = 21, ¥ (t) € By ace.}

connecting any two points xg, z; € X. This in turn defines the distance function between these
points via
(2.1) d¥ (zg,z1) = inf  1(v).
’YEQE(.Z(),wl)

The theorem of Chow-Rashevsky [40, Thm 1.6.2] gives the existence of a horizontal path con-
necting xg, 1. This shows that the distance function above is finite and defines a metric space
(X, d").

Using the bracket generating condition for F, the canonical flag may be defined

(2.2) Ey(z) CEi(z) C...CC By () =TX
—{0} —E

inductively via E; = E+ [E, E;_1], j > 2, as a flag of vector subspaces of T'X at any point
r € X . Here r(x) is the smallest number such that E, = TX and called the degree of
nonholonomy or step of the distribution £ at x. The dual canonical flag is then

(23) T"X = E() (SL’) DX (ZL‘) D...D E1“(36) (CI)),
=5 {0}

Y (2) = Ef =ker [T"X — E*], 1 < j < r(z). We further define the growth and weight
vectors at the point x € X via

E . E E E E
(2.4) KE ()= | KE, KE , KE LK
~— =~ ~— ~—
=0 =dim F; =dim E» =n
(2.5) w” (x)=1,...,1, 2,...2 ... Jo...f ..., T..T
—_—— N — —— ———
k{”: times kf—kf times kJE—kf_l times k{?—kle times

respectively. The distribution E is called regular at the point x € X if each k;jE is a locally
constant function near x. The distribution F is said to be equiregular if it is regular at all points
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of X, in which case each element E; of the canonical flag (2.2)) is a vector bundle. Finally we
set

r(@)
Q@) =35 (K (2) — kF, (@)

Y uf

whose significance is given by the Mitchell measure theorem [40), Theorem 2.8.3]: @ (z) is the
Hausdorff dimension of (X ,df ) at a regular point x € X.

A canonical volume form on X (analogous to the Riemannian volume) can be defined in the
equiregular case. To define this, first note that any surjection 7 : V' — W between two vector
spaces allows one to pushforward a metric ¢" on V to another 7,¢g" on W. This is simply the
metric on W induced via the identification W 2 (ker m)" C V, with the metric on (ker m)"
being the restriction of g¥ . Now for each j we define the linear surjection

B;: E¥ — E;/E;
Bj (61, . Gj) = adéladéQ Ce adéjfléj

with é; € C* (E) denoting local sections extending e; € E. The pushforward metrics are then
well defined on F;/E;_; and hence define canonical volume elements

(26) det g]E e N* (Ej/Ej—l)* .

The canonical isomorphism of determinant lines

(2.7) @ A*(E;/E;y) = A* (@ B/ Ej1> ~ATX

along with its dual isomorphism to now gives a canonical smooth volume form

(2.8) Upopp = ® det gf € A" (T*X)
j=1
known as the Popp volume form. We remark that although the definition makes sense in general
it only leads to a smooth form in the equiregular case.
In we shall need the important notion of a privileged coordinate system. To define this
let Uy, Us,...Ug be a locally defined set of orthonormal, generating vector fields near x € X.
The E-order of a function at the point x is defined via

k
ordg, (f) = max{s] (U UFf) (2) =0, Y (s1,...,8,) €N, Zsj = 5}.

j=1
Similarly the E—order of a differential operator P at the point x is defined via

ordg, (P) == max {s|ordg, (f) > s = ordg. (Pf) > s+ s'}.
It is clear from this definition that the defining vector fields U; each have E-order at least

—1. A coordinate system centered at x is said to be privileged if: the set —821,—822, ce azaE
k=
J

forms a basis of E; () for each j and furthermore each x; has E-order w! (x) at z. The

order of the coordinate vector field % is then easily computed to be —wf (). There exists
J

a privileged coordinate system at centered at each point of X (see [4] pg. 30). Next define
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the privileged coordinate dilation J. : R" — R™ Ve > 0, using the weight vector (2.5) via
Oe (1, ... xy) = (e™xy,...,e"x,). A differential operator P is said to be homogeneous of
E-order s if (6.), P = ¢°P. We may now Taylor expand each defining vector field in terms of
homogeneous degrees

(2.9) (6.),U; =0+ 00 e + ..

, where each U;s) is an e-independent vector field with polynomial coefficients. The nilpo-

tentization (X,E,§E>of the sR structure at z € X is now defined via X = R™, E =

. . . k
R [Ul(fl), cee U,gfl)} and where the metric §* makes {U;il)} orthonormal. For any smooth
j=1
volume form g on X, one may similarly define its nilpotentization i = po at x as the leading

order part in its expansion under the privileged coordinate dilation
(2.10) 6rp =) [po +epn + %pa + ...

The nilpotentizations of the sR structure and the volume can be shown to be independent of
the choice of privileged coordinates upto sR isometry ([4] Ch. 5).

At a regular point, an invariant definition of the nilpotentizations maybe given. First the sR
structure defines a nilpotent Lie algebra at z via

(211) 9z = <E1>:p b (EQ/El)x ©...0 (Er/Erfl)z

with the Lie bracket of vector fields inducing an anti-linear map [.,.] : g, ® g. — g.- The
algebra is clearly graded with its jth graded component (g.); == (E;/E;-1), and the bracket

preserving the grading [(gx)Z , (gx)]} C (gx)iﬂ.. Associated to the nilpotent Lie algebra g is
a unique simply connected Lie group G with the exponential map giving a diffeomorphism
exp : g — G. We define the nilpotentization of the sR structure (X, E, QE) at z tobe X =G

with the metric distribution E, ¥ obtained via left translation. Given any volume form p
on X, the canonical identification A"g, = A" [(E1), @ (E2/Ey), @ ... @ (E,/E,_1),] = A"T, X
allows for a definition of the nilpotentization ji of the volume form p on X.

Sub-Riemannian geometry may be viewed as a limit of Riemannian geometry. Namely, choose
a metric complement (F, gF) for the sR distribution satisfying £ & F' = T X . This gives a one
parameter family of Riemannian metrics

1
(2.12) 9 =g"a EgF

which converge g/* — g% as ¢ — 0. We call the above a family of Riemannian metrics
extending /taming g®. The corresponding Riemannian distance then converges d¢(xg,z1) —

d¥ (z¢,21) to the sR distance (2.1) for any zo,z; € X as € — 0 (see for eg. |33, Prop. 4]).

2.0.1. sR Laplacian. We now define the sub-Riemannian Laplacian and state some of its first
properties. First given any function f € C* (X), define its sR gradient V4" f € C* (E) by the
equation

(2.13) e <ng f,e> =c(f), VeeC™(E).

Fixing an arbitrary volume form p defines the natural L?- inner products on C* (X) and
C* (X; F) giving the adjoint (Vg); to the gradient depending on u. The sR Laplacian is now
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given by

(2.14) Ags, = (ng)’; o VI L 0% (X) = O (X).

In terms of a local frame Uy, ..., U, for E, the above maybe written
(2.15) Agef = —Us [¢%9U; ()] + g5U; (1) ((VQE)Z Ui)

where g7 = ¢” (U;,U;) and g®" is the inverse metric. If the frame is orthonormal the formula
simplifies to

(2.16) Ags f = zk; {—Uf () +U;(f) ((ng>* Uj)] .

°w

To remark on how the choice of the auxiliary form pu affects the Laplacian, let u/ = hu denote
another non-vanishing volume form where h is a positive smooth function on X. From the

definition (2.14)) it now follows easily that one has the relation
Ajp = h_lAgE“uh +ht (AgE“uh) .

Thus the two corresponding Laplacians are conjugate modulo a zeroth-order term. The sR
Laplacian A, is self adjoint with respect to the obvious inner product (f,g) = fX fgu. The
principal symbol of Age , is easily computed to be the Hamiltonian

g%,

(2.17) o (AgE,u) (2,6) = H” (2,€) = |£’E|2
using the dual metric while its sub-principal symbol is zero. The characteristic variety
(2.18) Y={o(Ap,) =0} =FE"={{eT"X|((v) =0,Vv € E}

is the annihilator.

From the local expression the sR Laplacian is seen to be a sum of squares operator
of Hormander type [24] and is thus hypoelliptic. Further it satisfies the following optimal
sub-elliptic estimate [43)

(2.19) 1 f | sz < C [||Age f | e + 11f]

where 7 = sup,cx 7 (2) is the maximal degree of non-holonomy. It now follows that Az , has
a compact resolvent and thus there is a complete orthonormal basis of {%'};io for L? (X, )
consisting of (real-valued) eigenvectors Aye ,0; = Ajp;, 0 < Ag < A <Ll

For each p € ¥ on the characteristic variety, the fundamental matrix F, € End (T,M),
M :=T*X, is defined via

o], VfEC®(X),VseR,

E

w(., ) =V(,.),
where V2o denotes the Hessian of the symbol (2.17) and w the symplectic form on 7*X. The

fundamental matrix clearly satisfies w (., F},.) = —w (F}.,.) and we denote by Spec™ (iF}) the
set of real and positive eigenvalues of ¢F},. Under the condition that

(2.20) tr'F, = Z >0
u€Spect (iFy)

the sR Laplacian A
derivative [26]

(2.21) In

, 1s known to satisfy the better sub-elliptic estimate with loss of one

e S C [HAQE:HJC}
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In (5.33) we shall prove a further refined subelliptic estimate for A s, in the particular 4D
quasi-contact case of our interest.
As a first property for the sR Laplacian we prove the finite propagation speed for its half-wave

equation.

M

Theorem 5. (Finite propagation speed) Let u(x;t) be the unique solution to the initial value
problem

(300 + /Bge ) u=0
(2.22) u(x,0) =uy € C7(X).
Then the solution satisfies
spt u(z;t) C {y|3z € sptug; d” (z,y) < |t|}.

Proof. The result maybe restated in terms of the Schwartz kernel K; = [eit AgE’#] of the
I

half-wave operator
spt Ky C {(2,y) [d” (z,y) < [t[}.

We choose a family of metrics g7* (2.12) extending ¢”. The Riemannian Laplacian Agrx,
(still coupled to the form p) is written

m

AQETX,M = Ayp, +eAgr

where Agr , is the sR Laplacian on the complementary distribution F'. The min-max principle

TX

A A
for eigenvalues implies the L? convergence H[o,gf} o H[Of’g’“of the corresponding spectral

projectors onto the interval [0, L], VL > 0. It now follows that K — K, weakly as ¢ — 0 with
Kf = [ethAg?x ’ﬂ] . Knowing that d¥ is the limit of the Riemannian distance function for

nw
gI¥%, the theorem now follows from the finite propagation speed of Agrx . O
2.1. Quasi-contact case. We now describe some sR geometric features in the particular four
dimensional quasi-contact case of our interest. We now let X be a smooth, compact oriented
four dimensional manifold. A nowhere vanishing one form a € Q' (X) is called quasi-contact,
sometimes referred to as even-contact, if the restriction rk da|, = 2, E = ker a C T'X, is of
maximal rank. The kernel L¥ := ker (a A da) C E is then seen to be one dimensional defining
the characteristic line field which furthermore only depends on E = kera. Let (LE)L cC Fk
denote the two dimensional orthogonal complement of the characteristic line on which the re-
striction da]( LBy is non-degenerate by definition. In particular the bundle (LE)L is orientable.

A canonical Popp one form a s (well-defined up to a sign) defining £ = ker (a,z) may now be
given by requiring that

(2.23) dage | ;51 = vol <9E|(LE)L>

agree with the metric volume form of g% ‘ (LEY* corresponding to some choice of orientation for

LE)
(LE)L. It is now easy to check that the distributions

(L5)y = (%) + [(L5)", (25)]

(LE)J_,dagE — {U c TX‘dagE (fU’ e) = 0, Ve € (LE)J_}
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are three and two dimensional respectively and both transverse to E. Thus their intersection
is one-dimensional and transverse to E. We now define the quasi-contact Reeb vector field
R € C*™ (TX) to be the unique vector field satisfying R € (LE)2L N (LF) Hdegn igage=1 (cf.
[10], |7, Sec. 10.1]). Note again that the orientation of R depends on the choice of sign for
ay,e. However the orientation of (LE)L ® R [R] defined by a,e A days is clearly independent of

the choice of sign. Furthermore, given that L¥ is transverse to (LE)L @ R [R], the orientation
defined by a,e A daye combines with the p-orientation of manifold to define an orientation of
L¥. This defines the unique positively oriented vector field Z € C> (L¥) such that |Z] = 1. We
note that ergodicity of L¥ is equivalent to the ergodicity of the vector field Z. Let Z* € Q! (X)
denote the one form which satisfies Z*(Z) = 1 and annihilates (LE)L @ R[R]. The Popp
volume form in the quasi-contact case is now seen to be

(2.24) HPopp = AN age N\ dagE

and we may also define the normalized Popp volume vpgp, == ﬁ,upopp, P (X) = [ ppopp- One
now has the relations

LZCLgE = —dagE (R, Z) QgE

(225) LZMPOpp = —dagE (R, Z) HPopp-

In particular the Z-flow preserves £ = ker (agE).
The characteristic line L” is said to be volume preserving if there exists a smooth volume on
X that is invariant under some non-vanishing section of L¥; the existence does not depend on

the choice of the section. In particular there exists a Z-invariant volume Lz | pzppopp | = 0 for
——

=pHz
some positive function pz which would in turn satisfy a similar equation Lypz = daye (R, Z) pz;

thus further giving Lz | pza,e | = 0. It now follows that the volume preserving condition is
———

=i p
equivalent to the existence of a defining one form a = a = for E with aAda closed. Furthermore
it is also known to be equivalent to the existence of a defining one form a for £ with rk da = 2
being constant [29, Lemma 2.3] or the existence of a vector field transverse to and preserving £
[42, Prop. 2.1]. We note however that the volume preserving condition on L¥ is quite restrictive
and often violated (see Example |10 below).

Next, let Y3 C X, TY t L” be a locally defined transverse hypersurface near a point
r € X. The restriction of the one form a e to Y is then a contact form and one has Darboux
coordinates (zq,x2,23) on Y such that agE|Y = %[dl’g + x1dxy — x9dx1]. One now translates
these coordinates by the flow of Z to obtain local coordinates (xg, z1, x2, x3) near the point x.
Defining the positive function p := exp { [, da,e (R, Z)}, satisfying Zp = 0,,p = daye (R, Z) p,
one now computes Lz (ﬁagE) = 0 giving

1
(226) ﬁagE = 5 [dl’g + xldl'g — xgdl’ﬂ

(2.27) 7 = 0y,

[tpopp = 3P 2dz and Y = {zy = 0} locally.
The characteristic variety ¥ C T*X of the Laplacian ¥ = E+ = R|a] is clearly the graph
of a defining one form by (2.18) in this case. A homogeneous function of degree one on the
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characteristic variety is then defined via
p:2—R
(2.28) p (Jc, SQy5 (x)) =3, Vs€eR,

and equals the restriction of the symbol of the Reeb vector field p = o (R)|g. With XY €
(LE)L, daye (X,Y) =1, being a positively oriented orthonormal basis, the relations

{o(X),0 ()} = o ([X,Y])ly = page ([X,Y]) = p
{g (X) 7U(Z)}|E = 0([X7 Z])|E = page ([X7 Z]) =0
(2.29) {o(Y),0(2)}y = o([Y, Z)|s = page ([Y, Z]) =0

as well as (2.16) show that p = tr™ F}, is identifiable with (2.20) via the fundamental matrix in
this case. This is seen to satisfy the equation

(2.30) Hoz)ply, = {0 (Z) 0 (R)}|y = o ([Z, Rl)|g = page ([Z, R]) = pdaye (R, Z)

along the isotropic directions of ¥. From the above computations the following conditions are
seen to be equivalent

(2.31) dage (R, Z) =0, Lzage =0, Lzpipopy = 0, Hyz)pls, = 0.

The Popp volume form pulls back under the natural projection to a four form on ¥ which we
denote by the same notation pipopp. It further defines a volume form on ¥ via H1§0pp = dp/\ lpopp-
The Hessian of the symbol V2?0 gives a non-degenerate, positive-definite quadratic form on the
normal bundle N3 := TM/TY, M = T*X, over the characteristic variety. Under the canonical
isomorphism of determinant lines A*T*M = (A*T*Y) @ (A*N*X), the lift of the Popp volume
is the unique volume satisfying jw! = up,,, A det (Vo) (cf. [35, 36]).

Next we define the spherical normal bundle SNY. ©% 3 SNY. = {v € NX|V20 (v,v) = 1}.
Let T3* C TM be the symplectic complement of TY. The image N;¥ of T>* — TM —
TM/TY. = NX is two dimensional and equipped with an induced symplectic form wy. The
bundle N;Y has a one dimensional V2o- orthocomplement No3X C NY . This defines (the
absolute value of) a homogeneous of degree zero function =y € C* (SNX) satisfying

(2.32) 1| = ||maes (0)]], Vo€ SN,

with respect to the orthogonal projection/decomposition NX = NgX @ NiX. A sign for this
function will be defined shortly. An endomorphism J of N, is defined via V20 (., J.) = wy (., .).
This defines a circle action on N;X via ¢?.vy = (cos®) vy + (sin ) %’UO and subsequently one
on SNY which fixes NyX. We denote by Ry = 9y € C (I'SNX) the generating vector field
satisfying (m o ), Ry = 0 € TX. The quotient (SNX) /S' is an interval [~1, 1] bundle over

Y. The vertical fiber measure py = (1 — Z3) d=, again allows to lift the Popp volume via

(2.33) Hiopp = HV A T5/tbopy.

which may equivalently be thought of as a rotationally invariant volume on the spherical normal
bundle SN¥ satisfying

= S
(2.34) LpoZ0 =0, Lpyipen = 0.
The blow-up of the cotangent space along the characteristic variety

(2.35) (M;Y] == (M \ $) 11 SNS
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and the corresponding blow-down map

g:[M;¥] - M
) pe(M\X)
(2:36) Alp) = {7?5 () peSNS.

may now be defined. The blowup has the structure of a smooth manifold with boundary;
its interior is [M;X]° = (M \ X) while the boundary 0 [M;X] = SNYX is identified with the
spherical normal bundle. The boundary defining function is the square root of the symbol
o'/2 (or its pullback to the blowup). There is a natural action of R, on the blowup with the
quotient [M; Y] /R = [S*X; S*Y] canonically identified with the corresponding blowup of the
cospheres S*X = T*X /R, S*¥ := ¥ /R, . The cosphere of the characteristic variety

S =Y/R, ={p==£1} = i(; U i(;/ cX
={(zae@)}  ={(:-a,2()}

is identifiable with two copies of the manifold given a choice of sign for the Popp form a e and
thus carries the lift of the Popp volume jipop,. The spherical normal bundle carries a similar
R -action and we denote the quotient by SNS*Y := SNYX/R,. The S' action on SNY is
homogeneous of degree zero and one may form the double quotient SN S*3/S! as an [—1, 1]
bundle over X. In similar vein as this now carries a lift of the Popp measure

Zo

(2.37) ,ugéi,sz = v A\ TgHpopp
which is again equivalently thought of as a rotationally invariant volume on the spherical normal
bundle SNS*Y. We also define the normalized versions Vpopp, Vpays - Of [popp: Hpgws — With
total volume one.

In [4.1], Section [5| we shall show the existence of smooth function €2, invariantly defined using
the sR structure on a neighborhood of the characteristic variety 3, whose Hamilton vector field
restricts

(2.38) Holgyy, = Ro

to the rotational derivative Ry. The Hamilton vector field H_ .2 of the square root symbol
o2 =0 (AgE’#)l/z is well-defined on the complement [M;X]° = (M \ X) of the characteristic
variety and hence on the interior of the blowup. Its singularity near the boundary is then
captured by the rotational vector field Ry. In particular, the following will be proved in

Proposition 6. The Hamilton vector field H, .2 has a singular expansion

o (R) 5
(2.39) Ha1/2 = WHQ—FZ—FO(D
near the boundary of the blowup [M;X]. Here Z e ™ (T'S*NX) projects
(2.40) (mrof),Z e Lf CTX,

with

(mof3), Z‘ = |Zo|, onto the characteristic line with the lift of the Popp volume ([2.37
preserved under the flow of [ZA} € C® (T (S*NX/SY)) = C> (T'S*NX/R [Ry))

(241) L[ZA]M‘IS’DZO\;?)*E = O

We note that the above (2.40)) also defines a signed version of (2.32)) via =y = <Z, (mop), Z>
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3. HERMITE CALCULUS

In this section we define the requisite Hermite-Landau calculus. We begin with the definition
of the Hermite transform.

3.1. Hermite transform. Below we denote by (zg,2, %9, 23) the coordinates on R? and
abbreviate x = (g, 22,23). Let (T*RY), = {(z,{) € T*R"& > 0} and let (éo,él,£2> =
(55150,53_151,53_1&) to be the homogeneous variables on this cone. It shall also be useful
to define the homogeneous variables

. 1 -
Ty = X3+ 53:151

Q=& (x% + éf) satisfying
(3.1) {23,Q} =0.

Set hy (u) = e [—0, 4+ u]" e 2" to be the kth Hermite function and set hy, (z1,&3) =

(2%k!)
&3] Iy, (y§3|1/2x1); k € Ny. The Hermite operators Hy : S, (R3) — S’ (R?), Hj : S.(RY) —

S’ (Rg) are then defined
(3.2) (Hyu) (z) = (27T>_1/6m3£3hk (1, 83) (Fasu) (§3) dS3

(3:3) (Hiw) (@) = () [ 5 (0, 6) (Fayu) (€) doady
where F,, (&) == [ e 3%y (z3) drs denotes the partial Fourier transform in the x3 variable.
The above clearly maps L? (R3), L* (R2) into each other and as such are adjoints satisfying
It is then an easy exercise to show

WF (Hyu) = {(0,2;0,8) | (:€) € WF (u)}

WF (Hyv) = {(2:€) | (0,2;0,§) € WF (v)}
Vu € S, (R3), v eS.(R)) and k € Ny. In particular distributions in S, (R?) micro-supported

in {& > ¢ @} C T*R? are mapped into those micro-supported in {& > c|¢|} € T*R* under
Hy, for each ¢ > 0 and vice versa under H};. As acting on such one now has the identities

(=& + a1&] Hy = Hya [2(k + 1) 53]1/2

(€1 + @165] He = Hyy [2k€5)"2,
QOH, = Hy (2k +1)
(3.5) r3Hy = Hyws
(cf. |9] Sec. 6). In particular

W
(3.6) a (5’50@27 a5 &0, &a, &35 7% + 5%) Hy, = Hya (2,66 (2k + 1))W

for any a € S™(T*R%) of the given form. The image of each Hj thus corresponds to an
eigenspace of 2 by (3.5)) and is referred to as a Landau level.
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The Hermate transform is now defined
H*: 8. (R;) — S (R3;C™);
(3.7) (H*u), = Hju
as the map from S, (R}) into S’ (R3)-valued No-sequences.
Next, set h* := {u: Ng — C||ju, = > (k) Ju (K)|* < 0o} C C™o with the special notation

1> =h°. As just noted H maps L2 (R2) into L? (R2;1%). More gencrally, we define Vsy, s, € R
the anisotropic Sobolev space

1/2
Q552 — []52 (]R;, hsl) =< u:Ny— H*2 (Rz) | ||u||51782 = <Z <k;>231 ||u(k:)||§{32> < 00

keNy

For sy, s9 € N, it follows from (3.5) that the Hermite transform H is a isomorphism between
h152 and the space
(3.8)

@ B 52 A
Hov = {u €8 (R)] (&) (67%6) (97 aeL? (RY), Vil + 8] < 231} cS'(R)).
3.2. Symbol classes. In this subsection we define classes of pseudo-differential operators on

R* using the Hermite transform (3.7).
First for each 91,05 > 0 define the conic subsets

Ks, 5, = {53 > 0; ’ <§2,$0,$2,i3>’ < 4y, (éo,fl,%)‘ < 52} C T*R*
(3.9) Yo ={(z,€) € Kj,5,|¢0 = 71 = &, = 0} C K;, 5, C TR

containing the point (0,0,0,0;0,0,0,1) € T*R*. The corresponding spherical bundles for the
cones above are S*Ks 5, = {(2,€) € Ky, 5, 1] =1}, S*80 = {(x,€) € ¥o| |§] = 1}. Letting
p (xo,xﬂg;ég,fg) = &3P (xo,ngg;ég) € C* (%), be a positive homogeneous function of de-

gree one on the sub-cone Xy set

(3.10) dy (2,€) = &ad, = /& + pQ

as a defining function for the respective sub-cone {d, = 0} = Xy C Kj, 5, and subset {d, = 0} =
S*Sy C S*Kjs, 5, above. It is further mapped to dj, = /& + p(2k + 1) under the Hermite
transform H} for each k € Ny. The blowup along these sub-cones and corresponding blowdown
map are defined via

(g0 So] 1= { (2,) € Ks,5,1d, > 1}
B 1 [Ks, 605 X0) = K, .60

A

d,—1

(3-11) B (331750751;370,372,91?3752753) = ( <$1750751) ;3507372,373,52,§3> .

p

The blowup [Kj, 5,; 20| is a manifold with boundary

a[K51,52;20] = {(I7§) € K51,(52a Czp - 1}
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and interior [Kj, 5,5 %0]” = {(x,{) € Ky, 4,, d, > 1}. The boundary defining function is the

pullback

(3.12) Brd,=d,—1

of under the blowdown. A similar blowup [S* K3, s5,; S*Xo] with interior [S* K, s5,5.5%0]°

and corresponding blowdown map to S* Ky, 5, may also be defined. Let C* ([Kjs, 5,5 %0]°) , C ([S* K5, 5,3 S*

C™ ([K5,.005 20]) s C ([S*Ks, 5,5 5*%0]) denote smooth functions on the interior and those ex-
tending to the boundary respectively. Similarly,

Cim ([K51 825 EO] ) cCc™ K51,52; E0]0)

v (I
([S*K&ﬁw S*EO] ) cCc* ([S*K(wa; S*EO]O)
Cinv (K610 20]) € O ([, 63 X))

mv

COO

mv

(3.13) o

mv

([S" Ksy,503 57 %0]) € O ([S"Ksy,505 S™%0))
are subsets of those functions f which have the rotational symmetry
Q. f) = (331851 - élam) F=0.
These are functions of the arguments
(3.14) (5’3% + &7, &0, &, &5 0, 1'275?33) :
Further, let
(8%d,) ™" O ([K5,,505 Xol) € C ([Ks,,6,5 20])
(B°d,) ™™ Ciy ([Ks1.605 Zol) € O ([Ks,.83 20]”)

mv

(B7d,) ™ € (15" K, S70]) € O (18" K, 5" ]')

(3.15) (Bdy) " G (15" K 23 S"0l) € € (18" K 503 8" o]")
denote the set of functions f in the interiors such that (5*d,)™ f 6 C™ ([Ks, 6,5 %0)), (B%d,)™ [ €

Cgs, (Ko o)), (8°,) " F € O (15 K, 25 7S], (Bd> f € O (19" i ") 2o

spectively. Finally denote by (8d,) ™" C5, ((Ksysi Sol), (57,) " oSy (157K, 005 575
the subset of those functions supported in [Ks, ¢ 5,—c; 2o, [SKs,—c.0,—e; S Xo] respectively for
some € > 0.

Next set aci,, = dAi [50850 +p <a:10x1 + 51851)] to be the homogeneous radial vector field on

the blowups [Kj, s,; 20] , [S*Ks,.6,; S*X0] . We now define the class of symbols S™™2 (R, %),
my, my € R, as the set of functions a € (6*d,)” " C%,, ([K1,1; Xo]) satisfying

c,mnv

% 7 ma+6 mi+aqa 9fb
(3.16) lall,. S (5 dp) & 0807 (i Ty)a| < o,
1,1;220

V (a, B) € Ny x Ny and any set of smooth, homogeneous of degree zero, vector fields (T3, ...,Ty)
on the blowup that are tangent to the boundary. For any a € S™™2 (R, %), we shall also

define the associated sequence of functions a; € C*° (Rg{) , k € Ny, via

(3.17) a = (B7)"a (2k+1) &7 €0, o, im0, 22,3 )

where (2k + 1) &1, 3 replace the 22 + éf, 23 arguments 1) respectively.
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3.3. Quantization and calculus. The quantization a” : S (R%) — S (R%) of a symbol a €
Smumz (R 34) is defined by the rule
(3.18) Hya Hy, = Spway) .

or alternately written
(3.19) a =" Hya) Hy.
k=0

We denote by U™m2 (R*; Y) the set of such quantizations. We remark that this class depends
on the decorated cone (X, p), i.e. additionally on the homogeneous function p € C* (3); we
shall sometimes precise this with the notation W12 (R?*; 3, p) instead to avoid confusion.
We note that the quantization above depends only on the value of the symbol at points of

K113 %0] where &% (22 4+ €2) € 2Ny + 1. In particular the quantization a only depends on
: (IS
the restriction of a to the parabolic region

(3.20) P={pd,>¢&"}.

This gives the inclusions

321 B (R 5,) C U (R )
(3.22) g (RY: ) € U (RY).

In the case where the symbol a = [*ay happens to be the pullback of ay € C*® ((T*Ri)Jr)
under the blowdown one has

(3.23) al = aly
by (3.5), (3.6) and this partly motivates our definition (3.18), (3.19). This also gives the
inclusion

i (R4) c ymo (R4; Eg) where

mv

(3.24) v (RY) = {A=a" € " (R*) |spt (a) C K1, {a,Q} =0}.
Next define a subclass Sij*"™ (R*, ) € S™™2 (R, %) of classical symbols. This is the
subset of those symbols a for which there exist a; € <B*dp> " 5w ([S*K11;9%%0)), 7 =

0,1,..., x € C (R), such that
N+1

(325) o= [1—x (D& [a0+ (8dp) " ar . (5, N an] + 5 (R 5)

VN € Ny. Here the remainder estimate is understood on the parabolic region P (B.20). Fur-
ther time dependent symbol classes S;"""™ (R*, %), Sg'}™ (R, %) are defined as follows:
Sz (R 3) is the set of time-dependent functions a € C™ (R; x [K7 1; %0]°) such that each
a(t;.) € (B*d,) ™ Cx% ([K115 X0]), t € R, with each estimate being uniform on compact

intervals of time. Finally Say™ (R, %) is the subset of those symbols a € S;"""™ (R*, %) for
which there exist time independent a; € S7 7™ (R%, %), 5 = 0,1, .., such that

N
(3.26) a= thaj 4 N g = ms (R*, %),

=0

VN € Ny. We denote by W1™ (R%; 3,), UP™ (R%; 3) the set of quantizations of the classical

clt
symbols (B:23), (3:20).
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Standard application of Borel’s lemma gives asymptotic summation: for any set of operators
Aj € gm—imati s Boe gmum2—i g e Ny, there exists A, B € ™2 guch that

N
A=Y A€ - gme

j=0
N

(3.27) B-) B e ¥ NyN €N,
j=0

and respectively for the classes W™ (R*; %), U™ (R% X).

clt
Below we show that these classes are well behaved under composition and adjoint.

Proposition 7. For a® € U™ (R4, %), b € Umimz (R X)) we have
afbf € grtmmatms (R 5)
o — (ab)H + pmatmi—Lmatmy+1 (R4; Eo)
(3.28) (a")" =a"

and respectively for the classes W1V™ (R*; 5g), WL (R 20).

clit

Proof. We first prove that the corresponding symbols ay & by, (3.17)) compose for each k € Nj.
From ({3.19) and composition of Weyl symbols, the composed symbol ay, o b, has an asymptotic
expansion

« w
(3.29) all b ~ | = DDy = DD | o (2, 6) bk (1),
|a|:0 . M—/ =D

—=A(D)

. . ’_ ’
Each successive term above then corresponds to a symbol in S™itmi—lelmatmatial (R4 1))

lo

Sty — g matmy (R*;33) @ and can be asymptotically summed . The residual term
above is then in U=°™2 (R*) C U~ (R*) (3.22). The support condition for the composed sym-
bol follows from a standard integral representation formula for the symbol of the composition
ag o by ([26] Sec. 18.1). The adjoint property is an immediate consequence of the usual adjoint
property (a}’)” = @}’ of Weyl quantization for each k. O

mi,m2

ol is now defined via

The principal symbol of A =aff € ¥

(3.30) o (A)=ag € (ﬁ*dp) e (157 K ST50)

miy,m2

to be the leading term in the expansion (3.25)) above. One has the symbol short exact sequence
(3.31)

ol A\~
0 — \Ijz;lfl,m2+l (R4; EO) N \DZLI,WQ (R4; ZO) M) <ﬁ*dp> 2 >

c,inv

([S*Kl,l; S*Eo]) — 0.

From (3.28)), it follows that the symbol (3.30) is multiplicative and closed under adjoints

(332) U7Ir{1+m’17m2+m’2 (AB> - O-nh@rl,mg (A> O-rlill,mé (B) )
(333) Ufnll,mg (A*) = 0—£17m2 (A>7
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VA € Ut (RY X)), B € \Iizrfll’ml? (R*;3g). The symbol exact sequence gives
[A, B] € Wit bme et (R sy with
Ot it vty (A B) = i {0t o, (A) ofh L (B) ]

following from (3.29).
Next we define the generalized Sobolev spaces as the subspace of tempered distributions
u € H %2 (R%:30) C S, (R}), s1,s2 € R, micro-supported in K7 ; satisfying

2
= [ ]2 )7 (6

keNg

(3.34) ||ul dr < 0.

Following (3.5), (3.6)), (3-16) and the Calderon-Vaillancourt inequality, these can be equivalently
characterized as u C S’ (R}) micro-supported in K ; satisfying

(3.35) Ae v (RY YY) = Aue L%
In light of the inclusions (3.22), this gives
Hsitase—l (R4- Eo) C H55 (R4'Zo)
(3.36) H*Y (R %) = {ue€ H* (R}) [WF (u) C Ky} .

One further has Sobolev boundedness
(3.37) ue H"* (R} %), Ae 0™™ (RY X)) = Aue HY ™% 7™ (R};Y).

Next, we define the characteristic wavefront WFy, (A) C 0[S*K;1;5*%] of an operator
A e U™ (R% X)) in the exotic class as a subset of the boundary of the blowup. This is the

intersection [ﬂ?io spt (aj)} NO[S*Ky1;5*%], of the supports of the symbols in its symbolic

expansion (3.25). The characteristic wavefront W Fy, (u) C 0[S*K; ;53] of a distribution
u C 8 (R%) micro-supported in K ; is also defined via

(3.38) (2,8) ¢ Why, (u) <= A€ U (R, %), s.t. (7,€) € WEy, (A), Au € O™
or equivalently via
(3.39) (,6) ¢ WFy, (u) < A€ U (RY D)) ,s.b. 08 (A) (2,€) #0, Au e C=.

The wavefronts can also be considered as conic subsets of 0[K; ;3| and are again rota-

tionally invariant under the action of z10; — 518361 by definition. The following are easily
established

W Fy, (A+ B) C WFy, (A) UWFy, (B)
WFEO (AB) - WFEO (A) N WFEO (B)
(3.40) W Fy, (Au) C WFs, (A) 0 W Fy, (u)

VA € pmm (R4 20) B e U™ (R4 ) and u C &' (RY) micro-supported in K, . Finally
using - and a partition of unity argument one shows

(3.41) B(WFs, (u) = WF (1) N5y
under the blowdown map (3.11), for each v C &' (R}) micro-supported in K ;.
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4. BIRKHOFF NORMAL FORMS
In this section we obtain two Birkhoff normal forms for A e ,. The first near points on the

characteristic cone X and the second near any closed characteristic.

4.1. Normal form near Y. Choose the canonical quasi-contact form a,e (2.23) defining E
and let x € X. As before one then has a system of local Darboux coordinates (zg, x1, 2, T3)
centered at z such that

1
(41) ﬁagE = 5 [dxg + Q?ldl’g — xgdilil]
(4.2) Uy =Z = 0.

The distribution E is locally generated by the vector fields Uy, Uy = 0,, + 220,, and Uy =
Oy, — 10, and we let g;; denote the components of the metric in this basis. Further let

XY € (LE)L be orthonormal. The relations daye (X,Y) = pdaye (Ur,Us) = 1 imply the

existence of locally defined functions 01, d9 and A = [1 _1} {?; g

} with the latter taking
values in sp (2) such that
Z =10
)= ] e ]
The symbol of the Laplacian is then calculated
o(Ags,) =0 (X)) +o (V) +0(2)

_ (1 n 5% " 53) 58 T 250,61/2 [51 52} e [Zj +p [771 772} oA A {Z;]

&,

with 79, 71, 72 denoting the symbols
No =0 (Uo) = &o
m =0 (U1) =& + 2283
n2 = o (Ua) = & — 2183,

in terms of the induced coordinates (x,£) on the cotangent bundle. The characteristic variety
or vanishing locus of the symbol is given by

¥ = {(z,sa,e (x)) |s € R}.

Now if (z,€) € (X\0) N7t (x), we clearly have from (4.1)) that (xg, 1, o, x3; &0, &1, &) = 0
while &5 # 0. We may assume

(4.3) (z,€) =¢(0,0,0,0;0,0,0,1),

.

~\~

=Do

¢ > 0, is a positive homogeneous multiple of the given point. The homogeneous coordinates x;,
& = %, 0 < j <2, are then well defined on C'\ 0 for a conic neighborhood C of (z,£). We set

(4.4) Jo=4& ($1I2 + 5152)
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and compute

o3 Hiy (x £ 5) _ ($1+52 —$2+f1_332+§1 —71 + &
1,61, 42,Q2 — ) y ) )
V2 V2 V2 V2

(4.5) et (g, w3;&0,&3) = (Ioaﬂﬁg + % <$1$2 — 5152) ;§O,§3> .

We further compute
(e%HfO)* o (AgE#) = ¢2 {aoég + éOBo Ell} +2p [é1 $1} ehoeho Fl”

T
where ag = (G%Hfo)* (1402 +03), By =22 (e%HfO)* P2 61 da] et and Ag = (engO)* A.
Next denote by Oy (k) homogeneous (of degree 2) functions on 7*X which vanish to order
k along ¥ = {xl =6 =6 = 0}. We also denote by O, (k) the Weyl quantizations on R* of
such symbols. A Taylor expansion gives
(F10)" o (Age,) = &2 {aé@ 6B m L9 a] M Ellﬂ
+ Ox (3)

where @ > 0, B and A € sp (2) may now be considered as functions of (zg, r2, 3;&). Next we
consider another function f; of the form

2 B e

and compute

* §0 éoA |
(") & |&| = & s H 05 (2).
T T

Following this we may further compute
(erl)* (G%Hfo)* o (AgE,#) =& [Chég + biboay + eréobs + 2 (xf + é?)} + Ox (3)

for some functions a; > 0,b; and ¢; of (zg, 9, x3;&2). By a symplectic change of coordinates in
the (g, §) variables we may set a; = 1 following which

(4.6) i (e ) = € +2630 (21 +82) + 05 3)

for kg = (ef'72) (ef'n) (etfn0) with fo = L [c1€oz1 — bi&o&a]. Here p = &p, p = p (0, 32, 73; &)
is homogeneous of degree one, and is identifiable with the only positive eigenvalue of the fun-
damental matrix ([2.20).

Next we claim that for some Hamiltonian diffeomorphism x; = e’es’ss, f; (:L’,é) € Ox (1),

and &y-independent function R (I% + 220, o, B3 ég) € Ox (4), [R,Q] =0, we have
(4.7) Kirge (Bge ) =G |8 +20 (4314 &) + R

To this end, we first define the complex variables z; = \/Li (:pl + z'él), Z = \/Li (a:l - @él> and

a grading on monomials in the variables (éo,zl, 21> via gr (Agzll’éf) = 2a + b + c¢. Further
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define by Oy (k) the set of homogeneous (of degree 2) functions defined near ¥ whose Taylor
series involves monomials of grading at least k. We first prove that for each N > 3 there exists

gn (ZE,E) € OZ (1), RN <.T% + é%;l’o,ﬂ?g,.ﬁi’g;ég) € OZ (4) such that

(eHéglgN)* koo (Age ) = €3 [ég +2p (:c% + éf)] + Ry + Ox (N)
gy —gn-1=Ox (N —3).

(4.8) Ry — Ry_1=0x(N).
The case N =3 is (4.6). To complete the induction step write
(4.9)
H, 1 - F ~ ~ Fa b=c
<e & 9N> Koo (AgE7“) =& [53 +2p (a:% + 5%)} + Ry + & Z Tapel$ 202 + Ox (N +1)

2a+b+c=N

for complex functions 7. (mo, To, T3; §2> satisfying 7upe = 7aep. Define

Fa b= F —\b
gn+1=gn + & E Sabe§0 2121 + E sawo (2121) |
2a+b+c=N 2a+2b=N—2
b#c
1 b o
S e —AT' N C
abc 4i (b _ C) ) abc) 9

1 [*o
Sabh = ——/ Ta—1)pp; @ = 1.
2 Jo

A simple computation from (4.9) then gives

H, * - . -
(") i (Age ) = € | @+ 29 (23 +8F) +Rsa | +Os (N +1)
—_——
=60
9 N
Ry =Ry +&royy (2121) 2
where the term involving % above is understood to be zero for N odd. This completes the induc-

tion step. An application of Borel’s lemma then gives g (:1:; é) €O0x(1),R <:c% + ff, X0, Lo, T3; €2> €
Os; (4), R € Oy (00) such that

(4.10) (") wior (e ) = & [8+ 20 (53 + &) + &2R] +€ R

/

~~
=00

We shall now eliminate the last infinite order error term £2R,, above by the following lemma.

Lemma 8. There exists a smooth, homogeneous of degree one function fo defined in a conic

neighborhood of py (4.3) satisfying

(4.11) (e"=)" (&00 + & Ra) = & 00-

Proof. Without loss of generality assume that the conic neighborhood in which (4.7 holds to be
of the form C. = {‘ <$07ﬂ71,$2,$3,£0,£1752> < 5} for some ¢ > 0. Next with y € C>(—1,1)
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with y = 1 on [—%, %}, define the microlocal cutoff x. = x (‘(xo’xl’x2’23’§°’§1’§2)|>. Further

define the function

oo+ Ro; on Cgjy

00 = + XeRoo =
70 = o0 {00; on C¢
(4.12) satisfying & (69 — 0¢) = Os; (00) .

We may then compute the Hamilton vector field

H§35(1)/2 = 5-0_1/2 [2508:50 + 2§3_IQHP +2pHq + 53_1HE§(R+ROO)]

which is well-defined on {54 # 0} = T*R*\ . From R + R, = O (63) one may calculate
tH )

e & <$07 L1, T2, T3, 507 él, 52) = (fo (t), w1 (t), 22 (t), 23 (1) 750 (t) 751 (t) 752 <t>) ,  with
o (t) = xo + 2t5, 260 + O (53/ 2)
vy (1) = w5 + 26, %10+ 0 (577

The above shows that there exists a uniform ¢; such that any point p € C. flows out of the
cone

tH
(4.13) e &7p ¢ C. for time ¢ > ¢16¢ (p) /%

2 1

) tH tH 49
Outside of the cone C. the flows of e % and e %70 agree by (4.12).

Now we define the symplectomorphism

oo TR\ X — T*R*\ B
—tH 1/2 tH ~1/2

. /
Koo .= lime %% oe %%
t—o00

The limit exists, and is in fact attained in finite time, since
_t,H£3 1/2 tH 19 —t'H_ 1/9 ('5'—75)H5 _1/2 tH  _1/2 —tH /3 tH  _1/2

e % oe $% p=ce €9 " o e 390 o0 e 399 p=e €390'" 0 e €39 P

/ < N-1/2 tH, 2 tH, 17 . :
for t' >t > 160 (p) using (4.13) and the fact that e %% =e %% outside C. It is thus
a Hamiltonian symplectomorphism k., = e/~ and clearly satisfies

(4.14) (6Hf°°) H ~1/2 = H 1/2

* §30'() 630'0

by definition. Finally to prove that it extends to the characteristic variety, first define Zg (¢) :=

_tH5 JL/2 tH5 51/2 * . " wpd B ~1/2
e 9% oe % xo which equals k% xo on T*R*\X for t > ¢160 (p)~ /. We then compute

the time derivative

d d tH * tH *
S <t>:%(@ 5305/2) (e 5305/2) %6

tH *
_ {5353/2 — (e 53&3/2> &00 %, & (t)}

= { (etHsgﬁé/Q)* <535é/2 — 5303/2) , o (75)} = &0y (00)
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uniformly on compact intervals of time following (4.12). It now follows that the function

* _ Clﬁo(p)_l/Q d ~ . . .. .
K5To = To+ [ 270 (t) dt extends smoothly by the identity to the characteristic variety.

A similar argument for the other coordinate functions along with (4.14) completes the proof. [J

The proof of the lemma above follows the ’scattering trick’ of Nelson [41], 16]; as already
pointed out in [I7, Sec. 5] its requisite analog is missing from [34].

We now prove a Birkhoff normal form for the total symbol of Age ,. Below let C, C T*X x
T*R* denote the canonical relation associated to the symplectomorphism r = kg o r; in (4.7)
and the pullback (k*p) (zo, T2, T3; &2, 3) by the same notation p (zg, T2, T3; &2, &3).

Theorem 9. There exists a Fourier integral operator U € I% (X, R*; C,) and &-independent

cl

symbols R (33% + 5%39007352,53’3;52,53) €Os(4), r (QU% + é%;l“o,l’mis;fz,f?,) € Sy satisfying

(4.15) UDye U =& +2p (&at + &7'6) +R+r 4+ (RY),

—_———
=0

-~

J/

::AP,R,’V‘
and UU* = 1 microlocally on some open conic neighborhood C O (X \ 0) N7t (z).

Proof. It Uy : L*(X) — L? (R?) denotes a unitary Fourier integral operator quantizing the
symplectomorphism kg o efféss o eflie in (4.7)), (4.11) one has

o (U1Age UY) = & + 260+ R
by Egorov’s theorem. By an argument of Weinstein (see Prop. 6 of [I7]) the quantization U;

may be further chosen so that the sub-principal symbol of the composition is zero and we may
rewrite

(4.16) UiAge U = & + &0+ R+ U0 (RY)

at the operator level; we drop the Weyl quantization symbol above for simplicity.
Next we prove by induction that YN > 0, there exists 7 (:c% + E2 10, o, Bg; &, £3> € SY and
Fourier integral operator ¢/~ f € S~1 (R*) such that

eV A e Uie N =&+ 60+ R+ry + VY (RY)
(4.17) frir — fx € STVH(RY).

The base case of the induction is (4.16]) with fo = ro = 0. For the inductive step, we first write
eifNUlAgE,uUfe_ifN = +250+R+7rn + & Vs <330, T1, T, T3; 507 517 éQ) + gt (R4) .
Then with fyy1 = fv + & Tgn <5607l‘17 s, 3 €0, &1, éz) we compute

eINAU A e Ufe IVt = @426,0+ Rry+&5 Y {3N+1 + 2608,,9n + (44 20,R) aggN}Jr\I/‘N‘l (RY)
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in polar coordinates <x1, €1> = (0% cos, 0'/*sinf). We may then choose

1 [ .
gn ::i ) <§N+1,1 (x67£07 o, 9/> d.Té)
+ _ /6 day’ [SN—H (%foa 0, 9’) — SN+1 (wg,fo, 0 ‘9,”
(44 20,R) J,
. _ ;£ 1 n / 1 /
with  Syi1 (xo,fo, Q) ::2— do’ sy <$o7€07 Qﬂ)
™ Jo
SN+1 (%, goa Q) =541 (20,0, 0) + 50§N+1,1 (ﬁo, 507 Q>
to compute
U A Ure N0 = 4260 + Rt ryg + 0V (RY) with

Nyl =TN + §§N§N+1 (70,0, 0) .

Finally an application of Borel’s lemma following (4.17)) completes the proof. O

In the normal form above since R € Oy, (4) in (4.15) we may write R = (x% + éf) Ry, with

Ry = R, <x% + &2, xo,x2,£3;§2,£3> € Ox (2). Given ¢ > 0, one may thus arrange
(4.19) HB [(53 +r ,U} ’

VB € VY (RY), WF(B) Cc C', WF (1 — B) C C, on choosing C' C C’ to be sufficiently small
neighborhoods of (X \ 0) N7~! (z).

As an immediate corollary of the normal form [9] above we now prove the existence part of [6]
the invariance of will be proved later in [5.1]

Proof of [6 At the symbolic level (4.15) reads o = & + 2p (&3 + &'¢7) + Ox (4). This gives
[_Ial/2 = 071/2 [508950 - (pIOQ) afo + pHQ + Oy (2)]

)W

<e
L2(X)—H-1(R%) —

I

— 1 _ — _ _
(4.20) = S0z, — 5P Yoy (1= Z3) 0=y + 0 2pHg + 07205 (2)
in terms of the new coordinates ( zg, 2y = —=2— x.... | and where the Ox, (2) term above
) /—§§+2p97 )

denotes a vector field vanishing to second order along >. The blowup and its boundary are lo-
cally modeled by [M; 3] = {&3 + 2&3p (&2 + &57'€E) > 1}, SN = { + 26p (Ga? + &7'¢E) =1}
while the function =y = S0 is identified with (2.32]). The Hamiltonian vector field on the

\/€3+2p%
interior of the blowup is identified with (4.20) where Oy, (2) now denotes a vector field vanishing

to second order near the boundary of the blowup. One may then rewrite

H,p2» =020 (R)Ho+ Z 4 Ox (1)

with

A _ 1 _ _
(4.21) 7 = Z00y, — 5P Yoo (1= Z8) 0=y + 02 [p— 0 (R)] H
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The invariance property (2.41) follows from the definition, (2.24), (2.26) and (2.37) via the

further identifications

I‘IQ|SN2 = RO and
(4.22) PENS™SE = 572(1 — E2)dZdodaadisdés.
O

4.2. Normal form near a closed characteristic. We next obtain a normal form for Age ,
near a primitive closed characteristic v assuming that the characteristic line L¥ is volume
preserving. Before proceeding we however note that there exists a large class of quasi-contact
structures where L¥ is not volume preserving as below.

Example 10. Let (Y, F C TY) be a contact manifold with contact vector field H € C*> (TY)
, ("), F = F. The mapping torus X =Y x [0,1], /{(0,y) ~ (1,e” (y))} carries the
quasi-contact structure £ = F @ R[0,, + H] whose characteristic line field is L¥ = R[Z] =
R [0y, + H] (cf. [12, Lemma 2.5]). The Poincare section Y x {0} however cannot carry an
H invariant volume such as a,= A dagye in the case when the time one flow of H is a strictly
expanding/contracting map on some region; say near one of its zeros. An explicit example of
such an H is quite easily constructed; choose Darboux coordinates on an e-ball B, (¢) centered

at a point p € Y in which F' = ker | z1dze — xodzy + dxs |. Letting x € C°([-1,1];[0,1)),

-~

=ag
x =1on [—%, %}, define the contact Hamiltonian vector field

H—H. — (02, + 37290903) Ory — (P — $1<,0:c3) Oz, + (20 — 21902, — T20s,) Ors; T € B, (e)
v 0; x ¢ B, (e) 7

|(z1,22,23)]

Y = x3X (T)? satisfying Ly, ap = 2¢,,a9 on B, (), and which has a strictly expanding

time one flow near the origin where H@|BP(E/2) = 210y, + 20y, + 2230,,.

We now show that in the volume preserving case, the normal structure of E is described
as such a mapping torus of an xz-independent contact Hamiltonian ¢ near a non-degenerate
closed characteristic. To this end, as mentioned before, in the volume preserving case one has

a Z-invariant defining one form Lz | pza,ez | = 0. The linearized Poincare return map P, of Z

::&gE
is seen to be symplectic on (E JLE, ddgE). We call the characteristic elliptic if the eigenvalues
of P, are of the form e*™(2r > a > 0) and (positive) hyperbolic if of the form e*#(3 > 0).
The characteristic is said to be non-degenerate iff ;- ¢ Q or 3 # 0. For each v we then define

the model quadratic on R? via

(4.23) Q= {% (2 +23); 7 is elliptic,

Bxixa; v is hyperbolic.

We first begin describing the normal structure of the Popp form a,= near a non-degenerate +.
In the theorem below we let 7° == S' x {0} C S} x R® and T, the length of .
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Proposition 11. There exists a diffeomorphism k : Qg — {2, between some neighborhood of
7y C (23 and some neighborhood of the closed characteristic v C {2, such that

(4.24) K Gge = @dxg + % [z1dxe — xodx) + dus]
‘Z‘ = | =0z + P10z, — P20, + [2¢0 — (T102, + T202,)] Oy
(4.25) =T, + O (|(z1,22)[*) + O (3)
modulo O (Q*°). Here
(4.26) p=0(Q) =Q+0(Q)

above (4.24)) is a function on R? of the quadratic (4.23) with linear term Q.

Proof. Choose a Poincare section Y transversal to Z through a point p € ~ with Poincare
return map and return time functions Py : Y — Y, Ty : Y — R. Having Py = e?; Z = Ty 7,
we may compute

1
P{;dgE — &gE = / (EZdQE) dt
0

1
= / (diszgE + izddgE) dt
0
(4.27) = 0.
The one form a is contact on Y with contact hyperplane F' = TY N E and we choose a set
of Darboux coordinates (z1,x2, z3) with dgE‘Y = % [dxs 4+ x1dry — xodxq] as (2.26). By 1}

the return map Py is a contactomorphism with its linearization at 0 being identified with P,.
We now claim that such a contactomorphism is given by

Py =efle,  with

(4'28) HAO = prlﬁwz - 902?283?1 + [_2§0 + (xlgoﬂh + x2902?2)] 8333
under the non-degeneracy assumption. To see the above let Py = (P;, P, P3). Since the Reeb
vector field is mapped to itself, 0,, = g—féapl + g—fgap2 + g—fgap3 = Op, giving g% = g—f; =

and thus P, P, are independent of 3. The map P = (P, ) : R? — R? is then symplectic
with respect to dridxs; the eigenvalues of its linearization are those of Pj not equal to 1. Thus

PY = efle for some ¢ (Q) of the form (4.26) under the degeneracy assumption. Next define
(P (t), Py (t)) == e (z1,25) and calculate

d « 1
— (etH“’) 5 [#1dxy — xodry] = ‘CHgaé [21dwy — woda:]

dt
1
= (Z.de + dZH(p) 5 [ZL’lda?Q — ZL‘le’l]
1
=d {_‘P + 2 (T1p2, + x%pxz)}

to obtain

.1 1 L
(eH‘”) 3 [z1dxy — Todzy] — 3 [71dzy — Tod1| = d {_90 + 2 (1602, + ‘/E?%@)} :
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This gives

1 « 1 1
0= P{;&QE — &gE = §d (Pg — ZE3) + (€H¢) 5 [I’leEQ — IleEl] — 5 [ZEleEQ — JZQdZEl]

1 1
= §d (Pg - $3) +d —p+ 5 (‘Tl(pm + x290$2>

and thus P3 = x3 — 29 + (2104, + T2ipz,) on knowing Py (0) = 0, proving the claim (4.28).
Now, noting that Poincare map is also given via Ps = e¢?; with

(4.29) 7 = 0y, + H,

satisfying iza, = i;da, = 0 for the model form a, (4.24) proves (4.24)).
To prove (4.25)), first note

(4.30) M:R

and compute
1
PrdTy — dTy = / (£,dTy) dt
0

1
:/ 47 (Ty) dt = 0
0

by definition; Ty is defined on a neighborhood of v using the flow of Z. This gives
PpTy = () Ty =Ty

on knowing Py (0) = 0. Comparing the coefficients in the last equation using (4.26)), (4.28))
shows that the linear (z1,xs) terms in 7y must vanish under the non-degeneracy assumption.
0

The distribution £ is now locally generated by the vector fields Uy = —0,, + 2¢0.,, Uy =
Oy, +x20,, and Uy = 0,, — £10,,. The generator of the characteristic line (4.29) maybe written

Z=Uy~ Pay U1 + ©g, Us.
1

We may again choose X,Y € (LP)™ satisfying | X| = 1, da,e (Y, X) = pzdays (Ur, Us) = 1 and
X _[6Z] | apa Ui
Rl e R

for some set of functions 41,02 and A = [1 _1} {: g] € sp (2).

The symbol of the Laplacian is then calculated

o (Aye,) = Ta <Z>2 +0(X)P+o(Y)

:%%+%¥%M<M&P

W pz ] et 2]+ €05 )0, ),
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Here 19,11, n2 denote the symbols

=0 (2) = —€0+ 2063
m =0 (U1) =& + 263
=0 (U2) =& — 11&3,

of the given vector fields while Oy, (k), O, (k), denote homogeneous degree zero symbols which
vanish to order k in the variables (53_1770, &, 53_1772) and (x1, x5, x3) respectively.

Setting fo = &3 (xlxg + élé2> as before, we again calculate

1
1

(e%Hfo)* o (AQEM) =& {ao (—50 + 2@)2 + QﬁIZ/Q <_§0 + 2@) [51 52} el E } +2py [él xl] M et [

+&05(2) 0, (1) + 605 (3)
where ¢ =aq, 01, 62, A are functions of (xo, T, T3; 52> while Oy, (k), O, (k), denote homogeneous

degree zero symbols which vanish to order k£ in the variables <fg + 20, 21, §1> and <$2, xs; §2>

respectively.
Further, with f; of the form

_ & —1] 1 [&
-Sie wa], “Jafd

we compute

A

(1) & Lﬁﬂ =g H + 605 (2),

X

giving
(") (£310) 0 (Aye,) = € [ao (Go+28) + (~Go+20) (bos + ) +2 (o3 + é%’)}
+ 805 (2) O, (2) + £05 (3)

1

0 .
for {53] € O, (1). Finally fo = 5 [co§oz1 — bo&o&1] we also have

o (Bge) = aofd (0 +20) +2p28 (a3 +8) + 805 (20, (2) + E0s (3)

s

for kg = (er2) (erl) (e4Hf0) and for some ag (:co, xg,sﬁg;ég) > (. Finally, by another Hamil-

tonian diffeomorphism we may set py = 1 and ag = ag (xg,:fcg;fg) independent of xy and

satisfying
1
ap (0,0;0) = T3
v
Following the preliminary normal form above the rest of the normal form procedure proceeds
as in the previous section. We then first have a Hamiltonian diffeomorphism s, = effesss,

fa (x; é) € Os (1), and function R (g:% V2,30, o, 3 &0 + @,52) € €205 (2) 0, (2) + E0x (3)
such that

(4.31) Kikgo (Ags ) = & [ao (—é’o + §0>2 +2 (m% + ff) + R] + Oy (00) .

&

T

|
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The normal form for the symbol is now given next.

Theorem 12. There exists a Hamiltonian symplectomorphism k : T (Salco X ]RS) — T*X and
symbol R (a3 + €210, 32,25 ~bo + 9, 62) € §0x (2) 0, (2) + €05 (3)

~ 2 A
(4.32) Ko (Ags,) =& [ao (—50 + @) +2 (a:% + 5%) + R} + Os; (o)
on some open conic neighborhood C D (X \ 0) N7t (7).

We refer to a (nondegenerate) closed characteristic v as flat if there exists a normal form as
above with R =0, ag = T, (constant).

We next compute £, the set of closed periods of the vector field 27 in both the volume
preserving and non-preserving cases. First note that in the volume preserving case since Lzp, =
daye (R, Z) pz for some positive function p; one has

(4.33) Lz (Inpyz) =da,e (R,Z) and hence
T’Y
tZ\* _
(4.34) /O dt (¢'?)" daye (R, Z)|, =0
along any closed characteristic v with period 7,. Motivated by this we say that L is volume

preserving along v iff the equation (4.34) above holds. In this case we may define a unique
positive function p) € C* (v;(0,1]) satisfying (4.33) along v and sup. p, = 1. In the case

when L¥ is globally volume preserving this would equal p7, = % for any globally defined
function satisfying (4.33). Viewing p}, as a periodic function on R with period T,, we define
Ty 1-py _

T, > T, as the smallest positive number for vvhichf0 5

that TA, = oo if py, = 1, in which case Lzupoppl7 = 0. Finally, we extend this definition to the

T,. Here we use the convention

case when L” is not volume-preserving along v by simply setting Tv =T.,. Below we denote by
N[I] the set of all positive integer multiples of elements in any given interval I C R. We now
have the following.

Proposition 13. (Density of periods) The set of periods

(4.35) 2, = U  N[-T.-n|un|n.n)

v closed characteristic

In particular if Lzpipep, = 0 along the shortest closed characteristic, the set of periods

(4.36) Ly = (=00, =T tinorma) Y [T

abnormal abnormal’ OO) .
Finally, if the shortest (nondegenerate) closed characteristic v is flat one has the density of
normal periods

(437) gnorma,l 2 (_007 _Tgmormal} U [thljmormal’ OO) :

Proof. Clearly by 1} a closed integral curve of Z lies over a closed characteristic; say
v(t) = €e? , y(T,) = v(0). The restriction of (SNX/R,)/S" to v is a [-1,1]z, bundle on

. 1
which Z = Zy0; — §dagE (R, Z)| (1 —2=2)0z,, following the computation (4.21)), which we may

=00
¥

(.

~~

=:A(t)
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further view as a vector field on R; x [1, 1]z, that is periodic in ¢. The flow of the above can
be explicitly computed

) t 14+ = - (1-2 =2 [y A(s)ds
(4.38) eZ (0,2, (0)) = / =, (s)ds, LT 20 (0 = (L= () e72h
0 1+ = (O) + (1 = (O)) e—2Jo Als)ds

=E0(t)

It is clear that the second coordinate above represents a periodic function only if fOT” A(s)ds=0
(i.e. LF is volume-preserving along 7 ) or Z (0) = £1. Thus in the non-volume preserving case
we must have Z, (0) = £1, which gives the periods of the Z to be the same as those of Z. On
the other hand if fUT” A(s)ds =0, 1) is periodic with its periods at the two initial extreme

conditions = (0) = 0,1 computed to be T, T, respectively. The second equality 1) is an
immediate specialization of the first while the last (4.37) is an easy computation from of the

normal form(4.32)). O
5. GLOBAL CALCULUS

We now define a global calculus of Hermite operators using the local calculus of Section
and the normal form [0] To give a definition independent of choices one needs an invariance
lemma in the upcoming section.

5.1. Invariance. Below p = (0,0,0,0;0,0,0,1) € T*R* is as before (4.3) while x : T*R* —
T*R* denotes a local conic symplectomorphism fixing p and Xy. Let C, C (T*R?*) x (T*R*)”

be the associated canonical relation. We denote by the same notation x the induced local
diffeomorphisms of S*R} as well as the blowup [S*R%; 5*3]. Furthermore Ag, is as in (4.15))

and C' C (" are conic neighborhoods of (3 \ 0) N 7! (z) satisfying (4.18)), (4.19).

Lemma 14. Let U € IY(R* R*;C,) be a local Fourier integral and p,p' = k*p € C™ (),
R,R € Osx (4), r,r" € SY as in Theorem @ satisfying

(51) UAp,R,'I‘U* — Ap’,R//I‘/
(5.2) UU* =UU =1

macrolocally on a conic neighborhood C' of p.
Then one has

(5.3) UQU™ = Q microlocally on C, and
(5.4) UAU* € U)W (RY )
(5.5) ol g (UAUY) = k*all | (A),

VA € Ut (RY; X)) with microsupport in C x C' .

Proof. First from Thm. @one has A, g Hy = Hy [€2 + (2k + 1) p+ R+7]"". For B € ¥° (R),
WF (B) CC', B=1on C one computes

co | =) (1 + O () [ HiBUHE| 12 sy 12(ms)
=||(HB[(2l+1)p+ RV]UH;) — (H,BU [(2k + 1) ' + R"] H;)

‘LQ(R3)HH—1(R3)

e ([ )] + v - v0) g

L2(R3)—L2(R3)

<O (¢) [[HiBUHg || 1o (ms)y -1 (r9)
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using the ellipticity of p, p’ near p and (4.18)), (4.19), (5.1]). This gives
(5.6) HBUH; =0, YI+#k

i.e. U microlocally preserves the Landau levels.
Next, for A = oV € U™ (R*) with WF (A) C C the above and Q = &a? + £1¢2 =
Y oreo (2k + 1) HEHy, gives

(5.7) [U,Q] =0 microlocally on C'
(5.8) (", 0] =0 = [U"a"U,Q] =0
proving (5.3). In other words, for a symbol a € O (T*R?), the conjugate a}f = U*a"U is

again of the same form ay € C° (T*RY). Furthermore by an Egorov argument as in [21, Ch.

10], the conjugate has the form ay ~ k* PjUa ; where each P; is a differential operator

v
esm—J

of homogeneous degree —j mapping S™ to S™ 7 with Py = 1. The last implies that each of

r? + é?,éo,ég,fg; Xo, s, T3 p maps under k to a function of the same set of variables. Thus
——
=02
each
(5.9 PV =37 oy (060,651 0,2,25) (00,)" 0002002203202
aENg

is also a differential operator in the given set of variables.

Finally for A = aff € W' (RY;X); with a € (8*d)"" C%,, ([K1.1;X0]) supported in the

cl c,inv

lift of C, it now follows using (3.19)), (5.6) that

Ua"U = U*Hjay HU
k=0

=Y H;U*a)UH,
k=0

= Hiap), Hy

k=0

(5.10) = aj!
Here ay € (5*d)"™ C,

c,inv

([K7.1;20]) satisfies

(5.11) ay ~ K ]5jUa
<~

_Z
€sm1T 22

where I5jU denotes the lift to the blowup [Kj ;3] of the differential operator obtained by
deleting the terms in (5.9) involving a o0, derivative (with a3 > 1) . The necessary symbolic
estimates and and expansion for the conjugate symbol a; in Sy now follow from ((5.11]) and
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the corresponding estimates for a € S/""™*. In order to obtain the symbolic expansion we note

. 4
UpU* _ p/ _}_5'07 " and ‘) give Ung* = 53 + O (f?% <dp’> ) Then
——
=K*p

.\ 4
UdU" = dy+0 (gg (4,) )
(5.10) and symbolic calculus in the p’ calculus give the necessary symbolic expansion for ay. O
We note that (5.3)) establishes the invariance of €2, completing the proof of @

5.2. Calculus. Following the invariance Lemma one may now construct a global calculus
of Hermite operators. To this end, we choose a collection of points {p; € E};.Vil along with
diagonalizing Fourier integral operators {U; : L* (X) — L? (]R‘l)}],\il

morphisms x; : T*X — T*R* which put Az, in normal form (4.15) in conic neighborhoods

{p; € C’j}jj\il covering X.

associated to symplecto-

Definition 15. An operator T : C*° (X) — C~> (X) is said to lie in the class ¥ ;""" (X, %)
iff it can be written T' = T, + Zé‘il T; where

(1) WF (Tp) C (T"X x T*X) \ (¥ x ¥) with Tj, € U}* (X)
(2) WF(T;) C C; x C; with U;T;Ur € U™ (R %), j =1,..., M.
It is an easy exercise from Lemma [14] that the definition above is independent of the choice of
diagonalizing Fourier integral operators {U; : L* (X) — L? (R4>}j1\/i1
The symbol of T' € U™ (X, X), my <0, is then defined via
(5.12) on oy (T) =0 (To) + &0l . (UT;UF) € C°([T°X; %))

mi,m2 J - mi,m2

and is again invariantly defined by virtue of (5.5). Much like (3.30)), the symbol above has
an invariance property. First note that by (5.7), the pseudo-differential operator Q € W), (X)

and its homogeneous symbol are microlocally and invariantly defined on a conic neighborhood
Cqo C X of the the characteristic variety. We also denote by () its pullback to the blowup
defined on the neighborhood 57! (Cq) of the boundary. Furthermore its Hamilton vector field
Hg has a lift to the blowup, that is tangent to the boundary and homogeneous of degree zero,
which we denote by the same notation Hg € C* (T [T*X;X]). Its restriction to the boundary
is the rotational vector field

(5.13) Hol|gns = Ro

is the rotational vector field following the identification (4.22]).
We then define the space of invariant symbols

Civ (57 X) 5 57X]) ={f € C= ([(S"X); S*X]) |f = fo+ fr, fo € CZ ([(S7X); 57X]%),

(5.14) fi€C. (7" (Cq)), Haf1 =0}.

The above may also be considered as homogeneous functions of degree zero on [T*X;X]. We
may then similarly define Ci3 .., m € Z, by requiring homogeneity of degree m; this space
is however non-canonically identified with on choosing positive function in (5.14). It
follows from definition that the sR Laplacian Az, € ¥%72 (X, X). Further, it easy to see from

the normal form that with
(5.15) d=[of 5 (A,e,)]""

S*X
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being homogeneous of degree one, (5*d) defines an element of the symbol space (5.14). The
symbol of a general T € U™ (X, X)) is defined by the same formula and is now an
element, of

(5.16) ol (T) e (Bd)™Ce

mi,m2 inv

([(57X); 57X .
We shall say that an element 7' € U™ (X, X) is elliptic in the exotic calculus if and only if
(5.17) c(B* )™ < o,y (T) < C(B7d)™

mi,m2
for some constants ¢, C' > 0. Similar to (3.22)), (3.24) one then has the inclusions

m1+%,m2*1
cl

YT (XY C U (X; %)

(5.18) U g (X) C U0 (X5%)
where
\I/gfwd (X)={A=Ap+ A, € U] (X)|WF (Ag) C Cq, WF ([Ay,Q]) CT* X\ X, WF(A) CT*X \ X}.

One similarly defines the generalized Sobolev spaces H**2 (X, X)) viau € H*»*? (X, Y) if and
only if u = ug + Z]]\i1 u; where 1.WF (ug) C T*X \ ¥ with ugp € H** and 2. WF (u;) C Cj
with u; € H2 (R; ). A pseudo-differential characterization of H**2 (X, X)) is given using

E3) by

(5.19) u€ H (X,Y) <= Au € L} VA € U* (X, %),

Following (/5.18)) this now gives
H (X,%) = H® (X)

(5.20) H* 2571 (X)) € H*V (X, Y).

The characteristic wavefront set WFy, (T') C 0 [(S*X) ; S*X] of an operator T' € W™ (X, %)
is defined via (z,§) € WFy (T) < k(z,§) € WF(UTU*). Here U : L*(X) — L*(R*) is a
diagonalizing FIO near § (z, ) associated to a homogeneous symplectomorphisms  : T*X —
T*R* mapping ¥ to Xo and with lift x : [(S*X);S*%] — [(S*R?); S*Yg] being denoted by the
same notation. The characteristic wavefront set W Fy, (u) C 0 [(S*X); S*X] of any distribution
u € C~°°(X) is then defined via

(5.21) (2,6) ¢ WFs (u) <= JAc U3’ (X,%),s.t. (z,6) € WFx (A), Au € C™.

or equivalently

(5.22) (2,6) ¢ WFy, (u) <= 3Ac 0%’ (R*; 20) ,s.6. 00 (A) (z,€) # 0, Au € C*.

The wavefront projects to restriction of the wavefront g (W Fs (u)) = WF (u) N'Y under the

blowdown map (3.41)).
Following their pseudo-differential characterizations (5.19)), (5.21)) it is clear that H**2 (X, )

and WFs, (u) are also defined independently of the choice of diagonalizing Fourier integral
operators. The properties of the Hermite calculus from Section [3 then easily carry over globally.
We state them below.

(1) (Adjoint & Composition) The class [L5]is closed under composition and adjoint

AeTmm (X ), Be U™ (X,5) = AB e ¢t (x5
(5.23) AEUm™ (X Y) = A* € U™ (X,Y).

cl cl
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(2) (Characterization of residual terms) One has the inclusions and characterization of resid-
ual terms and in particular the characterization of residual terms
gt e
(5.24) e (X 8) C ot Em T (X))
(5.25) Pz (X %) = U (X, %) € U (X).

(3) (Principal symbol) There exists a multiplicative principal symbol map

O U (X,5) — (%) O, ([(S°X)  S75))

mi,m2 nv
satisfying
051+m’1,m2+m/2 (AB> = Urlil,mg (A) Ugg,mg (B)
(526) Ugl,mz (A*) = O'gl,mg (A)

for every A € U™ (X Y), B € U™ (X, %),

cl
(4) (Symbol exact sequence) The principal symbol fits into the exact sequence below

oH

(5.27) 0 — Wbt (X R) e W2 (X 8) TR (87d) T O ([(S7X) 5 S*E]) — 0.

inv
(5) (Quantization) There exists a surjective quantization map

Op™ : (B*d)™™ C2 [(S*X); S*%] — U™ (X X))

inv
which is a left-inverse to the principal symbol
ol (OpH a) =a

(5.28) Op" o . (A]=A (mod ¥ "+ (X, %)).

mi,msa (

(6) (Symbol of commutator) For A € ¥ "™ (X,X), B € \Iigl/l’ml? (X,3) the commutator
[A, B] € wrtmmtmetmatl ¥ 57 with symbol

(529) Unqler’lfl,ngrm/ngl ([A7 B]) =1 {0—51,7712 (A) 70_5/1,m’2 (B)} :

(7) (Asymptotic summation) For any set of operators A; € U™ —3m2+i (X 3), B; € gmim2=i (X %),
(resp. Uy (X, X)), j € Np, there exists A, B € ™2 guch that

N
A=Y Ay ewmEme (X %),

J=0

N
(5.30) B-) B e ™™ N(X %) VN €N

=0
(8) (Sobolev boundedness) For any A € U™ (X, X) and u € H*>* (X, X) one has Au €
Hs1—ma,s2—m2 <X7 2)
(9) (Microlocality) For any A € W™ (X, %), B € U7 (X, %) and u € C~(X) one
has
WFy (A+ B) C WFy (A) UW Fy (B)
W Ey, (AB) C Wk, (A) N W Es, (B)
(5.31) W By (Au) € WFx (A) N W Fy (u) .

As a first application of the calculus we construct parametrices for elliptic elements of W™ (X, X).
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Proposition 16. Let P € V)" (X, X) be elliptic. Then there exists Q € ¥ """ (X, )

cl

satisfying PQ — 1 € V> (X), QP — 1 € V> (X).

Proof. This is a usual application of the pseudo-differential calculus albeit in the exotic class
Since ol | (P) € (6*d)”"™ CZ, ([(S*X) ; S*X]) satisfies (5.17)), its inverse [0 (P)}_1 €

mi,ma mnv mi,m2

(B*d)™ C2 ([(S*X) ; S*X]) can be seen to lie in the given space and maybe quantized Qg =

inv
1

Op” ([JH (P)]~ ) e v, 7™ (X, X). We now compute gg (PQo — I) = 0 using (5.26]),

mi,m2 cl

(5.28) and thus PQ, — I € W "' (X, %). We then set

Qui= —0p™ ([0, (P)] 001 (PQo — D)) € W™ ™27 (X, 3)

and again compute P (Qo+Qr)—1 €€ \P52’2 (X, ). Continuing in this fashion gives a sequence
Q; € U ™M™ (X V), j=0,1,... such that

N
P (Z Qj> — T e NI x ) c v PN (X :)
=0

The asymptotic summation A ~ 37 Q; 1} then satisfies PQ — I € V" (X,%) C
U_ > (X) as required. The construction of the left parametrix @’ satisfying Q'P—1 € V_* (X)

cl
is similar. Seeing these to agree Q — Q' = Q' ({ — PQ) + (Q'P —1)Q € V_ > (X) modulo
residual terms gives the result. 0

As an application we improve a subelliptic estimate.
Proposition 17. Let P € V)" (X X)) be elliptic. Then there exists C > 0 such that

cl
(5'32) Hf| Hs1tm1,s2+mg S C [HPf’ Hs1:52 + Hf|
\V/f e C*> (X), S1, 89 € R.

Proof. With @ being the parametrix [16|for P, write f = QP f+(I — QP) f and use the Sobelev
boundedness [|Q

Hslst]

Hs1:52 (X T)—»Hs1tm1:s2tma (X 3) < 00, H] - QP| Hs1:%2 (X, E)—»Hs1tm.s2tma (X 3) < 00.

O
Since Aye , is clearly elliptic in \1131’72 (X, %) by definition, the above proposition gives

(5.33) 1l grerszes-2 < O (|| Agr || jroyise + 1l ges.ce]

Vf € C*(X), s1,89 € R. In light of the inclusions (5.20) the above refines the subelliptic
estimate for the sR Laplacian (2.21) in our particular 4D quasi-contact case.

Remark 18. Although the notation suppresses it, the class of pseudo-differential operators
W™ (X, X) is depends on the Laplacian Az, and not just the characteristic variety. This
class differs from the more well-known class of operators defined in [8, 9] wherein the corre-
sponding classes depend only on the characteristic variety and their symbols do not necessarily
satisfy any invariance condition.

5.3. Egorov and propagation. In this section we explore some immediate consequences of
the global calculus of the previous subsection. We first begin by showing that the square root
of the Laplacian lies in the given class.

Proposition 19. The square root lies in the given class /Ay, € ‘Ilifl (X, %) with symbol

Uf—l (\/AgE#) = d .
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Proof. This is another application of the pseudo-differential calculus As noted before 5*d
lies in the symbol space and can be quantized Ay == Op™ (8*d) € ¥, 7' (X,¥). It squares

cl

principally oi’_, (Ayz,, — Op™ (8*d)*) = 0 by (5.15),(5.26), (5.28) and thus Ags, — A3 €
ThH(X, %) by . Now define

Ay = %OPH [(5*d>_1 01,-1 (AgEyu o OpH (5*61)2)} < \Ijgio (X, %)

and again calculate Az , — (A + Ay)? € U2 (X, %), Continuing in this fashion we inductively
construct a sequence A; € \Ifil_j’_lﬂ (X,%), j=0,1,2,... such that

The asymptotic summation A ~ 3> °7% A; € vhH(X, ) 1) then satisfies Ayp , — A% €
U0 (X, %) € U (X). The symbol of’ | (A) = p*d shows that A is elliptic, satisfying the
subelliptic estimate, and hence has a compact resolvent by . It thus has only finitely
many non-positive eigenvalues and can be altered, by projecting off the negative eigenvalues,
to a positive operator. We now write the difference

VB A= o / Qo2 (A, — 2) " (Ao, — A2) (42— 2) 7
r ——
v~ Y(X)

cl

with ' representing a contour around the positive real axis, to see that the difference above is
also in W > (X)) and complete the proof. O

We next prove an Egorov theorem for conjugation by the half wave operator e"VEaEu Below
and it what follows we note that the evolution (et4)" o (P) €€ (8*d)™™ C2, ([(S*X) ; S*X])

mi,msg inv

(5.16)) lies in the same class on account of (2.39)) and circular invariance of symbol (5.14)).

Theorem 20. For any P € V""" (X,X) the conjugate P (t) = eV ARE WPtV A €
U2 (X, %) lies in the same pseudo-differential class with ol (P (t)) = (e7ta) o (P).

mi,ma2 mi,m2

Proof. We again use symbolic calculus in the class[I5] Since the conjugate satisfies the differen-
tial equation 0, P + [, /Ay, P} = 0, we first solve this equation symbolically modulo residual

terms. First define Ay (t) = Op” [(e7Ha) ol (P)] € U™ (X, X); it is easy to check that

mi,m2

(e*tHd)* ol (P)e (B*d) ™ C2 [(S*X);S*Y]. We then compute aﬁhm (@Ao + [\/AQEHM,AO]) =

mi,mo inv

—HyP + HyP = 0 using (5.15), and thus 9,4y + [/A,z ., Ag] € Wb (X %) by

(5.27). Now define
A, =0pH [0%1_17m2+1 (P — ol (P))

mi,m2
¢
_.I_/ ds (e_(t—S)Hd)* 051—17m2+1 (atAO + |:\/ AQEJM AO]) (S):| G \Ij:ibl_l,m2+1 <X7 E)
0
and again compute ol |\ (0 (Ao + A1) + [\/AyE s (Ao + A1)]) = 0 using the Duhamel’s

principle , and thus 9, (Ao + A1) + [/Bue ., (Ao + Ar)] € Wi~ 2m2 (X %),

Continuing in this fashion we inductively construct a sequence A; € Wi 7™M (X %) j =
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0,1,2,... such that

0 (i Aj> +

J=0

c \I[gl—N—l,m2+N+1 (X, Z)

N
Agre i, (Z Aj)

J=0

e \IJ::TILl*Nfl,m2+N+1 (X’ Z) )

Thus again the asymptotic summation A ~ >3 A; € V"™ (X, %) (5.30) then satisfies
R(t) =0 A+ [\/Aup ., Al € U™ (X), Ry =P — A|,_, € V> (X). Finally Duhamel’s
principle gives

t . .
P(t)—A= R, + / dse "V25Pu R(t—s) V2P,
~~~ 0

——
\I,C—loo,mg (X) eq];oo,mg (X)
showing that the difference is in ¥ (X) and completing the proof. O

As an immediate application of Egorov theorem we have propagation of singularities ((5.21]).

Proof of Theorem[3 By , for (z,€) ¢ W Fs, (u) there exists A € U3 (X, %) with oflo (4) (z,8) #

0 and Au € C*°. Thus with A (t) = eV BeE o A BeE ¢ U0 (X, %) we have aglo (A (1)) (etz (, 5)) =
aflo (A) (z,€) # 0 by , , Theorem [20{ and rotational invariance of the symbol. Then

A(t) VPP iy — ¢V DeE Ay € O shows e'Z (x,&) ¢ WFEs (e“@u) as required. O

5.4. Parametrix. In this section we construct a small time parametrix for the half wave op-

erator; we work more generally to construct a parametrix for AtV RaE o A€ \Ifgl’o (X). The
operators /A e , and A being pseudo-differential, and /A & , elliptic outside the characteris-
tic variety, the parametrix construction is achieved by standard Hamilton-Jacobi theory in the
complement of 3. Tt shall then suffice to construct for each p € ¥ a microlocal solution to

i0,P + \/Aye P € ¥;=°
(5.34) Pl,_,=Acw)°

cl »

where we may further suppose A € \1!21’0 (X) to be micro-supported in a microlocal chart near
p where (4.32) holds. We shall look for a solution of the form

(5.35) P:=|>" H;P.H| A
keNy
Here each
(5.36) Py = I, (a)], = / (P18 a (t2,€) de, k€ Ny,

with a € 521’2, pexd+ tSil’;l, and each ¢}, solving the Hamilton-Jacobi equation

Oppr = d. (v, 0 01)
(5.37) Prli—g = z.€.

We first show that the above has a solution.
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Proposition 21. There exists a sufficiently small conic neighborhood of p € C C [(T*X) ; %],
T >0 and

(5.38) ¢ € x.{ +tdCy, (C x (=T,T)),

of homogeneous of degree one such that each corresponding oy , k € Ny, solves the Hamilton
Jacobi equation ((5.37)).

Proof. This is a modification of usual Hamilton-Jacobi theory. From the computation ,
we may then choose to work in a microlocal chart C’ at p such that e’ (C), t € (=T,T),
stays in the chart for some sufficiently small conic neighborhood C' C C" and T > 0. With
the notation of (| - d (z,£,9) being a function of the given variables with {Q,d} = 0, the
function € is preserved under the flow of H;. One thus has

e (2, &m0, &) = (€742 (2,€) 5%,%)  for
(5.39) Hyg = (0ed) (2,€,9) 0 — (0.) (2.6,2) 0.

The vector field H;q above extends smoothly to the boundary of the blowup [(T*X) ; X].
Given a > 0,§ € R?, we now define the flow-out

Agg = {(etHdv“ (2,€) ,t.d (z,6,0))| (g &M ¢, 0) eC, te(-T, T)} C TR x T}, \R.

By (4.22) and an application of Gronwall’s lemma, for C' and T sufficiently small, the flow-out
Aq¢ is horizontal above R} x R, for t € (=T, T). Hence one may find a solution ¢ (z,t) to

(5.40) graph <dg0a,§> = {x,t,d(y)goaé} = Nag

The function ¢ (z,&,t) = pa¢ (z,t) is then the required solution to @ ; its smoothness
follows from the smooth extension of ( - ) to the boundary. To see that the solution lies in
the given space one needs to check ¢ — z.&, or its pullback to the graph (5.40] - vanishes
on the boundary 8 [(T*R4) Yo at all time t € (=7, T). This follows from computing

7d Plojremaysg) = orriysy (@) + (B71)" @ (Hao) ooy,
\W_/ J

(&

-0 -0
from (4.22)), with o denoting the tautological one form on T*R*. O

Next we solve for the amplitude in (5.36)). Differentiation of (5.36) using the symbolic
expansion of \/Age , = d+ \PS{_I/Q gives

i0,P + /B, P =1,(b) with
b= (0:+ Hy)a+ Ra

~
=:La

and where R maps S to S Wim, my. One may then write down a solution to the
transport equation La =0 (mod S.%°) as

(5.41) a(t)~) a;(t) €Sy,
j=0
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a; (t) € Sc_lj’j, starting from the symbolic expansion a ~ Z?io a;, a; € Sc_lj’j for A 1) by
inductively solving
ag (t) = (e7")" ap;

(542) (at+Hd) Q; (t) = —R[a0+ +CL]‘_1], a; (O) = aj, ] > 1.

6. POISSON RELATIONS

In this section we prove the Poisson relation Theorem We more generally analyze the
behavior of the microlocal wave trace tr Ae" V>, A € U0 (X), for small time using the
parametrix (5.36]). It again suffices to consider the wave trace near characteristic variety and
we may assume A € \Ilgl’o (X)) to be micro-supported in a microlocal chart near p where (4.32))

holds. By (5.37), (5.38) we have ¢ — z.£ = t¢° with ¢ = Ead, |1+tR (t;gé, czp) . On
—_——
€8y’

changing the &3, & variables to the new variables r = &3dy, Z¢ = 5—2 the wave trace

A . 1 - Z2)p4 .
tr Ae'"V 2P u = Z /el(t”tzm’“)ak (t) (—O)Ter d=od&dz (mod t™°)

& P2 (2k + 1)

in the distributional sense. Since the amplitude was shown to be in the class a € 521’2, the wave
trace mod "7 is then a finite sum of terms of the form

—2
=

/ Z €irtt2ara_ﬁaa B8 (i? 527 EO) dk’) (1_—0)7ﬂ42d7~ dEOdézdg’
) [32 (Qk

keNg + 1)
(6.1) a,B €Ny, 0<a+ <N,
with
(6.2) aos (262,030 ) = by (260,50 (e +1),ds +1)

N 0o 5
for b, s (L &2, Do, d) € C; (Rg,éz,po

(6.3) app = o' (A) <L £2, Zo; dk> -

We now show how to sum the above in k with the help of the proposition below.

x [1, oo)d>. Furthermore the leading part

Proposition 22. Given b € C° (Ri érpo 1, oo)d) and a defined as in 1) the expression

Po
(1—=0) < ;=
S 0 bz
i P2k + 1)
(6.4) ~cortinr+egter Tt er 4

2 . (1—=2 .
Cco = % /d50d§2dl(ﬁ—20)b (L §2a EO’ O)

I(r) = / dZodésdz

=2

1 2 1—-25) — o
(65) Cc = 5 /d:()dé.gdg% (:08p0 + 8d) b (2, 52, =0, O)

is the sum of a classical symbol in r of order 0 and a log term r~'1lnr .
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Proof. The symbolic estimates are easily seen on differentiation and noting dy = % to be
]

a symbol of order —1 in r in the region dy < 1, =9 < 1. To show a classical expansion, we
perform the change of variables v = (1 — Eg)_1 in the =) integration to obtain

déydz > doa ( . p(2k+1) )
——qa |z, & V]I —a ), ——a
k%\;/ 2k+1 1 a3yl —a b \T = r

1o 25225

J/

with the integral in parentheses above seen to be I (a: §2, 2k+1 ) e Cx 6 p@km)

From here the proposition follows from [34, Prop. 7.20] but we give a shorter argument.
Differentiating I, (¢) = ey, ﬁQ(Tlﬂ)g[o (g, Exiep (2K + 1)), e =1, gives
21 = Z (9310) (L &a16p (2k + 1)>

keNg

- /Ooo dk (971) (z Ea12p (2K + 1))
+3 X [ ke (@2n) (s duep 2k + )

ZGN\{O}

by the Poisson summation formula. By repeated integration by parts the second term in the
last line above is seen to be O (¢*°), while the first term is evaluated to be

/ dk (83[0) (g, 52; ep (2k + 1)) ~ee b eg+ e+,
0
L.,

(6.6) c= 2[3 [&ﬂo (L 52;())]

to complete the proof. O

Following this proposition, we may further simplify (6.1)) as being mod ¢¥~° a sum of terms
of the form

00

2a irt 4 —j+a—0.

t / dre :
0

oo
or tQO‘/ dr emtyp3—ita=h Inr;
0
a,B,j € Ng, a + 8 < N. Using the identifications (4.22)), the knowledge of these elementary
Fourier transforms and identifying the constants we now have the following.

Theorem 23. For any A € ¥°°
the asymptotics

(6.7)
. N .
tr Ae"V 2o = Z Cﬁo (t+i0)° +
=0

o » the microlocal wave trace in the 4D quasi-contact case has

N
ey (t 40 n (£ +0) + Y efyt! In® (£ +i0) + O (V)
j=0 =0

VN €N, ast — 0, in the distributional sense with leading term ¢ty = 5= [ 0 (A)|gnges Hongy

WE
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In the case when A = 1 one has by = 1 in (6.2) which following (6.5) gives that the
first logarithmic term above vanishes C(l),l = 0 proving Theorem . Pairing (6.7) with 6 €

C> (—Cy, Cy), for Cy sufficiently small, gives

N N

(6.8) tr A0 (VBgr, = A) = DN+ 3N T A+ 0 (V)
=0 =0
N N

(6.9) tr 0 ( Ao, — )\) =D G4 G T InA+ 0 (AN)
=0 =0

VN € N as A — oo with leading terms

N 6 (0) .
Cﬁo = e / o (A)‘SNS*E u?éﬁ E;

L 6(0) b - 0(0)
0]1-70 = E/ {/1 d=g (1 - :(2))} HPopp = E“FOPP‘

We now prove the Weyl laws Theorem

Proof of Theorem[]. Following a standard Tauberian theorem for Fourier transforms (cf. [19,

Sec. 2|) gives (1.2)). To prove (1.3)) one needs to prove at leading order for § € C'° (R)

of arbitrary support under the dynamical assumption.
We first consider the trace norm of A# (« /A )\), A=a? ¥ g e ([(S*X);S*%];[0,1]),

gF.pn = cl c,inv
for § € C® (—Cy,Cy) assuming § > 0. To this end, let a € C%,, ([(S*X);S*Y];[0,1]) such

c,inv
tHy (

that a = 1 on Uye(—cy,cp)€ spta). Then an Egorov type argument Theorem [20] gives

aHeit(‘ /AgE”u_)‘) (1 _ dH) e v, >, Vte (-CyCo),

(6.10) a0 (VBgr, =) (1 a)

=0(x)

tr
and thus

HaHé ( Age, — )\)

= HaHé < Age , — >\> at

+Oo (A7)

tr t

— [o"ad (\/Age = 2) "

1O (A7)

Now since |a| < 1+¢, Ve > 0, we may use symbolic calculus to write aff = 14¢— (bH)2 o
This gives

o6 (/3 )

=l )s ()

< (1+4¢) HaHé ( Age, — )\) at? Tt O (A™™)

10 (A7)

Next for § > 0, the operator a6 (y/A,e, — ) @ being positive and self-adjoint, its trace

norm coincides with its trace which is in turn analyzed in a similar fashion to (6.8). Hence

(6.11)

aflf ( Age , — /\>

<1+ [ce / 8]y yg;;g*ﬂ  Ounge (V).

tr

To remove the condition § > 0 on the Fourier transform of the cutoff, one may choose ¢ €
C (—Ch, Cy) satistying ¢ > 0 on spt (f) and ¢ > 0. Then writing 6 = g¢, g € C° (—Cp, Cp)
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gives 0 = §* ¢ and
o
Ha 0 < AgEVM — )\>

tr

_ / ax 1§ (|6 (VBgr = A= W)
‘)\/|<)\1/2 tr
+ / N [g (V)] Ha% (,/AQE,H - X)
|)\/|>)\1/2

The second integral above is O (A\~*°). The first integral is then estimated following the cor-
responding estimate for . To remove the condition on sptf, we may write a function
of arbitrary support as a sum of translates 6. (s) = 0 (s —c¢) € C.(R), ¢ € R, of functions
supported near zero. Then

ot (VA=)

gives (6.11]) for any arbitrary 6 € C'2° (R).
We now come to estimating the trace for arbitrary 0 € C°(R). Splitting 6 =

0, + (0 —9) , with the trace tr ( Age, — )\) expanded as (6.9), we next es-
~~ —— ’
)

€C.(—C0o,Co) Cy C
eCe(R\(-2, 32

timate tr (9 — 9) (,/AgE# — )\). Under the assumption on L¥, we may find Ve > 0 a mi-
crolocal partition of unity {A; = ajH};szl e v (X), {aj};y:_l e C ([(S*X);5*%];[0,1]),

tr

aHe—ic( AgE’H—)\)é ( Aye, - )\>

= HaHé ( Aye, — )\>

tr

tr

Z;V:ﬂ a;j = 1, satisfying
spta_; N SNS*Y = (),
Lo > (sptag N SNS*Y) < e,
(6.12) [Utespt(efﬁ)etHd (Sptaj)] N (spta;) =0, 1<j<N.
The estimate gives
(6.13) tr (o +afl) (0= 9) (VBgeu = A)| S e (L4 )X 4 Opc (N) , Ve > 0,

Furthermore, choosing a; € Cp2 ([(S*X);S*X];[0,1]), 1 <j < N, with

inv

spta; Nspta; =0
(6.14) a; =1 on [Utespt(g,lg)etHd (sptaj)}

gives

(6.15) — 0 (A)

following a similar Egorov argument as in (6.10) and (6.14). Thus finally combining (6.8),
(6.13) and (6.15)) we have

_ 6 (0
tr 0 ( Ags, — )\> = Xliw)upopp +0 (XY
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for any 6 € C° (R), under the assumption on the closed integral curves of L. Following the
above the usual Tauberian argument of continues to prove (1.3)); cf. [I9, Sec. 2] or [18, Ch.
11]. O

Next we prove the large time Poisson relation ([1.4)).

Proof of . We shall infact prove the stronger statement
sing spt (tr eitm) C {0} UZ, U Zomal
(6.16) C {0} U (=00, =Tifnormat] U [Tapnormats 20) U Zhormal
with £ as in the computation (£.35)). Equivalently stated, the above amounts to
0 (A, —A) =0 ()
for spt (f) € R\ ({0} U.Z5 U Ziorma). We may then again choose a microlocal partition of
unity {A; = af}j.v:l e U0 (X), {aj}j.vzl e O, ([(5*X); S*X] 510, 1]), Zjvzl a; = 1, satisfying
(6.17) [Usesproye™ (sptaj)] N (sptaj) =0, 1<j <N
Furthermore, again choosing a; € Cgo ([(S*X);S*%];[0,1]), 1 < j < N, with
spta; Nspta; =0

(6.18) a; =1on [Uespio e’ (spta;)]

gives

(6.19) =0 (A™)

following a similar Egorov argument as in (6.10)) and (6.18]). O

7. QUANTUM ERGODICITY

In this section we prove the quantum ergodicity theorem for the sR Laplacian Theorem [4]
As usual (see for instance [50]), it is enough to establish a microlocal Weyl law

(r.) —5 [ v b (2. () + b=y ()]
and variance estimate
(72) VB) = Jim s S B = E(B)e ) =0

given B € U (X), with b= o (B).
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7.1. Microlocal Weyl laws. We begin with the microlocal Weyl law (7.1). The upcoming
Lemma in fact works more generally on any equiregular sR manifold; a more detailed
discussion of it including some singular (non-equiregular) analysis will appear in [15].

We first prove a localization result for the heat kernel of the sR Laplacian on a general sR
manifold X of dimension n. To state this, given point a x € X we choose a privileged coordinate
chart contained inside the open ball BZTX (x) = {x’|d9TX (xz,2") < g}; where g7* denotes a

fixed Riemannian metric on X and o depends on z. Let x € C° ([—1,1];[0,1]) with xy =1 on

[—%, %] Choose a local orthonormal frame Uy, ..., U for E and define
B L dgTX , o
0, = 0 ”+X(ﬂ> (Uj—U} ”), V1<j<k
Oz
. 49" (z, 2 .
fi=ji+Xx (%) (h—f1),

to be the modified vector fields and volume on R". Here U;_l), it are the first terms in the
homogeneous privileged coordinate expansions of U; and the volume p respectively.
For p sufficiently small, the ﬁj’s are linearly independent and bracket generating with degree
of nonholonomy being r (). A formula similar to (2.16) now gives an sR Laplacian on R™ via

- ~\2 . .
A SOk [— (Uj> (f)+U; (f) (dinUj)}. The operator A, , is again essentially self-

J=1

- =1 st l
adjoint with a resolvent that maps <Ag,u — z> S HE — HOT (2.19) and has a well defined

loc loc

functional calculus. We now have the following localization lemma.

Lemma 24. The heat kernel satisfies

- dP (z,2')
(7.3) e B (x, x/)h =ct e w
uniformly for t < 1.
Moreover, there exists p1 () > 0 such that
~ 2
(7.4) H[e-mg,@,u] (@) = [eBoe] (,0) = Cppe
" H Ck(X)

have the same asymptotics for d¥ (z,2") < o1 ast — 0.

Proof. Both claims follow from the finite propagation result Theorem [5| and the Fourier trans-
formation formula

2

£
_ 1 ic /A e
Aly e BoPul (z,2)) = —/d [ezﬁ\/ 9% Fu x,x’} D
s “< ) 2m ¢ ( ) wo & \Ant
EQ

1 i€ /A § 2 € %
=— [d [ef o P (g, ! } (—) D1
2m ¢ ( ) MX 01 ¢ VAt

(7.5) [ Ve (x,x/)]u {1 —y (é)] D€

2m 01
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Vq € Ny, o1 > 0. By finite propagation, the integral maybe restricted to |£] > dF (x,2'). Now
the integral estimate

dE(m,z/)Q

2
‘/ eiﬁsqueitdgl < ct™2M e w
£|>dE (z,2)

dE(ac,w/)Q

gives the bound on }Aq e*tA B F”H < =20 3¢ . This combined with the subel-
liptic estimate (2. 19: gives For , note that the second summand of (| . is expo-

nentially decaying O (exp( Next for p; sufficiently small, BQ1 (x) C Bg * (). Thus

mt) :
finite propagation and Age , = Age , on Bg (x) give that the corresponding first summands

9E.p
for Aye,, Ay, agree for d” (z,2') < o1. O

We now prove the microlocal Weyl law in the equiregular case; below let [e‘AW] - we

m,x
denote the heat kernel of the Laplacian on the nilpotentization (2.11]) at a point x. Denote by

(7.6) / dye”’f[ ‘“‘] (0;9)
(Ev/Er_1) i

its partial Fourier transform in (E,./FE,_1) variables and evaluation at 0 in the remaining (F;)®
(Es/Ey) & ... 3 (E,—1/E._5) variables. We now have the following.

Theorem 25. Let (X, E,gE) be an equireqular sR manifold. For B € V9, (X, %) with o (B) =
bo we have

1
. S didE b N dy V€ |e~Pon : ith
(D) B(B) = e / s bl [ a0}

(27
(7.8) P = / Ag, “ O ,0) dji.

Here the fiber dé-integral on the annihilator E- | = (E,/E,_1)" is with respect to the canonical
volume elements ([2.6)).

Proof. By a standard Tauberian argument, it suffices to prove that one has an on diagonal
asymptotic expansion for the heat kernel

(79) [B e o ],u (ZJZ I) =1 e [Zb t] + O (tN+1)]

7=0
that is uniform in x € X with leading term
1
(7.10) o=z [ duromd€a (s, { [ aensfese] y)} -
(2m)" JEL (Ey/Er_1) i
First consider the case B = 1. By Lemma it suffices to demonstrate the expansion for the
localized kernel [e_mw} (0,0) on R™. To this end, consider the rescaled sR-Laplacian and
measure g
Acp  =e%(8.), Ay,
lua = gQ(Jf) (58)* [’l
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using the privileged coordinate dilation from Section [2| . It is now clear that the Schwartz
kernels satisfy the relation

(7.11) [e‘tﬁaﬂ] («/,z) = 9@ [6_t52A9’“} (62, 0.) .
He 12
Rearranging and setting x = 2’ =0, t = 1; gives
£~ [e,gg#] (0,0) = [e*ﬂw} 0,0)
He Iz

and hence it suffices to compute the expansion of the left hand side above as the dilation € — 0.
To this end, first note that the rescaled Laplacian has an expansion

N
(7.12) A = (Z aA;#) +eNMRy, VNeEN
j=0

Here each A; B, is an e-independent second order differential operator of homogeneous E—order

j — 2. While each RgN) is an e-dependent second order differential operators on R" of E-order
at least N — 1. The coefficient functions of A;@ , are polynomials (of degree at most j + 2r)

while those of R are uniformly (in €) C*°-bounded. The first term is a scalar operator given
in terms of the nilpotent approximation

. LN 2
(7.13) A= Dge e = 3 (017)
j=1
at the point x. This expansion (7.12)) along with the subelliptic estimates now gives

-1 -1
- . .
<AgE7“ - z) - (ASEM - z) = OHfOC%HFOng/Fz (eImz|77),
Vs € R. More generally, we let I; = {p= (po,p1,--.) |[Pa € N,> Do = j} denote the set of
partitions of the integer j and define

(7.14) ¢;=Y (A )

pEIj

H APE o (ASE,u — z)_1] .

Then by repeated applications of the subelliptic estimate we have

xe Z Gz N4+1 —2NwE -2
<Ag u ) e C loc_>Hs+N(1/r 2) ( ]Imz| ,

oc

- M o,
Vs € R. A similar expansion as ((7.12) for the operator (AZE# + 1) (A‘SE — z), M € N,

98
also gives
(7.15)
N
-M —1
A€ A E J N+1 —2NwF -2
<AgE,u + 1) (AgE# — Z) E eC; = OH9 N ( |Imz|~
=0 loc " Hioe
—2NwF -2 . :
for operators C% ,, = OH“ N2 i <5N+1 [Tmz| """ ), j=0,...,N, with

loc

= (80, 1) (80, )

For M > 0 sufficiently large, Sobolev’s inequality gives an expansion for the corresponding
Schwartz kernels of (7.15) in C°(R™ x R"). By plugging the resolvent expansion into the

loc ™"
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Helffer-Sjostrand formula and noting p. ~ i+ Z;; &l u; gives the diagonal heat kernel expan-
sion

[eitAgEyu}M (q:, [E) = Z €;j (I) tj/2 with

Jj=0

e (x) = [e_AéEﬁ]ﬂ.

Finally, to see that the expansion only involves only even powers of t1/2_ note that the operators
A]gEu in the expansion (7.12)) change sign by (—1)’ under the rescaling 6_;. The integral
J

expression corresponding to C%(0,0) then changes sign by (—1)" under this change of
variables giving C? (0,0) = 0 for j odd.

We now come to the expansion for general B € ¥Y. By a partition of unity and Lemma ,
we may assume B to be supported in the privileged coordinate chart. That is it has an integral
representation [B]u (0,z) = [bw}u 0,z) = ﬁ [ dée=%p (%w,f) in the privileged coordinate

chart with symbol b being compactly supported in z . Next letting
6t1/2 : T*R™ — T*Rn,

(716) 6151/2 (ZI}, 5) = ((5t1/2$, 5t—1/2§>
denote the induced symplectic dilation of phase space, we note
(7.17) (6-172), 0" = 8506V 671 = (07,20)" .

Furthermore; the classical symbolic expansion for b € SY gives

(67/20) (€)= b (Gp/2m; Gp1/28) = b (Bpjem; t 28y, 17/%E,)

(7.18) = by [ 0;0,0,...,0,&n k41,5 &n | +O0s0, (1)
~—_————— ¢
N 5,:
boi=

We now finally compute

[Be’tAgv“] (0,0)

I

—72[(0,12), (Be™2o+)|  (0,0)

Hi1/2

—tQ/2 [(@_1/2)* B(3,1), e—fﬁw} (0,0)

K12

—~Q/2[1 4 o(1)] [bgve_Ang} (0.0)

(7.19) =t=@/2[1 4+ 0(1)] / e by (0;0,€) e 9" (0,15 0)

following (7.11]), (7.17) and (7.18)). The theorem now follows on noting leading term above to
agree with (7.10]) in privileged coordinates. O

The rescaling arguments in the proof above are also analogous to those in local index theory
cf. [46, Sec. 7| or [45, [44] and references therein. A local Weyl law for the semiclassical
(magnetic) analogue of sR Laplacian was also recently explored in [33] Sec. 3].

One still needs to identify the right hand side of with in the 4D quasi-contact
case. First note that (7.7), are unchanged on replacing i by pipopp. A model for the
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nilpotentization is given in terms of the Darboux coordinates of |4.1] this case is X = R?* with
E = R[04, 0p, + 12044, On, — 104,] being the span of the given (orthonormal) vector fields.
The partial Fourier transform in x3 of the nilpotent Laplacian is computed

(7.20) Fus Ny Fost = =05, = (00, + i0263)" — (Or, — i165)”
:A€3

while the Popp volume jipop, = 3dz is Euclidean. Mehler’s formula ([5] Sec. 4.2) now gives the
partial Fourier transform (7.6) of the heat kernel to be

/de e—ix3.§3 |:€_A2’”P0pp] (O, O) [exp { &;1 + 21’253) (am — ixlfg)ZH 1 g (0, 0)

HKPopp 2
1 2
= 26| . while

47r3/2 sinh |2&;]

(721) f(Aa) = <f(s),%z5(s 2|l (26 + 1>>>

cf. [46, Sec. 7.
We then calculate

i 1 1|26 1
— d o |: AS’HPOPP] , = — / d o / d = P(X
P / ILLP 19y (& KPopp (0 O) 27_(_ MP PP 5 471-3/2 Slnh |2§3| 32ﬁ ( )
while the leading term of (7.7)) is

T 1 125
E (B) _ﬁ/dupopp [b(z,a,(x)) +b(x {/ ds 7r3/251nh|2§3‘}

=51 | dorom B (.0 @) + (., @)

:% /dl/popp [b(z,ay () +b(x, —a, (z))]

proving ([7.1).

The expression above may be rewritten

E(B):/b
Y

in terms of the lifts of the normalized Popp volume to the unit sphere of the characteristic
variety and its blowup - We now generalize the above expression to prove a microlocal
Weyl law in \I/C (X, X)), via the heat kernel method here, agreeing with Theorem .

s+x; VPopp

VSNS*E
S*X¥ “Popp

Theorem 26. For X quasi-contact and B € W%’ (X, ), o (B) = by we have

(7.22) E(B)—/b|5NS* Vo .

Proof. Since B is microlocally a classical pseudo-differential operator [15| away from the charac-
teristic variety, where the microlocal Weyl measure vanishes, it suffices to prove @ for
B micro-supported near . In particular we may work in the microlocal chart C' where (4.15)
holds. Note that in the quasi-contact case, the Darboux coordinates (4.1]), used in the
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normal form for A e , and thereafter used in the definition |15 of \Ifgl’o (X, ) are in particular
privileged. Furthermore, the privileged dilation of phase space ([7.16)) extends to the blow up

Spse : [T'RY, 5] — [T*R*, 5]
5t1/2 ZZB_I(;tl/zB

and one has the relation
(7.23) (6,-1/2), b = 67501187 1o = (875,20) "

Vb € S(?l’o similar to 1) Furthermore; the classical symbolic expansion for b € Sgl’o gives

(7.24) % ub = by (o, d-? (xf + é%) ,0,0;d76,, o) +0g00 (1).

-

bo:=

The equation (4.4) and Duhamel’s principle give

(7.25) Up = (8p-12), U = 85, U8 1y = €55 4 00 i (1)

loc loc

for the diagonalizing FIO in [0} while (4.5)), (7.20) gives

oW A - N1 H
(7.26) G oY [ Sbinn(eti8)
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We may then compute
[U*BUe™974] (0,0)
= t5/2[(6,-1/2), U"BUe "]  (0,0)
(0,0)

=7 (Lo (U] [ AR e 0m] (0,0)
dx

Hi1/2

=t (U BU, (8,-12), € BoPon

}Htl/z

t_5/2

T W *
= o) [ WS
k=0
. {/d§06_£g+2p(2k+1)b0 (d;150> } eriZf(‘{V}

dxlx1=1o=23=0

t75/2 - >
=5 [L+o(1)] e N " Hy
T k=0
1
q= p'/? (2k + ) e—p(2k+1)/(1_zg)b (Zo) b H o5
. —0 ’_2 3/2 0 k
-1 (1 - ) dxlz1=x0=23=0
+-5/2 . -A
= 8772 1 +O /d_g/ dfgbo ) ! [A;é:/(lﬂ)e pgd/(l H(Q)):| (070)
-0 dx
4=5/2 = P22k +1)Y? =2
= 1+o0(1 / d=obo (2 / des S pes” P24/ (1-53)
e (Lo ]| [ oo () | Z =T

- o) ( I T3/2e7"dr) (ki ﬁ) / 1 4= (1 - =5) bo (50>]

3t SNS*S

BN [1+o0(1)] i bl sns+s HPopp
following (7.21)), (7.23), (7.24) and (7.25) and on identifying the right hand side of (7.22)) here
in terms of privileged coordinates. U

7.2. Variance estimate. We now prove the variance estimate (7.2)), specializing again to the
4D quasi-contact case. By replacing B € WY (X) by the operator B — E (B) € P9 (X) with
the same variance, we may assume that F (B) = 0. Furthermore we have

(7.27) V(B)) < E(BBy)

(7.28) V(Bi+ By) <2[V (B)) + V (By)]

(7.29) V(B) =0 = V (B, +Bs) =V (By),
VB, By € WY (X), (see [17, Lemma 4.1]) and

(7.30) 0 (Bl)ly =0 = E(B!B)=0

by Lemma [25| giving

(7.31) o (Bl =0 (B)ly = V(B1) =V (B).

From (7.28), (7.31) and a partition of unity it now suffices to prove (7.2)) for B € ¥9 (X)
micro-supported in a conic neighborhood of p € ¥ with F (B) = 0. By a Taylor expansion
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in the coordinates (g, 1, xs,T3;&0,&1,E2,&3) of the normal form (4.15), we may write B =
Bo + Bl where BO>BI S \I]((;)l (X) with o <Bl)|2 =0 and BO = [bo (xo,xz,i'g,fg,gg)}w S \Ifgl (X)
Furthermore, the homogeneous symbol o (By) = 7*by, by € C*(X), is the pull back of a
function from the base. From (7.27) and we have V (B;) = 0 and it suffices to show

V (By) =0 by (7.28]). Clearly E (By) = E(B) =0 by (7.31)) and [By, 2] = 0 (3.24)) showing
By € ) 4 (X) c ¥ (X;%:).

inv,cl

Next V (By) =V (eiit\/ 2924 Bye'' v 9E-ﬂ> by definition, while Egorov’s theorem Theorem

gives

= e_it \% AgE,#Boeit \% AgEv“ — OpH (e_tHd)* 00,0 (Bo) € \p;l’l (X, Z) .
=i
In particular the difference above D : L2 (X) — HY 1 (X, %) < H2° (X, %) — L2 (X) (5.20)
being a compact operator, its variance vanishes V (D) = 0 [I7, Lemma 4.2|. Hence V (By) =
Vv (OpH [b]), Vt, and also

1 T
V(By) =V | Op” —/ dt b
0

— By
o )
(7.32) < E(ByBr) = / b7l sxsesl” Voopn
VT >0, by (7.22) and (7.27). Finally br|gyg. — 0in L* (SNS*S;0555") as T'— oo under
the ergodicity assumption on Z by the von Neumann mean ergodic theorem to prove the first
part of Theorem [4

Next to prove the second part of Theorem , suppose that LF is ergodic and Lz pupep, = 0.
From the equivalent conditions (2.31)) and the computation (4.21]) it follows that the function
Zo is now preserved under the Z-flow. Furthermore, the level sets (SNS*3/S1), = {Z, = ¢},

¢ € (—1,1), are copies of X with the Z-flow (thﬂ = (mgom)" cZb;, being simply

(SNS*%/S1),
lifted from the base

bt|(SNS*Z)C = (rsom)’ (e—th)* bo.
Setting, (bo)y = 7 fo dt (e7'%)" by, we may then compute

1
/ rlswses i = [ (1= ) de [ vrpn (to)

1

1 T C/2 , 9
(7.33) = T/T (1 - ﬁ) dc /VPOpp [(bo)er|” -

As noted before the ergodicity assumption on L¥ is equivalent to the ergodicity of the vector
field Z € C* (L¥). Since E(By) = [ bovpopp = 0, the von Neumann mean ergodic theorem

applied to €7 gives [ Vpopp |(bo)y|” and hence (7.33) converges to zero as T' — oo,
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We finally remark that the ergodicity of L¥ alone , which is a topological condition, does
not suffice to prove the variance estimate and hence quantum ergodicity in the general vol-
ume preserving case. In this case, following the computation and , functions
of the form f((1—Z=§)/pz) are seen to be invariant under the Z flow. The last line of

7.32) now converging to the projection of by onto the Z invariant functions, such a projection
Sl 2 f (1= Z2) /pz) (B*7*bo) of the symbol by , [ botipopy = 0, might be non-zero unless
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