WS 2017/2018

From Calculus to Cohomology

Homework 3

Exercise 1. Prove that the two definitions of $d: \Omega^p(U) \to \Omega^{p+1}(U)$ given in the lecture are indeed equivalent.

Hint: Remember that a *p*-linear map is determined by its values on *p*-tuples $(e_{i_1}, \ldots, e_{i_p})$, where $e_1, \ldots, e_{\dim V}$ is a basis of *V*.

Exercise 2. Exercise 3.1 from the book.

Exercise 3. Let V be an n-dimensional vector space with inner product \langle , \rangle . A volume element of V is a unit vector $vol \in Alt^n(V)$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of V with $vol(e_1, \ldots, e_n) = 1$, and $\{\epsilon_1, \ldots, \epsilon_n\}$ the dual basis of $Alt^1(V)$. Define the Hodge star operator $*: Alt^p(V) \to Alt^{n-p}(V)$ as a linear map determined by

$$*(\epsilon_{\sigma(1)} \wedge \ldots \wedge \epsilon_{\sigma(p)}) = sgn(\sigma)\epsilon_{\sigma(p+1)} \wedge \ldots \wedge \epsilon_{\sigma(n)},$$

for any $\sigma \in S(p, n-p)$. Show that the composition $* \circ *: Alt^p(V) \to Alt^p(V)$ is simply a multiplication by $(-1)^{p(n-p)}$.

Exercise 4. Exercises 3.2 and 3.3 from the book.

These exercises are to be discussed on Thursday October 26th.