From Calculus to Cohomology

Homework 3

Exercise 1. Prove that the two definitions of $d: \Omega^{p}(U) \rightarrow \Omega^{p+1}(U)$ given in the lecture are indeed equivalent.
Hint: Remember that a p-linear map is determined by its values on p-tuples $\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)$, where $e_{1}, \ldots, e_{\operatorname{dim} V}$ is a basis of V.

Exercise 2. Exercise 3.1 from the book.
Exercise 3. Let V be an n-dimensional vector space with inner product \langle,$\rangle . A volume element of V$ is a unit vector vol $\in A l t^{n}(V)$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V with $\operatorname{vol}\left(e_{1}, \ldots, e_{n}\right)=$ 1 , and $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ the dual basis of $\operatorname{Alt}^{1}(V)$. Define the Hodge star operator $*: \operatorname{Alt}^{p}(V) \rightarrow$ $A l t^{n-p}(V)$ as a linear map determined by

$$
*\left(\epsilon_{\sigma(1)} \wedge \ldots \wedge \epsilon_{\sigma(p)}\right)=\operatorname{sgn}(\sigma) \epsilon_{\sigma(p+1)} \wedge \ldots \wedge \epsilon_{\sigma(n)}
$$

for any $\sigma \in S(p, n-p)$. Show that the composition $* \circ *: A l t^{p}(V) \rightarrow A l t^{p}(V)$ is simply a multiplication by $(-1)^{p(n-p)}$.

Exercise 4. Exercises 3.2 and 3.3 from the book.
These exercises are to be discussed on Thursday October 26th.

