From Calculus to Cohomology

Homework 2

Exercise 1. Prove the lemma from the lecture saying that $\omega \in A l t^{k}(V)$ if and only if $\omega\left(v_{1}, \ldots, v_{k}\right)=$ 0 whenever $v_{i}=v_{i+1}$, for some $i=1, \ldots, k-1$.

Exercise 2. Prove that the two definitions of $\omega_{1} \wedge \omega_{2}$ given in the lecture are indeed equivalent. Hint: Remember that a k-linear map is determined by its values on k-tuples $\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$, where $e_{1}, \ldots, e_{\operatorname{dim} V}$ is a basis of V.

Exercise 3. Prove that for $\omega_{1} \in A l t^{k}(V)$ and $\omega_{2} \in A l t^{m}(V)$

$$
\omega_{1} \wedge \omega_{2}=(-1)^{k m} \omega_{2} \wedge \omega_{1}
$$

Exercise 4. Prove that for $\omega_{1} \in A l t^{k}(V), \omega_{2} \in A l t^{l}(V)$, and $\omega_{3} \in A l t^{m}(V)$

$$
\left(\omega_{1} \wedge \omega_{2}\right) \wedge \omega_{3}=\omega_{1} \wedge\left(\omega_{2} \wedge \omega_{3}\right)
$$

Exercise 5. Find $\omega \in A l t^{2}\left(\mathbb{R}^{4}\right)$ with $\omega \wedge \omega \neq 0$.
Exercise 6. If $\omega_{1}, \ldots, \omega_{k} \in A l t^{1}(V)$ then for any $v_{1}, \ldots, v_{k} \in V$ it holds that

$$
\omega_{1} \wedge \ldots \wedge \omega_{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left|\begin{array}{lll}
\omega_{1}\left(v_{1}\right) & \ldots & \omega_{1}\left(v_{k}\right) \\
& \ldots & \\
\omega_{k}\left(v_{1}\right) & \ldots & \omega_{k}\left(v_{k}\right)
\end{array}\right|
$$

These exercises are to be discussed on Thursday October 19th.

