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Abstract. We use the Gelfand-Tsetlin pattern to construct an effective Hamiltonian, com-

pletely integrable action of a torus T on an open dense subset of a coadjoint orbit of the
unitary group. We then identify a proper Hamiltonian T -manifold centered around a point in

the dual of the Lie algebra of T . A theorem of Karshon and Tolman says that such a mani-

fold is equivariantly symplectomorphic to a particular subset of R2D. This fact enables us to
construct symplectic embeddings of balls into certain coadjoint orbits of the unitary group,

and therefore obtain a lower bound for their Gromov width. Using the identification of the

dual of the Lie algebra of the unitary group with the space of n× n Hermitian matrices, the
main theorem states that for a coadjoint orbit through λ = diag(λ1, . . . , λn) in the dual of the

Lie algebra of the unitary group, where at most one eigenvalue is repeated, the lower bound

for Gromov width is equal to the minimum of the differences λi − λj , over all λi > λj . For
a generic orbit (i.e. with distinct λi’s), with additional integrality conditions, this minimum

has been proved to be exactly the Gromov width of the orbit. For nongeneric orbits this lower
bound is new.

1. Introduction

In 1985 Mikhail Gromov proved the nonsqueezing theorem which is one of the foundational
results in the modern theory of symplectic invariants. The theorem says that a ball B2N (r)
of radius r, in a symplectic vector space R2N with the usual symplectic structure, cannot be
symplectically embedded into B2(R) × R2N−2 unless r ≤ R. This motivated the definition of
the invariant called the Gromov width. Consider the ball of capacity a

B2N
a =

{
z ∈ CN

∣∣∣ π N∑
i=1

|zi|2 < a
}
,

with the standard symplectic form ωstd =
∑
dxj∧dyj . The Gromov width of a 2N -dimensional

symplectic manifold (M,ω) is the supremum of the set of a’s such that B2N
a can be symplectically

embedded in (M,ω).
In this work we focus on the Gromov width of coadjoint orbits of Lie groups. A Lie group G

acts on itself by conjugation

G 3 g : G→ G, g(h) = ghg−1.

Derivative at the identity element gives the action of G on its Lie algebra g, called adjoint action.
This induces the action of G on g∗, the dual of its Lie algebra, called the coadjoint action. Each
orbit O of the coadjoint action is naturally equipped with the Kostant-Kirillov symplectic form:

ωξ(X,Y ) = 〈ξ, [X,Y ]〉, ξ ∈ g∗, X, Y ∈ g.

For example, when G = U(n) the group of (complex) unitary matrices, a coadjoint orbit can
be identified with the set of Hermitian matrices with a fixed set of eigenvalues. With this
identification, the coadjoint action of G on an orbit O is simply action by conjugation. It is
Hamiltonian, and the momentum map is just inclusion O ↪→ g∗.
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Choose a maximal torus T ⊂ G and a positive Weyl chamber t∗+. Every coadjoint orbit
intersects the positive Weyl chamber in a single point. Therefore there is a bijection between the
coadjoint orbits and points in the positive Weyl chamber. Points in the interior of the positive
Weyl chamber are called regular points.

In this paper we consider coadjoint orbits of U(n). Multiplying by a factor of i, we can identify
the Lie algebra u(n) with the space of Hermitian matrices. The pairing in u(n)

(A,B) = trace(AB)

gives us the identification of u∗(n) with u(n). From now on, we will identify u∗(n) with the space
of Hermitian matrices.

Given a Hamiltonian torus action one can construct embeddings of balls using the information
from the moment polytope. Using this technique we prove the following theorem.

Theorem 1.1. Consider the U(n) coadjoint orbitM := Oλ in u(n)∗ through a point diag (λ1, λ2, . . . , λn)
where

λ1 > λ2 > . . . > λl = λl+1 = . . . = λl+s > λl+s+1 > . . . > λn, s ≥ 0.

The Gromov width of M is at least the minimum min{λi − λj |λi > λj }.
Using Lie theory language we can reformulate Theorem 1.1 in the following way.

Theorem 1.2. (Reformulation of Theorem 1.1) Consider the U(n) coadjoint orbitM := Oλ
in u(n)∗ through a point λ = diag (λ1, λ2, . . . , λn) where

λ1 > λ2 > . . . > λl = λl+1 = . . . = λl+s > λl+s+1 > . . . > λn, s ≥ 0.

The Gromov width of M is at least the minimum

min{ 〈α∨, λ〉 | α∨ a coroot, 〈α∨, λ〉 > 0}.
Remark. In fact the hypothesis can be weakened. The only necessary condition is that the
Gelfand-Tsetlin polytope associated to Oλ contains at least one good vertex. These notions will
be explained in Section 3.3.

There are reasons to care about this particular lower bound. In the case of generic coadjoint
orbits, i.e. when λ1 > λ2 . . . > λn, Masrour Zoghi in [Z] had already obtained this lower bound.
Moreover, with some additional integrability assumption on λ, he proved that this lower bound
is precisely the Gromov width. He also proved a similar upper bound for Gromov width of
generic coadjoint orbits (with some integrality conditions) of other simple compact Lie groups.
This suggests that the lower bound for non-generic orbits that we provide here may in fact be
the Gromov width.

To prove the Theorem 1.1 we will recall an action of the Gelfand-Tsetlin torus on an open
dense subset of Oλ. We will then use the theorem of Karshon and Tolman, [KT1], recalled
here as Proposition 2.6, to obtain symplectic embeddings of balls. Masrour Zoghi also used the
Karshon and Tolman’s result, but applied to the standard coadjoint action of a maximal torus.
He suggested that maybe the action of the Gelfand-Tsetlin torus could give stronger results for
a wider class of orbits.

Organization. Section 2 provides background about centered actions and Gelfand-Tsetlin
functions. In Section 3, we carefully analyze Gelfand-Tsetlin functions and the action they
induce. Section 4 contains the proof of the main result. Section 5 has a “bookkeeping” character.
There we summarize what is known about the Gromov width of U(n) coadjoint orbits for small
values of n.

Acknowledgments. The author is very grateful to Yael Karshon for suggesting this problem
and helpful conversations during my work on this project. The author also would like to thank
her advisor, Tara Holm, for useful discussions.
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2. Preliminaries

2.1. Centered actions. Centered actions were introduced in [KT2]. For completeness and to
set notation we include the details here following [KT1]. Let (M,ω) be a connected symplectic
manifold, equipped with an effective, symplectic action of a torus T ∼= (S1)dimT . The action of
T is called Hamiltonian if there exists a T -invariant map Φ: M → t∗, called the momentum
map, such that

(2.1) ι(ξM )ω = d 〈Φ, ξ〉 ∀ ξ ∈ t,

where ξM is the vector field on M generated by ξ ∈ t. We will identify Lie(S1) with R using
the convention that the exponential map exp : R ∼=Lie(S1) → S1 is given by t → e2πit, that is
S1 ∼= R/Z.
At a fixed point p ∈ MT , we may consider the induced action of T on the tangent space TpM .
There exist ηj ∈ t∗, called the isotropy weights at p, such that this action is isomorphic to the
action on (Cn, ωstd) generated by the moment map

ΦCn(z) = Φ(p) + π
∑
|zj |2(−ηj).

The isotropy weights are uniquely determined up to permutation. Note that with our sign
convention in equation 2.1 the isotropy weights are pointing out of the momentum map image.
For example, standard S1 action on C2 by rotation with speed one gives the following momentum
map image:

NOT

By the equivariant Darboux theorem, a neighborhood of p in M is equivariantly symplectomor-
phic to a neighborhood of 0 in Cn. However, this theorem does not tell us how large we may
take this neighborhood to be. Let T ⊂ t∗ be an open convex set which contains Φ(M). The
quadruple (M,ω,Φ, T ) is a proper Hamiltonian T-manifold if Φ is proper as a map to T ,
that is, the preimage of every compact subset of T is compact.

For any subgroup K of T , let MK = {m ∈M | a ·m = m ∀a ∈ K} denote its fixed point set.

Definition 2.1. A proper Hamiltonian T -manifold (M,ω,Φ, T ) is centered about a point
α ∈ T if α is contained in the moment map image of every component of MK , for every
subgroup K ⊆ T .

We now quote several examples and non-examples, following [KT1].

Example 2.2. A compact symplectic manifold with a non-trivial T -action is never centered,
because it has fixed points with different moment map images.

Example 2.3. Let a torus T act linearly on Cn with a proper moment map ΦCn such that
ΦCn(0) = 0. Let T ⊂ t∗ be an open convex subset containing the origin. Then Φ−1

Cn (T ) is
centered about the origin.

A Hamiltonian T action on M is called toric if dimT = 1
2 dimM.
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Example 2.4. Let M be a compact symplectic toric manifold with moment map Φ: M → t∗.
Then ∆ := Im Φ is a convex polytope. The orbit type strata in M are the moment map pre-
images of the relative interiors of the faces of ∆. Hence, for any α ∈ ∆,⋃

F face of ∆
α∈F

Φ−1(rel-int F )

is the largest subset of M that is centered about α.

When the dimension of the torus acting on a compact symplectic manifold is less then half
of the dimension of the manifold, one can easily find a centered region from an x-ray of the
Hamiltonian T -space M . The x-ray of (M,ω, φ) is the collection of convex polytopes φ(X) over
all connected compontents X of MK for some subtorus K of T (for more details see [To]). For
the toric symplectic manifold, an x-ray is exactly the collection of faces of convex polytope that
is the image of moment map. Figure 2.1 presents some examples of centered regions, that we
can see directly from the x-rays of M .

α α

Figure 1. The regions centered around α.

Example 2.5. Let (M,ω,Φ, T ) be a proper Hamiltonian T -manifold. Then every point in t∗

has a neighborhood whose preimage is centered. This is a consequence of the local normal form
theorem and the properness of the moment map.

Proposition 2.6. (Karshon, Tolman, [KT1]) Let (M,ω,Φ, T ) be a proper Hamiltonian T -
manifold. Assume that M is centered about α ∈ T and that Φ−1({α}) consists of a single fixed
point p. Let −η1, . . . ,−ηn be the isotropy weights of T action on TpM . Then M is equivariantly
symplectomorphic to {

z ∈ Cn | α+ π
∑
|zj |2ηj ∈ T

}
,

where T acts on Cn with weights −η1, . . . ,−ηn.

Note that the above formlumation differs from the one in [KT1] by a minus sign. This is
due to the fact that our definition of momentum map 2.1 also differs by a minus sign from the
definition used in [KT1].

Example 2.7. Consider a compact symplectic toric manifold M whose momentum map image
is the closure of the following region.



LOWER BOUNDS FOR GROMOV WIDTH OF THE U(n)-COADJOINT ORBITS. 5

α

η2

η1 5η1

2η2

−η1

−η2

The weights of the torus action are (−η1) and (−η2), and the lattice lengths of edges starting
from α are 5 and 2 (with respect to weight lattice). The largest subset of M that is centered
about α, as described in Example 2.4, maps under the moment map to the shaded region. The
above Proposition tells us that it is equivariantly symplectomorphic to

{z ∈ C2|α+ π(|z1|2 + |z2|2) ∈ shaded region }.

If z ∈ B4
2 = {z ∈ C2

∣∣∣π(|z1|2 + |z2|2) < 2} then α + π(|z1|2η1 + |z2|2η2) is in the shaded region.

Therefore the 4-dimensional ball B4
2 of capacity 2 embeds into M and the Gromov width of M

is at least the minimum of lattice lengths of edges of the moment polytope, starting at α. Note
also that the momentum map image of the embedded ball B4

2 is the triangle with vertices α,
α+ 2η1 and α+ 2η2.

2.2. Standard torus action on a coadjoint orbit. Under our identifications, the coadjoint
action of U(n) on u(n)∗ is by conjugation: A · ξ = AξA−1. Restricted to an orbit Oλ, this
action is Hamiltonian with momentum map the inclusion Oλ ↪→ u(n)∗. Let T = Tn be the
standard maximal torus in U(n) (given by diagonal matrices). As explained in the introduction,
we identify u(n)∗ with the space of n×n Hermitian matrices. We will use coordinates {eij}, with
eij corresponding to (i, j)-th entry of a matrix. We choose the positive Weyl chamber, (t∗)+, to
be

(t∗)+ := {diag(λ11, λ22, . . . , λnn); λ11 ≥ λ22 ≥ . . . ≥ λnn}.
Then ∆ = {eii−ejj | i 6= j} is a root system and Σ = {eii−ei+1,i+1 | i = 1, 2, . . . , n−1} is the set
of positive roots. The coadjoint orbits in u(n)∗ are in one-to-one correspondence with the points
of (t∗)+. Precisely, for any (λ11, λ22, . . . , λnn) ∈ (t∗)+ the corresponding coadjoint orbit is the set
of all Hermitian matrices with eigenvalues (λ11, λ22, . . . , λnn). Fix some λ = (λ11 ≥ λ22 ≥ . . . ≥
λnn) ∈ (t∗)+ and denote by Oλ the coadjoint orbit through λ. The standard Tn action on Oλ
is the action of the maximal torus Tn ⊂ U(n). The fixed points of this action are the diagonal
matrices. In particular, λ is a fixed point and the weights of Tn action on TλOλ are given by
the negative roots −Σ. The Tn action is Hamiltonian with moment map µ : Oλ → (tn)∗ ∼= Rn
that maps a matrix A = (aij) to the diagonal n× n matrix diag (a11, . . . , ann).

However the dimension of torus acting effectively is less then half of the dimension of the
coadjoint orbit, so this action is not toric. If Oλ is regular then this action is effective but
dimTn = n while dimOλ = 1

2n(n − 1). Let Q = µ(Oλ) ⊂ (tn)∗ denote the momentum map
image for the standard Tn action. The vertices of Q correspond to the Tn-fixed points, that is,
the diagonal matrices in Oλ. If λ is generic, then the vertices correspond exactly to permutations
on n elements. Thus there are exactly n! of them. If λ is non-generic, say

λ1 = . . . = λl1 > λl1+1 = . . . = λl1+l2 > . . . > λn−ls+1 = . . . = λn,

then the vertices correspond to cosets Sn/(Sl1 × . . .×Sls), and there are exactly n!
l1!...ls! of them.
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Recall that GKM manifold is a manifold M equipped with a faithful action of a torus
K of dimension l > 1 such that the set of zero dimensional orbits in the orbit space M/K is
zero dimensional and the set of one dimensional orbits in M/K is one dimensional (see [GKM],
[GHZ], [TW]). The coadjoint orbit Oλ with the standard Tn action is an example of GKM
manifold. In particular this means that the closure of every connected component of the set
{x ∈ Oλ; dim(Tn · x) = 1} is a sphere. The closure of {x ∈ Oλ; dim(Tn · x) = 1} is called
1-skeleton of Oλ. Denote by Q1 the image of 1-skeleton under the momentum map. The
GKM assumption forces Q1 to be a ( 1

2 dimOλ)-valent graph with vertices V ert(Q1) = V ert(Q)
corresponding to Tn-fixed points and edges corresponding to closures of connected components
of the 1-skeleton. Note that not all edges in Q1 are edges of the polytope Q. Images of two fixed
points, F and F ′, are connected by an edge in Q1 if and only if they differ by one transposition
of two different diagonal entries. Therefore there are exactly

D := [ l1(l2 + . . . ls) + l2(l3 + . . .+ ls) + . . .+ ls−1ls ] =
∑
i<j

lilj

edges leaving any vertex of Q1 and thus dim Oλ = D dim(S2) = 2D. In the case of generic λ,
the moment polytope of Oλ is called a permutahedron.

Denote the diagonal entries of F by F11, . . . , Fnn. Let p < q be indices from {1, . . . n} such
that Fpp 6= Fqq and F ′ is the matrix obtained from F by switching p-th and q-th entry. The
edge joining µ(F ) and µ(F ′) is an µ-image of a sphere in Oλ. This sphere is the orbit of
SU(2) action on F and is obtained in the following way. Denote Fpp = vi, Fqq = vk. For any

z ∈ CP1 = C ∪ {∞} let Iz be the matrix obtained from the identity matrix by changing four
entries (j, k) with j, k ∈ {p, q} in the way presented below and let Fz = IzFI

−1
z be the matrix

obtained from F by conjugation with Iz. This means that Fz differs from F only at four entries
(j, k) with j, k ∈ {p, q}. The matrices have the following shapes

Iz =


I

...
...

. . . 1
Z . . . −z̄

Z . . .
... I

...
. . . z

Z . . . 1
Z . . .

...
... I


, Fz =



. . .
... 0

... 0

. . . (vi+|z|2vk)
Z . . . z̄(vi−vk)

Z . . .

0
...

. . .
... 0

. . . z(vi−vk)
Z . . . (vk+|z|2vi)

Z . . .

0
... 0

...
. . .


where Z =

√
1 + |z|2. Then

µ({Fz; z ∈ CP1}) = µ(F )µ(F ′).

Moment image of the standard torus action is also explained in [Ty],[MRS].
There are also other natural actions on Oλ. For any j = 1, . . . , n, we have a natural embedding

ιj : U(j)→ U(n)

ιj(B) =

(
B 0
0 Id

)
,

where B ∈ U(j). Using this embedding we obtain a U(j) action (and also an action of maximal
torus T j) on Oλ: for B ∈ U(j) and ξ ∈ Oλ, we define

B · ξ = ιj(B) ξ (ιj(B))−1.

To simplify the notation, we will often write B instead of ιj(B). Both of these actions are also
Hamiltonian. The momentum map for the U(j) action is the projection

Φj : Oλ → u(j)∗
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sending every matrix to its j × j top left minor.

2.3. Gelfand-Tsetlin system. In this subsection we recall the Gelfand-Tsetlin (sometimes
spelled Gelfand-Cetlin, or Gelfand-Zetlin) system of action coordinates, which originally ap-
peared in [GS1]. It is related to the classical Gelfand-Tsetlin polytope introduced in [GTs].
There are many references describing this system, for example [GS1], [K], [NNU], [H]. For
the readers’ convenience and to fix the notation, we follow Mikhai Kogan’s construction for a
coadjoint U(n) orbit in u(n)∗, [K].

Consider the sequence of subgroups

U(n) ⊃ U(n− 1) ⊃ . . . ⊃ U(2) ⊃ U(1).

For each U(j) in the sequence choose the maximal torus Tj to be the set of diagonal matrices
in U(j) and the positive Weyl chamber, (tj)∗+, to consist of diagonal Hermitian j × j matrices
with non-increasing diagonal entries. Recall that the moment map for the U(j) action on Oλ is
denoted by Φj and maps A ∈ Oλ to j × j top left submatrix of A. Denote the eigenvalues of
Φj(A), ordered in a non-increasing way, by

λ
(j)
1 (A) ≥ λ(j)

2 (A) ≥ . . . ≥ λ(j)
j (A).

We will use the notation Λ(j) = (λ
(j)
1 , . . . , λ

(j)
j ) : Oλ → Rj , for a function sending A to

(λ
(j)
1 (A), . . . , λ

(j)
j (A)) ∈ Rj . For j = n, we just get Φn(A) = A and λ

(n)
k (A) = λk. The

Gelfand -Tsetlin system of action coordinates is the collection of the functions λ
(j)
k for

j = 1, . . . , n− 1 and k = 1, . . . , j. We will denote them by

Λ : Oλ → RN ,

where

N := (n− 1) + (n− 2) + . . .+ 1 =
n(n− 1)

2
.

Notice that Λ(j) is the composition of Φj and a map sj : u(j)∗ → (tj)∗+ ⊂ Rj sending a point
in u(j)∗ to the unique point of intersection of its U(j) orbit with the positive Weyl chamber.

Oλ Φj
//

Λ(j) ##FF
FF

FF
FF

F u(j)∗

sj

��
(t(j))∗+

Here we identify (tj)∗ with Rj by diag(a1, . . . , aj)→ (a1, . . . , aj).
The components of sj are U(j) invariant, so they Poisson commute. After precomposing them

with Φj , we get a family of Poisson commuting functions on Oλ (see Proposition 3.2 in [GS1]).

These are exactly λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
j . For l < j denote by κlj : u(j)∗ → u(l)∗ the transpose of the

map u(l)→ u(j) induced by the inclusion. The functions

λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
j , λ

(l)
1 ◦ κlj , λ

(l)
2 ◦ κlj , . . . , λ

(l)
l ◦ κlj

Poisson commute on u(l)∗ by Proposition 3.2 in [GS1] and the fact that first j of them are U(j)
invariant. Therefore the Gelfand-Tsetlin functions Poisson commute on Oλ.
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3. The action of the Gelfand-Tsetlin torus

3.1. Smoothness of the Gelfand-Tsetlin functions. The function λ
(j)
k need not be smooth

on the whole orbit Oλ. The eigenvalues depend smoothly on the matrix entries, but this property
is not preserved when reordering them in a non-increasing way. They are smooth, however, on
a dense open subset of Oλ. To identify this subset we will need the following result proved in
[CDM]. This theorem is also true for orbifolds: see [LMTW, Theorem 3.1].

Theorem 3.1. Let G be a compact connected Lie group with a maximal torus T . Suppose G
acts on a compact connected symplectic manifold M in a Hamiltonian way, with moment map
Φ : M → g∗. Then there exists a unique open wall σo of the Weyl chamber t∗+ with the properties
that Φ(M) ∩ t∗+ ⊂ σ = σo and Φ(M) ∩ t∗+ ∩ σo 6= ∅.

Let σo = σoj be the unique open wall from the above theorem applied to the standard G = U(j)

action on M = Oλ. We call σ = σo the principal face. Any (closed) wall of positive Weyl
chamber (tj)∗+ that contains σ is called a special wall, while all the others walls are called
regular walls. Thus σ is the intersection of all special walls, and σo = σ \ (∪ regular walls).

Walls of (tj)∗+ are defined by a collection of equations of the form λ
(j)
L = λ

(j)
L+1. If a wall τ is

special, i.e. σ ⊂ τ , then its defining equations hold on the whole Λ(Oλ).

Proposition 3.2. The function Λ(j) is smooth on the set U (j) = (Λ(j))−1(σo).

Proof. To simplify the notation, we will denote U(j) by G, and the maximal torus in U(j) simply
by T . Recall that the function Λ(j) is a composition of a smooth function Φj and projection
π : g∗ = u(j)∗ → t∗+. Therefore we only need to prove smoothness of the projection π on

Φj(U (j)) = π−1(σo). Note that all points in σo have the same G-stabilizer (under the coadjoint
action of G). Denote it by H. Let S be the subset of g∗ equal to π−1(σo). This means that
S = (g∗)(H) is an orbit-type stratum and therefore it is a submanifold of g∗. Consider the
smooth, G-equivariant, surjective map:

G× σo → S
(g, x) → g · x

This map induces G-equivariant bijective map

Θ : G/H × σo → S,
([g], x) → g · x

which is also a diffeomorphism. Notice that the composition, π ◦Θ

G/H × σo → t∗+
([g], x) → x

is just the projection onto second factor, therefore it is smooth. This means that on S, π is
smooth, as a composition of Θ−1 and a smooth projection. It follows that the function Λ(j) is
smooth on the set (Φj)−1(S) = (Λ(j))−1(σo) = U (j). �

Remark. The set of smooth points for Λ(j) may be strictly bigger than U (j). For example,
consider the orbit Oλ with λ = diag(3, 3, 2, 1) and matrix A = λ. Then A is not in U (j) because

λ
(3)
1 = λ

(3)
2 , so Φ3(A) is in σ3 \σo3. Note however that the function λ

(3)
1 is smooth as it is constant

(equal to 3) on Oλ. Therefore the function λ
(3)
2 = trace ◦ Φ3 − λ(3)

1 − λ(3)
3 is also smooth. To

be more general, suppose that a function λ
(j)
k is constant on the whole orbit Oλ, and let A be

a point in Oλ such that λ
(j)
k (A) = λ

(j)
k+1(A). Suppose further that if for any l 6= k we also have
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λ
(j)
l (A) = λ

(j)
l+1(A) then λ

(j)
l and λ

(j)
l+1 are equal on the whole Oλ. In this case, the function

λ
(j)
k+1 = trace ◦ Φj −

∑
l 6=k+1

λ
(j)
l

is smooth at the point A, as a difference of smooth functions, although A is not in the set U (j)

as defined above. We will later define a good vertex as a point q ∈ Λ(Oλ), with Λ−1(q) – single
point, such that Λ is smooth in its neighborhood. The hypothesis of the main theorem can
be weakened to the existence of a good vertex. Proving the smoothness of the Gelfand-Tsetlin
functions on a set bigger then U (j) would allow us to apply the proof of the main theorem to a
wider class of non-generic coadjoint orbits. The theorem holds if only there is a Tn-fixed point
with a neighborhood equipped with a smooth action of Gelfand-Tsetlin torus TD. Therefore our
techniques may be extended to coadjoint orbits with an additional eigenvalue repeating twice.
The technical details became more cumbersome, though, so we do not include them here.

3.2. The torus action induced by the Gelfand-Tsetlin system. At the points where Λ(j) is
smooth, it induces a smooth action of T j ↪→ TU(j), a subtorus of TU(j). The process of obtaining
this new action, which we denote by ∗, is often referred to as the Thimm trick. If λ is regular
then T j = TU(j). An element t ∈ T j acts on a point A ∈ Oλ by the standard, coadjoint U(j)

action of B−1 tB, where B ∈ U(j) is such that Ad∗(B) Φj(A) ∈ (tU(j))
∗
+ is the unique point of

intersection of (tU(j))
∗
+ and the U(j)-coadjoint orbit through Φj(A). That is

t ∗A = Ad∗
([

B−1 tB
I

])
(A).

In this thesis we consider only matrix groups, and for them the coadjoint action is the action
by conjugation. Therefore we will simplify the notation and write conjugation in place of the
coadjoint action:

(3.1) t ∗A =

(
B−1 tB

I

)
A

(
B−1 tB

I

)−1

.

Recall that for regular λ, a matrix A ∈ U (j) if BΦj(A)B−1 ∈ int (tU(j))
∗
+, so the stabilizer of

BΦj(A)B−1 in U(j) is precisely TU(j) = T j . The fact that T j commutes with the stabilizer of

BΦj(A)B−1 implies that the action is well defined, as explained below.

If λ is not regular then some of the functions λ
(j)
∗ may be constant on the whole orbit. Let

T j ↪→ TU(j) be the subtorus defined by

{(t1, . . . , tj) ∈ TU(j); ti = 1 if λ
(j)
i constant on the whole orbit }.

(This definition gives T j = TU(j) if none of the functions λ
(j)
∗ is constant on the whole orbit). Let

σj be the unique wall of the positive Weyl chamber (tU(j))
∗
+ from Theorem 3.1. All points in σoj

have the same stabilizer. Note that the torus T j commutes with the stabilizer in U(j) of points
in σoj . The stabilizer in U(j) of points in σoj is a product of circles and of groups U(m) (various

m ≤ j whose sum is at most j), one for each longest sequence λ
(j)
i = λ

(j)
i+1 = . . . = λ

(j)
i+m−1 ≡ λi

of the functions λ
(j)
∗ that are constant on the whole orbit. Elements of the torus T j are diagonal

matrices with diagonal entries equal to 1 in blocks corresponding to the U(m) factors of the

stabilizer. For example, if λ
(j)
1 = λ

(j)
2 = . . . = λ

(j)
m ≡ λ1, then the stabilizer in U(j) of points in

σoj is U(m)×S1× . . .×S1, while elements of T j are of the form (1, . . . , 1, tm+1, . . . , tn) and thus

commute with the stabilizer. The action of t ∈ T j on A ∈ Oλ is given by equation (3.1), where
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B ∈ U(j) is such that BΦj(A)B−1 ∈ σj ⊂ (tU(j))
∗
+. If C is another element of U(j) such that

C Φj(A)C−1 ∈ (tU(j))
∗
+, then

B Φj(A)B−1 = C Φj(A)C−1 = CB−1B Φj(A)B−1BC−1,

so CB−1 ∈ StabU(j)(BΦj(A)B−1). Therefore for t ∈ T j have

C−1tC = C−1tC B−1 t−1 tB = C−1 t t−1 C B−1 tB = B−1 tB,

what implies that the action is well defined.

Proposition 3.3. The new T j action defined above is Hamiltonian on the subset U (j) =
(Λ(j))−1(σoj ), with momentum map Λ(j). (For non-regular orbits the momentum map consists

only of non-constant coordinates of Λ(j)).

Proof. To simplify the notation, we will denote U (j) simply by U , and let tj be the Lie algebra
of T j . Take any X ∈ tj and denote by Xnew the vector field on U generated by X with ∗ action,
and by Xstd the vector field on U generated by X using the standard action by conjugation. As
usual, for any function ϕ : Oλ → u(j)∗, and any X ∈ u(j), we denote by ϕX a function from Oλ
to R defined by ϕX(p) = 〈ϕ(p), X〉, where 〈, 〉 is the standard U(j) invariant pairing between
u(j)∗ and u(j). Take any A ∈ U . We want to prove that for any vector Y ∈ TAOλ = TAU

(3.2) ω(Xnew, Y )|A = d (Λ(j))X (Y )|A.
Denote by N the connected symplectic submanifold N := (Φj)−1(σo) ⊂ Oλ, where σ is the
principal face. We refer to N as the principal cross-section. Note that U = (Λ(j))−1(σo) =
U(j) ·N , and so every A ∈ U can be U(j) conjugated to an element of N . We first prove equation
(3.2) for A ∈ N .
The proof of theorem 3.8 in [LMTW] implies that

TAOλ = TAN + TA(U(j) ·A).

This is not a direct sum. Thus to prove the equation (3.2) for A ∈ N , it is enough to consider
two cases: when vector Y is tangent to the principal cross-section, and when it is tangent to
U(j) orbit (for the standard action).

Before we start considering the cases, we fix some notation. For any vector field V on Oλ,
denote by ΨV its flow. Recall that ΨV

−t = (ΨV
t )−1. Therefore, for example ΨXstd

t (Q) = XtQX
−1
t

and ΨXstd
−t (Q) = X−1

t QXt.
Case 1: Take Y ∈ TAN ⊂ TAOλ. We want to compute ω(Xnew, Y )|A = 〈A, [Xnew, Y ]〉.

Notice that on the principal cross section functions Φj and Λ(j) are equal, and the standard and
the new actions of T j coincide. Therefore the vector fields Xstd and Xnew have equal values and
flows on N . Using the formula

[Xnew, Y ] = lim
t→0

(ΨXnew
−t )∗(Y )− Y

t
= [Xstd, Y ].

we have that, if Y ∈ TAN , then 〈A, [Xnew, Y ]〉 = 〈A, [Xstd, Y ]〉. The fact that functions Φj and
Λ(j) agree on all of the N , means also that for Y ∈ TAN we have

d(Φj)X(Y ) = d(Λ(j))X(Y ).

Therefore

ω(Xnew, Y )|A = 〈A, [Xnew, Y ]〉 = 〈A, [Xstd, Y ]〉
= ω(Xstd, Y )|A = d(Φj)X(Y )|A
= d(Λ(j))X(Y )|A.
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Case 2: Take Y ∈ TA(U(j) · A). That is Y = Ystd for some Y = d
dtYt|t=0 ∈ u(j) and the

integral curve of Y through A is ΨY
t (A) = YtAY

−1
t . As before, we start by analyzing [Xnew, Y ]

at A. We have:

[Xnew, Y ]|A = lim
t→0

(ΨXnew
−t )∗(Y )|ΨXnew

t (A) − Y |A
t

.

The point A is in N , so ΨXnew
t (A) = Xt · A = XtAX

−1
t . Now we need to understand the

expression:

(ΨXnew
−t )∗(Y )|ΨXnew

t (A) =
d

dv
ΨXnew
−t (Yv ΨXnew

t (A)Y −1
v ) |v=0.

To compute the value of ΨXnew
−t on Yv ΨXnew

t (A)Y −1
v , we need to find an element C of U(j) that

would conjguate Φj(ΨXnew
−t ) to some element in (tj)∗+. We have

Φj(Yv ΨXnew
t (A)Y −1

v ) = Φj(YvXtAX
−1
t Y −1

v )
= YvXt Φj(A)X−1

t Y −1
v .

Therefore, for

C = X−1
t Y −1

v

we have that

CΦj(Yv ΨXnew
t (A)Y −1

v )C−1 = Φj(A) ∈ (tj)∗+.

This means that the new action of Xt at a point Yv ΨXnew
t (A)Y −1

v is the same as standard action
of

C−1Xt C = YvXtXtX
−1
t Y −1

v = YvXt Y
−1
v ,

so

ΨXnew
−t (Yv ΨXnew

t (A)Y −1
v )

= (YvX
−1
t Y −1

v )(YvXtAX
−1
t Y −1

v )(YvXtY
−1
v )

= Yv AY
−1
v .

Therefore

[Xnew, Y ]|A = lim
t→0

(ΨXnew
−t )∗(Y )|ΨXnew

t (A) − Y |A
t

= lim
t→0

Y |A − Y |A
t

= 0,

and

ω(Xnew, Y )|A = 〈A, [Xnew, Y ]〉 = 0.

Notice that the function Λ(j) is constant on U(j) orbits, because Φj is U(j)-equivariant and the
whole U(j) orbit intersects (tj)∗+ in a unique point. Thus, for Y ∈ TA(U(j) · A),

d (Λ(j))X (Y ) = 0.

and equation (3.2) for A in N follows.
Now we want to prove equation (3.2) for all C ∈ U . Let B be an element of U(j) such that

BCB−1 = A ∈ t∗+. Take any X ∈ t and Y ∈ TCU . Using the U(j) invariance of ω and of Λ(j),
and equation (3.2) at the principal cross section, we have
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Q = µ(Oλ) ⊂ R2 P = Λ(Oλ) ⊂ R3

Figure 2. The momentum map images for the standard and Gelfand-Tsetlin
actions on a regular SU(3) coadjoint orbit.

ω(Xnew, Y )|B−1AB = ω(
d

dt
(B−1XtB · C)|t=0,

d

dt
(ΨY

t (C))|t=0 )

= ω(
d

dt
B(B−1XtB · C)B−1|t=0,

d

dt
B(ΨY

t (C))B−1|t=0)

= ω(
d

dt
(XtBB

−1ABB−1X−1
t )|t=0,

d

dt
(ΨBY B−1

t (A))|t=0)

= ω(Xnew, BY B
−1)|A = d (Λ(j))X(BY B−1)|A

=
d

dt
[ (Λ(j))X(BΨY

t (C)B−1)) ]|t=0 =
d

dt
[ (Λ(j))X(ΨY

t (C)) ]|t=0

= d (Λ(j))X(Y )|C ,
which is exactly what we needed to show. �

Putting the actions together we obtain the Hamiltonian action of the Gelfand-Tsetlin torus
in U(n) case, T = TGT = T ′U(n−1) ⊕ . . . ⊕ T ′U(1)

∼= (S1)D, D =
∑n−1
i=1 dim(T ′U(i)), on the dense

open subset

U := ∩j U (j)

of the coadjoint orbit Oλ where all functions Λ(j) are smooth. This action is called the Gelfand-
Tsetlin action and its momentum map is Λ. If the orbit is regular then D = N = 1

2n(n− 1).

Notice that the standard action of Tn, described in the Section 2.2, is a part of the TN

action on U . One can easily compute the Tn-momentum map µ, which mapps a matrix to its

diagonal entries, from Λ. Of course λ
(1)
1 (A) = a11. Using the fact that the trace of Φ2(A) is

a11 + a22 = λ
(2)
1 (A) + λ

(2)
2 (A) we compute the value a22. Continuing this process we obtain all

the diagonal entries of A, that is we obtain µ(A). This defines the projection pr : (tN )∗ → (tn)∗,
which on the image of Λ is given by the following formula

pr({λ(j)
l }) =

(
λ

(1)
1 , λ

(2)
1 + λ

(2)
2 − λ

(1)
1 , . . . ,

∑
i

λ
(n−1)
i −

∑
i

λ
(n−2)
i ,

∑
i

λ
(n)
i −

∑
i

λ
(n−1)
i

)
.

This means µ = pr ◦ Λ. Under this projection, the Gelfand-Tsetlin polytope P := Λ(Oλ),
described below, maps to the momentum map image, Q, of the standard maximal torus action.
Here is an example for a regular SU(3) coadjoint orbit, Oλ.

Proposition 3.4. The Gelfand-Tsetlin action on a U(n)-coadjoint orbit Oλ is effective for all
λ.



LOWER BOUNDS FOR GROMOV WIDTH OF THE U(n)-COADJOINT ORBITS. 13

Proof. Suppose that

R = (Rn−1, . . . , R1) ∈ T ′U(n−1) ⊕ . . .⊕ T ′U(1) = TGT ,

Rj = diag(rj,1, . . . , rj,j , 1, . . . , 1), is a global stabilizer. Let

R̃ :=

(
Rn−1

1

)
. . .

(
R1

In−1

)
=



∏
j r1,j ∏

j r2,j
. . .

rn−1,n−1

1

 .

Note that for any k = 1, . . . , n− 1

(Φn−1)−1(σon−1) ⊂ (Φk)−1(σok).

Therefore for any A =

(
Φn−1(A) X
X∗ c

)
∈ (Φn−1)−1(σon−1) have

R ∗A = R̃ A R̃−1 = R̃

(
Φn−1(A) X
X∗ c

)
R̃−1 =

(
Φn−1(A) R̃X

X∗R̃−1 c

)
.

Let λ be of the form

(λ1 = . . . = λl1 > λl1+1 = . . . = λl1+l2 > . . . > λl1+...+ls−1+1 = . . . = λl1+...+ls).

Denote λl1+...+lj by wj . In this notation

λ =

 w1 Il1
. . .

ws Ils

 .

Fix any j = 1, . . . , s and take ε > 0 such that wj − ε > wj+1. For any

X = (0, . . . , 0, xl1+...+lj−1+1, . . . , xl1+...+lj , 0, . . . , 0)T

such that |xl1+...+lj−1+1|2 + . . .+ |xl1+...+lj |2 = lj(w
2
j − (wj − ε)2 ), the matrix

w1 Il1
. . .

(wj − ε) Ilj X

. . .

ws Ils
X∗ ∑

λi − ljε


is in (Φn−1)−1(σon−1) (see Lemma 3.6). Therefore R stabilizes this matrix if and only if

R̃X = X.

As R is a global stabilizer, considering similar matrices for other j we see that R̃ = I. In
particular this means that in Rn−1 the coordinate rn−1,n−1 must be equal to 1.
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Now consider matrices of the form

w1 Il1
. . .

(wj − ε) Ilj X 0
. . .

ws Ils
X∗ c1 0
0 0 c2


.

Torus T ′U(n−1) acts trivially on such matrices. Therefore R = (Rn−1, . . . , R1) acts in the same

way as (I,Rn−2, . . . , R1). Using similar argument as above we show that(
Rn−2

I2

)
. . .

(
R1

In−1

)
= In.

In particular in Rn−2 the coordinate rn−2,n−2 must be equal to 1. Together with the condition

R̃ = In this means that rn−1,n−2 = 1. Repeating these steps consecutively one shows that Ri = I
for all i. Therefore R = I ∈ TGT is the unique global stabilizer and the action is effective. �

3.3. The Gelfand-Tsetlin polytope. In this subsection we analyze the image Λ(Oλ) in RN ,
where N := n(n− 1)/2. The classical mini max principle (see for example Chapter I.4 in [CH])
implies that for any A ∈ Oλ

λ
(l+1)
j (A) ≥ λ(l)

j (A) ≥ λ(l+1)
j+1 (A).

We use the following notation for these inequalities:

(3.3)
Al,j : λ

(l+1)
j (A) ≥ λ(l)

j (A),

Bl,j : λ
(l)
j (A) ≥ λ(l+1)

j+1 (A).

The inequalities (3.3) cut out a polytope in RN , which we denoted by P, and Λ(Oλ) is contained
in this polytope.

Proposition 3.5. The image Λ(Oλ) is exactly P.

Proof. The Proposition follows from successive applications of the following lemma (Lemma 3.5
in [NNU], see also [GS2]), as explained below.

Lemma 3.6. For any real numbers a1 ≥ b1 ≥ a2 ≥ . . . ≥ ak ≥ bk ≥ ak+1 there exist x1, . . . , xk
in C and xk+1 in R such that the Hermitian matrix

A :=


b1 0 x̄1

. . .
...

0 bk x̄k
x1 . . . xk xk+1

 ,

has eigenvalues a1, . . . , ak+1 .

Now let c1, . . . , ck−1 be numbers such that b1 ≥ c1 ≥ b2 . . . ≥ bk−1 ≥ ck−1 ≥ bk. Applying
Lemma 3.6 again, we get that there exist y1, . . . , yk−1 in C and yk in R such that the Hermitian
matrix

B :=


c1 0 ȳ1

. . .
...

0 ck−1 ȳk−1

y1 . . . yk−1 yk

 ,
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has eigenvalues b1, . . . , bk. Therefore there is an invertible matrix C ∈ U(k) such that CBC−1 =
diag(b1, . . . , bk). Denote by X the column vector (x1, . . . , xk)T . Notice that


0

C
.
.
.
0

0 . . . 0 1


 B C−1X

XTC xk+1




0

C−1
.
.
.
0

0 . . . 0 1

 =

 CBC−1 C C−1X

XTC C−1 xk+1

 = A

Therefore the Hermitian matrix  B C−1X

XTC xk+1


has desired values of the Gelfand-Tsetlin functions λ

(k+1)
∗ , λ

(k)
∗ , λ

(k−1)
∗ . Continuing this process,

we construct a matrix A in Oλ such that Λ(A) = L, for any chosen point L in the polytope
P. �

The polytope P ⊂ RN is called the Gelfand-Tsetlin polytope. We think of RN as having

coordinates {x(j)
k }, indexed by pairs (j, k), for j = 1, . . . , n− 1, and k = 1, . . . , j, so that x

(j)
k -th

coordinate of Λ(A) is λ
(j)
k (A).

Lemma 3.7. Let Λ = Λ(A), A ∈ Oλ, be a point in the polytope P, with coordinates {λ(j)
k (A)}.

Suppose that for any (j, k), j = 1, . . . , n− 1, k = 1, . . . , j, we have that

λ
(j)
k (A) = λ

(j+1)
k (A) or λ

(j)
k (A) = λ

(j+1)
k+1 (A).

Then Λ is a vertex of the polytope P.

Proof. For any pair (j, k) pick one equality, Aj,k or Bj,k, that is satisfied by Λ (if both are
satisfied pick either one of them). Arrange these inequalities to be of the form:

(linear combination of variables x
(j)
k ) ≤ real constant.

Sum all of these N inequalities together, forming the inequality

CX ≤ Z,

where X = (x
(n−1)
1 , . . . , x

(1)
1 ) ∈ RN is the variable, and Z,C ∈ RN are constants. Every X ∈ P

has to satisfy CX ≤ Z, as this is just a sum of N of the 2N inequalities defining P. Therefore
P ∩{X; CX = Z} is a face of P, (see Definition 2.1 in [Zi]). Note that X ∈ P satisfies CX = Z
if and only if all of the N inequalities defining P we have summed, are equalities for X. This

determines the values of all x
(j)
k in terms of λ1, . . . , λn. Therefore

P ∩ {X; CX = Z} = {Λ(A)}

is a 0-dimensional face, in other words a vertex of P. �

To emphasize the main idea of this proof, we give the following example.

Example 3.8. Let n = 3, λ = (5, 5, 4) and Λ(A) = (λ
(2)
1 (A), λ

(2)
2 (A), λ

(1)
1 (A)) = (5, 4, 5). We

need to choose inequalities Aj,k, Bj,k, one for each pair (j, k), that are equalities for Λ(A). For
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λ
(2)
1 (A) we have a choice as both of them are equations. Say we pick B2,1, B2,2 and A1,1. The

set of rearranged inequalities is

−x(2)
1 ≤ −λ2 = −5

−x(2)
2 ≤ −λ3 = −4

x
(1)
1 − x

(2)
1 ≤ 0

Summing these inequalities together we obtain

−2x
(2)
1 − x

(2)
2 + x

(1)
1 ≤ −9.

This inequality is satisfied on all P. An element X ∈ P satisfies −2x
(2)
1 −x

(2)
2 +x

(1)
1 = −9 if and

only if

−x(2)
1 = −5

−x(2)
2 = −4

x
(1)
1 = x

(2)
1 .

Thus, we see that (5, 4, 5) is the unique solution to these inequalities in P.

Lemma 3.9. The map Λ sends every Tn-fixed point to a vertex of P.

Proof. For a diagonal matrix F = diag(F1,1, . . . , Fn,n), the set of eigenvalues of Fj+1 := Φj+1(F )
is obtained from the set of eigenvalues of Fj := Φj(F ) by adding Fj+1,j+1. Let s be such that

λ(j)
s (F ) ≥ Fj+1,j+1 > λ

(j)
s+1(F ).

Then

∀l≤s λ
(j)
l (F ) = λ

(j+1)
l (F )

∀l>s λ
(j)
l (F ) = λ

(j+1)
l+1 (F ).

Therefore Λ(F ) is a vertex of P, by Lemma 3.7. �

Lemma 3.10. Let Λ = Λ(A), for A ∈ Oλ, be a point in the polytope P, with coordinates

{λ(j)
k (A)}. Suppose that there exists exactly one pair of indices (j0, k0) such that both inequalities

Aj0,k0 and Bj0,k0 at the point A are strict. That is, for all (j, k) 6= (j0.k0), j = 1, . . . , n − 1,
k = 1, . . . , j, we have one of the equalities

λ
(j)
k (A) = λ

(j+1)
k (A) or λ

(j)
k (A) = λ

(j+1)
k+1 (A).

Then Λ(A) is contained in the interior of an edge of P.

Proof. Proceed similarly as in the proof of Lemma 3.7. For any (j, k) 6= (j0.k0) choose one of
the inequalities Aj,k, Bj,k that is equality for Λ(A). Arrange these inequalities to be of the form:

(linear combination of variables x
(j)
k ) ≤ real constant.

Sum all of these N − 1 inequalities together forming the inequality

CX ≤ Z.
As before, this gives an inequality valid for P, and P ∩ {X; CX = Z} is a face of P. The

equation CX = Z determines the values of all x
(j)
k , with (j, k) 6= (j0, k0), in terms of λ1, . . . , λn

and x
(j0)
k0

. These uniquely determined values are x
(j)
k = λ

(j)
k (A). For any assignment of the

value for x
(j0)
k0

, the equation CX = Z will still hold. In order to have X ∈ P we need to pick
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the value for x
(j0)
k0

in the open interval (x
(j0+1)
k0

, x
(j0+1)
k0+1 ) = (λ

(j0+1)
k0

(A), λ
(j0+1)
k0+1 (A)). Note that

λ
(j0+1)
k0

(A) 6= λ
(j0+1)
k0+1 (A) because if they were equal, then they would also be equal to λ

(j0)
k0

(A)

what contradicts our assumptions. Thus we really are choosing the value for x
(j0)
k0

from the open,

non-degenerate interval (λ
(j0+1)
k0

(A), λ
(j0+1)
k0+1 (A)). Therefore

P ∩ {X; CX = Z} ∼= (λ
(j0+1)
k0

(A), λ
(j0+1)
k0+1 (A))

is a 1-dimensional face of P. �

Proposition 3.11. For any λ, the dimension of the polytope P is half of the dimension of Oλ.

Proof. Fix λ ∈ (tn)∗+, not necessarily generic. Let l1, . . . , ls be the integers such that l1+. . .+ls =
n and

λ1 = . . . = λl1 > λl1+1 = . . . = λl1+l2 > . . . > λn−ls+1 = . . . = λn.

Consider the coadjoint orbit M := Oλ in U(n). The dimension of Oλ was already computed in
Section ?? and is equal to

2D := 2 [ l1(l2 + . . . ls) + l2(l3 + . . .+ ls) + . . .+ ls−1ls ] = 2
∑
i<j

lilj .

If some lj > 1, then the (lj − 1) functions λ
(1)
l1+...+lj−1+1 = . . . = λ

(1)
l1+...+lj−1 have to be equal to

λl1+...+lj−1+1 due to inequalities (3.3). Lemma 3.6 implies that the image Λ(1)(Oλ) in (tn−1)∗ ∼=
Rn−1 has dimension equal to the number of non-constant functions from λ

(1)
∗ that is

n− 1−
s∑
j=1

(lj − 1).

Inequalities (3.3) force also (lj−2) of functions λ
(2)
∗ to be equal to λl1+...+lj−1+1, as well as lj−3

of functions λ
(3)
∗ , etc. The number of our functions λ∗∗ that are constant is

l1(l1 − 1)

2
+ . . .+

ls(ls − 1)

2
.

The remaining functions form the system of action coordinates, consisting of

n(n− 1)

2
−
(
l1(l1 − 1)

2
+ . . .+

ls(ls − 1)

2

)
=
∑
i<j

lilj = D

independent functions (see Proposition 3.5 and its proof). Therefore the dimension of the image
Λ(Oλ) is D. Recall from Section 3.2 that the Gelfand-Tsetlin torus TGT ∼= (S1)D is a subtorus

of TU(n−1) ⊕ . . . ⊕ TU(1)
∼= (S1)N corresponding to D non-constant functions λ

(∗)
∗ . Therefore

P ⊂ (tGT )∗ ⊂ RN . �

If F is a face of P containing some x ∈ Λ(U), then, by the definition of U , x is not on any
regular wall. Therefore any point of the interior F also cannot be on any regular wall, so it is in
U .

Lemma 3.12. If λ is generic, then the images of fixed points of standard Tn action are in U . If
λ is non generic but there is only one eigenvalue that is repeated - then there is a Tn-fixed point
that is in U .
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Proof. If λ is generic, then for any Tn-fixed point F and any k, the matrix Φj(F ) is a diagonal
matrix with all diagonal entries distinct. Therefore Λ(F ) is not on any regular wall, so it is in
U .
Now assume that λ is of the form

λ1 > λ2 > . . . > λl1 = λl1+1 = . . . = λl1+s > λl1+s+1 > . . . > λn.

Let {v1 > v2 > . . . > vn−s} = {λ1 > λ2 > . . . > λl > λl1+s+1 > . . . > λn} be the set of distinct
eigenvalues. Consider the Tn-fixed point

F =

(
A 0
0 λl1Ids

)
where A is any diagonal (n − s) × (n − s) matrix with spectrum {v1, v2, . . . , vn−s}. The figure

below presents the values of Gelfand-Tsetlin functions λ
(j)
k at F , for j ≥ n− s For j ≤ n− s the

values λ
(j)
1 (F ), . . . , λ

(j)
j (F ) are all distinct.

v1 . . . vl1−1 vl . . . vl1 vl1+1 . . . vn−s

v1 . . . vl1−1 vl . . . vl1 vl1+1 . . . vn−s

. . .
. . .

.

.

. . . .

vl1 . . . vl1−1 vl1 vl1+1 . . . vn−s

Therefore λ
(k)
j = λ

(k)
j+1 at F if and only if this equation is valid for the whole orbit. This shows

that the fixed point F of the form described above is in the set U . �

We call Λ images of such Tn-fixed points, OTn

λ ∩ U , good vertices of P. For example, in
the case of regular SU(3) orbit the Gelfand-Tsetlin polytope (see Figure 2) has 6 good vertices.
The unique vertex with 4 adjacent edges is not a good vertex. In fact, preimage of this vertex is
Oλ \ U .

Now consider a non-regular example: λ = (5, 4, 4, 4, 3, 1). Here is the Tn-fixed point and its
Gelfand-Tsetlin functions (the bold ones are constant on the whole orbit)

F =



1
5

3

4
4

4

 ,

5 4 4 3 1
5 4 3 1

5 3 1
5 1

1

Note that the vertex Λ(diag(1, 4, 4, 4, 3, 5)) is not a good vertex.

Proposition 3.13. For any good vertex VF = Λ(F ) there are exactly D edges in P emanating
from Λ(F ).

Proof. All the Λ preimages of interiors of faces containing Λ(F ), are also in U . Thus around F
we have a smooth, effective, Hamiltonian action of TD on U . The local normal form theorem,
(see for example [KT2]), gives that, in a suitably chosen basis, the image of moment map is a D
dimensional orthant. In particular this proves that there are exactly D edges starting from this
point. �

Note that there may be more then D edges starting from vertices of P that are not good
vertices.
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4. Proof of the main theorem

Let Oλ be a coadjoint orbit such that the Gelfand-Tsetlin polytope P contains at least one
good vertex. In particular λ can be of the form

λ1 > λ2 > . . . > λl1 = λl1+1 = . . . = λl1+s > λl1+s+1 > . . . > λn, s ≥ 0.

Recall that D denotes half of the dimension of Oλ, which is equal to the dimension of the Gelfand-
Tsetlin torus TGT , and that P ⊂ (tGT )∗ ⊂ (tN )∗ ∼= RN . We are to show that the Gromov width
of Oλ is at least min{λi − λj |λi > λj}.

Proof. (of Theorem 1.1) Let Λ(F ) = VF be a good vertex of P and T be an open subset of t∗

such that

Λ(Oλ) ∩ T =
⋃

F face of P
VF∈F

(rel-int F)

and let W = Φ−1(T ). Then W is the largest subset of M centered around VF (compare with
Example 2.4). According to the Proposition 2.6 there is an equivariant symplectomorphism

Ψ :
{
z ∈ CD | VF + π

∑
|zj |2ηj ∈ T

} ∼=−→W,

where −η1, . . . ,−ηD are the isotropy weights of TD action on TFOλ. The vectors η1, . . . , ηD
span D edges of P starting from VF . We call them the edge generators. For the edge in the
direction of ηl, there is a number cl ∈ R such that the edge is precisely cl ηl. This is equivalent
to saying that the edge is of lattice length cl with respect to the weight lattice, because for the
coadjoint U(n) action all isotropy weights are primitive with respect to the lattice they span.
Let

{v1 > v2 > . . . > vn−s}
be the set of distinct eigenvalues. Proposition 4.1, proved below, shows that for any edge, cl
is at least the minimum min{vi − vi+1} = min{λi − λj |λi > λj}. Therefore a ball of capacity
min{λi−λj |λi > λj} embeds symplectically intoW ⊂ Oλ, as explained in the Example 2.7. �

Moreover, we will show that for any good vertex there is an edge leaving from this vertex,
with the length equal to the minimum of vi − vi+1 times the length of the edge generator. This
means that the lower bound we prove is the best possible we can get from this particular action.
Let us emphasize that there might exist symplectic embeddings of bigger balls, however this
method fails to find them.

Proposition 4.1. The length of any edge in P starting from a good vertex VF is at least
min{vi − vi+1} times the length of the edge generator. Moreover, there is an edge with length
exactly the min{vi − vi+1} times the length of its generator.

Proof. Recall from Section 3.2 that the momentum maps for the standard and the Gelfand-
Tsetlin torus actions are related through projection pr, µ = pr ◦ Λ. We continue to denote the
polytope µ(Oλ) by Q and its one-skeleton (image of points whose orbits have dimension at most
1) by Q1 We will show that for any edge e ∈ P starting from VF there is an edge e′ in Q1

(possibly not and edge but just a line segment in Q) such that pr(e) ⊂ e′. This will help us to
analyze edges of P.

Denote the diagonal entries of F by F11, . . . , Fnn. Let p < q be indices from {1, . . . , n}
such that vi = Fpp 6= Fqq = vk and F ′ is the matrix obtained from F by switching p-th and
q-th entry. There is an edge in Q1 joining µ(F ) and µ(F ′), and it is an µ-image of a sphere
S := {Fz; z ∈ C ∪ {∞}} in Oλ defined in the Section ??. We will analyze Λ(S).
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Assume that vk < vi. The other case is proved in a similar way. First observe that for j < p
the matrices (Fz)j := Φj(Fz) and (F )j := Φj(F ) are both equal to diag (F1,1, . . . , Fj,j). Also for
j ≥ q the matrices (Fz)j and Fj have the same eigenvalues. This is because the eigenvalues of
this 2× 2 matrix [

(vi+|z|2vk)
Z

z̄(vi−vk)
Z

z(vi−vk)
Z

(vk+|z|2vi)
Z

]
,

where Z =
√

1 + |z|2, are vi and vk. Therefore, for j < p or j ≥ q, we have

(4.1) ∀Fz∈S λ(j)
m (Fz) = λ(j)

m (F ),

for any m = 1, . . . , n− j. Denote by ρ(|z|) = (vi+|z|2vk)
Z . While a goes to∞, ρ decreases its value

from vi to vk. Let

i′ = min{l ; vl ∈ {F11, . . . , Fqq}, vi > vl}.
This implies that i+1 ≤ i′ ≤ k. Note that i′ is not necessarily i+1, as it might happen that vi+1

is a diagonal entry of F that does not sit in a submatrix (F )q. Lemmas 4.2 and 4.3 below show
that the set Λ({Fz | ρ(|z|) ∈ [vi′ , vi]}) is an edge of P starting from VF . Now we need to compute
it’s length relative to the length of the edge generator (= −isotropy weight). Notice that the
projection pr (induced by inclusion Tn ↪→ TGT ) maps the isotropy weights of TGT action to the
isotropy weights of Tn action. If e = clηl is the edge of P, then pr(e) = clpr(ηl) is the part
of the corresponding edge e′ of Q1 starting from the vertex µ(F ). The edge generator in the
direction pr(ηl) is −epp + eqq (because the isotropy weight of the standard action of maximal

torus is epp − eqq). We will denote Z̃ := {Fz | ρ(|z|) = vi′} and Ṽ := Λ(Z̃), regardless of the

fact if it is a vertex or an interior point of and edge in P. Notice that Ṽ , has values of Λ that
are different from those of F in exactly (q − p) places. Precisely, for every p ≤ j < q, there is

exactly one s such that λ
(j)
s (F ) = vi while λ

(j)
s (Z̃) = vi′ . Recall from section 3.2 that the k− th

coordinate of pr({λ(∗)
∗ }) is given by

( pr({λ(∗)
∗ }) )k =

k∑
s=1

λ(k)
s −

k−1∑
s=1

λ(k−1)
s

for k > 1 and is equal to λ
(1)
1 for k = 1. Therefore µ(F ) = pr(Λ(F )) and µ(Z̃) = pr(Λ(Z̃)) differ

only at p-th and q-th coordinates:

( pr(Λ(F )) )p =

p∑
s=1

λ(p)
s (F )−

p−1∑
s=1

λ(p−1)
s (F )

=

p∑
s=1

λ(p)
s (Z̃) + vi − vi′ −

p−1∑
s=1

λ(p−1)
s (Z̃) = ( pr(Λ(Z̃)) )p + vi − vi′

( pr(Λ(F )) )q =

q∑
s=1

λ(q)
s (F )−

q−1∑
s=1

λ(q−1)
s (F )

=

q∑
s=1

λ(q)
s (Z̃) + vi − vi′ − (

q−1∑
s=1

λ(q−1)
s (Z̃) + vi − vi′ )

= ( pr(Λ(Z̃)) )q − (vi − vi′)
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Thus

µ(F )µ(Z̃) = (vi − vi′)(−epp + eqq),

and the edge e of P is at least (vi−vi′) multiple of the weight spanning it. Recall from definition
of i′ that (vi − vi′) ≥ (vi − vi+1).

In case where vk > vi, ρ(|z|) would be increasing its value from vi to vk and we would prove
in an analogous way that the edge joining F and F ′ is at least (vi−1 − vi) multiple of the edge
generator.

Notice that different pairs of p and q (such that Fpp 6= Fqq) give different edges. This follows,

for example, from the fact that for j < p or j ≥ q, we have λ
(j)
s (Fz) = λ

(j)
s (F ). Therefore we

found D distinct edges of P starting from VF . The Proposition 3.13 gives that these must be all
the edges.

Now suppose that m is the index such that the minimum of {vi − vi+1 | i = 1, . . . , s} is equal
to vm − vm+1. There are indices p < q such that Fp,p = vm and Fq,q = vm+1, or Fp,p = vm+1

and Fq,q = vm. Let F ′ be the diagonal matrix obtained from F by switching p-th and q-th entry.

Then Z̃ = F ′, Ṽ = Λ(F ′) and the edge of P between these two vertices is exactly (vm − vm+1)
multiple of the edge generator. �

The above proof used two lemmas that we formulate and prove below.

Lemma 4.2. For z such that vi >
(vi+|z|2vk)

Z = ρ(|z|) > vi′ the point Λ(Fz) is in the interior of
an edge of P.

Proof. Let m be such that

λ(q−1)
m (Fz) = vi > ρ(|z|) = λ

(q−1)
m+1 (Fz).

We will show that for any (j, l) 6= (q − 1,m), j = 1, . . . , n− 1, l = 1, . . . , j, we have that

λ
(j)
l (Fz) = λ

(j+1)
l (Fz) or λ

(j)
l (Fz) = λ

(j+1)
l+1 (Fz),

and use the Lemma 3.10. The matrix (Fz)q := Φq(Fz) is diagonal, thus, repeating the proof of
Lemma 3.9 for (Fz)q, we can show that the above claim holds for j < q − 1 and any l. Also, for
j ≥ q the claim holds, due to equations (4.1) and Lemma 3.9. Thus, for j 6= q− 1 and any l, the

function λ
(j)
l is equal at Fz to its lower or upper bound.

Now assume j = q − 1 and notice that

spectrum((Fz)q) = spectrum((Fz)q−1) ∪ {vi, vk} \ {ρ(|z|)}.
The Figure 4 presents sequences of ordered eigenvalues of (Fz)q−1 and (Fz)q. This presentation

≥ vi

. . .

ρ

≥ vi

. . .

. . . . . .

. . . . . .

. . .

vi+1 ≥ . . . ≥ vk−1

vi+1 ≥ . . . ≥ vk−1

= vk < vk

< vk= vk

. . . vi vk

λ(q−1)
∗ (Fz) :

λ(q)∗ (Fz) :

Figure 3. Eigenvalues of (Fz)q−1 and (Fz)q.

helps to note that

∀t 6=m, λ(q−1)
t (Fz) ≥ vk ⇒ λ

(q−1)
t (Fz) = λ

(q)
t (Fz),

∀t 6=m, λ(q−1)
t (Fz) < vk ⇒ λ

(q−1)
t (Fz) = λ

(q)
t+1(Fz).
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Thus by the Lemma 3.10, Λ(Fz) is on the edge of P. All eigenvalues of (Fz)q are equal to

some element of the set {v1, . . . , vn−s}. Therefore λ
(q−1)
m (Fz) = ρ(|z|) ∈ (vi′ , vi) is not equal to

λ
(q)
m (Fz) nor λ

(q)
m+1(Fz), so Λ(Fz) is not a vertex of P. �

Lemma 4.3. Λ( {Fz | ρ(|z|) = vi′} ) is a vertex of P.

Proof. Similarly to the proof of Lemma 4.2, we show that for (j, l) 6= (q−1,m), j = 1, . . . , n−1,

l = 1, . . . , j, the function λ
(j)
l at Fz is equal to its lower or upper bound (again use Figure 4).

However this time λ
(q−1)
m (Fz) = ρ(|z|) = vi′ = λ

(q)
m+1(Fz). We use Lemma 3.7 to deduce that

Λ( {Fz | ρ(|z|) = vi′} ) is a vertex of P. �

5. Low-dimensional examples.

In this section we summarize what is known about Gromov width of U(n) coadjoint orbits.
The table below presents low dimensional examples for which it was proved that lower bound of
Gromov width is as expected: the minimum of λj − λj over λi > λj . The table also specifies if
this fact follows directly from our Main Theorem; if it requires Remark 3.1; or if it was proved
using different methods. Generic U(1) orbits, and degenerate U(2) orbits are just points, so their
Gromov width is 0. Gromov width of generic orbits satisfying some integrality conditions was
already calculated by Zoghi in [Z].
n λ Thm 1.1 Rem. 3.1 Other

2 generic  sphere
√

Delzant Thm; also [Z]

degenerate  points
3 any λ

√
generic - proved in [Z]

4 (λ1, λ1, λ2, λ2)  complex
Grassmannian of 2-planes in C4

− √
Karshon and Tolman, [KT1,
Theorem 1]

4 other λ
√

generic - proved in [Z]

5


(λ1, λ1, λ2, λ2, λ3)

(λ1, λ1, λ2, λ2, λ2)

(λ1, λ1, λ1, λ2, λ2)

− √

5 other λ
√

generic - proved in [Z]

6 (λ1, λ1, λ2, λ2, λ3, λ3) − − −
In the case of n = 6, there is already an orbit for which we still don’t have even the lower bound

of the Gromov width. Namely (λ1, λ1, λ2, λ2, λ3, λ3). For all the other orbits, the lower bound or
even exact Gromov width is proved in Theorem 1.1 together with Remark 3.1, or in [KT1], or [Z].
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