From Calculus to Cohomology

Homework 1

Exercise 1. Using the definitions of grad, rot, div given in the lecture for the case of subsets of \mathbb{R}^{3}, show that

$$
r o t \circ \operatorname{grad}=0, \quad d i v \circ r o t=0 .
$$

Exercise 2. Prove that if $U \subset \mathbb{R}^{3}$ is star shaped then $H^{2}(U)=0=H^{2}(U)$. What is $H^{0}(U)$ then? Hint: You may want to play a bit with integrating and with a function $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(f_{2} x_{3}-\right.$ $\left.f_{3} x_{2}, f_{3} x_{1}-f_{1} x_{3}, f_{1} x_{2}-f_{2} x_{1}\right)$ evaluated at $t x$.

Exercise 3. Decide whether $H^{1}\left(\mathbb{R}^{3} \backslash S\right)$ is $\{0\}$ or not, if $S=\left\{\left(x_{1}, x_{2}, 0\right) ; x_{1}^{2}+x_{2}^{2}=1\right\}$.
Hint: You may want to play a bit with a function $\left(x_{1}, x_{2}, x_{3}\right) \mapsto \frac{1}{x_{3}^{2}+\left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}}\left(-2 x_{1} x_{3},-2 x_{2} x_{3}, x_{1}^{2}+\right.$ $\left.x_{2}^{2}-1\right)$.

These exercises are to be discussed on Thursday October 12th.

